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Thanks to Andrew McGregor 
  A few slides borrowed from IITK Workshop on Algorithms 

for Processing Massive Data Sets. 



Data Streaming Model 
  Stream: m elements from universe of size n 

   e.g., S=<x1, x2, ... , xm> = 3,5,3,7,5,4,8,7,5,4,8,6,3,2, … 

• Goal: Compute a function of stream, e.g., median, number of 
distinct elements, frequency moments, heavy hitters.  

• Challenge:  
 (i) Limited working memory, i.e., sublinear(n,m). 
 (ii) Sequential access to adversarially ordered data. 
 (iii) Process each update quickly. 

Slide derived from [McGregor 10] 



Graph Streams 
  S = <x1, x2, …, xm>; xi ∈[n] x [n] 

  A defines a graph G on n vertices. 

  Goal: compute properties of G.  

  Challenge: subject to usual streaming 
constraints. 

Snapshot of Internet Graph 
Source: Wikipedia 



Bad News 
  Many graph problems are impossible in 

standard streaming model (require linear 
space or many passes over data). 

  E.g. Ω(n) space needed for connectivity, 
bipartiteness. Ω(n2) space needed for 
counting triangles, diameter, perfect 
matching. 

  Often hard even to approximate.  

  Graph problems  ripe for outsourcing. 



Outsourcing Models 
  Stream Punctuation [Tucker et al. 05], Proof Infused Streams 

[Li et al. 07], Stream Outsourcing [Yi et al. 08], Best-Order 
Model [Das Sarma et al. 09] (is a special case of our model) 



Outsourcing Models 
  Stream Punctuation [Tucker et al. 05], Proof Infused Streams 

[Li et al. 07], Stream Outsourcing [Yi et al. 08], Best-Order 
Model [Das Sarma et al. 09] (is a special case of our model) 

  [Chakrabarti et al. 09] Online Annotation Model: Give 
streaming algorithm access to powerful helper H who can 
annotate the stream. 

 Main motivation: Commercial cloud computing services such 
as Amazon EC2. Helper is untrusted. 

 Also, Volunteer Computing (SETI@home. Great Internet 
Mersenne Prime Search, etc.) 

 Weak peripheral devices. 



Online Annotation Model 
  Problem: Given stream S, want to compute f(S):  

S=<x1, x2, x3, x4, x5, x6, ... , xm>  

  Helper H: augments stream with h-word annotation:  

(S,a)=<x1, x2, x3, x4, x5, x6, …, xm, a1, a2, ... , ah>  

   Verifier V: using v words of space and random string r, run verification 
algorithm to compute g(S,a,r) such that for all a either:  

 a)Prr[g(S,a,r) =f(S)]=1 (we say a is valid for S) or 

 b) Prr[g(S,a,r) =⊥]≥1-δ  (we say a is δ-invalid for S) 

 c) And at least one a is valid for S. 

Note: this model differs slightly from [Chakrabarti et al. 09].  



Online Annotation Model 

  Two costs: words of annotation h and working memory v. 
 We refer to (h, v)-protocols. 
  Primarily interested in minimizing v. 
  But strive for optimal tradeoffs between h and v. 
  Proves more challenging for graph streams than numerical 

streams. Algebraic structure seems critical. 



Fingerprinting 
  Need a way to test multiset equality (e.g. to see if two 

streams have the same frequency distribution). 
  But need to do so in a streaming fashion. 
 We often use this to make sure H is “consistent”. 

  Solution: fingerprints.  
 Hash functions that can be computed by a streaming verifier. 
  If S≠ S’ as frequency distributions, then f(S) ≠ f(S’) w.h.p. 

  We choose a fingerprint function f  that is linear. f(S ∘S’) = 
f(S) + f(S’) where  ∘ denotes concatenation. Will need this 
for matrix-vector multiplication. 



Two Approaches To Designing Protocols 
1.  Prove matching upper and lower bounds on a quantity. 

  One bound often easy: just give feasible solution. 
  Proving optimality more difficult. Usually requires 

problem structure. 

2.  Use H to “verify” execution of a non-streaming  algorithm. 



Max-Matching 
  [Chakrabarti et al. 09]: (m, 1)-protocol for bipartite Perfect 

Matching. Also hv=Ω(n2) lower bound. 
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  We give (m, 1)-protocol for general max-cardinality matching. 
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½ (|U| -occ(G-U) + |V|)= 
½ (2 – 8 + 10) = 2. 



Max-Matching 
  (Tutte-Berge Formula): The size of a maximum matching 

of a graph G = (V, E) equals  
½ minU⊂V (|U| -occ(G-U) + |V|) 

where occ(H) is the number of components in the graph H with 
an odd number of vertices. 

c e a 

f g 

h i j 

Let U = {b, d}. Then 
½ (|U| -occ(G-U) + |V|)= 
½ (2 – 8 + 10) = 2. 

 For all other U,  
½ (|U| -occ(G-U) + |V|) ≥ 2. 



Max-Matching Protocol 
1.  H provides a feasible matching of size k. V checks feasibility 

with fingerprints. 
2.  H provides U⊂V and claims  ½ (|U| -occ(G-U) + |V|)=k. If so, 

V accepts answer k. Else, V rejects. 

  Caveat: H must provide proof of the value of occ(G-U), 
because V cannot do this on her own. 



Streaming LP problem 
  Suppose stream A contains (only the non-zero) entries of matrix 

A, vectors b and c, interleaved in any order (updates are of the 
form e.g. “add y to entry (i,j) of A”). The LP streaming problem 
on A is to determine max {cT x | Ax ≤ b}.  
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Streaming LP problem 
  Suppose stream A contains (only the non-zero) entries of matrix 

A, vectors b and c, interleaved in any order (updates are of the 
form e.g. “add y to entry (i,j) of A”). The LP streaming problem 
on A is to determine max {cT x | Ax ≤ b}.  

  Theorem: There is a (|A|, 1) protocol for the LP streaming 
problem, where |A| is number of non-zero entries in A. 
  Protocol (“naïve” matrix-vector multiplication):  

1.  H provides primal-feasible solution x.  
2.  For each row i of A: 

 Repeat entries of x and row i of A in order to prove feasibility. 
Fingerprints ensure consistency. 

3.  Repeat for dual-feasible solution y. Accept if value(x)=value(y). 
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proven via a solution to the dual of its LP relaxation. 
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Application to Graph Streams 
  Corollary: Protocol for TUM IPs, since optimality can be 

proven via a solution to the dual of its LP relaxation. 
  Corollary: (m, 1) protocols for max-flow, min-cut, 

minimum-weight bipartite perfect matching, and shortest s-t 
path. Lower bound of hv=Ω(n2) for all four. 

  A is sparse for the problems above, which suits the naïve protocol. 
For denser A, can get optimal tradeoffs between h and v. 



Dense Matrix-Vector Multiplication 
  We will get optimal (n1+α,  n1-α) protocol. Lower bound: 

hv=Ω(n2). 
 Corollary I: Protocols for dense LPs, effective resistances, 

verifying eigenvalues of Laplacian.  



Dense Matrix-Vector Multiplication 
  We will get optimal (n1+α,  n1-α) protocol. Lower bound: 

hv=Ω(n2). 
 Corollary I: Protocols for dense LPs, effective resistances, 

verifying eigenvalues of Laplacian. 
 Corollary II: Optimal tradeoffs for Quadratic Programs,  

Second-Order Cone Programs. (n2, 1) protocol for Semi-
definite Programs. 
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  First idea: Treat as n separate inner-product queries, one for 

each row of A.  
 Worse than “naïve” solution.  
 Multiplies both h and v by n, as compared to a single inner-

product query. 



Dense Matrix-Vector Multiplication 
  First idea: Treat as n separate inner-product queries, one for 

each row of A.  
 Worse than “naïve” solution. 
 Multiplies both h and v by n, as compared to a single inner-

product query. 

  Key observation: one vector, x, in each inner-product query 
is constant. 
 This plus linear fingerprints lets us just multiply h by n.  
  v will be the same as for a single inner product query. 



Approach 2: Simulate an Algorithm 
  Main tool: Offline memory checker [Blum et al. ’94]. Allows 

efficient verification of a sequence of accesses to a large 
memory.  

   Lets us convert any deterministic algorithm into a protocol 
in our model. 

  Running time of the algorithm in the RAM model becomes 
annotation size h. 



Memory Checker [Blum et al. ’94] 
  Consider a memory transcript of a sequence of reads and writes 

to memory. 
  A transcript is valid if each read of address i returns the last 

value written to that address. 
  Memory checker requires transcript be provided in a 

carefully chosen (“augmented”) format.  
 Augmentation blows up transcript size only by constant factor. 

  V checks validity by keeping a constant number of 
fingerprints and performing simple local checks on the 
transcript.  



Simulation Theorem 
 Any graph algorithm M in RAM model requiring time t 

can be (verifiably) simulated by an (m+t, 1)-protocol. 

   Proof sketch:  
  Step 1: H first plays a valid adjacency-list representation of G to 

“initialize memory”.  

  Step 2: H provides a valid augmented transcript T of the read 
and write operations performed by algorithm.  

  V checks validity using memory-checker. V also checks all read/
write operations are as prescribed by M. 



Simulation Theorem 
 Corollary: (m, 1)-protocol for MST; (m + n log n, 1)-protocol 

to verify single-source shortest paths; (n3,1)-protocol for all-
pairs shortest paths.  
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Simulation Theorem 
 Corollary: (m, 1)-protocol for MST; (m + n log n, 1)-protocol 

to verify single-source shortest paths; (n3,1)-protocol for all-
pairs shortest paths.  

  Proof for MST: Given a spanning tree T, there exists a linear-
time algorithm M for verifying that T is minimum e.g. [King 
‘97]. 

  Lower bounds: hv=Ω(n2) for single source and all-pairs 
shortest paths. hv=Ω(n2) for MST if edge weights specified 
incrementally.  



Pitfall of Memory-Checking 
Cannot simulate randomized algorithms 
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Diameter 
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2). 
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix 

multiplication. 

  Let A be adjacency matrix of G. 

  (I + A)l
ij >0 if and only if there is a path of length at most l 

from i to j. 
  Protocol: 
1.  H claims diameter is l 

2.  Use repeated squaring to prove (I+A) l has an entry that is 0, 
 and (I+A) l+1

  ≠ 0 for all (i,j). 



Summary 
  (m, 1)-protocol for max-matching. hv=Ω(n2) lower bound 

for dense graphs, so we can’t do better.  
  (m, 1)-protocols for LPs TUM IPs. hv=Ω(n2) lower bound 

for several TUM IPs. 
  Optimal (n1+α,  n1-α)-protocol for dense matrix-vector 

multiplication. (n1+α,  n1-α)-protocols for effective 
resistance, verifying eigenvalues of Laplacian or Adjacency 
matrix, LPs, QPs, SOCPs. 

  General simulation theorem; applications to MST, shortest 
paths. 

  (n2log n, 1) protocol for Diameter. hv=Ω(n2) lower bound. 



Open questions 
  Tradeoffs between h, v for matching, MST, diameter? 

  Distributed computation: Protocols that work with Map-
Reduce. 

  What if we allow multiple rounds of interaction between H 
and V? Can we get exponentially better protocols? 



With Graham Cormode and Ke Yi 

Verifying Computations with 
Streaming Interactive Proofs 
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A General Result 
  Universal Arguments [Kilian 92] and Interactive Proofs for 

Muggles [Goldwasser, Kalai, Rothblum 08] can work with 
streaming verifier! 

  Therefore: (polylog u, polylog u) computationally sound protocols 
for NP. (polylog u, polylog u) statistically sound protocols for all of 
log-space uniform NC. u is input size. 

  Efficient protocols even for problems hard in non-streaming setting. 

  Exponential improvement over best-possible one-round protocols. 



How to Make V Streaming 
  Arithmetization: Given function f ’, extend domain of f ’ to 

field and replace f ’ with its low-degree extension (LDE) f as a 
polynomial over the field. 

  Can view f as a high-distance encoding of f ’. The error 
correcting properties of f give V considerable power over H. 



How to Make V Streaming 
  Three observations:  

  1. In many proof systems, V only accesses the input in order to 
compute f(r) for small number of r, where f is LDE of input. 

  2. Moreover, locations r only depend on V’s random coins. 
  3. V can evaluate f(r) in streaming fashion. 



How to Make V Streaming 
  Three observations:  

  1. In many proof systems, V only accesses the input in order to 
compute f(r) for small number of r, where f is LDE of input. 

  2. Moreover, locations r only depend on V’s random coins. 
  3. V can evaluate f(r) in streaming fashion. 

  So streaming V tosses all coins in advance; remembers them 
and keeps them private from H; and computes f(r) during 
“input observation” phase.  



Streaming V can evaluate f(r) 
  E.g. Let a be the u-dimensional frequency vector of a stream. 

and view the universe [u] as [ℓ]d where ℓd=u (“frequency 
hypercube”).   
 Then f(x) = ∑v∈[ℓ]d av χv (x). 

  Whereχv(v)=1 and χv(v’)=0 for all other v’ ∈[ℓ]d. 



Streaming V can evaluate f(r) 
  E.g. Let a be the u-dimensional frequency vector of a stream. 

and view the universe [u] as [ℓ]d where ℓd=u (“frequency 
hypercube”).   
 Then f(x) = ∑v∈[ℓ]d av χv (x). 

  Whereχv(v)=1 and χv(v’)=0 for all other v’ ∈[ℓ]d. 

  V makes one pass over the data stream. If  V observes a new 
entry av of the input, V may update 

  f(r) ← f(r) + av · χv(r).  



Some comments 
 Despite powerful generality, [Goldwasser, Kalai, 

Rothblum 08]  is not optimal for many low-complexity 
functions of high interest in streaming, database 
processing. 

 E.g. Frequency Moments, Reporting Queries. 

 We give improved protocols for these problems. 
 And argue that they are practical. 
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Tool: Sum-Check Protocol 
 Let g be a polynomial over Fp. 

 Say we want to compute ∑z∈Hd g(z) for some H ⊆ 
Fp. 

 A Sum-Check Protocol lets V do this as long as V can 
evaluate g at a randomly-chosen location r.  

 Requires d rounds, communication cost in round i is 
degi(g), the degree of g in variable i. 
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  First attempt: Let a2 denote the entry-wise square of a. Try 
to apply a sum-check protocol to the LDE g of a2.  
  i.e. g = ∑v ∈[ℓ]d a2

v χv.  
  But a streaming verifier cannot evaluate g at a random location. 



F2 protocol 
  Goal: Compute ∑i ai
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  First attempt: Let a2 denote the entry-wise square of a. Try 
to apply a sum-check protocol to the LDE g of a2.  
  i.e. g = ∑v ∈[ℓ]d a2

v χv.  
  But a streaming verifier cannot evaluate g at a random location. 

   But V can use a slightly higher-degree extension of a2 

instead.  
  i.e. f2= (∑v ∈[ℓ]d  av χv)2  
 We know V can evaluate f(r), and f2(r)=f(r)2. 



Experiments 
  Implemented one-round F2 protocol from [Chakrabarti et al. 

09] and multiround F2 protocol. 

  Single-round space and communication cost grows like √u. Still 
under a megabyte for u=100 million. 

 Multiround space and communication always under 1 KB even 
when handling GBs of data. 



Experiments 
  V takes about the same time in both cases (millions of updates per 

second). But H much more efficient in multiround case. 
  E.g. Multiround H requires less than a second to process streams with 

millions of updates and u=[250K]. Single-round H requires minutes 
on same data. 

  Multi-round H’s time grows linearly, single-round H’s time grows like 
u3/2. 
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Extension to Frequency-Based 
Functions 
  Frequency based function F(a) is of the form F(a) =∑i h(ai) 

for some h: N0  N0.   

  e.g. Fk, F0 (DISTINCT), “How many items have frequency at 
most i?”, verifying Fmax (highest-frequency). 



Extension to Frequency-Based 
Functions 
  First idea: extend h to a polynomial h over Fp and apply a 

sum-check protocol to the polynomial h◦f. 
  Streaming V can evaluate h◦f(r) by computing f(r) and then 

h(f(r)). 
  Problem: h might have degree u. Resulting communication cost 

is du, worse than trivial protocol. 



Extension to Frequency-Based 
Functions 
  First idea: extend h to a polynomial h over Fp and apply a 

sum-check protocol to the polynomial h◦f. 
  Streaming V can evaluate h◦f(r) by computing f(r) and then 

h(f(r)). 
  Problem: h might have degree u. Resulting communication cost 

is du, worse than trivial protocol. 

  Solution: We give a (1/φ log u, 1/φ log u) protocol to 
identify all items of frequency at least φm (the “φ-heavy 
hitters”). Use this protocol to “remove” the heavy items, 
which allows to control degree of h.  



Extension to Frequency-Based 
Functions 
  Result: a (√u log u, log u)-protocol for any frequency-based 

function that takes log u rounds. 

  [Goldwasser, Kalai, Rothblum 08] yields (log2 u, log2 u) 
protocol. 

  For 1 TB of data, √u is on the order of 1 MB, log2 u is on the 
order of thousands, log u≈40. 

  Might prefer to communicate 1 MB of data over 40 rounds 
than 1 KB over thousands of rounds due to network latency. 



Reporting Queries 
  Sub-vector query: Given qL and qR, determine the non-zero entries of 

(aqL
 , . . . , aqR

). 

  We give a (k + log u, log u)-protocol for Sub-vector requiring log u 
rounds, where k is number of non-zero entries in (aqL

 , . . . , aqR
). 

  In comparison, [Goldwasser, Kalai, Rothblum 08] yields (k’ log u, k’ 
log u)-protocol, where k’ = O(qR-qL). 
   Improvement is significant when k’ is large or the subvector is 

sparse. 

  Protocol is reminiscent of Merkle trees, but we achieve statistical 
soundness. 



Open Questions 
  Reusability? 

  Do problems outside of NC possess streaming interactive proofs? 

  Better protocols for specific candidates? Prime candidates: F0, Fmax. 

  Distributed Computation: Our prover’s messages naturally lend 
themselves to Map-Reduce setting. Remains to demonstrate this 
empirically. 



Thank you! 



Matrix-Vector Multiplication 
  Background: [Chakrabarti et al. 09] (√n, √n)-protocol for 

inner product of frequency vectors of two streams S1, S2. 
  View universe [n] as [√n] x  [√n].  
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Inner-Product Protocol (1/4) 
  Want to compute inner product of frequency vectors of  S1, S2. 
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Inner-Product Protocol (2/4) 
  First idea: Have H send the inner product “in pieces”:  

  row 1  ∙  row 1, row 2 ∙  row 2, etc. Requires √n communication. 

  V exactly tracks a piece at random (denoted in yellow) so if H lies about 
any piece, V has a chance of catching her. Requires space √n. 

0 

Frequency Square of S1  

6 17 

0 2 0 

0 8 1 

8 

Frequency Square of S2  

2 0 

19 21 0 

4 8 3 

H sends 

12 

42 

67 

Slide derived from [McGregor 10] 



Inner-Product Protocol (3/4) 

 Problem: If H lies in only one place, V has small chance of 
catching her. 

  Solution: Have H commit (succinctly) to inner products of 
pieces of a high-distance encoding of the input. If H lies 
about one piece, she will have to lie about many. 

 Need  V to evaluate any piece of the encoding in a streaming 
fashion. Can do this for “low-degree extension” code. 



Inner-Product Protocol (4/4) 
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Matrix-Vector Multiplication (1/7) 
  First idea: Treat as n separate inner-product queries, one for 

each row of A.  
 Worse than “naïve” solution. 
 Multiplies both h and v by n, as compared to a single inner-

product query. 

  Key insight: one vector, x, in each inner-product query is 
constant. 
 This plus linear fingerprints lets us just multiply h by n.  
  v will be the same as for a single inner product query. 



Matrix-Vector Multiplication (2/7) 

x 

A 

Row 1 of A 

Row 2 of A 

Row 3 of A 

Even though this is drawn as a cube, 
suppose box has dimensions n x √n x √n   



Matrix-Vector Multiplication (3/7) 

LDE of x 

Low-degree extension of each row of A and of x 
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Row 2 of A 

Row 3 of A 



Matrix-Vector Multiplication (4/7) 

x11 

LDE of x 

V evaluates each row of A and x at random “piece” r (same r for all rows) 

LDE of A 

x12 

x21 xr1 

xr2 



Matrix-Vector Multiplication (5/7) 

LDE of x 

LDE of A Only need 
to keep one 
fingerprint 
for each 
color. 

Each orange 
entry of A gets 
multiplied by 
orange entry 
of x when 
computing 
inner product 
of its “piece”. 



Matrix-Vector Multiplication (6/7) 

14 

LDE of x 

LDE of A 3 5 9 2 3 6 8 

2 3 1 7 4 1 2 1 

3 0 1 7 8 3 2 3 

H commits 
to inner product 
of each piece 
via a separate 
polynomial for each row. 
V will check that si(r) 
is correct for all  
rows i. 

s1(x) 

s2(x) 

sn(x) 



Matrix-Vector Multiplication (7/7) 
  Summary: 

 H sends the inner product of each piece of each row. 
 Conceptually, V will track a random piece of each row (the 

yellow entries) to catch H in any lies w.h.p. 

 But V need not store all n * √n yellow entries! 
 Can store just √n fingerprints f1, …, f√n  

  Each fingerprint aggregates over n rows, can be computed 
incrementally by streaming verifier. 

 Works because vector x is fixed. 


