

Anna Lisa Ferrara • Manoj Prabhakaran • Mike Rosulek
Crypto in the Clouds • August 4, 2009

Computing on Encrypted Data

Typical "Computing on Encrypted Data" Approach:

Computing on Encrypted Data

Typical "Computing on Encrypted Data" Approach:

1. Encrypt input/output for secrecy

- Use homomorphic encryption to allow blind computation

Computing on Encrypted Data

Typical "Computing on Encrypted Data" Approach:

1. Encrypt input/output for secrecy

- Use homomorphic encryption to allow blind computation

2. Require proof of correct computation. Why?

Computing on Encrypted Data

Typical "Computing on Encrypted Data" Approach:

1. Encrypt input/output for secrecy

- Use homomorphic encryption to allow blind computation

2. Require proof of correct computation. Why?

- Only have CPA security

A Difficult Tradeoff

Expressivity:

- Encrypted data can be blindly manipulated
- Homomorphic / computational feature

Integrity:

- Result should reflect correct computation
- Actually a non-malleability requirement

A Difficult Tradeoff

Expressivity:

- Encrypted data can be blindly manipulated
> Homomorphic / computational feature
Integrity:
- Result should reflect correct computation
- Actually a non-malleability requirement

Can we get both in a single encryption scheme?

New Definitions

Consider case of unary operations: $\operatorname{Enc}(m) \rightsquigarrow \operatorname{Enc}(f(m))$
Complementary Definitions [PR08]

1. Scheme allows operations $\operatorname{Enc}(m) \rightsquigarrow \operatorname{Enc}(f(m))$, where f in prescribed set \mathcal{F}.
2. Other than those features, scheme is non-malleable.

New Definitions

Consider case of unary operations: $\operatorname{Enc}(m) \rightsquigarrow \operatorname{Enc}(f(m))$

Complementary Definitions [PR08]

1. Scheme allows operations $\operatorname{Enc}(m) \rightsquigarrow \operatorname{Enc}(f(m))$, where f in prescribed set \mathcal{F}.
2. Other than those features, scheme is non-malleable.

- Given unknown $\operatorname{Enc}(m)$, cannot generate C such that $\operatorname{Dec}(C)$ depends on m...

New Definitions

Consider case of unary operations: $\operatorname{Enc}(m) \rightsquigarrow \operatorname{Enc}(f(m))$

Complementary Definitions [PR08]

1. Scheme allows operations $\operatorname{Enc}(m) \rightsquigarrow \operatorname{Enc}(f(m))$, where f in prescribed set \mathcal{F}.
2. Other than those features, scheme is non-malleable.

- Given unknown $\operatorname{Enc}(m)$, cannot generate C such that $\operatorname{Dec}(C)$ depends on m...
- ... unless $\operatorname{Dec}(C)=f(m)$ for an allowed $f \in \mathcal{F}$

Contrast with Fully Homomorphic Encryption:

Fully homomorphic encryption [G09]:

- Sole focus is maximum expressivity
$>\operatorname{Binary}$ operations: $\operatorname{Enc}\left(m_{1}\right), \operatorname{Enc}\left(m_{2}\right) \rightsquigarrow \operatorname{Enc}\left(m_{1}+m_{2}\right)$

This work:
> Focus on sharp tradeoff in homomorphic operations:
$\in \mathcal{F}$: available as highly expressive full feature $\notin \mathcal{F}$: computationally infeasible

- Difficult regardless of expressivity
- E.g.: \mathcal{F} contains only one operation

$\operatorname{Enc}(m) \rightsquigarrow \operatorname{Enc}(f(m))$ Available as Feature

Correctness Requirement

$\operatorname{Dec}(\operatorname{Trans}(C, f))=f(\operatorname{Dec}(C))$

$\operatorname{Enc}(m) \rightsquigarrow \operatorname{Enc}(f(m))$ Available as Feature

Correctness Requirement

$\operatorname{Dec}(\operatorname{Trans}(C, f))=f(\operatorname{Dec}(C))$
New Definition(s): Unlinkability [PR08]
$\operatorname{Trans}(\operatorname{Enc}(m), f)$ "looks like" $\operatorname{Enc}(f(m))$

$$
\text { Weak: } \operatorname{Enc}(f(m)) \approx \operatorname{Trans}(\operatorname{Enc}(m), f)
$$

(Indistinguishabilities in presence of Dec oracle)

$\operatorname{Enc}(m) \rightsquigarrow \operatorname{Enc}(f(m))$ Available as Feature

Correctness Requirement

$\operatorname{Dec}(\operatorname{Trans}(C, f))=f(\operatorname{Dec}(C))$

New Definition(s): Unlinkability [PR08]

$\operatorname{Trans}(\operatorname{Enc}(m), f)$ "looks like" $\operatorname{Enc}(f(m))$
Weak: $\operatorname{Enc}(f(m)) \approx \operatorname{Trans}(\operatorname{Enc}(m), f)$
Medium: $(C, \operatorname{Enc}(f(m))) \approx(C, \operatorname{Trans}(C, f))$, where $C \leftarrow \operatorname{Enc}(m)$

Strong: $(C, \operatorname{Enc}(f(m))) \approx(C, \operatorname{Trans}(C, f))$, where C adversarially chosen, $\operatorname{Dec}(C)=m$.
(Indistinguishabilities in presence of Dec oracle)

Non-malleable Except For Desired Operations

Suppose no adversary can distinguish between 2 worlds:

1. Generate keypair, give PK.
2. Provide $\operatorname{Dec}_{S K}(\cdot)$ oracle.
3. Adversary chooses m^{*}.
4. Give $C^{*} \leftarrow \operatorname{Enc}_{P K}\left(m^{*}\right)$.
5. Provide Dec oracle.

Non-malleable Except For Desired Operations

Suppose no adversary can distinguish between 2 worlds:

1. Generate keypair, give PK.
2. Provide $\operatorname{Dec}_{S K}(\cdot)$ oracle.
3. Adversary chooses m^{*}.
4. Give $C^{*} \leftarrow \operatorname{Enc}_{P K}\left(m^{*}\right)$.
5. Provide Dec oracle.
6. Generate keypair, give $P K$.
7. Provide $\operatorname{Dec}_{S K}(\cdot)$ oracle.
8. Adversary chooses m^{*}.
9. Give $C^{*} \leftarrow \operatorname{RigEnc}(P K)$.
10. Provide Dec oracle, except:
> If $f \leftarrow \operatorname{Rig}^{\text {Extract }}{ }_{S K}(C)$, then answer $f\left(m^{*}\right)$.

Non-malleable Except For Desired Operations

Suppose no adversary can distinguish between 2 worlds:

1. Generate keypair, give $P K$.
2. Provide $\operatorname{Dec}_{S K}(\cdot)$ oracle.
3. Adversary chooses m^{*}.
4. Give $C^{*} \leftarrow \operatorname{Enc}_{P K}\left(m^{*}\right)$.
5. Provide Dec oracle.
6. Generate keypair, give PK.
7. Provide $\operatorname{Dec}_{S K}(\cdot)$ oracle.
8. Adversary chooses m^{*}.
9. Give $C^{*} \leftarrow \operatorname{RigEnc}(P K)$.
10. Provide Dec oracle, except:
> If $f \leftarrow \operatorname{Rig}^{\text {Extract }}{ }_{S K}(C)$, then answer $f\left(m^{*}\right)$.

Intuition: suppose some adversary can change $\operatorname{Enc}\left(m^{*}\right)$ into related ciphertext C; $\operatorname{Dec}\left(C^{*}\right)=f\left(m^{*}\right)$ (unknown m^{*})

Non-malleable Except For Desired Operations

Suppose no adversary can distinguish between 2 worlds:

1. Generate keypair, give $P K$.
2. Provide $\operatorname{Dec}_{S K}(\cdot)$ oracle.
3. Adversary chooses m^{*}.
4. Give $C^{*} \leftarrow \operatorname{Enc}_{P K}\left(m^{*}\right)$.
5. Provide Dec oracle.
6. Generate keypair, give PK.
7. Provide $\operatorname{Dec}_{S K}(\cdot)$ oracle.
8. Adversary chooses m^{*}.
9. Give $C^{*} \leftarrow \operatorname{RigEnc}(P K)$.
10. Provide Dec oracle, except:

- If $f \leftarrow$ RigExtract $_{S K}(C)$, then answer $f\left(m^{*}\right)$.

Intuition: suppose some adversary can change $\operatorname{Enc}\left(m^{*}\right)$ into related ciphertext C; $\operatorname{Dec}\left(C^{*}\right)=f\left(m^{*}\right)$ (unknown m^{*})

Submit C to Dec oracle, get back answer $\operatorname{Dec}(C)=f\left(m^{*}\right)$

Non-malleable Except For Desired Operations

Suppose no adversary can distinguish between 2 worlds:

1. Generate keypair, give $P K$.
2. Provide $\operatorname{Dec}_{S K}(\cdot)$ oracle.
3. Adversary chooses m^{*}.
4. Give $C^{*} \leftarrow \operatorname{Enc}_{P K}\left(m^{*}\right)$.
5. Provide Dec oracle.
6. Generate keypair, give PK.
7. Provide $\operatorname{Dec}_{S K}(\cdot)$ oracle.
8. Adversary chooses m^{*}.
9. Give $C^{*} \leftarrow \operatorname{RigEnc}(P K)$.
10. Provide Dec oracle, except:

- If $f \leftarrow$ RigExtract $_{S K}(C)$, then answer $f\left(m^{*}\right)$.

Intuition: suppose some adversary can change $\operatorname{Enc}\left(m^{*}\right)$ into related ciphertext C; $\operatorname{Dec}\left(C^{*}\right)=f\left(m^{*}\right)$ (unknown m^{*})

Submit C to Dec oracle, get back answer $\operatorname{Dec}(C)=f\left(m^{*}\right)$

Submit C to oracle; RigExtract must output f

A Limit on Malleability

Observation

Operation $\operatorname{Enc}(m) \rightsquigarrow \operatorname{Enc}(f(m))$ possible (perhaps adversarially) \Longrightarrow RigExtract must be allowed to output f

A Limit on Malleability

Observation

Operation $\operatorname{Enc}(m) \rightsquigarrow \operatorname{Enc}(f(m))$ possible (perhaps adversarially)
\Longrightarrow RigExtract must be allowed to output f
RigExtract never allowed to output f
$\Longrightarrow \operatorname{Enc}(m) \rightsquigarrow \operatorname{Enc}(f(m))$ impossible (even adversarially)

A Limit on Malleability

Observation

Operation $\operatorname{Enc}(m) \rightsquigarrow \operatorname{Enc}(f(m))$ possible (perhaps adversarially) \Longrightarrow RigExtract must be allowed to output f

RigExtract never allowed to output f $\Longrightarrow \operatorname{Enc}(m) \rightsquigarrow \operatorname{Enc}(f(m))$ impossible (even adversarially)

HCCA Security Definition [PR08]

Scheme is non-malleable except for operations \mathcal{F} if there are suitable RigEnc, RigExtract, with range(RigExtract) $\subseteq \mathcal{F}$.

A Limit on Malleability

Observation

Operation $\operatorname{Enc}(m) \rightsquigarrow \operatorname{Enc}(f(m))$ possible (perhaps adversarially) \Longrightarrow RigExtract must be allowed to output f

RigExtract never allowed to output f $\Longrightarrow \operatorname{Enc}(m) \rightsquigarrow \operatorname{Enc}(f(m))$ impossible (even adversarially)

HCCA Security Definition [PR08]

Scheme is non-malleable except for operations \mathcal{F} if there are suitable RigEnc, RigExtract, with range(RigExtract) $\subseteq \mathcal{F}$.

- RigEnc, RigExtract needed only for security analysis
- Can obtain CCA, RCCA [CKN03], gCCA [S01,ADR02] as special cases by further restricting RigEnc, RigExtract
- Implicitly rules out all malleability not of form
$\operatorname{Enc}(m) \rightsquigarrow \operatorname{Enc}(f(m))$

Constructions

Strong, slightly inefficient construction [PR08]

- DDH \Longrightarrow strong unlinkability + HCCA
- Expressivity: group operations in DDH group
- Ciphertext is 20 group elements

Weak, efficient construction [FPR09]

\triangleright CCA \Longrightarrow weak unlinkability + HCCA

- Expressivity: arbitrary group operations
- Using Cramer-Shoup DDH, ciphertext has 5 group elements

Application: Teaching Evaluations [PR08b]

Privacy: TA can't see responses
Functionality: TA must be able to anonymize (shuffle)
Integrity: TA can't modify/replace responses

Application: Teaching Evaluations [PR08b]

Privacy: TA can't see responses
Functionality: TA must be able to anonymize (shuffle)
Integrity: TA can't modify/replace responses
Verifiable ciphertext shuffle [G02,GL07a,GL07b]

Protocol Using New Notion

Use non-malleable homomorphic encryption, whose only operations are Enc $(m, r) \rightsquigarrow \operatorname{Enc}(m, r s)$ for r, s in a group.

Protocol Using New Notion

Use non-malleable homomorphic encryption, whose only operations are Enc $(m, r) \rightsquigarrow \operatorname{Enc}(m, r s)$ for r, s in a group.

Protocol Using New Notion

Use non-malleable homomorphic encryption, whose only operations are Enc $(m, r) \rightsquigarrow \operatorname{Enc}(m, r s)$ for r, s in a group.

Protocol Using New Notion

Use non-malleable homomorphic encryption, whose only operations are Enc $(m, r) \rightsquigarrow \operatorname{Enc}(m, r s)$ for r, s in a group.

Protocol Using New Notion

Use non-malleable homomorphic encryption, whose only operations are Enc $(m, r) \rightsquigarrow \operatorname{Enc}(m, r s)$ for r, s in a group.

Protocol Using New Notion

Use non-malleable homomorphic encryption, whose only operations are $\operatorname{Enc}(m, r) \rightsquigarrow \operatorname{Enc}(m, r s)$ for r, s in a group.

Protocol Using New Notion

Use non-malleable homomorphic encryption, whose only operations are Enc $(m, r) \rightsquigarrow \operatorname{Enc}(m, r s)$ for r, s in a group.

Security proof:

- TA must give $\left\{\operatorname{Enc}\left(m_{i}^{\prime}, r_{i}^{\prime}\right)\right\}$, where $\Pi r_{i}^{\prime}=\prod r_{i}$

Protocol Using New Notion

Use non-malleable homomorphic encryption, whose only operations are $\operatorname{Enc}(m, r) \rightsquigarrow \operatorname{Enc}(m, r s)$ for r, s in a group.

Security proof:
$>$ TA must give $\left\{\operatorname{Enc}\left(m_{i}^{\prime}, r_{i}^{\prime}\right)\right\}$, where $\Pi r_{i}^{\prime}=\prod r_{i}$

- Each r_{i}^{\prime} is multiple of a single r_{j}, or independent of all r_{i} 's
- Must depend on each r_{i} once, else Πr_{i}^{\prime} independent of Πr_{i}

Protocol Using New Notion

Use non-malleable homomorphic encryption, whose only operations are $\operatorname{Enc}(m, r) \rightsquigarrow \operatorname{Enc}(m, r s)$ for r, s in a group.

Security proof:
$>$ TA must give $\left\{\operatorname{Enc}\left(m_{i}^{\prime}, r_{i}^{\prime}\right)\right\}$, where $\Pi r_{i}^{\prime}=\Pi r_{i}$

- Each r_{i}^{\prime} is multiple of a single r_{j}, or independent of all r_{i} 's
- Must depend on each r_{i} once, else Πr_{i}^{\prime} independent of Πr_{i}
- Can't get dependence on an r_{i} without its m_{i} intact

Overview

Non-malleable homomorphic encryption useful in distributed protocols:

- Intuitively simple protocol; avoids ZK
- UC-secure without setups!
- Practical (only need weak unlinkability)
- Can also get distributed OR, group operation protocols

Binary Operations

What about binary operations?

$\operatorname{Enc}\left(m_{1}\right), \operatorname{Enc}\left(m_{2}\right) \rightsquigarrow \operatorname{Enc}\left(f\left(m_{1}, m_{2}\right)\right)$

Binary Operations

What about binary operations?

$$
\operatorname{Enc}\left(m_{1}\right), \operatorname{Enc}\left(m_{2}\right) \rightsquigarrow \operatorname{Enc}\left(f\left(m_{1}, m_{2}\right)\right)
$$

Theorem [PR08b]

Non-malleable homomorphic encryption impossible for a group operation over message space.

Binary Operations

What about binary operations?

$$
\operatorname{Enc}\left(m_{1}\right), \operatorname{Enc}\left(m_{2}\right) \rightsquigarrow \operatorname{Enc}\left(f\left(m_{1}, m_{2}\right)\right)
$$

Theorem [PR08b]

Non-malleable homomorphic encryption impossible for a group operation over message space.

Proof.

- Transformed ciphertexts look like regular ciphertexts
- ciphertexts have a-priori length bound
- Simulator must be able to extract ciphertext "history"
- There can be more histories than possible ciphertexts:
- Given n ciphertexts, each $\prod_{i \in I} m_{i}$ is a history $(I \subseteq[n])$.

A Glimmer of Hope

Length bound crucial in impossibility result!

- What if transformed ciphertexts allowed to grow in size?
- "Cryptocomputing" paradigm [SYY99]

A Glimmer of Hope

Length bound crucial in impossibility result!

- What if transformed ciphertexts allowed to grow in size?
- "Cryptocomputing" paradigm [SYY99]

Theorem [PR08b]

Under DDH, can construct a scheme with following requirements:
\triangleright Allows group operation $\operatorname{Enc}\left(m_{1}\right), \operatorname{Enc}\left(m_{2}\right) \rightsquigarrow \operatorname{Enc}\left(m_{1} m_{2}\right)$

- Non-malleable otherwise
- Ciphertext leaks only the \# of operations applied

A Glimmer of Hope

Length bound crucial in impossibility result!

- What if transformed ciphertexts allowed to grow in size?
- "Cryptocomputing" paradigm [SYY99]

Theorem [PR08b]

Under DDH, can construct a scheme with following requirements:
\triangleright Allows group operation $\operatorname{Enc}\left(m_{1}\right), \operatorname{Enc}\left(m_{2}\right) \rightsquigarrow \operatorname{Enc}\left(m_{1} m_{2}\right)$

- Non-malleable otherwise
- Ciphertext leaks only the \# of operations applied

Comparison to SYY99:

- Ciphertext size grows linearly, not exponentially
- Only one group operation, not both ring operations
- Non-malleability property

Moral of the Story

- Non-malleability need not be all-or-nothing
- Can achieve sharp tradeoff between features/non-malleability
- Future direction: beyond encryption? NIZK? Signatures?
- Non-malleable homomorphic encryption helps for protocols
- UC security with elementary protocols, no ZK machinery
- Impossible for binary group operations
- Not all is lost if ciphertext allowed to leak a little

Thanks for your attention!
fin.

Supported Operations

[PR08] construction:

- Message space $=\mathbb{G}^{n}$ for DDH group \mathbb{G}, fixed n
- Parameter $=\mathbb{H}$, subgroup of \mathbb{G}^{n}
- Allowed operations:

$$
\operatorname{Enc}\left(x_{1}, \ldots, x_{n}\right) \rightsquigarrow \operatorname{Enc}\left(x_{1} h_{1}, \ldots, x_{n} h_{n}\right) \text { for } \vec{h} \in \mathbb{H}
$$

- Note: cannot exponentiate, separate components, etc..

Example instantiations:
> $\mathbb{H}=\{\mathbf{1}\}$: Cannot change plaintext, only rerandomize (Rerandomizable RCCA [CKN03,G04,PR07])

- $\mathbb{H}=\mathbb{G}^{n}$: Can "multiply" by anything
$\triangleright \mathbb{H}=\{\mathbf{1}\} \times \mathbb{G}$: Only first component non-malleable
$>\mathbb{H}=\{(h, \ldots, h) \mid h \in \mathbb{G}\}$: "Scalar multiplication" of vector

