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Thanks to Andrew McGregor 
  A few slides borrowed from IITK Workshop on Algorithms 

for Processing Massive Data Sets. 



Data Streaming Model 
  Stream: m elements from universe of size n 

   e.g., S=<x1, x2, ... , xm> = 3,5,3,7,5,4,8,7,5,4,8,6,3,2, … 

• Goal: Compute a function of stream, e.g., median, number of 
distinct elements, frequency moments, heavy hitters.  

• Challenge:  
 (i) Limited working memory, i.e., sublinear(n,m). 
 (ii) Sequential access to adversarially ordered data. 
 (iii) Process each update quickly. 

Slide derived from [McGregor 10] 



Graph Streams 
  S = <x1, x2, …, xm>; xi ∈[n] x [n] 

  A defines a graph G on n vertices. 

  Goal: compute properties of G.  

  Challenge: subject to usual streaming 
constraints. 

Snapshot of Internet Graph 
Source: Wikipedia 



Bad News 
  Many graph problems are impossible in 

standard streaming model (require linear 
space or many passes over data). 

  E.g. Ω(n) space needed for connectivity, 
bipartiteness. Ω(n2) space needed for 
counting triangles, diameter, perfect 
matching. 

  Often hard even to approximate.  

  Graph problems  ripe for outsourcing. 



Outsourcing Models 
  Stream Punctuation [Tucker et al. 05], Proof Infused Streams 

[Li et al. 07], Stream Outsourcing [Yi et al. 08], Best-Order 
Model [Das Sarma et al. 09] (is a special case of our model) 



Outsourcing Models 
  Stream Punctuation [Tucker et al. 05], Proof Infused Streams 

[Li et al. 07], Stream Outsourcing [Yi et al. 08], Best-Order 
Model [Das Sarma et al. 09] (is a special case of our model) 

  [Chakrabarti et al. 09] Online Annotation Model: Give 
streaming algorithm access to powerful helper H who can 
annotate the stream. 

 Main motivation: Commercial cloud computing services such 
as Amazon EC2. Helper is untrusted. 

 Also, Volunteer Computing (SETI@home. Great Internet 
Mersenne Prime Search, etc.) 

 Weak peripheral devices. 



Online Annotation Model 
  Problem: Given stream S, want to compute f(S):  

S=<x1, x2, x3, x4, x5, x6, ... , xm>  

  Helper H: augments stream with h-word annotation:  

(S,a)=<x1, x2, x3, x4, x5, x6, …, xm, a1, a2, ... , ah>  

   Verifier V: using v words of space and random string r, run verification 
algorithm to compute g(S,a,r) such that for all a either:  

 a)Prr[g(S,a,r) =f(S)]=1 (we say a is valid for S) or 

 b) Prr[g(S,a,r) =⊥]≥1-δ  (we say a is δ-invalid for S) 

 c) And at least one a is valid for S. 

Note: this model differs slightly from [Chakrabarti et al. 09].  



Online Annotation Model 

  Two costs: words of annotation h and working memory v. 
 We refer to (h, v)-protocols. 
  Primarily interested in minimizing v. 
  But strive for optimal tradeoffs between h and v. 
  Proves more challenging for graph streams than numerical 

streams. Algebraic structure seems critical. 



Fingerprinting 
  Need a way to test multiset equality (e.g. to see if two 

streams have the same frequency distribution). 
  But need to do so in a streaming fashion. 
 We often use this to make sure H is “consistent”. 

  Solution: fingerprints.  
 Hash functions that can be computed by a streaming verifier. 
  If S≠ S’ as frequency distributions, then f(S) ≠ f(S’) w.h.p. 

  We choose a fingerprint function f  that is linear. f(S ∘S’) = 
f(S) + f(S’) where  ∘ denotes concatenation. Will need this 
for matrix-vector multiplication. 



Two Approaches To Designing Protocols 
1.  Prove matching upper and lower bounds on a quantity. 

  One bound often easy: just give feasible solution. 
  Proving optimality more difficult. Usually requires 

problem structure. 

2.  Use H to “verify” execution of a non-streaming  algorithm. 



Max-Matching 
  [Chakrabarti et al. 09]: (m, 1)-protocol for bipartite Perfect 

Matching. Also hv=Ω(n2) lower bound. 
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on size of max-matching. 
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½ (2 – 8 + 10) = 2. 



Max-Matching 
  (Tutte-Berge Formula): The size of a maximum matching 

of a graph G = (V, E) equals  
½ minU⊂V (|U| -occ(G-U) + |V|) 

where occ(H) is the number of components in the graph H with 
an odd number of vertices. 

c e a 

f g 

h i j 

Let U = {b, d}. Then 
½ (|U| -occ(G-U) + |V|)= 
½ (2 – 8 + 10) = 2. 

 For all other U,  
½ (|U| -occ(G-U) + |V|) ≥ 2. 



Max-Matching Protocol 
1.  H provides a feasible matching of size k. V checks feasibility 

with fingerprints. 
2.  H provides U⊂V and claims  ½ (|U| -occ(G-U) + |V|)=k. If so, 

V accepts answer k. Else, V rejects. 

  Caveat: H must provide proof of the value of occ(G-U), 
because V cannot do this on her own. 



Streaming LP problem 
  Suppose stream A contains (only the non-zero) entries of matrix 

A, vectors b and c, interleaved in any order (updates are of the 
form e.g. “add y to entry (i,j) of A”). The LP streaming problem 
on A is to determine max {cT x | Ax ≤ b}.  
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Streaming LP problem 
  Suppose stream A contains (only the non-zero) entries of matrix 

A, vectors b and c, interleaved in any order (updates are of the 
form e.g. “add y to entry (i,j) of A”). The LP streaming problem 
on A is to determine max {cT x | Ax ≤ b}.  

  Theorem: There is a (|A|, 1) protocol for the LP streaming 
problem, where |A| is number of non-zero entries in A. 
  Protocol (“naïve” matrix-vector multiplication):  

1.  H provides primal-feasible solution x.  
2.  For each row i of A: 

 Repeat entries of x and row i of A in order to prove feasibility. 
Fingerprints ensure consistency. 

3.  Repeat for dual-feasible solution y. Accept if value(x)=value(y). 
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proven via a solution to the dual of its LP relaxation. 



Application to Graph Streams 
  Corollary: Protocol for TUM IPs, since optimality can be 

proven via a solution to the dual of its LP relaxation. 
  Corollary: (m, 1) protocols for max-flow, min-cut, 

minimum-weight bipartite perfect matching, and shortest s-t 
path. Lower bound of hv=Ω(n2) for all four. 



Application to Graph Streams 
  Corollary: Protocol for TUM IPs, since optimality can be 

proven via a solution to the dual of its LP relaxation. 
  Corollary: (m, 1) protocols for max-flow, min-cut, 

minimum-weight bipartite perfect matching, and shortest s-t 
path. Lower bound of hv=Ω(n2) for all four. 

  A is sparse for the problems above, which suits the naïve protocol. 
For denser A, can get optimal tradeoffs between h and v. 
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verifying eigenvalues of Laplacian.  
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  We will get optimal (n1+α,  n1-α) protocol. Lower bound: 

hv=Ω(n2). 
 Corollary I: Protocols for dense LPs, effective resistances, 

verifying eigenvalues of Laplacian. 
 Corollary II: Optimal tradeoffs for Quadratic Programs,  

Second-Order Cone Programs. (n2, 1) protocol for Semi-
definite Programs. 
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product query. 



Dense Matrix-Vector Multiplication 
  First idea: Treat as n separate inner-product queries, one for 

each row of A.  
 Worse than “naïve” solution. 
 Multiplies both h and v by n, as compared to a single inner-

product query. 

  Key observation: one vector, x, in each inner-product query 
is constant. 
 This plus linear fingerprints lets us just multiply h by n.  
  v will be the same as for a single inner product query. 



Approach 2: Simulate an Algorithm 
  Main tool: Offline memory checker [Blum et al. ’94]. Allows 

efficient verification of a sequence of accesses to a large 
memory.  

   Lets us convert any deterministic algorithm into a protocol 
in our model. 

  Running time of the algorithm in the RAM model becomes 
annotation size h. 



Memory Checker [Blum et al. ’94] 
  Consider a memory transcript of a sequence of reads and writes 

to memory. 
  A transcript is valid if each read of address i returns the last 

value written to that address. 
  Memory checker requires transcript be provided in a 

carefully chosen (“augmented”) format.  
 Augmentation blows up transcript size only by constant factor. 

  V checks validity by keeping a constant number of 
fingerprints and performing simple local checks on the 
transcript.  



Simulation Theorem 
 Any graph algorithm M in RAM model requiring time t 

can be (verifiably) simulated by an (m+t, 1)-protocol. 

   Proof sketch:  
  Step 1: H first plays a valid adjacency-list representation of G to 

“initialize memory”.  

  Step 2: H provides a valid augmented transcript T of the read 
and write operations performed by algorithm.  

  V checks validity using memory-checker. V also checks all read/
write operations are as prescribed by M. 



Simulation Theorem 
 Corollary: (m, 1)-protocol for MST; (m + n log n, 1)-protocol 

to verify single-source shortest paths; (n3,1)-protocol for all-
pairs shortest paths.  
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Simulation Theorem 
 Corollary: (m, 1)-protocol for MST; (m + n log n, 1)-protocol 

to verify single-source shortest paths; (n3,1)-protocol for all-
pairs shortest paths.  

  Proof for MST: Given a spanning tree T, there exists a linear-
time algorithm M for verifying that T is minimum e.g. [King 
‘97]. 

  Lower bounds: hv=Ω(n2) for single source and all-pairs 
shortest paths. hv=Ω(n2) for MST if edge weights specified 
incrementally.  



Pitfall of Memory-Checking 
Cannot simulate randomized algorithms 
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Diameter 
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2). 
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix 

multiplication. 

  Let A be adjacency matrix of G. 

  (I + A)l
ij >0 if and only if there is a path of length at most l 

from i to j. 
  Protocol: 
1.  H claims diameter is l 

2.  Use repeated squaring to prove (I+A) l has an entry that is 0, 
 and (I+A) l+1

  ≠ 0 for all (i,j). 



Summary 
  (m, 1)-protocol for max-matching. hv=Ω(n2) lower bound 

for dense graphs, so we can’t do better.  
  (m, 1)-protocols for LPs TUM IPs. hv=Ω(n2) lower bound 

for several TUM IPs. 
  Optimal (n1+α,  n1-α)-protocol for dense matrix-vector 

multiplication. (n1+α,  n1-α)-protocols for effective 
resistance, verifying eigenvalues of Laplacian or Adjacency 
matrix, LPs, QPs, SOCPs. 

  General simulation theorem; applications to MST, shortest 
paths. 

  (n2log n, 1) protocol for Diameter. hv=Ω(n2) lower bound. 



Open questions 
  Tradeoffs between h, v for matching, MST, diameter? 

  Distributed computation: Protocols that work with Map-
Reduce. 

  What if we allow multiple rounds of interaction between H 
and V? Can we get exponentially better protocols? 



With Graham Cormode and Ke Yi 

Verifying Computations with 
Streaming Interactive Proofs 
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A General Result 
  Universal Arguments [Kilian 92] and Interactive Proofs for 

Muggles [Goldwasser, Kalai, Rothblum 08] can work with 
streaming verifier! 

  Therefore: (polylog u, polylog u) computationally sound protocols 
for NP. (polylog u, polylog u) statistically sound protocols for all of 
log-space uniform NC. u is input size. 

  Efficient protocols even for problems hard in non-streaming setting. 

  Exponential improvement over best-possible one-round protocols. 



How to Make V Streaming 
  Arithmetization: Given function f ’, extend domain of f ’ to 

field and replace f ’ with its low-degree extension (LDE) f as a 
polynomial over the field. 

  Can view f as a high-distance encoding of f ’. The error 
correcting properties of f give V considerable power over H. 



How to Make V Streaming 
  Three observations:  

  1. In many proof systems, V only accesses the input in order to 
compute f(r) for small number of r, where f is LDE of input. 

  2. Moreover, locations r only depend on V’s random coins. 
  3. V can evaluate f(r) in streaming fashion. 



How to Make V Streaming 
  Three observations:  

  1. In many proof systems, V only accesses the input in order to 
compute f(r) for small number of r, where f is LDE of input. 

  2. Moreover, locations r only depend on V’s random coins. 
  3. V can evaluate f(r) in streaming fashion. 

  So streaming V tosses all coins in advance; remembers them 
and keeps them private from H; and computes f(r) during 
“input observation” phase.  



Streaming V can evaluate f(r) 
  E.g. Let a be the u-dimensional frequency vector of a stream. 

and view the universe [u] as [ℓ]d where ℓd=u (“frequency 
hypercube”).   
 Then f(x) = ∑v∈[ℓ]d av χv (x). 

  Whereχv(v)=1 and χv(v’)=0 for all other v’ ∈[ℓ]d. 



Streaming V can evaluate f(r) 
  E.g. Let a be the u-dimensional frequency vector of a stream. 

and view the universe [u] as [ℓ]d where ℓd=u (“frequency 
hypercube”).   
 Then f(x) = ∑v∈[ℓ]d av χv (x). 

  Whereχv(v)=1 and χv(v’)=0 for all other v’ ∈[ℓ]d. 

  V makes one pass over the data stream. If  V observes a new 
entry av of the input, V may update 

  f(r) ← f(r) + av · χv(r).  



Some comments 
 Despite powerful generality, [Goldwasser, Kalai, 

Rothblum 08]  is not optimal for many low-complexity 
functions of high interest in streaming, database 
processing. 

 E.g. Frequency Moments, Reporting Queries. 

 We give improved protocols for these problems. 
 And argue that they are practical. 
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Tool: Sum-Check Protocol 
 Let g be a polynomial over Fp. 

 Say we want to compute ∑z∈Hd g(z) for some H ⊆ 
Fp. 

 A Sum-Check Protocol lets V do this as long as V can 
evaluate g at a randomly-chosen location r.  

 Requires d rounds, communication cost in round i is 
degi(g), the degree of g in variable i. 
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  First attempt: Let a2 denote the entry-wise square of a. Try 
to apply a sum-check protocol to the LDE g of a2.  
  i.e. g = ∑v ∈[ℓ]d a2

v χv.  
  But a streaming verifier cannot evaluate g at a random location. 



F2 protocol 
  Goal: Compute ∑i ai
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  First attempt: Let a2 denote the entry-wise square of a. Try 
to apply a sum-check protocol to the LDE g of a2.  
  i.e. g = ∑v ∈[ℓ]d a2

v χv.  
  But a streaming verifier cannot evaluate g at a random location. 

   But V can use a slightly higher-degree extension of a2 

instead.  
  i.e. f2= (∑v ∈[ℓ]d  av χv)2  
 We know V can evaluate f(r), and f2(r)=f(r)2. 



Experiments 
  Implemented one-round F2 protocol from [Chakrabarti et al. 

09] and multiround F2 protocol. 

  Single-round space and communication cost grows like √u. Still 
under a megabyte for u=100 million. 

 Multiround space and communication always under 1 KB even 
when handling GBs of data. 



Experiments 
  V takes about the same time in both cases (millions of updates per 

second). But H much more efficient in multiround case. 
  E.g. Multiround H requires less than a second to process streams with 

millions of updates and u=[250K]. Single-round H requires minutes 
on same data. 

  Multi-round H’s time grows linearly, single-round H’s time grows like 
u3/2. 
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Extension to Frequency-Based 
Functions 
  Frequency based function F(a) is of the form F(a) =∑i h(ai) 

for some h: N0  N0.   

  e.g. Fk, F0 (DISTINCT), “How many items have frequency at 
most i?”, verifying Fmax (highest-frequency). 



Extension to Frequency-Based 
Functions 
  First idea: extend h to a polynomial h over Fp and apply a 

sum-check protocol to the polynomial h◦f. 
  Streaming V can evaluate h◦f(r) by computing f(r) and then 

h(f(r)). 
  Problem: h might have degree u. Resulting communication cost 

is du, worse than trivial protocol. 



Extension to Frequency-Based 
Functions 
  First idea: extend h to a polynomial h over Fp and apply a 

sum-check protocol to the polynomial h◦f. 
  Streaming V can evaluate h◦f(r) by computing f(r) and then 

h(f(r)). 
  Problem: h might have degree u. Resulting communication cost 

is du, worse than trivial protocol. 

  Solution: We give a (1/φ log u, 1/φ log u) protocol to 
identify all items of frequency at least φm (the “φ-heavy 
hitters”). Use this protocol to “remove” the heavy items, 
which allows to control degree of h.  



Extension to Frequency-Based 
Functions 
  Result: a (√u log u, log u)-protocol for any frequency-based 

function that takes log u rounds. 

  [Goldwasser, Kalai, Rothblum 08] yields (log2 u, log2 u) 
protocol. 

  For 1 TB of data, √u is on the order of 1 MB, log2 u is on the 
order of thousands, log u≈40. 

  Might prefer to communicate 1 MB of data over 40 rounds 
than 1 KB over thousands of rounds due to network latency. 



Reporting Queries 
  Sub-vector query: Given qL and qR, determine the non-zero entries of 

(aqL
 , . . . , aqR

). 

  We give a (k + log u, log u)-protocol for Sub-vector requiring log u 
rounds, where k is number of non-zero entries in (aqL

 , . . . , aqR
). 

  In comparison, [Goldwasser, Kalai, Rothblum 08] yields (k’ log u, k’ 
log u)-protocol, where k’ = O(qR-qL). 
   Improvement is significant when k’ is large or the subvector is 

sparse. 

  Protocol is reminiscent of Merkle trees, but we achieve statistical 
soundness. 



Open Questions 
  Reusability? 

  Do problems outside of NC possess streaming interactive proofs? 

  Better protocols for specific candidates? Prime candidates: F0, Fmax. 

  Distributed Computation: Our prover’s messages naturally lend 
themselves to Map-Reduce setting. Remains to demonstrate this 
empirically. 



Thank you! 



Matrix-Vector Multiplication 
  Background: [Chakrabarti et al. 09] (√n, √n)-protocol for 

inner product of frequency vectors of two streams S1, S2. 
  View universe [n] as [√n] x  [√n].  

0 
Frequency “Square” of S1  

6 17 

0 2 0 

0 8 0 

0 6 17 0 2 0 0 8 0 

Frequency Vector of S1  

Slide derived from [McGregor 10] 



Inner-Product Protocol (1/4) 
  Want to compute inner product of frequency vectors of  S1, S2. 

0 

Frequency Square of S1  

6 17 

0 2 0 

0 8 1 

8 

Frequency Square of S2  

2 0 

19 21 0 

4 8 3 

Slide derived from [McGregor 10] 



Inner-Product Protocol (2/4) 
  First idea: Have H send the inner product “in pieces”:  

  row 1  ∙  row 1, row 2 ∙  row 2, etc. Requires √n communication. 

  V exactly tracks a piece at random (denoted in yellow) so if H lies about 
any piece, V has a chance of catching her. Requires space √n. 
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Frequency Square of S2  

2 0 

19 21 0 

4 8 3 

H sends 
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Inner-Product Protocol (3/4) 

 Problem: If H lies in only one place, V has small chance of 
catching her. 

  Solution: Have H commit (succinctly) to inner products of 
pieces of a high-distance encoding of the input. If H lies 
about one piece, she will have to lie about many. 

 Need  V to evaluate any piece of the encoding in a streaming 
fashion. Can do this for “low-degree extension” code. 



Inner-Product Protocol (4/4) 
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High-Distance Encoding g  
of Frequency Square of S1  
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High-Distance Encoding h 
of Frequency Square of S2  

Input is 
embedded in 

encoding 
(low-degree 
extension) 

80 

4 

These values 
will all lie on 
low-degree 
polynomial s(x) 



Matrix-Vector Multiplication (1/7) 
  First idea: Treat as n separate inner-product queries, one for 

each row of A.  
 Worse than “naïve” solution. 
 Multiplies both h and v by n, as compared to a single inner-

product query. 

  Key insight: one vector, x, in each inner-product query is 
constant. 
 This plus linear fingerprints lets us just multiply h by n.  
  v will be the same as for a single inner product query. 



Matrix-Vector Multiplication (2/7) 

x 

A 

Row 1 of A 

Row 2 of A 

Row 3 of A 

Even though this is drawn as a cube, 
suppose box has dimensions n x √n x √n   



Matrix-Vector Multiplication (3/7) 

LDE of x 

Low-degree extension of each row of A and of x 

LDE of A Row 1 of A 

Row 2 of A 

Row 3 of A 



Matrix-Vector Multiplication (4/7) 

x11 

LDE of x 

V evaluates each row of A and x at random “piece” r (same r for all rows) 

LDE of A 

x12 

x21 xr1 

xr2 



Matrix-Vector Multiplication (5/7) 

LDE of x 

LDE of A Only need 
to keep one 
fingerprint 
for each 
color. 

Each orange 
entry of A gets 
multiplied by 
orange entry 
of x when 
computing 
inner product 
of its “piece”. 



Matrix-Vector Multiplication (6/7) 

14 

LDE of x 

LDE of A 3 5 9 2 3 6 8 

2 3 1 7 4 1 2 1 

3 0 1 7 8 3 2 3 

H commits 
to inner product 
of each piece 
via a separate 
polynomial for each row. 
V will check that si(r) 
is correct for all  
rows i. 

s1(x) 

s2(x) 

sn(x) 



Matrix-Vector Multiplication (7/7) 
  Summary: 

 H sends the inner product of each piece of each row. 
 Conceptually, V will track a random piece of each row (the 

yellow entries) to catch H in any lies w.h.p. 

 But V need not store all n * √n yellow entries! 
 Can store just √n fingerprints f1, …, f√n  

  Each fingerprint aggregates over n rows, can be computed 
incrementally by streaming verifier. 

 Works because vector x is fixed. 


