
Justin Thaler
Graham Cormode and
Michael Mitzenmacher

Streaming Graph Computations with
a Helpful Advisor

Thanks to Andrew McGregor
  A few slides borrowed from IITK Workshop on Algorithms

for Processing Massive Data Sets.

Data Streaming Model
  Stream: m elements from universe of size n

  e.g., S=<x1, x2, ... , xm> = 3,5,3,7,5,4,8,7,5,4,8,6,3,2, …

• Goal: Compute a function of stream, e.g., median, number of
distinct elements, frequency moments, heavy hitters.

• Challenge:
 (i) Limited working memory, i.e., sublinear(n,m).
 (ii) Sequential access to adversarially ordered data.
 (iii) Process each update quickly.

Slide derived from [McGregor 10]

Graph Streams
  S = <x1, x2, …, xm>; xi ∈[n] x [n]

  A defines a graph G on n vertices.

  Goal: compute properties of G.

  Challenge: subject to usual streaming
constraints.

Snapshot of Internet Graph
Source: Wikipedia

Bad News
  Many graph problems are impossible in

standard streaming model (require linear
space or many passes over data).

  E.g. Ω(n) space needed for connectivity,
bipartiteness. Ω(n2) space needed for
counting triangles, diameter, perfect
matching.

  Often hard even to approximate.

  Graph problems ripe for outsourcing.

Outsourcing Models
  Stream Punctuation [Tucker et al. 05], Proof Infused Streams

[Li et al. 07], Stream Outsourcing [Yi et al. 08], Best-Order
Model [Das Sarma et al. 09] (is a special case of our model)

Outsourcing Models
  Stream Punctuation [Tucker et al. 05], Proof Infused Streams

[Li et al. 07], Stream Outsourcing [Yi et al. 08], Best-Order
Model [Das Sarma et al. 09] (is a special case of our model)

  [Chakrabarti et al. 09] Online Annotation Model: Give
streaming algorithm access to powerful helper H who can
annotate the stream.

 Main motivation: Commercial cloud computing services such
as Amazon EC2. Helper is untrusted.

 Also, Volunteer Computing (SETI@home. Great Internet
Mersenne Prime Search, etc.)

 Weak peripheral devices.

Online Annotation Model
  Problem: Given stream S, want to compute f(S):

S=<x1, x2, x3, x4, x5, x6, ... , xm>

  Helper H: augments stream with h-word annotation:

(S,a)=<x1, x2, x3, x4, x5, x6, …, xm, a1, a2, ... , ah>

  Verifier V: using v words of space and random string r, run verification
algorithm to compute g(S,a,r) such that for all a either:

 a)Prr[g(S,a,r) =f(S)]=1 (we say a is valid for S) or

 b) Prr[g(S,a,r) =⊥]≥1-δ (we say a is δ-invalid for S)

 c) And at least one a is valid for S.

Note: this model differs slightly from [Chakrabarti et al. 09].

Online Annotation Model

  Two costs: words of annotation h and working memory v.
 We refer to (h, v)-protocols.
  Primarily interested in minimizing v.
  But strive for optimal tradeoffs between h and v.
  Proves more challenging for graph streams than numerical

streams. Algebraic structure seems critical.

Fingerprinting
  Need a way to test multiset equality (e.g. to see if two

streams have the same frequency distribution).
  But need to do so in a streaming fashion.
 We often use this to make sure H is “consistent”.

  Solution: fingerprints.
 Hash functions that can be computed by a streaming verifier.
  If S≠ S’ as frequency distributions, then f(S) ≠ f(S’) w.h.p.

  We choose a fingerprint function f that is linear. f(S ∘S’) =
f(S) + f(S’) where ∘ denotes concatenation. Will need this
for matrix-vector multiplication.

Two Approaches To Designing Protocols
1.  Prove matching upper and lower bounds on a quantity.

  One bound often easy: just give feasible solution.
  Proving optimality more difficult. Usually requires

problem structure.

2.  Use H to “verify” execution of a non-streaming algorithm.

Max-Matching
  [Chakrabarti et al. 09]: (m, 1)-protocol for bipartite Perfect

Matching. Also hv=Ω(n2) lower bound.

Max-Matching
  [Chakrabarti et al. 09]: (m, 1)-protocol for bipartite Perfect

Matching. Also hv=Ω(n2) lower bound.
  We give (m, 1)-protocol for general max-cardinality matching.

Max-Matching
  [Chakrabarti et al. 09]: (m, 1)-protocol for bipartite Perfect

Matching. Also hv=Ω(n2) lower bound.
  We give (m, 1)-protocol for general max-cardinality matching.

  (Tutte-Berge Formula): The size of a maximum matching
of a graph G = (V, E) equals

½ minU⊂V (|U| -occ(G-U) + |V|)

where occ(H) is the number of connected components in the
graph H with an odd number of vertices.

Max-Matching
  [Chakrabarti et al. 09]: (m, 1)-protocol for bipartite Perfect

Matching. Also hv=Ω(n2) lower bound.
  We give (m, 1)-protocol for general max-cardinality matching.

  (Tutte-Berge Formula): The size of a maximum matching
of a graph G = (V, E) equals

½ minU⊂V (|U| -occ(G-U) + |V|)

where occ(H) is the number of connected components in the
graph H with an odd number of vertices.

  So for any U⊂V, ½ (|U| -occ(G-U) + |V|) is an upper bound
on size of max-matching.

Max-Matching
  (Tutte-Berge Formula): The size of a maximum matching

of a graph G = (V, E) equals
½ minU⊂V (|U| -occ(G-U) + |V|)

where occ(H) is the number of components in the graph H with
an odd number of vertices.

b c d e a

f g

h i j

Max-Matching
  (Tutte-Berge Formula): The size of a maximum matching

of a graph G = (V, E) equals
½ minU⊂V (|U| -occ(G-U) + |V|)

where occ(H) is the number of components in the graph H with
an odd number of vertices.

c e a

f g

h i j

Let U = {b, d}. Then
½ (|U| -occ(G-U) + |V|)=
½ (2 – 8 + 10) = 2.

Max-Matching
  (Tutte-Berge Formula): The size of a maximum matching

of a graph G = (V, E) equals
½ minU⊂V (|U| -occ(G-U) + |V|)

where occ(H) is the number of components in the graph H with
an odd number of vertices.

c e a

f g

h i j

Let U = {b, d}. Then
½ (|U| -occ(G-U) + |V|)=
½ (2 – 8 + 10) = 2.

 For all other U,
½ (|U| -occ(G-U) + |V|) ≥ 2.

Max-Matching Protocol
1.  H provides a feasible matching of size k. V checks feasibility

with fingerprints.
2.  H provides U⊂V and claims ½ (|U| -occ(G-U) + |V|)=k. If so,

V accepts answer k. Else, V rejects.

  Caveat: H must provide proof of the value of occ(G-U),
because V cannot do this on her own.

Streaming LP problem
  Suppose stream A contains (only the non-zero) entries of matrix

A, vectors b and c, interleaved in any order (updates are of the
form e.g. “add y to entry (i,j) of A”). The LP streaming problem
on A is to determine max {cT x | Ax ≤ b}.

Streaming LP problem
  Suppose stream A contains (only the non-zero) entries of matrix

A, vectors b and c, interleaved in any order (updates are of the
form e.g. “add y to entry (i,j) of A”). The LP streaming problem
on A is to determine max {cT x | Ax ≤ b}.

  Theorem: There is a (|A|, 1) protocol for the LP streaming
problem, where |A| is number of non-zero entries in A.

Streaming LP problem
  Suppose stream A contains (only the non-zero) entries of matrix

A, vectors b and c, interleaved in any order (updates are of the
form e.g. “add y to entry (i,j) of A”). The LP streaming problem
on A is to determine max {cT x | Ax ≤ b}.

  Theorem: There is a (|A|, 1) protocol for the LP streaming
problem, where |A| is number of non-zero entries in A.
  Protocol (“naïve” matrix-vector multiplication):

1.  H provides primal-feasible solution x.
2.  For each row i of A:

 Repeat entries of x and row i of A in order to prove feasibility.
Fingerprints ensure consistency.

3.  Repeat for dual-feasible solution y. Accept if value(x)=value(y).

Application to Graph Streams
  Corollary: Protocol for TUM IPs, since optimality can be

proven via a solution to the dual of its LP relaxation.

Application to Graph Streams
  Corollary: Protocol for TUM IPs, since optimality can be

proven via a solution to the dual of its LP relaxation.
  Corollary: (m, 1) protocols for max-flow, min-cut,

minimum-weight bipartite perfect matching, and shortest s-t
path. Lower bound of hv=Ω(n2) for all four.

Application to Graph Streams
  Corollary: Protocol for TUM IPs, since optimality can be

proven via a solution to the dual of its LP relaxation.
  Corollary: (m, 1) protocols for max-flow, min-cut,

minimum-weight bipartite perfect matching, and shortest s-t
path. Lower bound of hv=Ω(n2) for all four.

  A is sparse for the problems above, which suits the naïve protocol.
For denser A, can get optimal tradeoffs between h and v.

Dense Matrix-Vector Multiplication
  We will get optimal (n1+α, n1-α) protocol. Lower bound:

hv=Ω(n2).
 Corollary I: Protocols for dense LPs, effective resistances,

verifying eigenvalues of Laplacian.

Dense Matrix-Vector Multiplication
  We will get optimal (n1+α, n1-α) protocol. Lower bound:

hv=Ω(n2).
 Corollary I: Protocols for dense LPs, effective resistances,

verifying eigenvalues of Laplacian.
 Corollary II: Optimal tradeoffs for Quadratic Programs,

Second-Order Cone Programs. (n2, 1) protocol for Semi-
definite Programs.

Dense Matrix-Vector Multiplication
  First idea: Treat as n separate inner-product queries, one for

each row of A.
 Worse than “naïve” solution.
 Multiplies both h and v by n, as compared to a single inner-

product query.

Dense Matrix-Vector Multiplication
  First idea: Treat as n separate inner-product queries, one for

each row of A.
 Worse than “naïve” solution.
 Multiplies both h and v by n, as compared to a single inner-

product query.

  Key observation: one vector, x, in each inner-product query
is constant.
 This plus linear fingerprints lets us just multiply h by n.
  v will be the same as for a single inner product query.

Approach 2: Simulate an Algorithm
  Main tool: Offline memory checker [Blum et al. ’94]. Allows

efficient verification of a sequence of accesses to a large
memory.

  Lets us convert any deterministic algorithm into a protocol
in our model.

  Running time of the algorithm in the RAM model becomes
annotation size h.

Memory Checker [Blum et al. ’94]
  Consider a memory transcript of a sequence of reads and writes

to memory.
  A transcript is valid if each read of address i returns the last

value written to that address.
  Memory checker requires transcript be provided in a

carefully chosen (“augmented”) format.
 Augmentation blows up transcript size only by constant factor.

  V checks validity by keeping a constant number of
fingerprints and performing simple local checks on the
transcript.

Simulation Theorem
 Any graph algorithm M in RAM model requiring time t

can be (verifiably) simulated by an (m+t, 1)-protocol.

  Proof sketch:
  Step 1: H first plays a valid adjacency-list representation of G to

“initialize memory”.

  Step 2: H provides a valid augmented transcript T of the read
and write operations performed by algorithm.

  V checks validity using memory-checker. V also checks all read/
write operations are as prescribed by M.

Simulation Theorem
 Corollary: (m, 1)-protocol for MST; (m + n log n, 1)-protocol

to verify single-source shortest paths; (n3,1)-protocol for all-
pairs shortest paths.

Simulation Theorem
 Corollary: (m, 1)-protocol for MST; (m + n log n, 1)-protocol

to verify single-source shortest paths; (n3,1)-protocol for all-
pairs shortest paths.

  Proof for MST: Given a spanning tree T, there exists a linear-
time algorithm M for verifying that T is minimum e.g. [King
‘97].

Simulation Theorem
 Corollary: (m, 1)-protocol for MST; (m + n log n, 1)-protocol

to verify single-source shortest paths; (n3,1)-protocol for all-
pairs shortest paths.

  Proof for MST: Given a spanning tree T, there exists a linear-
time algorithm M for verifying that T is minimum e.g. [King
‘97].

  Lower bounds: hv=Ω(n2) for single source and all-pairs
shortest paths. hv=Ω(n2) for MST if edge weights specified
incrementally.

Pitfall of Memory-Checking
Cannot simulate randomized algorithms

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix

multiplication.

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix

multiplication.

  Let A be adjacency matrix of G.

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix

multiplication.

  Let A be adjacency matrix of G.

  (I + A)l
ij >0 if and only if there is a path of length at most l

from i to j.

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix

multiplication.

  Let A be adjacency matrix of G.

  (I + A)l
ij >0 if and only if there is a path of length at most l

from i to j.
  Protocol:
1.  H claims diameter is l

2.  Use repeated squaring to prove (I+A) l has an entry that is 0,
 and (I+A) l+1

 ≠ 0 for all (i,j).

Summary
  (m, 1)-protocol for max-matching. hv=Ω(n2) lower bound

for dense graphs, so we can’t do better.
  (m, 1)-protocols for LPs TUM IPs. hv=Ω(n2) lower bound

for several TUM IPs.
  Optimal (n1+α, n1-α)-protocol for dense matrix-vector

multiplication. (n1+α, n1-α)-protocols for effective
resistance, verifying eigenvalues of Laplacian or Adjacency
matrix, LPs, QPs, SOCPs.

  General simulation theorem; applications to MST, shortest
paths.

  (n2log n, 1) protocol for Diameter. hv=Ω(n2) lower bound.

Open questions
  Tradeoffs between h, v for matching, MST, diameter?

  Distributed computation: Protocols that work with Map-
Reduce.

  What if we allow multiple rounds of interaction between H
and V? Can we get exponentially better protocols?

With Graham Cormode and Ke Yi

Verifying Computations with
Streaming Interactive Proofs

A General Result
  Universal Arguments [Kilian 92] and Interactive Proofs for

Muggles [Goldwasser, Kalai, Rothblum 08] can work with
streaming verifier!

A General Result
  Universal Arguments [Kilian 92] and Interactive Proofs for

Muggles [Goldwasser, Kalai, Rothblum 08] can work with
streaming verifier!

  Therefore: (polylog u, polylog u) computationally sound protocols
for NP. (polylog u, polylog u) statistically sound protocols for all of
log-space uniform NC. u is input size.

A General Result
  Universal Arguments [Kilian 92] and Interactive Proofs for

Muggles [Goldwasser, Kalai, Rothblum 08] can work with
streaming verifier!

  Therefore: (polylog u, polylog u) computationally sound protocols
for NP. (polylog u, polylog u) statistically sound protocols for all of
log-space uniform NC. u is input size.

  Efficient protocols even for problems hard in non-streaming setting.

  Exponential improvement over best-possible one-round protocols.

How to Make V Streaming
  Arithmetization: Given function f ’, extend domain of f ’ to

field and replace f ’ with its low-degree extension (LDE) f as a
polynomial over the field.

  Can view f as a high-distance encoding of f ’. The error
correcting properties of f give V considerable power over H.

How to Make V Streaming
  Three observations:

  1. In many proof systems, V only accesses the input in order to
compute f(r) for small number of r, where f is LDE of input.

  2. Moreover, locations r only depend on V’s random coins.
  3. V can evaluate f(r) in streaming fashion.

How to Make V Streaming
  Three observations:

  1. In many proof systems, V only accesses the input in order to
compute f(r) for small number of r, where f is LDE of input.

  2. Moreover, locations r only depend on V’s random coins.
  3. V can evaluate f(r) in streaming fashion.

  So streaming V tosses all coins in advance; remembers them
and keeps them private from H; and computes f(r) during
“input observation” phase.

Streaming V can evaluate f(r)
  E.g. Let a be the u-dimensional frequency vector of a stream.

and view the universe [u] as [ℓ]d where ℓd=u (“frequency
hypercube”).
 Then f(x) = ∑v∈[ℓ]d av χv (x).

  Whereχv(v)=1 and χv(v’)=0 for all other v’ ∈[ℓ]d.

Streaming V can evaluate f(r)
  E.g. Let a be the u-dimensional frequency vector of a stream.

and view the universe [u] as [ℓ]d where ℓd=u (“frequency
hypercube”).
 Then f(x) = ∑v∈[ℓ]d av χv (x).

  Whereχv(v)=1 and χv(v’)=0 for all other v’ ∈[ℓ]d.

  V makes one pass over the data stream. If V observes a new
entry av of the input, V may update

 f(r) ← f(r) + av · χv(r).

Some comments
 Despite powerful generality, [Goldwasser, Kalai,

Rothblum 08] is not optimal for many low-complexity
functions of high interest in streaming, database
processing.

 E.g. Frequency Moments, Reporting Queries.

 We give improved protocols for these problems.
 And argue that they are practical.

Tool: Sum-Check Protocol
 Let g be a polynomial over Fp.

Tool: Sum-Check Protocol
 Let g be a polynomial over Fp.

 Say we want to compute ∑z∈Hd g(z) for some H ⊆
Fp.

Tool: Sum-Check Protocol
 Let g be a polynomial over Fp.

 Say we want to compute ∑z∈Hd g(z) for some H ⊆
Fp.

 A Sum-Check Protocol lets V do this as long as V can
evaluate g at a randomly-chosen location r.

Tool: Sum-Check Protocol
 Let g be a polynomial over Fp.

 Say we want to compute ∑z∈Hd g(z) for some H ⊆
Fp.

 A Sum-Check Protocol lets V do this as long as V can
evaluate g at a randomly-chosen location r.

 Requires d rounds, communication cost in round i is
degi(g), the degree of g in variable i.

F2 protocol
  Goal: Compute ∑i ai

2

F2 protocol
  Goal: Compute ∑i ai

2

  First attempt: Let a2 denote the entry-wise square of a. Try
to apply a sum-check protocol to the LDE g of a2.
  i.e. g = ∑v ∈[ℓ]d a2

v χv.
  But a streaming verifier cannot evaluate g at a random location.

F2 protocol
  Goal: Compute ∑i ai

2

  First attempt: Let a2 denote the entry-wise square of a. Try
to apply a sum-check protocol to the LDE g of a2.
  i.e. g = ∑v ∈[ℓ]d a2

v χv.
  But a streaming verifier cannot evaluate g at a random location.

  But V can use a slightly higher-degree extension of a2

instead.
  i.e. f2= (∑v ∈[ℓ]d av χv)2
 We know V can evaluate f(r), and f2(r)=f(r)2.

Experiments
  Implemented one-round F2 protocol from [Chakrabarti et al.

09] and multiround F2 protocol.

  Single-round space and communication cost grows like √u. Still
under a megabyte for u=100 million.

 Multiround space and communication always under 1 KB even
when handling GBs of data.

Experiments
  V takes about the same time in both cases (millions of updates per

second). But H much more efficient in multiround case.
  E.g. Multiround H requires less than a second to process streams with

millions of updates and u=[250K]. Single-round H requires minutes
on same data.

  Multi-round H’s time grows linearly, single-round H’s time grows like
u3/2.

 0.01

 0.1

 1

 10

 100

 1000

10
4

10
5

10
6

10
7

10
8

T
im

e
 /

 s

Size of u

Time to create proof

One Round
Multiround

Extension to Frequency-Based
Functions
  Frequency based function F(a) is of the form F(a) =∑i h(ai)

for some h: N0 N0.

  e.g. Fk, F0 (DISTINCT), “How many items have frequency at
most i?”, verifying Fmax (highest-frequency).

Extension to Frequency-Based
Functions
  First idea: extend h to a polynomial h over Fp and apply a

sum-check protocol to the polynomial h◦f.
  Streaming V can evaluate h◦f(r) by computing f(r) and then

h(f(r)).
  Problem: h might have degree u. Resulting communication cost

is du, worse than trivial protocol.

Extension to Frequency-Based
Functions
  First idea: extend h to a polynomial h over Fp and apply a

sum-check protocol to the polynomial h◦f.
  Streaming V can evaluate h◦f(r) by computing f(r) and then

h(f(r)).
  Problem: h might have degree u. Resulting communication cost

is du, worse than trivial protocol.

  Solution: We give a (1/φ log u, 1/φ log u) protocol to
identify all items of frequency at least φm (the “φ-heavy
hitters”). Use this protocol to “remove” the heavy items,
which allows to control degree of h.

Extension to Frequency-Based
Functions
  Result: a (√u log u, log u)-protocol for any frequency-based

function that takes log u rounds.

  [Goldwasser, Kalai, Rothblum 08] yields (log2 u, log2 u)
protocol.

  For 1 TB of data, √u is on the order of 1 MB, log2 u is on the
order of thousands, log u≈40.

  Might prefer to communicate 1 MB of data over 40 rounds
than 1 KB over thousands of rounds due to network latency.

Reporting Queries
  Sub-vector query: Given qL and qR, determine the non-zero entries of

(aqL
 , . . . , aqR

).

  We give a (k + log u, log u)-protocol for Sub-vector requiring log u
rounds, where k is number of non-zero entries in (aqL

 , . . . , aqR
).

  In comparison, [Goldwasser, Kalai, Rothblum 08] yields (k’ log u, k’
log u)-protocol, where k’ = O(qR-qL).
  Improvement is significant when k’ is large or the subvector is

sparse.

  Protocol is reminiscent of Merkle trees, but we achieve statistical
soundness.

Open Questions
  Reusability?

  Do problems outside of NC possess streaming interactive proofs?

  Better protocols for specific candidates? Prime candidates: F0, Fmax.

  Distributed Computation: Our prover’s messages naturally lend
themselves to Map-Reduce setting. Remains to demonstrate this
empirically.

Thank you!

Matrix-Vector Multiplication
  Background: [Chakrabarti et al. 09] (√n, √n)-protocol for

inner product of frequency vectors of two streams S1, S2.
  View universe [n] as [√n] x [√n].

0
Frequency “Square” of S1

6 17

0 2 0

0 8 0

0 6 17 0 2 0 0 8 0

Frequency Vector of S1

Slide derived from [McGregor 10]

Inner-Product Protocol (1/4)
  Want to compute inner product of frequency vectors of S1, S2.

0

Frequency Square of S1

6 17

0 2 0

0 8 1

8

Frequency Square of S2

2 0

19 21 0

4 8 3

Slide derived from [McGregor 10]

Inner-Product Protocol (2/4)
  First idea: Have H send the inner product “in pieces”:

  row 1 ∙ row 1, row 2 ∙ row 2, etc. Requires √n communication.

  V exactly tracks a piece at random (denoted in yellow) so if H lies about
any piece, V has a chance of catching her. Requires space √n.

0

Frequency Square of S1

6 17

0 2 0

0 8 1

8

Frequency Square of S2

2 0

19 21 0

4 8 3

H sends

12

42

67

Slide derived from [McGregor 10]

Inner-Product Protocol (3/4)

 Problem: If H lies in only one place, V has small chance of
catching her.

  Solution: Have H commit (succinctly) to inner products of
pieces of a high-distance encoding of the input. If H lies
about one piece, she will have to lie about many.

 Need V to evaluate any piece of the encoding in a streaming
fashion. Can do this for “low-degree extension” code.

Inner-Product Protocol (4/4)

0

High-Distance Encoding g
of Frequency Square of S1

6 17

0 2 0

0 8 1

8 2 0

19 21 0

4 8 3

H sends

12

42

67

2 8 1

3 7 3

1 2 2

2 3 5

7 8 1

0 2 0

33

High-Distance Encoding h
of Frequency Square of S2

Input is
embedded in

encoding
(low-degree
extension)

80

4

These values
will all lie on
low-degree
polynomial s(x)

Matrix-Vector Multiplication (1/7)
  First idea: Treat as n separate inner-product queries, one for

each row of A.
 Worse than “naïve” solution.
 Multiplies both h and v by n, as compared to a single inner-

product query.

  Key insight: one vector, x, in each inner-product query is
constant.
 This plus linear fingerprints lets us just multiply h by n.
  v will be the same as for a single inner product query.

Matrix-Vector Multiplication (2/7)

x

A

Row 1 of A

Row 2 of A

Row 3 of A

Even though this is drawn as a cube,
suppose box has dimensions n x √n x √n

Matrix-Vector Multiplication (3/7)

LDE of x

Low-degree extension of each row of A and of x

LDE of A Row 1 of A

Row 2 of A

Row 3 of A

Matrix-Vector Multiplication (4/7)

x11

LDE of x

V evaluates each row of A and x at random “piece” r (same r for all rows)

LDE of A

x12

x21 xr1

xr2

Matrix-Vector Multiplication (5/7)

LDE of x

LDE of A Only need
to keep one
fingerprint
for each
color.

Each orange
entry of A gets
multiplied by
orange entry
of x when
computing
inner product
of its “piece”.

Matrix-Vector Multiplication (6/7)

14

LDE of x

LDE of A 3 5 9 2 3 6 8

2 3 1 7 4 1 2 1

3 0 1 7 8 3 2 3

H commits
to inner product
of each piece
via a separate
polynomial for each row.
V will check that si(r)
is correct for all
rows i.

s1(x)

s2(x)

sn(x)

Matrix-Vector Multiplication (7/7)
  Summary:

 H sends the inner product of each piece of each row.
 Conceptually, V will track a random piece of each row (the

yellow entries) to catch H in any lies w.h.p.

 But V need not store all n * √n yellow entries!
 Can store just √n fingerprints f1, …, f√n

  Each fingerprint aggregates over n rows, can be computed
incrementally by streaming verifier.

 Works because vector x is fixed.

