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Lossy Encryption

This problem has been attacked by creating encryption protocols
that are not always binding.

Interactive Protocols (BH92)

Non-committing Encryption (CFGN96)

Extensions (B97,CHK05)

Deniable Encryption (CDNO07)

Meaningful/Meaningless Encryption (KN08)

Dual-Mode Encryption (PVW08)

Lossy Encryption (BHY09)
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Selective Opening Security

I This type of security is called Selective Opening Security.
I Recognized long ago in folklore.
I Formalized in [DNRS03],[BHY09]

I If the adversary does not learn the randomness, then this
follows from IND-CPA security.

I If the messages are independent, then this follows from
IND-CPA security.

I No one has been able to show that IND-CPA security implies
IND-SOA security.

I No one has been able to exhibit an IND-CPA secure system
that is not IND-SOA security.
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Selective Opening Security: Indistinguishability [BHY09]

IND-SO-ENC (Real)

I (m1, . . . ,mn)← M
I r1, . . . , rn ← coins(E )
I I ← A((E (m1, ri ), . . . ,E (mn, rn))
I b ← A(((mi , ri ))i∈I , (m1, . . . ,mn))

IND-SO-ENC (Ideal)

I (m1, . . . ,mn)← M
I r1, . . . , rn ← coins(E )
I I ← A((E (m1, ri ), . . . ,E (mn, rn))
I (m′1, . . . ,m

′
n)← M|MI

I b ← A(((mi , ri ))i∈I , (m
′
1, . . . ,m

′
n))

∣∣Pr
[
AIND−SO−ENC−REAL = 1

]
− Pr

[
AIND−SO−ENC−IDEAL = 1

]∣∣ < ν
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Lossy Encryption in Detail

G (1λ,mode),E (pk ,m, r),D(sk, c)

Correctness:

For all m, r

D(E (pkI ,m, r)) = m

Lossiness:

For all m0,m1

{E (pkL,m0, r)} ≈s {E (pkL,m1, r)}

Indistinguishability

{pkI : pkI ← G (1λ, Injective)} ≈c {pkL : pkL ← G (1λ, Lossy)}

Notice: Indistinguishability + Lossiness =⇒ IND-CPA security
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Lossy Encryption is IND-SO-ENC Secure (BHY09)

In Lossy mode, the distributions

(E (m1, r1), . . . ,E (mn, rn)) ≈s (E (m′1, r1), . . . ,E (m′n, rn))

Since the encryptions are statistically independent of the messages,
so even after conditioning on certain openings, the rest remain
independent of the messages.

Brett Hemenway and Rafail Ostrovsky



ReRandomizable Encryption

I (G ,E ,D) is semantically secure.
I There exists a function ReRand such that for all pk,m, r , r ′

I Correctness:

D(ReRand(E (pk ,m, r))) = m

I Statistical rerandomization:

{ReRand(E (pk,m, r))} ≈s {ReRand(E (pk ,m, r ′))}
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Homomorphic Encryption

If E (pk,m, r)E (pk ,m′, r ′) = E (pk,m + m′, r∗), then we can
re-randomize by doing

ReRand(E (pk,m, r)) = E (pk,m, r)E (pk, 0, r ′).

Caution: this is not necessarily statistically re-randomizing.

It is statistically re-randomizing for all known homomorphic
cryptosystems.

If you can sample statistically close to uniformly from the set of
encryptions of 0 then homomorphic encryption is statistically
rerandomizable
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Our Results

I ReRandomizable Encryption “is” Lossy Encryption
I A framework for creating Lossy Encryption:
I Applying the results of [BHY09] gives:

I Goldwasser-Micali
I El-Gamal
I Paillier / Damg̊ard-Jurik

I The first proof that Paillier/Damg̊ard-Jurik is SEM-SO-ENC
secure.
This is the most efficient known SEM-SO-ENC cryptosystem.

I Statistically Hiding-OT implies Lossy Encryption
I PIR implies Lossy Encryption
I Homomorphic Encryption implies Lossy Encryption

I CCA2 Selective Opening Secure definitions and constructions
I Constructions from statistically-hiding NIZKs in the

simulation-based model
I Constructions from Lossy-Trapdoor Functions in the

indistinguishability-based model
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ReRandomizable Encryption “is” Lossy Encryption

I Let (G ,E ,D,ReRand) be a ReRandomizable Encryption.

I Let (pk , sk)← G
e0 = E (pk, b0, r0), e1 = E (pk, b1, r1).
Define PK = (pk, e0, e1), SK = sk .

I Encryption of b will be

ReRand(eb).

I Decryption is the same as for the ReRandomizable scheme.

This is lossy if b0 = b1, and injective if b0 6= b1.

The indistinguishability of modes follows immediately from the
Semantic Security of (G ,E ,D).
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For Homomorphic Encryption

I If (G ,E ,D) is homomorphic and E (pk, 0, r) is statistically
close to uniform on the set of encryptions of 0, then

I We can make lossy encryption, simply by setting PK = (pk , e)
where e = E (pk, 0, r) in Lossy Mode and E (pk, 1, r) in
injective mode.

I Encryption of m is just em · E (pk, 0, r).

I Decryption is the same.
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Oblivious Transfer Implies Lossy Encryption

ReceiverSender

x0 x1 b

Qb(·, ·; ·)

Qb(x0, x1; r)

PKinj :

Q0

PKlossy :

Q1

E (m, r) ≡ Qb(m, 0; r)

Computational receiver privacy implies indistinguishability of modes

Statistical sender privacy implies lossiness of lossy branch
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Chosen Ciphertext Security

Chosen Ciphertext Security in the Selective Opening Setting
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IND-SO-CCA2: Definitions

Challenger Adversary

c

D(c)

...

Decryption Queries

E (m1, r1), . . . ,E (mn, rn)

I

{mi , ri}i∈I , {m′j}j 6∈I

Selective Opening Query

c

D(c)

...

Decryption Queries

Output b
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Lossy Trapdoor Functions [PW08]

FI ≈ F`

FI

F−1
I

Injective Mode Lossy Mode

F`
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Lossy Trapdoor Functions in Detail

(s, t) GLTDF (1λ, inj)

(s,⊥) GLTDF (1λ, lossy)

Trapdoor:

F−1(t,F (s, x)) = x
Lossiness:

|imF (s, ·)| ≤ 2r

The first outputs of GLTDF (1λ, inj), and GLTDF (1λ, lossy) are
computationally indistinguishable
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The first outputs of GLTDF (1λ, inj), and GLTDF (1λ, lossy) are
computationally indistinguishable
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All-But-One Functions [PW08]

(s, t) GABO(1λ, b∗)

Trapdoor:

For b 6= b∗

F−1(t, b,F (s, b, x)) = x

Lossiness:
|imF (s, b∗, ·)| ≤ 2r

The first outputs of GABO(1λ, b0), and GABO(1λ, b1) are
computationally indistinguishable
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All-But-n Functions

(s, t) GABN(1λ,B) with |B| = n

Trapdoor:

For b 6∈ B
F−1(t, b,F (s, b, x)) = x
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IND-SO-CCA Construction

I KeyGen:

(s0, t0)← GLTDF (1λ, inj) (s1, t1)← GABN(1λ, {1, . . . , n})

pk = (s0, s1) and sk = (t0, t1).

I Encryption:
r sig ← coins(Sign), x ← X

(vk , sk) = G(r sig ).

For a message m, calculate

(FLTDF (s0, x),FABN(s1, vk , x), h(x)⊕m)

sig = Signsk(FLTDF (s0, x),FABN(s1, vk , x), h(x)⊕m),

output the ciphertext:
(vk,FLTDF (s0, x),FABN(s1, vk , x), h(x)⊕m, sig)
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SEM-SO-CCA Secure Encryption

A SEM-SO-CCA Secure Construction

Brett Hemenway and Rafail Ostrovsky



Intuition of our SEM-SO-CCA construction

I To construct SEM-SO-CCA encryption we follow the
Naor-Yung paradigm.

I There are difficulties:
I An encryption query is actually a query for n encryptions, so

we need a NIZK which remains secure even after seeing n
simulated proofs.
Unduplicatable set selection [S99]

I After we make n simulated proofs, for |I | of them, we are
forced to reveal the randomness.

I The statistically hiding property of lossy encryption allows us
to prove IND-SO security.
Statistical NIZKs should allow us to prove IND-SO-CCA
security.
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Statistical NIZKs [GOS06]

I Completeness: All true statements can be proven.

I Soundness: False statements (with witnesses to their
falseness) cannot be proven.

I Zero-Knowledge: Nothing beyond the truth of the
statement is revealed.

I Proof of Knowledge: There exists a simulator that can
extract a witness from a valid proof.

I Honest-Prover State Reconstruction: There exists a
simulator that can create a proof P without a witness, then,
given a witness w can produce randomness r such that P
appears to have been generated with w and r .
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Tools

I Unduplicatable Set Selector g.

I SEM-SO-ENC secure encryption (Gso ,E ,D).

I Statistical NIZKs (Prover,Verifier,Ext,SR).

I Strongly Unforgeable One-Time Signatures (Sign,Ver).
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SEM-SO-CCA Construction

I KeyGen:

(pk0, sk0), (pk1, sk1)← Gso(1λ), (σi , τi )← Ext1(1λ) for i ∈ L

pk = (pk0, pk1, {σi}i∈L) and sk = (sk0, sk1, {τi}i∈L).

I Encryption:

r sig ← coins(Sign), r0, r1 ← coins(E ), {rnizk
i }`i=1 ← coins(Prover).

(vk , sk) = G(r sig ).

For a message m, calculate

e0 = E (pk0,m, r0), e1 = E (pk1,m, r1)

set w = (m, r0, r1).

π = (π1, . . . , π`) = (Prover(σi , (e0, e1),w), rnizk
i )i∈g(vk)

sig = Sign(e0, e1, π),

output the ciphertext: c = (vk , e0, e1, π, sig).
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Theorem

This construction is SEM-SO-CCA2 Secure

Brett Hemenway and Rafail Ostrovsky



Our Results

I ReRandomizable Encryption “is” Lossy Encryption
I A framework for creating Lossy Encryption:
I Applying the results of [BHY09] gives:

I Goldwasser-Micali
I El-Gamal
I Paillier / Damg̊ard-Jurik

I The first proof that Paillier/Damg̊ard-Jurik is SEM-SO-ENC
secure.
This is the most efficient known SEM-SO-ENC cryptosystem.

I Statistically Hiding-OT implies Lossy Encryption
I PIR implies Lossy Encryption
I Homomorphic Encryption implies Lossy Encryption

I CCA2 Selective Opening Secure definitions and constructions
I Constructions from statistically-hiding NIZKs in the

simulation-based model
I Constructions from Lossy-Trapdoor Functions in the

indistinguishability-based model
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Open Question: Receiver Corruption

Recall: Sender Corruption Game
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Thanks!

Brett Hemenway and Rafail Ostrovsky
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