
Justin Thaler
Graham Cormode and
Michael Mitzenmacher

Streaming Graph Computations with
a Helpful Advisor

Thanks to Andrew McGregor
  A few slides borrowed from IITK Workshop on Algorithms

for Processing Massive Data Sets.

Data Streaming Model
  Stream: m elements from universe of size n

  e.g., S=<x1, x2, ... , xm> = 3,5,3,7,5,4,8,7,5,4,8,6,3,2, …

• Goal: Compute a function of stream, e.g., median, number of
distinct elements, frequency moments, heavy hitters.

• Challenge:
 (i) Limited working memory, i.e., sublinear(n,m).
 (ii) Sequential access to adversarially ordered data.
 (iii) Process each update quickly.

Slide derived from [McGregor 10]

Graph Streams
  S = <x1, x2, …, xm>; xi ∈[n] x [n]

  A defines a graph G on n vertices.

  Goal: compute properties of G.

  Challenge: subject to usual streaming
constraints.

Snapshot of Internet Graph
Source: Wikipedia

Bad News
  Many graph problems are impossible in

standard streaming model (require linear
space or many passes over data).

  E.g. Ω(n) space needed for connectivity,
bipartiteness. Ω(n2) space needed for
counting triangles, diameter, perfect
matching.

  Often hard even to approximate.

  Graph problems ripe for outsourcing.

Outsourcing Models
  Stream Punctuation [Tucker et al. 05], Proof Infused Streams

[Li et al. 07], Stream Outsourcing [Yi et al. 08], Best-Order
Model [Das Sarma et al. 09] (is a special case of our model)

Outsourcing Models
  Stream Punctuation [Tucker et al. 05], Proof Infused Streams

[Li et al. 07], Stream Outsourcing [Yi et al. 08], Best-Order
Model [Das Sarma et al. 09] (is a special case of our model)

  [Chakrabarti et al. 09] Online Annotation Model: Give
streaming algorithm access to powerful helper H who can
annotate the stream.

 Main motivation: Commercial cloud computing services such
as Amazon EC2. Helper is untrusted.

 Also, Volunteer Computing (SETI@home. Great Internet
Mersenne Prime Search, etc.)

 Weak peripheral devices.

Online Annotation Model
  Problem: Given stream S, want to compute f(S):

S=<x1, x2, x3, x4, x5, x6, ... , xm>

  Helper H: augments stream with h-word annotation:

(S,a)=<x1, x2, x3, x4, x5, x6, …, xm, a1, a2, ... , ah>

  Verifier V: using v words of space and random string r, run verification
algorithm to compute g(S,a,r) such that for all a either:

 a)Prr[g(S,a,r) =f(S)]=1 (we say a is valid for S) or

 b) Prr[g(S,a,r) =⊥]≥1-δ (we say a is δ-invalid for S)

 c) And at least one a is valid for S.

Note: this model differs slightly from [Chakrabarti et al. 09].

Online Annotation Model

  Two costs: words of annotation h and working memory v.
 We refer to (h, v)-protocols.
  Primarily interested in minimizing v.
  But strive for optimal tradeoffs between h and v.
  Proves more challenging for graph streams than numerical

streams. Algebraic structure seems critical.

Fingerprinting
  Need a way to test multiset equality (e.g. to see if two

streams have the same frequency distribution).
  But need to do so in a streaming fashion.
 We often use this to make sure H is “consistent”.

  Solution: fingerprints.
 Hash functions that can be computed by a streaming verifier.
  If S≠ S’ as frequency distributions, then f(S) ≠ f(S’) w.h.p.

  We choose a fingerprint function f that is linear. f(S ∘S’) =
f(S) + f(S’) where ∘ denotes concatenation. Will need this
for matrix-vector multiplication.

Two Approaches To Designing Protocols
1.  Prove matching upper and lower bounds on a quantity.

  One bound often easy: just give feasible solution.
  Proving optimality more difficult. Usually requires

problem structure.

2.  Use H to “verify” execution of a non-streaming algorithm.

Max-Matching
  [Chakrabarti et al. 09]: (m, 1)-protocol for bipartite Perfect

Matching. Also hv=Ω(n2) lower bound.

Max-Matching
  [Chakrabarti et al. 09]: (m, 1)-protocol for bipartite Perfect

Matching. Also hv=Ω(n2) lower bound.
  We give (m, 1)-protocol for general max-cardinality matching.

Max-Matching
  [Chakrabarti et al. 09]: (m, 1)-protocol for bipartite Perfect

Matching. Also hv=Ω(n2) lower bound.
  We give (m, 1)-protocol for general max-cardinality matching.

  (Tutte-Berge Formula): The size of a maximum matching
of a graph G = (V, E) equals

½ minU⊂V (|U| -occ(G-U) + |V|)

where occ(H) is the number of connected components in the
graph H with an odd number of vertices.

Max-Matching
  [Chakrabarti et al. 09]: (m, 1)-protocol for bipartite Perfect

Matching. Also hv=Ω(n2) lower bound.
  We give (m, 1)-protocol for general max-cardinality matching.

  (Tutte-Berge Formula): The size of a maximum matching
of a graph G = (V, E) equals

½ minU⊂V (|U| -occ(G-U) + |V|)

where occ(H) is the number of connected components in the
graph H with an odd number of vertices.

  So for any U⊂V, ½ (|U| -occ(G-U) + |V|) is an upper bound
on size of max-matching.

Max-Matching
  (Tutte-Berge Formula): The size of a maximum matching

of a graph G = (V, E) equals
½ minU⊂V (|U| -occ(G-U) + |V|)

where occ(H) is the number of components in the graph H with
an odd number of vertices.

b c d e a

f g

h i j

Max-Matching
  (Tutte-Berge Formula): The size of a maximum matching

of a graph G = (V, E) equals
½ minU⊂V (|U| -occ(G-U) + |V|)

where occ(H) is the number of components in the graph H with
an odd number of vertices.

c e a

f g

h i j

Let U = {b, d}. Then
½ (|U| -occ(G-U) + |V|)=
½ (2 – 8 + 10) = 2.

Max-Matching
  (Tutte-Berge Formula): The size of a maximum matching

of a graph G = (V, E) equals
½ minU⊂V (|U| -occ(G-U) + |V|)

where occ(H) is the number of components in the graph H with
an odd number of vertices.

c e a

f g

h i j

Let U = {b, d}. Then
½ (|U| -occ(G-U) + |V|)=
½ (2 – 8 + 10) = 2.

 For all other U,
½ (|U| -occ(G-U) + |V|) ≥ 2.

Max-Matching Protocol
1.  H provides a feasible matching of size k. V checks feasibility

with fingerprints.
2.  H provides U⊂V and claims ½ (|U| -occ(G-U) + |V|)=k. If so,

V accepts answer k. Else, V rejects.

  Caveat: H must provide proof of the value of occ(G-U),
because V cannot do this on her own.

Streaming LP problem
  Suppose stream A contains (only the non-zero) entries of matrix

A, vectors b and c, interleaved in any order (updates are of the
form e.g. “add y to entry (i,j) of A”). The LP streaming problem
on A is to determine max {cT x | Ax ≤ b}.

Streaming LP problem
  Suppose stream A contains (only the non-zero) entries of matrix

A, vectors b and c, interleaved in any order (updates are of the
form e.g. “add y to entry (i,j) of A”). The LP streaming problem
on A is to determine max {cT x | Ax ≤ b}.

  Theorem: There is a (|A|, 1) protocol for the LP streaming
problem, where |A| is number of non-zero entries in A.

Streaming LP problem
  Suppose stream A contains (only the non-zero) entries of matrix

A, vectors b and c, interleaved in any order (updates are of the
form e.g. “add y to entry (i,j) of A”). The LP streaming problem
on A is to determine max {cT x | Ax ≤ b}.

  Theorem: There is a (|A|, 1) protocol for the LP streaming
problem, where |A| is number of non-zero entries in A.
  Protocol (“naïve” matrix-vector multiplication):

1.  H provides primal-feasible solution x.
2.  For each row i of A:

 Repeat entries of x and row i of A in order to prove feasibility.
Fingerprints ensure consistency.

3.  Repeat for dual-feasible solution y. Accept if value(x)=value(y).

Application to Graph Streams
  Corollary: Protocol for TUM IPs, since optimality can be

proven via a solution to the dual of its LP relaxation.

Application to Graph Streams
  Corollary: Protocol for TUM IPs, since optimality can be

proven via a solution to the dual of its LP relaxation.
  Corollary: (m, 1) protocols for max-flow, min-cut,

minimum-weight bipartite perfect matching, and shortest s-t
path. Lower bound of hv=Ω(n2) for all four.

Application to Graph Streams
  Corollary: Protocol for TUM IPs, since optimality can be

proven via a solution to the dual of its LP relaxation.
  Corollary: (m, 1) protocols for max-flow, min-cut,

minimum-weight bipartite perfect matching, and shortest s-t
path. Lower bound of hv=Ω(n2) for all four.

  A is sparse for the problems above, which suits the naïve protocol.
For denser A, can get optimal tradeoffs between h and v.

Dense Matrix-Vector Multiplication
  We will get optimal (n1+α, n1-α) protocol. Lower bound:

hv=Ω(n2).
 Corollary I: Protocols for dense LPs, effective resistances,

verifying eigenvalues of Laplacian.

Dense Matrix-Vector Multiplication
  We will get optimal (n1+α, n1-α) protocol. Lower bound:

hv=Ω(n2).
 Corollary I: Protocols for dense LPs, effective resistances,

verifying eigenvalues of Laplacian.
 Corollary II: Optimal tradeoffs for Quadratic Programs,

Second-Order Cone Programs. (n2, 1) protocol for Semi-
definite Programs.

Dense Matrix-Vector Multiplication
  First idea: Treat as n separate inner-product queries, one for

each row of A.
 Worse than “naïve” solution.
 Multiplies both h and v by n, as compared to a single inner-

product query.

Dense Matrix-Vector Multiplication
  First idea: Treat as n separate inner-product queries, one for

each row of A.
 Worse than “naïve” solution.
 Multiplies both h and v by n, as compared to a single inner-

product query.

  Key observation: one vector, x, in each inner-product query
is constant.
 This plus linear fingerprints lets us just multiply h by n.
  v will be the same as for a single inner product query.

Approach 2: Simulate an Algorithm
  Main tool: Offline memory checker [Blum et al. ’94]. Allows

efficient verification of a sequence of accesses to a large
memory.

  Lets us convert any deterministic algorithm into a protocol
in our model.

  Running time of the algorithm in the RAM model becomes
annotation size h.

Memory Checker [Blum et al. ’94]
  Consider a memory transcript of a sequence of reads and writes

to memory.
  A transcript is valid if each read of address i returns the last

value written to that address.
  Memory checker requires transcript be provided in a

carefully chosen (“augmented”) format.
 Augmentation blows up transcript size only by constant factor.

  V checks validity by keeping a constant number of
fingerprints and performing simple local checks on the
transcript.

Simulation Theorem
 Any graph algorithm M in RAM model requiring time t

can be (verifiably) simulated by an (m+t, 1)-protocol.

  Proof sketch:
  Step 1: H first plays a valid adjacency-list representation of G to

“initialize memory”.

  Step 2: H provides a valid augmented transcript T of the read
and write operations performed by algorithm.

  V checks validity using memory-checker. V also checks all read/
write operations are as prescribed by M.

Simulation Theorem
 Corollary: (m, 1)-protocol for MST; (m + n log n, 1)-protocol

to verify single-source shortest paths; (n3,1)-protocol for all-
pairs shortest paths.

Simulation Theorem
 Corollary: (m, 1)-protocol for MST; (m + n log n, 1)-protocol

to verify single-source shortest paths; (n3,1)-protocol for all-
pairs shortest paths.

  Proof for MST: Given a spanning tree T, there exists a linear-
time algorithm M for verifying that T is minimum e.g. [King
‘97].

Simulation Theorem
 Corollary: (m, 1)-protocol for MST; (m + n log n, 1)-protocol

to verify single-source shortest paths; (n3,1)-protocol for all-
pairs shortest paths.

  Proof for MST: Given a spanning tree T, there exists a linear-
time algorithm M for verifying that T is minimum e.g. [King
‘97].

  Lower bounds: hv=Ω(n2) for single source and all-pairs
shortest paths. hv=Ω(n2) for MST if edge weights specified
incrementally.

Pitfall of Memory-Checking
Cannot simulate randomized algorithms

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix

multiplication.

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix

multiplication.

  Let A be adjacency matrix of G.

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix

multiplication.

  Let A be adjacency matrix of G.

  (I + A)l
ij >0 if and only if there is a path of length at most l

from i to j.

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix

multiplication.

  Let A be adjacency matrix of G.

  (I + A)l
ij >0 if and only if there is a path of length at most l

from i to j.
  Protocol:
1.  H claims diameter is l

2.  Use repeated squaring to prove (I+A) l has an entry that is 0,
 and (I+A) l+1

 ≠ 0 for all (i,j).

Summary
  (m, 1)-protocol for max-matching. hv=Ω(n2) lower bound

for dense graphs, so we can’t do better.
  (m, 1)-protocols for LPs TUM IPs. hv=Ω(n2) lower bound

for several TUM IPs.
  Optimal (n1+α, n1-α)-protocol for dense matrix-vector

multiplication. (n1+α, n1-α)-protocols for effective
resistance, verifying eigenvalues of Laplacian or Adjacency
matrix, LPs, QPs, SOCPs.

  General simulation theorem; applications to MST, shortest
paths.

  (n2log n, 1) protocol for Diameter. hv=Ω(n2) lower bound.

Open questions
  Tradeoffs between h, v for matching, MST, diameter?

  Distributed computation: Protocols that work with Map-
Reduce.

  What if we allow multiple rounds of interaction between H
and V? Can we get exponentially better protocols?

With Graham Cormode and Ke Yi

Verifying Computations with
Streaming Interactive Proofs

A General Result
  Universal Arguments [Kilian 92] and Interactive Proofs for

Muggles [Goldwasser, Kalai, Rothblum 08] can work with
streaming verifier!

A General Result
  Universal Arguments [Kilian 92] and Interactive Proofs for

Muggles [Goldwasser, Kalai, Rothblum 08] can work with
streaming verifier!

  Therefore: (polylog u, polylog u) computationally sound protocols
for NP. (polylog u, polylog u) statistically sound protocols for all of
log-space uniform NC. u is input size.

A General Result
  Universal Arguments [Kilian 92] and Interactive Proofs for

Muggles [Goldwasser, Kalai, Rothblum 08] can work with
streaming verifier!

  Therefore: (polylog u, polylog u) computationally sound protocols
for NP. (polylog u, polylog u) statistically sound protocols for all of
log-space uniform NC. u is input size.

  Efficient protocols even for problems hard in non-streaming setting.

  Exponential improvement over best-possible one-round protocols.

How to Make V Streaming
  Arithmetization: Given function f ’, extend domain of f ’ to

field and replace f ’ with its low-degree extension (LDE) f as a
polynomial over the field.

  Can view f as a high-distance encoding of f ’. The error
correcting properties of f give V considerable power over H.

How to Make V Streaming
  Three observations:

  1. In many proof systems, V only accesses the input in order to
compute f(r) for small number of r, where f is LDE of input.

  2. Moreover, locations r only depend on V’s random coins.
  3. V can evaluate f(r) in streaming fashion.

How to Make V Streaming
  Three observations:

  1. In many proof systems, V only accesses the input in order to
compute f(r) for small number of r, where f is LDE of input.

  2. Moreover, locations r only depend on V’s random coins.
  3. V can evaluate f(r) in streaming fashion.

  So streaming V tosses all coins in advance; remembers them
and keeps them private from H; and computes f(r) during
“input observation” phase.

Streaming V can evaluate f(r)
  E.g. Let a be the u-dimensional frequency vector of a stream.

and view the universe [u] as [ℓ]d where ℓd=u (“frequency
hypercube”).
 Then f(x) = ∑v∈[ℓ]d av χv (x).

  Whereχv(v)=1 and χv(v’)=0 for all other v’ ∈[ℓ]d.

Streaming V can evaluate f(r)
  E.g. Let a be the u-dimensional frequency vector of a stream.

and view the universe [u] as [ℓ]d where ℓd=u (“frequency
hypercube”).
 Then f(x) = ∑v∈[ℓ]d av χv (x).

  Whereχv(v)=1 and χv(v’)=0 for all other v’ ∈[ℓ]d.

  V makes one pass over the data stream. If V observes a new
entry av of the input, V may update

 f(r) ← f(r) + av · χv(r).

Some comments
 Despite powerful generality, [Goldwasser, Kalai,

Rothblum 08] is not optimal for many low-complexity
functions of high interest in streaming, database
processing.

 E.g. Frequency Moments, Reporting Queries.

 We give improved protocols for these problems.
 And argue that they are practical.

Tool: Sum-Check Protocol
 Let g be a polynomial over Fp.

Tool: Sum-Check Protocol
 Let g be a polynomial over Fp.

 Say we want to compute ∑z∈Hd g(z) for some H ⊆
Fp.

Tool: Sum-Check Protocol
 Let g be a polynomial over Fp.

 Say we want to compute ∑z∈Hd g(z) for some H ⊆
Fp.

 A Sum-Check Protocol lets V do this as long as V can
evaluate g at a randomly-chosen location r.

Tool: Sum-Check Protocol
 Let g be a polynomial over Fp.

 Say we want to compute ∑z∈Hd g(z) for some H ⊆
Fp.

 A Sum-Check Protocol lets V do this as long as V can
evaluate g at a randomly-chosen location r.

 Requires d rounds, communication cost in round i is
degi(g), the degree of g in variable i.

F2 protocol
  Goal: Compute ∑i ai

2

F2 protocol
  Goal: Compute ∑i ai

2

  First attempt: Let a2 denote the entry-wise square of a. Try
to apply a sum-check protocol to the LDE g of a2.
  i.e. g = ∑v ∈[ℓ]d a2

v χv.
  But a streaming verifier cannot evaluate g at a random location.

F2 protocol
  Goal: Compute ∑i ai

2

  First attempt: Let a2 denote the entry-wise square of a. Try
to apply a sum-check protocol to the LDE g of a2.
  i.e. g = ∑v ∈[ℓ]d a2

v χv.
  But a streaming verifier cannot evaluate g at a random location.

  But V can use a slightly higher-degree extension of a2

instead.
  i.e. f2= (∑v ∈[ℓ]d av χv)2
 We know V can evaluate f(r), and f2(r)=f(r)2.

Experiments
  Implemented one-round F2 protocol from [Chakrabarti et al.

09] and multiround F2 protocol.

  Single-round space and communication cost grows like √u. Still
under a megabyte for u=100 million.

 Multiround space and communication always under 1 KB even
when handling GBs of data.

Experiments
  V takes about the same time in both cases (millions of updates per

second). But H much more efficient in multiround case.
  E.g. Multiround H requires less than a second to process streams with

millions of updates and u=[250K]. Single-round H requires minutes
on same data.

  Multi-round H’s time grows linearly, single-round H’s time grows like
u3/2.

 0.01

 0.1

 1

 10

 100

 1000

10
4

10
5

10
6

10
7

10
8

T
im

e
 /

 s

Size of u

Time to create proof

One Round
Multiround

Extension to Frequency-Based
Functions
  Frequency based function F(a) is of the form F(a) =∑i h(ai)

for some h: N0  N0.

  e.g. Fk, F0 (DISTINCT), “How many items have frequency at
most i?”, verifying Fmax (highest-frequency).

Extension to Frequency-Based
Functions
  First idea: extend h to a polynomial h over Fp and apply a

sum-check protocol to the polynomial h◦f.
  Streaming V can evaluate h◦f(r) by computing f(r) and then

h(f(r)).
  Problem: h might have degree u. Resulting communication cost

is du, worse than trivial protocol.

Extension to Frequency-Based
Functions
  First idea: extend h to a polynomial h over Fp and apply a

sum-check protocol to the polynomial h◦f.
  Streaming V can evaluate h◦f(r) by computing f(r) and then

h(f(r)).
  Problem: h might have degree u. Resulting communication cost

is du, worse than trivial protocol.

  Solution: We give a (1/φ log u, 1/φ log u) protocol to
identify all items of frequency at least φm (the “φ-heavy
hitters”). Use this protocol to “remove” the heavy items,
which allows to control degree of h.

Extension to Frequency-Based
Functions
  Result: a (√u log u, log u)-protocol for any frequency-based

function that takes log u rounds.

  [Goldwasser, Kalai, Rothblum 08] yields (log2 u, log2 u)
protocol.

  For 1 TB of data, √u is on the order of 1 MB, log2 u is on the
order of thousands, log u≈40.

  Might prefer to communicate 1 MB of data over 40 rounds
than 1 KB over thousands of rounds due to network latency.

Reporting Queries
  Sub-vector query: Given qL and qR, determine the non-zero entries of

(aqL
 , . . . , aqR

).

  We give a (k + log u, log u)-protocol for Sub-vector requiring log u
rounds, where k is number of non-zero entries in (aqL

 , . . . , aqR
).

  In comparison, [Goldwasser, Kalai, Rothblum 08] yields (k’ log u, k’
log u)-protocol, where k’ = O(qR-qL).
  Improvement is significant when k’ is large or the subvector is

sparse.

  Protocol is reminiscent of Merkle trees, but we achieve statistical
soundness.

Open Questions
  Reusability?

  Do problems outside of NC possess streaming interactive proofs?

  Better protocols for specific candidates? Prime candidates: F0, Fmax.

  Distributed Computation: Our prover’s messages naturally lend
themselves to Map-Reduce setting. Remains to demonstrate this
empirically.

Thank you!

Matrix-Vector Multiplication
  Background: [Chakrabarti et al. 09] (√n, √n)-protocol for

inner product of frequency vectors of two streams S1, S2.
  View universe [n] as [√n] x [√n].

0
Frequency “Square” of S1

6 17

0 2 0

0 8 0

0 6 17 0 2 0 0 8 0

Frequency Vector of S1

Slide derived from [McGregor 10]

Inner-Product Protocol (1/4)
  Want to compute inner product of frequency vectors of S1, S2.

0

Frequency Square of S1

6 17

0 2 0

0 8 1

8

Frequency Square of S2

2 0

19 21 0

4 8 3

Slide derived from [McGregor 10]

Inner-Product Protocol (2/4)
  First idea: Have H send the inner product “in pieces”:

  row 1 ∙ row 1, row 2 ∙ row 2, etc. Requires √n communication.

  V exactly tracks a piece at random (denoted in yellow) so if H lies about
any piece, V has a chance of catching her. Requires space √n.

0

Frequency Square of S1

6 17

0 2 0

0 8 1

8

Frequency Square of S2

2 0

19 21 0

4 8 3

H sends

12

42

67

Slide derived from [McGregor 10]

Inner-Product Protocol (3/4)

 Problem: If H lies in only one place, V has small chance of
catching her.

  Solution: Have H commit (succinctly) to inner products of
pieces of a high-distance encoding of the input. If H lies
about one piece, she will have to lie about many.

 Need V to evaluate any piece of the encoding in a streaming
fashion. Can do this for “low-degree extension” code.

Inner-Product Protocol (4/4)

0

High-Distance Encoding g
of Frequency Square of S1

6 17

0 2 0

0 8 1

8 2 0

19 21 0

4 8 3

H sends

12

42

67

2 8 1

3 7 3

1 2 2

2 3 5

7 8 1

0 2 0

33

High-Distance Encoding h
of Frequency Square of S2

Input is
embedded in

encoding
(low-degree
extension)

80

4

These values
will all lie on
low-degree
polynomial s(x)

Matrix-Vector Multiplication (1/7)
  First idea: Treat as n separate inner-product queries, one for

each row of A.
 Worse than “naïve” solution.
 Multiplies both h and v by n, as compared to a single inner-

product query.

  Key insight: one vector, x, in each inner-product query is
constant.
 This plus linear fingerprints lets us just multiply h by n.
  v will be the same as for a single inner product query.

Matrix-Vector Multiplication (2/7)

x

A

Row 1 of A

Row 2 of A

Row 3 of A

Even though this is drawn as a cube,
suppose box has dimensions n x √n x √n

Matrix-Vector Multiplication (3/7)

LDE of x

Low-degree extension of each row of A and of x

LDE of A Row 1 of A

Row 2 of A

Row 3 of A

Matrix-Vector Multiplication (4/7)

x11

LDE of x

V evaluates each row of A and x at random “piece” r (same r for all rows)

LDE of A

x12

x21 xr1

xr2

Matrix-Vector Multiplication (5/7)

LDE of x

LDE of A Only need
to keep one
fingerprint
for each
color.

Each orange
entry of A gets
multiplied by
orange entry
of x when
computing
inner product
of its “piece”.

Matrix-Vector Multiplication (6/7)

14

LDE of x

LDE of A 3 5 9 2 3 6 8

2 3 1 7 4 1 2 1

3 0 1 7 8 3 2 3

H commits
to inner product
of each piece
via a separate
polynomial for each row.
V will check that si(r)
is correct for all
rows i.

s1(x)

s2(x)

sn(x)

Matrix-Vector Multiplication (7/7)
  Summary:

 H sends the inner product of each piece of each row.
 Conceptually, V will track a random piece of each row (the

yellow entries) to catch H in any lies w.h.p.

 But V need not store all n * √n yellow entries!
 Can store just √n fingerprints f1, …, f√n

  Each fingerprint aggregates over n rows, can be computed
incrementally by streaming verifier.

 Works because vector x is fixed.

