

Anna Lisa Ferrara · Manoj Prabhakaran · Mike Rosulek

Crypto in the Clouds · August 4, 2009

Typical "Computing on Encrypted Data" Approach:

Typical "Computing on Encrypted Data" Approach:

- 1. Encrypt input/output for secrecy
 - Use homomorphic encryption to allow blind computation

Typical "Computing on Encrypted Data" Approach:

- 1. Encrypt input/output for secrecy
 - Use homomorphic encryption to allow blind computation
- 2. Require proof of correct computation. Why?

Typical "Computing on Encrypted Data" Approach:

- 1. Encrypt input/output for secrecy
 - Use homomorphic encryption to allow blind computation

2. Require proof of correct computation. Why?

Only have CPA security

Expressivity:

- Encrypted data can be blindly manipulated
- Homomorphic / computational <u>feature</u>

Integrity:

- Result should reflect correct computation
- Actually a <u>non-malleability</u> requirement

Expressivity:

- Encrypted data can be blindly manipulated
- Homomorphic / computational <u>feature</u>

Integrity:

- Result should reflect correct computation
- Actually a <u>non-malleability</u> requirement

Can we get both in a single encryption scheme?

Consider case of <u>unary</u> operations: $Enc(m) \rightsquigarrow Enc(f(m))$

Complementary Definitions [PR08]

- 1. Scheme allows operations $Enc(m) \rightsquigarrow Enc(f(m))$, where f in prescribed set \mathcal{F} .
- 2. Other than those features, scheme is non-malleable.

Consider case of <u>unary</u> operations: $Enc(m) \rightsquigarrow Enc(f(m))$

Complementary Definitions [PR08]

- 1. Scheme allows operations $Enc(m) \rightsquigarrow Enc(f(m))$, where f in prescribed set \mathcal{F} .
- 2. Other than those features, scheme is non-malleable.
 - ▶ Given unknown Enc(m), cannot generate C such that Dec(C) depends on m...

Consider case of <u>unary</u> operations: $Enc(m) \rightsquigarrow Enc(f(m))$

Complementary Definitions [PR08]

- 1. Scheme allows operations $Enc(m) \rightsquigarrow Enc(f(m))$, where f in prescribed set \mathcal{F} .
- 2. Other than those features, scheme is non-malleable.
 - ▶ Given unknown Enc(m), cannot generate C such that Dec(C) depends on m...
 - ... unless $\operatorname{Dec}(C) = f(m)$ for an allowed $f \in \mathcal{F}$

Contrast with Fully Homomorphic Encryption:

Fully homomorphic encryption [G09]:

- Sole focus is maximum expressivity
- ▶ Binary operations: $Enc(m_1), Enc(m_2) \rightsquigarrow Enc(m_1 + m_2)$

This work:

- Focus on sharp tradeoff in homomorphic operations:
 - $\in \mathcal{F}$: available as highly expressive full feature
- Difficult regardless of expressivity
 - E.g.: \mathcal{F} contains only one operation

$Enc(m) \rightsquigarrow Enc(f(m))$ Available as Feature

Correctness Requirement

 $\mathsf{Dec}(\mathsf{Trans}(C,f)) = f(\mathsf{Dec}(C))$

< 47 ►

$Enc(m) \rightsquigarrow Enc(f(m))$ Available as Feature

Correctness Requirement

 $\mathsf{Dec}(\mathsf{Trans}(C,f)) = f(\mathsf{Dec}(C))$

New Definition(s): Unlinkability [PR08]

 $\mathsf{Trans}(\mathsf{Enc}(m),f)$ "looks like" $\mathsf{Enc}(f(m))$

Weak: $Enc(f(m)) \approx Trans(Enc(m), f)$

(Indistinguishabilities in presence of Dec oracle)

Mike Rosulek

Non-malleable, Homomorphic Encryption

$Enc(m) \rightsquigarrow Enc(f(m))$ Available as Feature

Correctness Requirement

 $\mathsf{Dec}(\mathsf{Trans}(C,f)) = f(\mathsf{Dec}(C))$

New Definition(s): Unlinkability [PR08]

 $\operatorname{Trans}(\operatorname{Enc}(m), f)$ "looks like" $\operatorname{Enc}(f(m))$

Weak: $Enc(f(m)) \approx Trans(Enc(m), f)$

 $\begin{array}{ll} \mbox{Medium:} & (C, \mbox{Enc}(f(m))) \approx (C, \mbox{Trans}(C, f)), \mbox{ where } \\ & C \leftarrow \mbox{Enc}(m) \end{array}$

Strong: $(C, Enc(f(m))) \approx (C, Trans(C, f))$, where C adversarially chosen, Dec(C) = m.

(Indistinguishabilities in presence of Dec oracle)

Mike Rosulek

Suppose no adversary can distinguish between 2 worlds:

- 1. Generate keypair, give PK.
- 2. Provide $\text{Dec}_{SK}(\cdot)$ oracle.
- 3. Adversary chooses m^* .
- 4. Give $C^* \leftarrow \operatorname{Enc}_{PK}(m^*)$.
- 5. Provide Dec oracle.

Suppose no adversary can distinguish between 2 worlds:

- 1. Generate keypair, give PK.
- 2. Provide $\text{Dec}_{SK}(\cdot)$ oracle.
- 3. Adversary chooses m^* .
- 4. Give $C^* \leftarrow \operatorname{Enc}_{PK}(m^*)$.
- 5. Provide Dec oracle.

- 1. Generate keypair, give PK.
- 2. Provide $\text{Dec}_{SK}(\cdot)$ oracle.
- 3. Adversary chooses m^* .
- 4. Give $C^* \leftarrow \mathsf{RigEnc}(PK)$.
- 5. Provide Dec oracle, except:
 - If $f \leftarrow \mathsf{RigExtract}_{SK}(C)$, then answer $f(m^*)$.

Suppose no adversary can distinguish between 2 worlds:

- 1. Generate keypair, give PK.
- 2. Provide $\text{Dec}_{SK}(\cdot)$ oracle.
- 3. Adversary chooses m^* .
- 4. Give $C^* \leftarrow \operatorname{Enc}_{PK}(m^*)$.
- 5. Provide Dec oracle.

- 1. Generate keypair, give PK.
- 2. Provide $\text{Dec}_{SK}(\cdot)$ oracle.
- 3. Adversary chooses m^* .
- 4. Give $C^* \leftarrow \mathsf{RigEnc}(PK)$.
- 5. Provide Dec oracle, except:

▶ If $f \leftarrow \mathsf{RigExtract}_{SK}(C)$, then answer $f(m^*)$.

Intuition: suppose some adversary can change $Enc(m^*)$ into related ciphertext C; $Dec(C^*) = f(m^*)$ (unknown m^*)

Suppose no adversary can distinguish between 2 worlds:

- 1. Generate keypair, give PK.
- 2. Provide $\text{Dec}_{SK}(\cdot)$ oracle.
- 3. Adversary chooses m^* .
- 4. Give $C^* \leftarrow \operatorname{Enc}_{PK}(m^*)$.
- 5. Provide Dec oracle.

- 1. Generate keypair, give PK.
- 2. Provide $\text{Dec}_{SK}(\cdot)$ oracle.
- 3. Adversary chooses m^* .
- 4. Give $C^* \leftarrow \mathsf{RigEnc}(PK)$.
- 5. Provide Dec oracle, except:

▶ If $f \leftarrow \mathsf{RigExtract}_{SK}(C)$, then answer $f(m^*)$.

Intuition: suppose some adversary can change $Enc(m^*)$ into related ciphertext C; $Dec(C^*) = f(m^*)$ (unknown m^*)

Submit C to Dec oracle, get back answer $\text{Dec}(C) = f(m^*)$

Suppose no adversary can distinguish between 2 worlds:

- 1. Generate keypair, give PK.
- 2. Provide $\text{Dec}_{SK}(\cdot)$ oracle.
- 3. Adversary chooses m^* .
- 4. Give $C^* \leftarrow \operatorname{Enc}_{PK}(m^*)$.
- 5. Provide Dec oracle.

- 1. Generate keypair, give PK.
- 2. Provide $\text{Dec}_{SK}(\cdot)$ oracle.
- 3. Adversary chooses m^* .
- 4. Give $C^* \leftarrow \mathsf{RigEnc}(PK)$.
- 5. Provide Dec oracle, except:

▶ If $f \leftarrow \mathsf{RigExtract}_{SK}(C)$, then answer $f(m^*)$.

Intuition: suppose some adversary can change $Enc(m^*)$ into related ciphertext C; $Dec(C^*) = f(m^*)$ (unknown m^*)

Submit C to Dec oracle, get back answer $Dec(C) = f(m^*)$

Submit C to oracle; RigExtract must output f

Observation

Operation $Enc(m) \rightsquigarrow Enc(f(m))$ possible (perhaps adversarially)

 \implies RigExtract must be allowed to output f

Observation

Operation $Enc(m) \rightsquigarrow Enc(f(m))$ possible (perhaps adversarially) \implies RigExtract must be allowed to output f

RigExtract never allowed to output f

 \implies Enc $(m) \rightsquigarrow$ Enc(f(m)) impossible (even adversarially)

Observation

Operation $Enc(m) \rightsquigarrow Enc(f(m))$ possible (perhaps adversarially) \implies RigExtract must be allowed to output f

RigExtract never allowed to output f

 \implies Enc $(m) \rightsquigarrow$ Enc(f(m)) impossible (even adversarially)

HCCA Security Definition [PR08]

Scheme is non-malleable except for operations \mathcal{F} if there are suitable RigEnc, RigExtract, with range(RigExtract) $\subseteq \mathcal{F}$.

Observation

Operation $Enc(m) \rightsquigarrow Enc(f(m))$ possible (perhaps adversarially) \implies RigExtract must be allowed to output f

 $\mathsf{RigExtract}$ never allowed to output f

 \implies Enc $(m) \rightsquigarrow$ Enc(f(m)) impossible (even adversarially)

HCCA Security Definition [PR08]

Scheme is non-malleable except for operations \mathcal{F} if there are suitable RigEnc, RigExtract, with range(RigExtract) $\subseteq \mathcal{F}$.

- RigEnc, RigExtract needed only for security analysis
- Can obtain CCA, RCCA [CKN03], gCCA [S01,ADR02] as special cases by further restricting RigEnc, RigExtract
- ▶ Implicitly rules out all malleability not of form $Enc(m) \rightsquigarrow Enc(f(m))$

Constructions

Strong, slightly inefficient construction [PR08]

- \blacktriangleright DDH \implies strong unlinkability + HCCA
- Expressivity: group operations in DDH group
- Ciphertext is 20 group elements

Weak, efficient construction [FPR09]

- \blacktriangleright CCA \implies weak unlinkability + HCCA
- Expressivity: arbitrary group operations
- ► Using Cramer-Shoup DDH, ciphertext has 5 group elements

ΤA

Privacy: TA can't see responses Functionality: TA must be able to anonymize (shuffle) Integrity: TA can't modify/replace responses

Privacy: TA can't see responses Functionality: TA must be able to anonymize (shuffle) Integrity: TA can't modify/replace responses

Verifiable ciphertext shuffle [G02,GL07a,GL07b]

Mike Rosulek

Non-malleable, Homomorphic Encryption

Use non-malleable homomorphic encryption, whose <u>only</u> operations are $Enc(m, r) \rightsquigarrow Enc(m, rs)$ for r, s in a group.

Use non-malleable homomorphic encryption, whose <u>only</u> operations are $Enc(m,r) \rightsquigarrow Enc(m,rs)$ for r,s in a group.

Security proof:

▶ TA must give $\{ Enc(m'_i, r'_i) \}$, where $\prod r'_i = \prod r_i$

Use non-malleable homomorphic encryption, whose <u>only</u> operations are $Enc(m,r) \rightsquigarrow Enc(m,rs)$ for r,s in a group.

Security proof:

- ▶ TA must give $\{Enc(m'_i, r'_i)\}$, where $\prod r'_i = \prod r_i$
- Each r'_i is multiple of a single r_j , or independent of all r_i 's
- ▶ Must depend on each r_i once, else $\prod r'_i$ independent of $\prod r_i$

Use non-malleable homomorphic encryption, whose <u>only</u> operations are $Enc(m,r) \rightsquigarrow Enc(m,rs)$ for r,s in a group.

Security proof:

- ▶ TA must give $\{ Enc(m'_i, r'_i) \}$, where $\prod r'_i = \prod r_i$
- Each r'_i is multiple of a single r_j , or independent of all r_i 's
- ▶ Must depend on each r_i once, else $\prod r'_i$ independent of $\prod r_i$
- ▶ Can't get dependence on an r_i without its m_i intact

Mike Rosulek

Non-malleable homomorphic encryption useful in distributed protocols:

- Intuitively simple protocol; avoids ZK
- UC-secure without setups!
- Practical (only need weak unlinkability)
- Can also get distributed OR, group operation protocols

Binary Operations

What about binary operations?

 $\mathsf{Enc}(m_1), \mathsf{Enc}(m_2) \xrightarrow{\leadsto} \mathsf{Enc}(f(m_1, m_2))$

Binary Operations

What about binary operations?

 $\operatorname{Enc}(m_1), \operatorname{Enc}(m_2) \rightsquigarrow \operatorname{Enc}(f(m_1, m_2))$

Theorem [PR08b]

Non-malleable homomorphic encryption impossible for a group operation over message space.

Binary Operations

What about binary operations?

 $\operatorname{Enc}(m_1), \operatorname{Enc}(m_2) \rightsquigarrow \operatorname{Enc}(f(m_1, m_2))$

Theorem [PR08b]

Non-malleable homomorphic encryption impossible for a group operation over message space.

Proof.

- Transformed ciphertexts look like regular ciphertexts
 - ciphertexts have a-priori length bound
- Simulator must be able to extract ciphertext "history"
- There can be more histories than possible ciphertexts:
 - Given *n* ciphertexts, each $\prod_{i \in I} m_i$ is a history $(I \subseteq [n])$.

A Glimmer of Hope

Length bound crucial in impossibility result!

- What if transformed ciphertexts allowed to grow in size?
- "Cryptocomputing" paradigm [SYY99]

A Glimmer of Hope

Length bound crucial in impossibility result!

- What if transformed ciphertexts allowed to grow in size?
- "Cryptocomputing" paradigm [SYY99]

Theorem [PR08b]

Under DDH, can construct a scheme with following requirements:

- ▶ Allows group operation $Enc(m_1), Enc(m_2) \rightsquigarrow Enc(m_1m_2)$
- Non-malleable otherwise
- Ciphertext leaks only the # of operations applied

A Glimmer of Hope

Length bound crucial in impossibility result!

- What if transformed ciphertexts allowed to grow in size?
- "Cryptocomputing" paradigm [SYY99]

Theorem [PR08b]

Under DDH, can construct a scheme with following requirements:

- ▶ Allows group operation $Enc(m_1), Enc(m_2) \rightsquigarrow Enc(m_1m_2)$
- Non-malleable otherwise
- Ciphertext leaks only the # of operations applied

Comparison to SYY99:

- Ciphertext size grows linearly, not exponentially
- Only one group operation, not both ring operations
- Non-malleability property

Non-malleability need not be all-or-nothing

Can achieve sharp tradeoff between features/non-malleability

Future direction: beyond encryption? NIZK? Signatures?

Non-malleable homomorphic encryption helps for protocols

- ▶ UC security with elementary protocols, no ZK machinery
- Impossible for binary group operations
 - Not all is lost if ciphertext allowed to leak a little

Thanks for your attention!

Supported Operations

[PR08] construction:

- Message space $= \mathbb{G}^n$ for DDH group \mathbb{G} , fixed n
- Parameter $= \mathbb{H}$, subgroup of \mathbb{G}^n
- Allowed operations:

$$\mathsf{Enc}(x_1,\ldots,x_n) \rightsquigarrow \mathsf{Enc}(x_1h_1,\ldots,x_nh_n) \text{ for } \vec{h} \in \mathbb{H}$$

Note: cannot exponentiate, separate components, etc..

Example instantiations:

 H = {1}: Cannot change plaintext, only rerandomize
 (Rerandomizable RCCA [CKN03,G04,PR07])

•
$$\mathbb{H} = \mathbb{G}^n$$
: Can "multiply" by anything

 $\blacktriangleright \ \mathbb{H} = \{\mathbf{1}\} \times \mathbb{G} \text{: Only first component non-malleable}$

•
$$\mathbb{H} = \{(h, \dots, h) \mid h \in \mathbb{G}\}$$
: "Scalar multiplication" of vector