Streaming Graph Computations with a Helpful Advisor

Justin Thaler
Graham Cormode and
Michael Mitzenmacher

Thanks to Andrew McGregor

- A few slides borrowed from IITK Workshop on Algorithms for Processing Massive Data Sets.

Data Streaming Model

- Stream: m elements from universe of size n
- e.g., $S=<\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}>=3,5,3,7,5,4,8,7,5,4,8,6,3,2, \ldots$
- Goal: Compute a function of stream, e.g., median, number of distinct elements, frequency moments, heavy hitters.
- Challenge:
(i) Limited working memory, i.e., sublinear(n, m).
(ii) Sequential access to adversarially ordered data.
(iii) Process each update quickly.

Graph Streams

- $S=<\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}>; \mathrm{x}_{\mathrm{i}} \in[\mathrm{n}] \mathrm{x}[\mathrm{n}]$
- A defines a graph G on n vertices.
- Goal: compute properties of G .
- Challenge: subject to usual streaming constraints.

Snapshot of Internet Graph Source: Wikipedia

Bad News

- Many graph problems are impossible in standard streaming model (require linear space or many passes over data).
- E.g. $\Omega(\mathrm{n})$ space needed for connectivity, bipartiteness. $\Omega\left(n^{2}\right)$ space needed for counting triangles, diameter, perfect
 matching.
- Often hard even to approximate.
- Graph problems ripe for outsourcing.

Outsourcing Models

- Stream Punctuation [Tucker et al. 05], Proof Infused Streams [Li et al. 07], Stream Outsourcing [Yi et al. 08], Best-Order Model [Das Sarma et al. 09] (is a special case of our model)

Outsourcing Models

- Stream Punctuation [Tucker et al. 05], Proof Infused Streams [Li et al. 07], Stream Outsourcing [Yi et al. 08], Best-Order Model [Das Sarma et al. 09] (is a special case of our model)
- [Chakrabarti et al. 09] Online Annotation Model: Give streaming algorithm access to powerful helper H who can annotate the stream.
- Main motivation: Commercial cloud computing services such as Amazon EC2. Helper is untrusted.
- Also, Volunteer Computing (SETI@home. Great Internet Mersenne Prime Search, etc.)
- Weak peripheral devices.

Online Annotation Model

- Problem: Given stream S, want to compute $f(S)$:
$S=<\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}, \ldots, \mathrm{x}_{\mathrm{m}}>$
- Helper H: augments stream with h-word annotation:
$(S, a)=<x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, \ldots, x_{m}, a_{1}, a_{2}, \ldots, a_{h}>$
- Verifier V: using v words of space and random string r, run verification algorithm to compute $g(S, a, r)$ such that for all a either:
a) $\operatorname{Pr}_{r}[g(S, a, r)=f(S)]=1$ (we say a is valid for S) or
b) $\operatorname{Pr}_{\mathrm{r}}[g(\mathrm{~S}, \mathrm{a}, \mathrm{r})=\perp] \geq 1-\delta$ (we say a is δ-invalid for S)
c) And at least one a is valid for S.

Note: this model differs slightly from [Chakrabarti et al. 09].

Online Annotation Model

- Two costs: words of annotation h and working memory v.
- We refer to (h, v)-protocols.
- Primarily interested in minimizing v.
- But strive for optimal tradeoffs between h and v.
- Proves more challenging for graph streams than numerical streams. Algebraic structure seems critical.

Fingerprinting

- Need a way to test multiset equality (e.g. to see if two streams have the same frequency distribution).
- But need to do so in a streaming fashion.
- We often use this to make sure H is "consistent".
- Solution: fingerprints.
- Hash functions that can be computed by a streaming verifier.
- If $\mathrm{S} \neq \mathrm{S}^{\prime}$ as frequency distributions, then $f(\mathrm{~S}) \neq f\left(\mathrm{~S}^{\prime}\right)$ w.h.p.
- We choose a fingerprint function f that is linear. $f\left(\mathrm{~S}^{\circ} \mathrm{S}^{\prime}\right)=$ $f(S)+f\left(S^{\prime}\right)$ where ${ }^{\circ}$ denotes concatenation. Will need this for matrix-vector multiplication.

Two Approaches To Designing Protocols

1. Prove matching upper and lower bounds on a quantity.

- One bound often easy: just give feasible solution.
- Proving optimality more difficult. Usually requires problem structure.

2. Use H to "verify" execution of a non-streaming algorithm.

Max-Matching

- [Chakrabarti et al. 09]: (m, 1)-protocol for bipartite Perfect Matching. Also $h \nu=\Omega\left(\mathrm{n}^{2}\right)$ lower bound.

Max-Matching

- [Chakrabarti et al. 09]: (m, 1)-protocol for bipartite Perfect Matching. Also $h v=\Omega\left(\mathrm{n}^{2}\right)$ lower bound.
- We give (m, 1)-protocol for general max-cardinality matching.

Max-Matching

- [Chakrabarti et al. 09]: (m, 1)-protocol for bipartite Perfect Matching. Also $h_{v}=\Omega\left(\mathrm{n}^{2}\right)$ lower bound.
- We give (m, 1)-protocol for general max-cardinality matching.
- (Tutte-Berge Formula): The size of a maximum matching of a graph $G=(V, E)$ equals

$$
1 / 2 \min _{U \subset V}(|U|-\operatorname{occ}(G-U)+|V|)
$$

where $\operatorname{occ}(H)$ is the number of connected components in the graph H with an odd number of vertices.

Max-Matching

- [Chakrabarti et al. 09]: (m, 1)-protocol for bipartite Perfect Matching. Also $h \nu=\Omega\left(\mathrm{n}^{2}\right)$ lower bound.
- We give (m, 1)-protocol for general max-cardinality matching.
- (Tutte-Berge Formula): The size of a maximum matching of a graph $G=(V, E)$ equals

$$
1 / 2 \min _{U \subset V}(|U|-\operatorname{occ}(G-U)+|V|)
$$

where $\operatorname{occ}(H)$ is the number of connected components in the graph H with an odd number of vertices.

- So for any $U \subset V, 1 / 2(|U| \operatorname{occ}(G-U)+|V|)$ is an upper bound on size of max-matching.

Max-Matching

- (Tutte-Berge Formula): The size of a maximum matching of a graph $G=(V, E)$ equals

$$
1 / 2 \min _{U \subset V}(|U|-\operatorname{occ}(G-U)+|V|)
$$

where $\operatorname{occ}(H)$ is the number of components in the graph H with an odd number of vertices.

Max-Matching

- (Tutte-Berge Formula): The size of a maximum matching of a graph $G=(V, E)$ equals

$$
1 / 2 \min _{U \subset}(|U|-\operatorname{occ}(G-U)+|V|)
$$

where $\operatorname{occ}(H)$ is the number of components in the graph H with an odd number of vertices.

Max-Matching

- (Tutte-Berge Formula): The size of a maximum matching of a graph $G=(V, E)$ equals

$$
1 / 2 \min _{U \subset}(|U|-\operatorname{occ}(G-U)+|V|)
$$

where $o c c(H)$ is the number of components in the graph H with an odd number of vertices.

Max-Matching Protocol

1. H provides a feasible matching of size k . V checks feasibility with fingerprints.
2. H provides $U \subset V$ and claims $1 / 2(|\mathrm{U}|-\operatorname{occ}(G-U)+|V|)=\mathrm{k}$. If so, V accepts answer k. Else, V rejects.

- Caveat: H must provide proof of the value of $\operatorname{occ}(G-U)$, because V cannot do this on her own.

Streaming LP problem

- Suppose stream A contains (only the non-zero) entries of matrix \mathbf{A}, vectors \mathbf{b} and \mathbf{c}, interleaved in any order (updates are of the form e.g. "add y to entry (i, j) of A"). The LP streaming problem on A is to determine max $\left\{\mathbf{c}^{\mathrm{T}} \mathbf{x} \mid \mathbf{A x} \leq \mathbf{b}\right\}$.

Streaming LP problem

- Suppose stream A contains (only the non-zero) entries of matrix \mathbf{A}, vectors \mathbf{b} and \mathbf{c}, interleaved in any order (updates are of the form e.g. "add y to entry (i, j) of A"). The LP streaming problem on A is to determine max $\left\{\mathbf{c}^{\mathrm{T}} \mathbf{x} \mid \mathbf{A x} \leq \mathbf{b}\right\}$.
- Theorem: There is a $(|\mathbf{A}|, 1)$ protocol for the LP streaming problem, where $|\mathbf{A}|$ is number of non-zero entries in \mathbf{A}.

Streaming LP problem

- Suppose stream A contains (only the non-zero) entries of matrix \mathbf{A}, vectors \mathbf{b} and \mathbf{c}, interleaved in any order (updates are of the form e.g. "add y to entry (i, j) of A"). The LP streaming problem on A is to determine max $\left\{\mathbf{c}^{\mathrm{T}} \mathbf{x} \mid \mathbf{A x} \leq \mathbf{b}\right\}$.
- Theorem: There is a $(|\mathbf{A}|, 1)$ protocol for the LP streaming problem, where $|\mathbf{A}|$ is number of non-zero entries in \mathbf{A}.
- Protocol ("naïve" matrix-vector multiplication):

1. H provides primal-feasible solution \mathbf{x}.
2. For each row i of \mathbf{A} :

Repeat entries of \mathbf{x} and row i of \mathbf{A} in order to prove feasibility.
Fingerprints ensure consistency.
3. Repeat for dual-feasible solution \mathbf{y}. Accept if value $(\mathbf{x})=\operatorname{value}(\mathbf{y})$.

Application to Graph Streams

- Corollary: Protocol for TUM IPs, since optimality can be proven via a solution to the dual of its LP relaxation.

Application to Graph Streams

- Corollary: Protocol for TUM IPs, since optimality can be proven via a solution to the dual of its LP relaxation.
- Corollary: $(m, 1)$ protocols for max-flow, min-cut, minimum-weight bipartite perfect matching, and shortest $s-t$ path. Lower bound of $h_{v}=\Omega\left(\mathrm{n}^{2}\right)$ for all four.

Application to Graph Streams

- Corollary: Protocol for TUM IPs, since optimality can be proven via a solution to the dual of its LP relaxation.
- Corollary: $(m, 1)$ protocols for max-flow, min-cut, minimum-weight bipartite perfect matching, and shortest $s-t$ path. Lower bound of $h_{v}=\Omega\left(\mathrm{n}^{2}\right)$ for all four.
- \mathbf{A} is sparse for the problems above, which suits the naïve protocol. For denser A, can get optimal tradeoffs between h and v.

Dense Matrix-Vector Multiplication

- We will get optimal $\left(\mathrm{n}^{1+\alpha}, \mathrm{n}^{1-\alpha}\right)$ protocol. Lower bound: $h_{v}=\Omega\left(\mathrm{n}^{2}\right)$.
- Corollary I: Protocols for dense LPs, effective resistances, verifying eigenvalues of Laplacian.

Dense Matrix-Vector Multiplication

- We will get optimal $\left(\mathrm{n}^{1+\alpha}, \mathrm{n}^{1-\alpha}\right)$ protocol. Lower bound: $h_{V}=\Omega\left(\mathrm{n}^{2}\right)$.
- Corollary I: Protocols for dense LPs, effective resistances, verifying eigenvalues of Laplacian.
- Corollary II: Optimal tradeoffs for Quadratic Programs, Second-Order Cone Programs. ($\mathrm{n}^{2}, 1$) protocol for Semidefinite Programs.

Dense Matrix-Vector Multiplication

- First idea: Treat as n separate inner-product queries, one for each row of A.
- Worse than "naïve" solution.
- Multiplies both h and v by n , as compared to a single innerproduct query.

Dense Matrix-Vector Multiplication

- First idea: Treat as n separate inner-product queries, one for each row of A.
- Worse than "naïve" solution.
- Multiplies both h and v by n , as compared to a single innerproduct query.
- Key observation: one vector, \mathbf{x}, in each inner-product query is constant.
- This plus linear fingerprints lets us just multiply h by n.
- v will be the same as for a single inner product query.

Approach 2: Simulate an Algorithm

- Main tool: Offline memory checker [Blum et al. '94]. Allows efficient verification of a sequence of accesses to a large memory.
- Lets us convert any deterministic algorithm into a protocol in our model.
- Running time of the algorithm in the RAM model becomes annotation size h.

Memory Checker [Blum et al. '94]

- Consider a memory transcript of a sequence of reads and writes to memory.
- A transcript is valid if each read of address i returns the last value written to that address.
- Memory checker requires transcript be provided in a carefully chosen ("augmented") format.
- Augmentation blows up transcript size only by constant factor.
- V checks validity by keeping a constant number of fingerprints and performing simple local checks on the transcript.

Simulation Theorem

- Any graph algorithm M in RAM model requiring time t can be (verifiably) simulated by an ($\mathrm{m}+\mathrm{t}, 1$)-protocol.
- Proof sketch:
- Step 1: H first plays a valid adjacency-list representation of G to "initialize memory".
- Step 2: H provides a valid augmented transcript T of the read and write operations performed by algorithm.
- V checks validity using memory-checker. V also checks all read/ write operations are as prescribed by M.

Simulation Theorem

- Corollary: (m, 1)-protocol for MST; (m + n logn, 1)-protocol to verify single-source shortest paths; ($\mathrm{n}^{3}, 1$)-protocol for allpairs shortest paths.

Simulation Theorem

- Corollary: (m, 1)-protocol for MST; (m + n logn, 1)-protocol to verify single-source shortest paths; ($\mathrm{n}^{3}, 1$)-protocol for allpairs shortest paths.
- Proof for MST: Given a spanning tree T, there exists a lineartime algorithm M for verifying that T is minimum e.g. [King '97].

Simulation Theorem

- Corollary: (m, 1)-protocol for MST; (m + n logn, 1)-protocol to verify single-source shortest paths; $\left(\mathrm{n}^{3}, 1\right)$-protocol for allpairs shortest paths.
- Proof for MST: Given a spanning tree T, there exists a lineartime algorithm M for verifying that T is minimum e.g. [King '97].
- Lower bounds: $\mathrm{hv}=\Omega\left(\mathrm{n}^{2}\right)$ for single source and all-pairs shortest paths. $h_{V}=\Omega\left(n^{2}\right)$ for MST if edge weights specified incrementally.

Pitfall of Memory-Checking

Cannot simulate randomized algorithms

Diameter

- Theorem: $\left(\mathrm{n}^{2} \log \mathrm{n}, 1\right)$ protocol. Lower bound: $h_{v}=\Omega\left(\mathrm{n}^{2}\right)$.

Diameter

- Theorem: $\left(\mathrm{n}^{2} \log \mathrm{n}, 1\right)$ protocol. Lower bound: $h v=\Omega\left(\mathrm{n}^{2}\right)$.
- [Chakrabarti et al. 09]: $\left(\mathrm{n}^{2}, 1\right)$ protocol for matrix-matrix multiplication.

Diameter

- Theorem: $\left(\mathrm{n}^{2} \log \mathrm{n}, 1\right)$ protocol. Lower bound: $h v=\Omega\left(\mathrm{n}^{2}\right)$.
- [Chakrabarti et al. 09]: $\left(\mathrm{n}^{2}, 1\right)$ protocol for matrix-matrix multiplication.
- Let A be adjacency matrix of \underline{G}

Diameter

- Theorem: $\left(\mathrm{n}^{2} \log \mathrm{n}, 1\right)$ protocol. Lower bound: $h v=\Omega\left(\mathrm{n}^{2}\right)$.
- [Chakrabarti et al. 09]: $\left(\mathrm{n}^{2}, 1\right)$ protocol for matrix-matrix multiplication.
- Let A be adjacency matrix of \underline{G}.
- $(\mathrm{I}+\mathrm{A})_{\mathrm{ij}}^{1}>0$ if and only if there is a path of length at most 1 from i to j .

Diameter

- Theorem: $\left(\mathrm{n}^{2} \log \mathrm{n}, 1\right)$ protocol. Lower bound: $h v=\Omega\left(\mathrm{n}^{2}\right)$.
- [Chakrabarti et al. 09]: $\left(\mathrm{n}^{2}, 1\right)$ protocol for matrix-matrix multiplication.
- Let A be adjacency matrix of \underline{G}.
- $(\mathrm{I}+\mathrm{A})_{\mathrm{ij}}^{1}>0$ if and only if there is a path of length at most 1 from i to j .
- Protocol:

1. H claims diameter is 1
2. Use repeated squaring to prove $(I+A)^{1}$ has an entry that is 0 , and $(I+A)^{1+1} \neq 0$ for all $i(j)$.

Summary

- ($\mathrm{m}, 1$)-protocol for max-matching. $h_{v}=\Omega\left(\mathrm{n}^{2}\right)$ lower bound for dense graphs, so we can't do better.
- (m, 1)-protocols for LPsTUM IPs. $h_{v}=\Omega\left(\mathrm{n}^{2}\right)$ lower bound for several TUM IPs.
- Optimal $\left(\mathrm{n}^{1+\alpha}, \mathrm{n}^{1-\alpha}\right)$-protocol for dense matrix-vector multiplication. $\left(\mathrm{n}^{1+\alpha}, \mathrm{n}^{1-\alpha}\right)$-protocols for effective resistance, verifying eigenvalues of Laplacian or Adjacency matrix, LPs, QPs, SOCPs.
- General simulation theorem; applications to MST, shortest paths.
- $\left(n^{2} \log n, 1\right)$ protocol for Diameter. $h_{V}=\Omega\left(n^{2}\right)$ lower bound.

Open questions

- Tradeoffs between h, v for matching, MST, diameter?
- Distributed computation: Protocols that work with MapReduce.
- What if we allow multiple rounds of interaction between H and V ? Can we get exponentially better protocols?

Verifying Computations with Streaming Interactive Proofs

With Graham Cormode and KeYi

A General Result

- Universal Arguments [Kilian 92] and Interactive Proofs for Muggles [Goldwasser, Kalai, Rothblum 08] can work with streaming verifier!

A General Result

- Universal Arguments [Kilian 92] and Interactive Proofs for Muggles [Goldwasser, Kalai, Rothblum 08] can work with streaming verifier!
- Therefore: (polylog u, polylog u) computationally sound protocols for NP. (polylog u, polylog u) statistically sound protocols for all of log-space uniform NC. u is input size.

A General Result

- Universal Arguments [Kilian 92] and Interactive Proofs for Muggles [Goldwasser, Kalai, Rothblum 08] can work with streaming verifier!
- Therefore: (polylog u, polylog u) computationally sound protocols for NP. (polylog u, polylog u) statistically sound protocols for all of log-space uniform NC. u is input size.
- Efficient protocols even for problems hard in non-streaming setting.
- Exponential improvement over best-possible one-round protocols.

How to Make V Streaming

- Arithmetization: Given function f^{\prime}, extend domain of f^{\prime} to field and replace f ' with its low-degree extension (LDE) f as a polynomial over the field.
- Can view f as a high-distance encoding of f^{\prime}. The error correcting properties of f give V considerable power over H .

How to Make V Streaming

- Three observations:
- 1. In many proof systems, V only accesses the input in order to compute $f(\mathbf{r})$ for small number of \mathbf{r}, where f is LDE of input.
- 2. Moreover, locations \mathbf{r} only depend on V's random coins.
- 3.V can evaluate $f(\mathbf{r})$ in streaming fashion.

How to Make V Streaming

- Three observations:
- 1. In many proof systems, V only accesses the input in order to compute $f(\mathbf{r})$ for small number of \mathbf{r}, where f is LDE of input.
- 2. Moreover, locations \mathbf{r} only depend on V's random coins.
- 3.V can evaluate $f(\mathbf{r})$ in streaming fashion.
- So streaming V tosses all coins in advance; remembers them and keeps them private from H ; and computes $f(\mathbf{r})$ during "input observation" phase.

Streaming V can evaluate f(r)

- E.g. Let a be the u-dimensional frequency vector of a stream. and view the universe $[\mathrm{u}]$ as $[\ell]^{\mathrm{d}}$ where $\ell^{\mathrm{d}}=\mathrm{u}$ ("frequency hypercube").
- Then $f(\mathbf{x})=\sum_{\mathbf{v} \in[\ell\}^{d}} \mathrm{a}_{\mathbf{v}} \chi_{\mathbf{v}}(\mathbf{x})$.
- Where $\chi_{\mathbf{v}}(\mathbf{v})=\mathbf{1}$ and $\chi_{\mathbf{v}}\left(\mathbf{v}^{\prime}\right)=0$ for all other $\mathbf{v}^{\prime} \in[\ell]^{d}$.

Streaming V can evaluate f(r)

- E.g. Let a be the u-dimensional frequency vector of a stream. and view the universe $[\mathrm{u}]$ as $[\ell]^{\mathrm{d}}$ where $\ell^{\mathrm{d}}=\mathrm{u}$ ("frequency hypercube").
- Then $f(\mathbf{x})=\sum_{\mathbf{v} \in[\ell]^{d}} \mathrm{a}_{\mathbf{v}} \chi_{\mathbf{v}}(\mathbf{x})$.
- Where $\chi_{\mathbf{v}}(\mathbf{v})=\mathbf{1}$ and $\chi_{\mathbf{v}}\left(\mathbf{v}^{\prime}\right)=0$ for all other $\mathbf{v}^{\prime} \in[\ell]^{d}$.
- V makes one pass over the data stream. If V observes a new entry a_{v} of the input, V may update

$$
f(\mathbf{r}) \leftarrow f(\mathbf{r})+\mathrm{a}_{\mathbf{v}} \cdot \chi_{\mathbf{v}}(\mathrm{r})
$$

Some comments

- Despite powerful generality, [Goldwasser, Kalai, Rothblum 08] is not optimal for many low-complexity functions of high interest in streaming, database processing.
- E.g. Frequency Moments, Reporting Queries.
- We give improved protocols for these problems.
- And argue that they are practical.

Tool: Sum-Check Protocol

- Let g be a polynomial over \mathbf{F}_{p}.

Tool: Sum-Check Protocol

- Let g be a polynomial over \mathbf{F}_{p}.
- Say we want to compute $\sum_{\mathbf{z} \in \operatorname{H}^{d}} g(\mathbf{z})$ for some $\mathrm{H} \subseteq$ F_{p}.

Tool: Sum-Check Protocol

- Let g be a polynomial over \mathbf{F}_{p}.
- Say we want to compute $\sum_{\mathbf{z} \in \operatorname{H}^{d}} g(\mathbf{z})$ for some $\mathrm{H} \subseteq$ F_{p}.
- A Sum-Check Protocol lets V do this as long as V can evaluate g at a randomly-chosen location \mathbf{r}.

Tool: Sum-Check Protocol

- Let g be a polynomial over \mathbf{F}_{p}.
- Say we want to compute $\sum_{\mathbf{z} \in \mathrm{H}^{\mathrm{d}}} g(\mathbf{z})$ for some $\mathrm{H} \subseteq$ F_{p}.
- A Sum-Check Protocol lets V do this as long as V can evaluate g at a randomly-chosen location \mathbf{r}.
- Requires d rounds, communication cost in round i is $\operatorname{deg}_{\mathrm{i}}(g)$, the degree of g in variable i .

F_{2} protocol

- Goal: Compute $\sum_{i \mathrm{i}} \mathrm{a}_{\mathrm{i}}{ }^{2}$

F_{2} protocol

- Goal: Compute $\sum_{\mathrm{i}} \mathrm{a}_{\mathrm{i}}{ }^{2}$
- First attempt: Let \mathbf{a}^{2} denote the entry-wise square of \mathbf{a}. Try to apply a sum-check protocol to the LDE g of \mathbf{a}^{2}.

- But a streaming verifier cannot evaluate g at a random location.

F_{2} protocol

- Goal: Compute $\sum_{i \mathrm{i}} \mathrm{a}_{\mathrm{i}}{ }^{2}$
- First attempt: Let \mathbf{a}^{2} denote the entry-wise square of \mathbf{a}. Try to apply a sum-check protocol to the LDE g of \mathbf{a}^{2}.

- But a streaming verifier cannot evaluate g at a random location.
- But V can use a slightly higher-degree extension of \mathbf{a}^{2} instead.
- i.e. $f^{2}=\left(\sum_{\mathrm{v} \in[\ell]^{d}} \mathrm{a}_{\mathrm{v}} \chi_{\mathrm{v}}\right)^{2}$
- We know V can evaluate $f(\mathbf{r})$, and $f^{2}(\mathbf{r})=f(\mathbf{r})^{2}$.

Experiments

- Implemented one-round F_{2} protocol from [Chakrabarti et al. 09] and multiround F_{2} protocol.
- Single-round space and communication cost grows like $\sqrt{ }$ u. Still under a megabyte for $\mathrm{u}=100$ million.
- Multiround space and communication always under 1 KB even when handling GBs of data.

Experiments

- V takes about the same time in both cases (millions of updates per second). But H much more efficient in multiround case.
- E.g. Multiround H requires less than a second to process streams with millions of updates and $u=[250 \mathrm{~K}]$. Single-round H requires minutes on same data.
- Multi-round H's time grows linearly, single-round H's time grows like $u^{3 / 2}$ 。

Extension to Frequency-Based Functions

- Frequency based function $F(\mathbf{a})$ is of the form $F(\mathbf{a})=\sum_{i} h\left(\mathbf{a}_{i}\right)$ for some h: $\mathbf{N}_{\mathbf{0}} \rightarrow \mathbf{N}_{\mathbf{0}}$.
- e.g. $\mathrm{F}_{\mathrm{k}}, \mathrm{F}_{0}$ (DISTINCT), "How many items have frequency at most i?", verifying $\mathrm{F}_{\text {max }}$ (highest-frequency).

Extension to Frequency-Based Functions

- First idea: extend h to a polynomial h over \mathbf{F}_{p} and apply a sum-check protocol to the polynomial $\mathrm{h} f$.
- Streaming V can evaluate $h f(\boldsymbol{r})$ by computing $f(\boldsymbol{r})$ and then $\mathrm{h}(f(\boldsymbol{r}))$.
- Problem: h might have degree u. Resulting communication cost is du, worse than trivial protocol.

Extension to Frequency-Based Functions

- First idea: extend h to a polynomial h over \mathbf{F}_{p} and apply a sum-check protocol to the polynomial $\mathrm{h} f$.
- Streaming V can evaluate $h f(\boldsymbol{r})$ by computing $f(\boldsymbol{r})$ and then $\mathrm{h}(f(\boldsymbol{r}))$.
- Problem: h might have degree u. Resulting communication cost is du, worse than trivial protocol.
- Solution: We give a $(1 / \phi \log \mathrm{u}, 1 / \phi \log \mathrm{u})$ protocol to identify all items of frequency at least $\phi \mathrm{m}$ (the " ϕ-heavy hitters"). Use this protocol to "remove" the heavy items, which allows to control degree of h.

Extension to Frequency-Based Functions

- Result: a ($\sqrt{ } \mathrm{l} \log \mathrm{u}, \log \mathrm{u})$-protocol for any frequency-based function that takes $\log \mathrm{u}$ rounds.
- [Goldwasser, Kalai, Rothblum 08] yields $\left(\log ^{2} \mathbf{u}, \log ^{2} \mathbf{u}\right)$ protocol.
- For 1 TB of data, $\sqrt{ } \mathrm{u}$ is on the order of $1 \mathrm{MB}, \log ^{2} \mathrm{u}$ is on the order of thousands, $\log \mathrm{u} \approx 40$.
- Might prefer to communicate 1 MB of data over 40 rounds than 1 KB over thousands of rounds due to network latency.

Reporting Queries

- Sub-vector query: Given q_{L} and q_{R}, determine the non-zero entries of $\left(a_{q_{L}}, \ldots, a_{q_{R}}\right)$.
- We give a $(\mathrm{k}+\log \mathrm{u}, \log \mathrm{u})$-protocol for Sub-vector requiring $\log \mathrm{u}$ rounds, where k is number of non-zero entries in $\left(\mathrm{a}_{\mathrm{q}_{\mathrm{L}}}, \ldots, \mathrm{a}_{\mathrm{q}_{\mathrm{R}}}\right)$.
- In comparison, [Goldwasser, Kalai, Rothblum 08] yields (k' $\log \mathrm{u}, \mathrm{k}$ ' $\log \mathrm{u})$-protocol, where $\mathrm{k}^{\prime}=\mathrm{O}\left(\mathrm{q}_{\mathrm{R}}-\mathrm{q}_{\mathrm{L}}\right)$.
- Improvement is significant when k ' is large or the subvector is sparse.
- Protocol is reminiscent of Merkle trees, but we achieve statistical soundness.

Open Questions

- Reusability?
- Do problems outside of NC possess streaming interactive proofs?
- Better protocols for specific candidates? Prime candidates: F0, Fmax.
- Distributed Computation: Our prover's messages naturally lend themselves to Map-Reduce setting. Remains to demonstrate this empirically.

Thank you!

Matrix-Vector Multiplication

- Background: [Chakrabarti et al. 09] $(\sqrt{n}, \sqrt{n}$)-protocol for inner product of frequency vectors of two streams S_{1}, S_{2}.
- View universe $[\mathrm{n}]$ as $\left[V_{\mathrm{n}}\right] \times\left[V_{\mathrm{n}}\right]$.

Inner-Product Protocol (1/4)

- Want to compute inner product of frequency vectors of S_{1}, S_{2}.

Frequency Square of S_{1}

Frequency Square of S_{2}

Inner-Product Protocol (2/4)

- First idea: Have H send the inner product "in pieces":
- row $1 \cdot$ row 1 , row $2 \cdot$ row 2 , etc. Requires \sqrt{n} communication.
- V exactly tracks a piece at random (denoted in yellow) so if H lies about any piece, V has a chance of catching her. Requires space V_{n}.

Frequency Square of S_{1}

H sends

12

42

67

Inner-Product Protocol (3/4)

- Problem: If H lies in only one place, V has small chance of catching her.
- Solution: Have H commit (succinctly) to inner products of pieces of a high-distance encoding of the input. If H lies about one piece, she will have to lie about many.
- Need V to evaluate any piece of the encoding in a streaming fashion. Can do this for "low-degree extension" code.

These values will all lie on low-degree polynomial s(x)
High-Distance Encoding h of Frequency Square of S_{2}

0	6	17	Input is embedded in encoding
0	2	0	encodegree (low-degre extension)
0	8	1	
2	8	1	
		7	3
1	2	2	

H sends
12

67

33

80

4

Matrix-Vector Multiplication (1/7)

- First idea: Treat as n separate inner-product queries, one for each row of A.
- Worse than "naïve" solution.
- Multiplies both h and v by n, as compared to a single innerproduct query.
- Key insight: one vector, \mathbf{x}, in each inner-product query is constant.
- This plus linear fingerprints lets us just multiply h by n.
- v will be the same as for a single inner product query.

Matrix-Vector Multiplication (2/7)

\mathbf{X}

A Even though this is drawn as a cube, suppose box has dimensions $n \times V_{n} \times V_{n}$

Matrix-Vector Multiplication (3/7)

Low-degree extension of each row of A and of \mathbf{x}

LDE of \mathbf{x}

LDE of A

Matrix-Vector Multiplication (4/7)

V evaluates each row of A and \mathbf{x} at random "piece" r (samer for all rows)

LDE of A

Matrix-Vector Multiplication (5/7)

Each orange
entry of A gets multiplied by orange entry of \mathbf{x} when computing inner product of its "piece".

Only need to keep one fingerprint for each color.
 LDE of \mathbf{x}

LDE of A

Matrix-Vector Multiplication (6/7)

H commits to inner product of each piece via a separate polynomial for each row.
V will check that $\mathrm{s}_{\mathrm{i}}(\mathrm{r})$ is correct for all rows i.

LDE of \mathbf{x}

LDE of A

Matrix-Vector Multiplication (7/7)

- Summary:
- H sends the inner product of each piece of each row.
- Conceptually, V will track a random piece of each row (the yellow entries) to catch H in any lies w.h.p.
- ButV need not store all $n * \sqrt{ }$ yellow entries!
- Can store just V_{n} fingerprints $f_{1}, \ldots, f_{V_{n}}$
- Each fingerprint aggregates over n rows, can be computed incrementally by streaming verifier.
- Works because vector \mathbf{x} is fixed.

