
Computational Soundness for Standard Assumptions of

Formal Cryptography

by

Jonathan Herzog

B.S., Harvey Mudd College (1997))
M.S., Massachusetts Institute of Technology (2002)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2004

c© Massachusetts Institute of Technology 2004. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 24, 2004

Certified by. .
Ron Rivest

Professor, MIT
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

Computational Soundness for Standard Assumptions of Formal

Cryptography

by

Jonathan Herzog

Submitted to the Department of Electrical Engineering and Computer Science
on May 24, 2004, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

The Dolev–Yao model is a useful and well-known framework in which to analyze security protocols.
However, it models the messages of the protocol at a very high level and makes extremely strong
assumptions about the power of the adversary. The computational model of cryptography, on the
other hand, takes a much lower-level view of messages and uses much weaker assumptions.

Despite the large differences between these two models, we have been able to show that there
exists a relationship between them. Previous results of ours demonstrate that certain kinds of com-
putational cryptography can result in an equivalence of sorts between the formal and computational
adversary. Specifically:

• We gave an interpretation to the messages of the Dolev–Yao model in terms of computational
cryptography,

• We defined a computational security condition, called weak Dolev-Yao non-malleability, that
translates the main assumptions of the Dolev-Yao model into the computational setting, and

• We demonstrated that this condition is satisfied by a standard definition of computational
encryption security called plaintext awareness.

In this work, we consider this result and strengthen it in four ways:

1. Firstly, we propose a stronger definition of Dolev-Yao non-malleability which ensures security
against a more adaptive adversary.

2. Secondly, the definition of plaintext awareness is considered suspect because it relies on a
trusted third party called the random oracle. Thus, we show that our new notion of Dolev-
Yao non-malleability is satisfied by a weaker and less troublesome definition for computational
encryption called chosen-ciphertext security.

3. Thirdly, we propose a new definition of plaintext-awareness that does not use random oracles,
and an implementation. This implementation is conceptually simple, and relies only on general
assumptions. Specifically, it can be thought of as a ‘self-referential’ variation on a well-known
encryption scheme.

4. Lastly, we show how the computational soundness of the Dolev-Yao model can be maintained
even as it is extended to include new operators. In particular, we show how the Diffie-Hellman
key-agreement scheme and the computational Diffie-Hellman assumption can be added to the
Dolev-Yao model in a computationally sound way.

Thesis Supervisor: Ron Rivest
Title: Professor, MIT

2

Contents

1 Introduction 5

1.1 An Example Protocol . 6

1.2 Security Goals and Flaws . 6

1.3 The Dolev–Yao Model . 8

1.4 The Computational Model . 10

1.5 Combining the Two . 15

1.6 Plaintext-Aware Encryption . 19

1.7 Our Previous Results . 22

1.8 Results of This Thesis . 23

2 Stronger Dolev-Yao Properties 26

2.1 New Definitions . 27

2.2 An Indistinguishability Lemma . 31

2.3 Strong Dolev-Yao Non-Malleability . 39

3 Plaintext Awareness via Key Registration 45

3.1 A New Definition of Plaintext Awareness . 45

3.1.1 Preliminaries . 46

3.1.2 Formal Definitions . 47

3.2 Cryptographic Building-Blocks . 53

3.3 Our Implementation . 58

3.3.1 Security of S . 59

4 Diffie-Hellman Key Exchange in the Dolev-Yao model 66

4.1 Overview . 66

4.2 The Diffie-Hellman Problem . 70

4.3 Extending the Dolev-Yao Model . 72

4.3.1 Extending the Algebra . 72

3

4.3.2 Traces and the Adversary . 75

4.4 The Security Property DH and Conservative Protocols 79

4.5 A Mapping from Traces to Algorithms . 81

4.6 Hashing and the Random Oracle . 84

5 Related and Future Work 88

5.1 Computational Soundness for the Dolev-Yao Model 88

5.2 Plaintext-Aware Encryption . 89

5.3 Diffie-Hellman and the Dolev-Yao Model . 90

6 Acknowledgements 91

A Index of notation 92

A.1 The standard Dolev-Yao model . 92

A.2 Computational sets and operations . 93

A.3 Expansions to the Dolev-Yao model . 94

A.4 Sets and operations used to connect formal and computational settings 94

A.5 Mathematics . 94

A.6 Plaintext-Awareness . 94

4

Chapter 1

Introduction

The area of formal cryptography has had two beginnings: the first came in 1978, when Needham

and Schroeder proposed the first set of authentication protocols [53]. The second beginning came

seventeen years later, when Gavin Lowe found a flaw in Needham and Schroeder’s public key protocol,

fixed the protocol, and—most importantly—proved that the fixed protocol was correct [38, 39]. What

distinguished these two beginnings from previous cryptographic efforts was the level of abstraction:

the Needham and Schroeder protocols were specified in terms of abstract cryptographic operations

rather than specific cryptographic algorithms. Likewise, the flaw found by Lowe did not rely upon

the properties of the cryptographic algorithms, and existed even in the abstracted system.

What are authentication protocols? There is no exact definition, but the examples share many

characteristics:

1. The protocols are sequences of messages between two or three parties,

2. The messages utilize cryptographic algorithms to “secure” the contents in various ways,

3. The protocol as a whole is intended to perform one or both of two objectives:

• Authentication: over the course of the protocol, one of the parties should gain proof that

another particular party is also participating in the protocol, that they share common

views of the protocol, and that they agree on the values used in the protocol.

• Secrecy: Some or all of the values agreed upon during the protocol should be unknown

to other observers.

Several real-world protocols conform to this definition: SSH [64], TLS [18], and Kerberos [33]

are the three most widely-known. Being real-world protocols, however, they are quite large and

complex. We will use a much simpler protocol from the literature to illustrate the definition.

5

1.1 An Example Protocol

The Needham–Schroeder public key protocol can be described as a sequence of three messages

between two parties:

1. A→ B : {|A N1|}KB

2. B → A : {|N1 N2|}KA

3. A→ B : {|N2|}KB

In this notation, A and B are names or unique identifiers of two parties. Principal A starts the

protocol, and hence has the role of initiator. Principal B responds to A’s original message, and

hence has the role of responder.1 A begins the protocol by sending the message {|A N1|}KB
to B,

where

• {|M |}K is an encryption of the plaintext M with the key K, and

• M1 M2 is the concatenation, or pairing, of messages M1 and M2.

The value N1 is a nonce, a random value generated freshly by (in this case) A, and of sufficient

length to make infinitesimally small the chances of its previous use by any other party. N2 is a nonce

generated by B, which it includes in the second message.

The protocol assumes the existence of a (collision-free) mapping from names to public keys; Ki

is the public key belonging to the name i.2 Identity is defined by knowledge of secret keys: Entity

i is defined to be anyone who knows the secret key associated with Ki. When interpreting these

protocols, however, it is usually assumed that secret keys are known by one—and only one—entity,

and never shared or discovered through cryptanalysis.

1.2 Security Goals and Flaws

The Needham–Schroeder public key protocol has both secrecy and authentication goals:

1. Secrecy: The two values N1 and N2 should only be known to A and B. More generally, the

nonces used in the protocol should only be known to the two participants, and

2. Authentication: The initiator and responder should be authenticated to each other. Specifi-

cally:

1Though it is conceivable to have a protocol without analogous roles, they are always found in practice. Also, it
is not unusual for the initiator and responder to use the services of a trusted third party called the server.

2In practice, this mapping could be instantiated by a PKI or similar mechanism. The situation for secret keys is
similar—a partial mapping from sets of names to keys is assumed—but the analysis typically is more complex.

6

• The initiator should know the identity of the responder (i.e., that the responder knows

the appropriate secret key) that the responder knows who the initiator is, and that they

agree on the values of the nonces used, and

• The responder should know the identity of the initiator, that the initiator knows who the

responder is, and that they agree on the values of the nonces used.

However, the authentication conditions do not hold. In the attack that Lowe discovered, the

initiator (A) starts a run of the protocol with a malicious entity (M), who then pretends to be the

initiator (M(A)) to a third party (B):

1. A→M : {|A, N1|}KM

2. M(A)→ B : {|A, N1|}KB

3. B →M(A) : {|N1, N2|}KA

4. M → A : {|N1, N2|}KA

5. A→M : {|N2|}KM

6. M(A)→ B : {|N2|}KB

The entity B is fooled by the above attack. From B’s perspective, the sequence of messages is

exactly what it would expect from a run with the initiator A. While the initiator A is engaged in a

run of the protocol, it thinks that the responder is not B but M . If, for example, A is an individual,

M is an on-line merchant, and B is A’s bank, then when A runs the protocol with M in order to

place an order, M can masquerade as A to her bank to empty her account.

Lowe’s fix is to include the responder’s name in the second message, making it:

2. B → A : {|B N1 N2|}KA

With this simple change, he proves that the protocol satisfies the security goals—assuming that the

adversary does not break or otherwise manipulate encryptions (aside from decrypting them with the

appropriate key). The proof of correctness involves two parts: he first proves that any attack on a

large system (i.e., multiple honest parties) could be translated into an attack on the small system of

just two parties. He then used a model checker, a standard tool in the formal methods community,

to exhaustively search the small system for vulnerabilities.

Since Lowe’s first two papers, there has been a flurry of interest in the area of formal cryptography,

as this field came to be known. The use of model checkers has been expanded and refined [50],

theorem provers have been shown to be of value [55], and more direct mathematical methods have

proved to be quite useful [63]. (See [43] for a recent survey of the field.) However, all these methods

7

share common characteristics, and hence common weaknesses. They all use methods use the Dolev-

Yao model [20], an extremely abstract and high-level framework that bears further and careful

examination.

1.3 The Dolev–Yao Model

The Dolev-Yao model is an early and successful mathematical framework in which to examine

cryptographic protocols.3 In this model, messages are assumed to be elements of an algebra A of

values. There are two types of atomic messages:

• Texts (T) with two sub-types: identifiers (public, predictable, denoted by M) and random

nonces (private, unpredictable, denoted by R), and

• Keys (K) with two sub-types: public keys (KPub) and private keys (KPriv)

Compound messages are created by two deterministic operations:

• encrypt : KPub ×A → A

• pair : A×A → A

We write {|M |}K for enc(K, M) and M N for pair(M, N).4 We require that there be a bijection

inv : KPub → KPriv

and by K−1 we mean inv(K) when K is a public key and inv−1(K) when K is a private key.

The model places a strong assumption on the set of messages:

Assumption 1 The algebra A is free: every value has a unique representation.

That is, messages can be thought of as being parse trees. This implies, among other things, that

there is no other way to produce the encryption {|M |}K than to encrypt the message M with the

key K. (We discuss this and similar implications of this assumption in more depth later.)

There are two kinds of active parties in this model: honest participants and the adversary. The

honest participants follow the steps of the protocol without deviation. They can engage in multiple

runs of the protocol simultaneously and with different parties. However, the network is assumed

to be completely under the control of the adversary, who can record, delete, replay, reroute, and

3There are actually several variations on the Dolev-Yao model, each tailored to a specific tool or application. We
provide and discuss a generic example that uses only public-key encryption. There are other versions that use both
symmetric and asymmetric encryption, or simply symmetric, but we do not consider them here.

4When three or more terms are written together, such as M1 M2 M3, we assume they are grouped to the left. That
is, M1 M2 M3 = pair(pair(M1, M2), M3).

8

reorder messages. This is modeled by letting the adversary be the “central exchange” of the model:

all messages are sent either from honest participant to adversary or vice-versa.

Assumption 2 Each execution of a protocol in the Dolev-Yao model is an alternating sequence of

messages (“queries,” qi ∈ A) from the adversary and messages (“responses,” ri ⊆ A) from honest

principals:

r0 q1 r1 q2 r2 . . . qn−1 rn−1 qn rn

(Here, r0 is a setting-specific adversary “initialization” that represents any additional information

the adversary could have learned due to the setting and environment.)

The sequence usually contains more information than merely the message contents, such as the

intended or actual recipient, but we will ignore these extra details in this work.

The model makes strong assumptions regarding the adversary. In particular, it is assumed that

every query qi is derivable from the adversary’s initial knowledge and r0, r1, r2. . . ri−1. The initial

knowledge of the adversary includes at least the following:

• the public keys (KPub),

• the private keys of subverted participants (KAdv ⊆ KPriv),

• the identifiers of the principals (M), and

• the nonces it itself generates (RAdv) which are assumed to be distinct from all nonces generated

by honest participants.

For a given message M to be derivable from a set of messages S it must be possible to produce it

by applying the following operations a finite number of times:

• decryption with known or learned private keys,

• encryption with public keys,

• pairing of two known elements, and

• separation of a “join” element into its component elements.

To combine these lists of adversary knowledge and abilities:

Definition 1 (Closure) The closure of S, written C[S], is the smallest subset of A such that:

1. S ⊆ C[S],

2. M∪KPub ∪ KAdv ∪RAdv ⊆ C[S],

3. If {|M |}K ∈ C[S] and K−1 ∈ C[S], then M ∈ C[S],

9

4. If M ∈ C[S] and K ∈ C[S], then {|M |}K ∈ C[S],

5. If M N ∈ C[S], then M ∈ C[S] and N ∈ C[S], and

6. If M ∈ C[S] and N ∈ C[S], then M N ∈ C[S].

It is the central assumption of the Dolev-Yao model that this closure operation represents the limit

of the ability of the adversary to create new messages:

Assumption 3 If the Dolev-Yao adversary knows a set S of messages, it can produce only messages

in C[S].

Hence, in the Dolev-Yao model, it must be that qi ∈ C[{r0, r1, . . . ri−1}].

The model also makes an assumption regarding the honest participants, but it is quite weak and

applies equally to the adversary:

Assumption 4 During a protocol run, the participants (including the adversary) will see only mes-

sages in the algebra A and will respond only with messages in A.

The three assumptions of the Dolev-Yao model—the freeness of the algebra, the limitations on

the adversary, and the restriction of messages to the algebra—are also its weaknesses. It is clear that

these assumptions greatly simplify the task of protocol analysis. The techniques of the Dolev-Yao

model are easy to apply, and the task of protocol analysis in this model has been automated [61].

It is not clear, however, that these assumptions are at all justified, and this casts doubt onto any

method that uses them. It is true that many attacks and flaws have been found even in the presence

of these assumptions. However, if a method based on these high-level assumptions finds no flaws in

a protocol, there still remains the possibility that some attack can be found when the adversary has

an additional, reasonable, ability.

1.4 The Computational Model

The assumptions of the Dolev–Yao model seem especially strong when compared to those made by

alternate models. The other widely-accepted model of encryption and cryptographic algorithms is

that of the field of computational cryptography, which is much lower-level and much less abstract

than the Dolev-Yao model. It regards cryptography as a branch of complexity theory, and regards

cryptographic primitives as algorithms that map bit-strings into bit-strings. Adversaries are regarded

as efficient algorithms, and security conditions are stated in terms of the probability that an adversary

can perform a given calculation in the face of an increasing “security parameter.”

For example, in this framework encryption is not an abstract operation but a collection of efficient

algorithms. “Efficient” in this setting means that the algorithm runs in probabilistic polynomial

time (PPT): polynomial-time in the security parameter and with access to a source of random bits.

10

Here, the security parameter indicates the amount of time the key-generation algorithm can take to

produce a new (and random) key, and so corresponds roughly to the size of keys.

Definition 2 (Public-Key Encryption) A public-key encryption scheme is a triple of algorithms

(G, E, D)5:

• G : Parameter→ PublicKey× PrivateKey is the (randomized) key generation algorithm,

• E : String × PublicKey→ Ciphertext is the (randomized) encryption algorithm, and

• D : String × PrivateKey → String ∪ {⊥} is the decryption algorithm, which we assume returns

⊥ whenever the input string is not a valid encryption under the corresponding public key.

It is required that for all values of the security parameter η ∈ Parameter, all messages m, and all

key-pairs (e, d)← G(1η), D(E(m, e), d) = m.

Note that the key-generation algorithm is randomized, as is the encryption algorithm. Hence, the

key-generation algorithm produces a probability distribution on keys, and the encryption algorithm

produces a probability distribution on ciphertexts for each message/key pair. Also note that security

parameter η is given to the key generation algorithm G in unary (in the form 1η) so that G can run

in time polynomial in η rather than in log(η) (the number of bits required to represent the value

of η). Without loss of generality, we assume that for a given value of the security parameter η, the

key-generation and encryption algorithms use η bits of randomness.

Although the adversary of the computational model is much less limited than its Dolev-Yao

counterpart, it is not all-powerful. It can be any arbitrary algorithm, so long as it is efficient (PPT).

This allows the methods of computational cryptography constrain the adversary, typically by proving

a reduction from an encryption scheme to some other problem. This reduction shows that if any

adversary can break the security of the encryption scheme, it can be modified to efficiently solve some

other particular problem. In particular, encryption schemes can be reduced to problems known (or,

as is more commonly the case, widely believed) to be harder than PPT. Thus, an encryption scheme

that reduces to these problems cannot be (or is unlikely to be) broken by any efficient adversary.

The most basic notion of security for a public-key encryption scheme is that of semantic security.

In essence, this definition of security states that the adversary should be unable to distinguish an

encryption of message m0 from an encryption of m1, even if the adversary can choose m0 and

m1 based on the public key. More explicitly, the definition of semantic security concerns a game

5The helper sets are:

• Parameter = N ,

• PublicKey, PrivateKey and Ciphertext vary between key generation algorithms and implicitly depend on the
parameter, and

• String = {0, 1}∗

11

A

T

η

G
e, d

η

m0, m1

e

B
b

E

mb, e

c

g

c

b = g?

(Time flows from top to bottom.)

Figure 1-1: The semantic security “game”

between the adversary and a “tester” that consists of a series of “experiments.” This game is shown

pictorially in Figure 1-1 (where the adversary is shaded to emphasize that it alone can be an arbitrary

algorithm).

• First, the tester receives the security parameter η.

• The tester then honestly and randomly generates a key pair (e, d) according to the security

parameter it was given and the key generation algorithm G.

• The adversary is given the public encryption key e by the tester and allowed to perform any

computation it likes.

• The adversary then gives the tester any two messages it likes (m0 and m1) of the same length.

At this point, it then goes dormant but does not terminate or erase its state.

• The tester flips a coin to produce a bit b, which will determine which of m0 and m1 will be

encrypted.

• The chosen message mb is encrypted to produce a ciphertext c.

• The tester gives to the adversary A all of the public information to date: the public key e, the

two messages m0 and m1, and the ciphertext c.The adversary then resumes computation on

the new input, but begins from the internal state it had when it went dormant.6 It then can

6The equivalent, “standard” form of this definition has the adversary begin from the same initial state each time,
but the first invocation produces some state information s which is given to the second invocation. However, we will
adopt as a convention for this paper that the adversary keeps state between multiple invocations.

12

perform any efficient computation it likes, but must produce a “guess” g.

The adversary “wins” the game if it managed to guess the value of b (i.e., if b = g). Clearly, a simple

adversary that makes a random guess can win half the time. The definition of semantic security

requires that the advantage of the adversary—the degree to which the adversary can do better than

a random guess—must become vanishingly small very fast. In fact, the adversary’s advantage must

shrink faster than any polynomial.

In the standard notation (which treats the tester as implicit):

Definition 3 (Semantic Security) A public-key encryption algorithm (G, E, D) is (one-pass) se-

mantically secure7 if:

∀ PPT algorithms M and A, ∀ polynomials q, ∀ sufficiently large η,

Pr[(e, d)← G(1η);

m0, m1, s← M(1η, e);

b← {0, 1} ;

c← Ee(mb) :

A(1η, e, m0, m1, s, c) = b] ≤ 1
2 + 1

q(η)

with the requirement that m0 and m1 are the same length.

(Here, the notation “∀ sufficiently large η” means “∃η0 such that ∀η ≥ η0.” The notation

Pr [a1; a2; . . . an : P]

means the probability of predicate P being true after running experiments a1, a2. . .an in series.

Lastly, the notation x← D indicates that x is drawn from distribution D.)

Note that this definition does not specify the ability of the adversary to distinguish between

the two possible encryptions (the adversary’s “advantage”) at any particular value of the security

parameter, but only in the asymptotic case. In particular, it requires that the adversary’s advantage

be negligible:

Definition 4 (Negligible) A function f : N → R is negligible in η if, for any polynomial q,

f(η) ≤ 1
q(η) for all sufficiently large η. If f is negligible in η, we write f ≤ neg(η).

In practice, one proves that any given algorithm meets the relevant definition of security by

proving that if it did not, one could solve some underlying “hard” problem. That is, one might show

7Technically, the definition given here is that for a different definition of security, usually called general message
(GM) security. However, GM security is well-known to be equivalent to semantic security, and it has a slightly more
convenient form for our purposes.

13

that an algorithm is a secure encryption scheme by assuming that there exists an adversary A that

is able to break it. Then one would show that there exists another PPT algorithm that uses A as a

black-box to solve some underlying hard problem.

For example, the decisional Diffie-Hellman problem is one of the most widely-used intractable

problems in cryptography. In this problem, a family of cyclic groups {Gη}η is fixed and indexed by

security parameter. Consider two experiments for a given adversary A and value of η:

Exp1 The adversary is given η, Gη, a generator g, and a value drawn from the distribution

D =
{

g, ga, gb, gab : a, b← |G|
}

.

The adversary A returns a single bit.

Exp2 The adversary is given η, Gη, a generator g, and a value drawn from the distribution

R =
{

g, ga, gb, gz : a, b, z ← |G|
}

.

Again, the adversary A returns a single bit.

The goal of the adversary is to return a different bit in experiment Exp1 than in experiment Exp2.

That is, the adversary is being asked to distinguish between the actual Diffie-Hellman value gab and

a random group element gz. The advantage of the adversary in this case is

AdvA,η = |Pr [A returns 1 in Exp1]− Pr [A returns 1 in Exp2]|

It is widely believed that for certain families of groups, the decisional Diffie-Hellman problem is hard.

That is, no adversary can maintain a non-negligible advantage as the security parameter grows:

∀ PPT algorithms A,AdvA,η ≤ neg(η)

Given this, one might implement a semantically-secure encryption scheme in the following way:

• The key generation algorithm G, on input 1η, picks a ← |Gη |. The secret key is a and the

public key is (η, g, ga).

• The encryption algorithm E takes in the public key (η, g, ga) and message m ∈ Gη . It then

picks a random b← |Gη | and outputs the ciphertext (gb, m · gab).

• The decryption algorithm D, on ciphertext (gb, m·gab) and secret key a, first calculates
(

gb
)a

=

gab, and then outputs the message m · gab/gab = m.

14

This is the ElGamal encryption scheme [21], which provably reduces to the decisional Diffie-Hellman

problem. That is, if an adversary A can break the semantic security of this scheme, then another

adversary A′ can solve the decisional Diffie-Hellman problem. The details of the proof are somewhat

technical, but the basic idea is this: Adversary A′ gets (g, ga, gb, h) as input and wants to know if

h is the Diffie-Hellman value gab or a random group element gz. To do this, it gives (η, g, ga) to

A, who interprets it as a ElGamal public key. A then produces two messages m0 and m1 and gives

them to A′. Adversary A′ picks a random bit b randomly, and gives mb · h to A as the ciphertext.

If the input (g, ga, gb, h) to A′ was from distribution D, then the input to A is exactly as expected

and A will be able to tell that mb ·h is the “encryption” of message mb. Hence, A will be able to guess

b with non-negligible probability. If, on the other hand, the input (g, ga, gb, h) is from distribution

R, then the ciphertext mb · h is completely independent of the messages m0 and m1, and A will not

be able to guess b with probability greater than 1/2. Thus, the behavior of A will differ between the

two types of input in a discernible way. The adversary A′ (who knows b) can use this difference in

the behavior of A to differentiate between input from D and input from R.

As can be seen from the above proof sketch, the proofs of this model are extremely sound and

specific. The above proof, for example, proves that no efficient algorithm can break the ElGamal

encryption scheme so long as one specific computational problem remains intractable. Similar proofs

exist for specific key-exchange or authentication protocols. However, even the proof-sketch above is

somewhat complicated. The full proof is more complex yet, and proofs of protocols tend to be not

only complex but tedious as well. Furthermore, it is not at all clear that proof techniques like the

one above can be automated in any way. Presently, proofs in this model need to be ‘hand-crafted’,

and it is difficult to prove general theorems that apply to more than one scheme or protocol.

1.5 Combining the Two

Given how these two models complement each other, it seems an enticing goal to unify them in some

way to gain the benefits of both. While the computational model uses its low level of abstraction to

gain strong proofs, the Dolev-Yao model leverages its high level of abstraction to provide intuitive

and simple proof methods. If the assumptions of the Dolev-Yao model could be justified in some

computational setting, then protocol designers could use high-level methods to yield low-level proofs.

Much work has already been done in this area, which we will review in depth in Chapter 5. Here,

however, we will mention one particular result of our own [30] that will motivate the work contained

in the remainder of this document. This result, building on earlier work [4], is an early attempt to

show an equivalence between active computational adversaries and active Dolev-Yao adversaries. In

particular, we showed (albeit in a weak way) that sufficiently strong computational cryptography can

prohibit the computational adversary from producing any message that could not also be produced

15

by the Dolev-Yao adversary.

In particular, we formalize the intuition of Assumption 3 in the language of computational cryp-

tography, using a series of intermediate attempts. Because of the importance of this formalization,

we reproduce it here:

Intuitively, we would like to say that it should be hard for the computational adversary to produce

a single message outside the closure of its input. Informally:

Attempt 1 An abstract encryption operator provides weak Dolev-Yao non-malleability8 if

∀PPT adversaries A, ∀S ⊆ A, ∀M ∈ (A \ C[S])

Pr[N ← A(S) : N = M] ≤ neg(η)

Here, Pr[A; B; C : P] indicates the probability of predicate P being true after running experiments

A, B and C in series. The notation x ← D indicates x being drawn from distribution D. If D is

a set, the uniform distribution is used. If D is an algorithm, we use the distribution over output

induced by the distribution of the input and the distribution of D’s random coin flips.

Although this attempt contains the desired intuition, there are two small problems:

• It is unclear how a set S of Dolev-Yao messages can be passed as input to a computational

adversary, or how a Dolev-Yao message M can be produced as output.

• It is not clear how the probability relates to the security parameter η.

The purpose of this section is to make the above definition meaningful. Our main tool for doing so will

be a mapping from Dolev-Yao messages to their computational analogues: probability distributions

on bit-strings. The mapping we present here is congruent to that given by Abadi and Rogaway [3, 4],

adapted to the public-key encryption setting.

The “encoding” of a formal message M , written [[M]]
t
η , is a probability distribution that depends

on four things:

• The formal message M ,

• The tape (t) which is an infinite sequence of bits. We assume for convenience that we have

random access to this tape, although this can be easily simulated using a standard tape and

some book-keeping. In usage, we will assume that the bits on this tape are random.

• The security parameter η.

• An arbitrary public-key encryption scheme (G, E, D).

8Originally called “ideal” encryption in [30]. We use the more descriptive name given here to distinguish it from
the stronger notions we will consider in Section 1.8.

16

Definition 5 (Encoding: messages) Let η ∈ N be the security parameter. Let t ∈ {0, 1}ω be a

random tape, partitioned into a length-η segment for each nonce and public key in A. Let (G, E, D) be

a public-key encryption scheme. Then for any M ∈ A, the encoding of M , written [[M]]
t
η, is defined

recursively as:

• If M ∈ R is a nonce, then [[M]]
t
η = 〈σM , “nonce”〉, where σM is the value of the tape partition

associated with M .

• If (M, M−1) is a public/private key pair, then [[M]]
t
η = 〈e, “pubkey”〉 and

[[

M−1
]]t

η
= 〈d, “privkey”〉

where (e, d) is the output of G(1η, σM). Note that we now explcitly require that the randomness

of the key-generation algorithm be the value σM from the tape.

• If M ∈ M is an identifier, then [[M]]tη is mapped to 〈µ(M), “id”〉 where µ is any (short)

efficiently-computable functions from identifiers to bit-string. That is, we do not care how

identifiers are mapped to bit-strings so long as each identifier is uniquely represented and it is

efficient to compute the encoding of a given identifier.

• If M = M1 M2, then [[M]]
t
η is the mapping from pairs of distributions to distributions given by

〈

[[M1]]
t
η , [[M2]]

t
η , “pair”

〉

.

• If M = {|M ′|}K is an encryption, then [[M]]
t
η is the mapping from pairs of distributions to

distributions given by
〈

E
(

[[M ′]]
t
η , [[K]]

t
η

)

, [[K]]
t
η , “enc”

〉

If S ⊆ A, then by [[S]]tη we mean
〈

[[s1]]
t
η , [[s2]]

t
η , . . .

〉

where s1, s2 are the elements of S in some

canonical order. By [[M]]η we mean the distribution

{

t← {0, 1}ω ; m← [[M]]
t
η : m

}

.

The bits on the tape are used to represent the coin flips used to make atomic elements, and we

will later enforce that the tape is filled with random bits. Compound terms are made via either

bit-string concatenation or a computational encryption scheme. Note that the coin flips used by the

encryption algorithm are not taken from the tape. Hence, [[{|M ′|}K]]
t

η
remains a distribution even if

t is fixed.

There are two properties of computational public-key encryption that our encoding mapping will

need to accommodate and will arise later.

• First, public-key encryption is not required to hide the key used to encrypt. We make this

possible leak of information explicit in the definition above by explicitly concatenating each

ciphertext with the encrypting key.

• Secondly, computational public-key encryption is not generally required to hide the length of

the plaintext. For this reason, we need to limit the amount of information about a plaintext

17

that will be revealed by its length. We will assume that the length of a message depends only

on the message’s structure, not any of its component values. More formally, let the type tree

of a formal message be the same as its parse tree except that each leaf is replaced by its type.

We use the same notation for type trees that we do for messages. Thus, the type tree of a

message {|A N |}K (where A ∈ M, N ∈ R and K ∈ KPub) is {|MR|}KP ub
. We assume that

the length of a formal message M depends only on TM , the type tree of M , and the security

parameter. This is not an unreasonable assumption. The above definition of the encoding

mapping implies that all nonces encode to the same length. The assumption can be trivially

enforced for other type trees by padding out to some maximal length. Thus, we will use
∣

∣

∣
[[M]]

t
η

∣

∣

∣

to designate the unique length of encodings of M .

The encoding mapping allows formal messages to be represented as bit-strings, which allows

formal messages to be passed to and returned by the computational adversary. Furthermore, it

uses the security parameter, showing how the probability in Attempt 1 relates to η. Thus, we can

re-attempt to translate Assumption 3 into computational terms:

Attempt 2 An encryption scheme (G, E, D) provides weak Dolev-Yao non-malleability if, when

used in [[·]]tη,

∀PPT adversaries A, ∀S ⊆ A, ∀M ∈ (A \ C[S])

Pr[t← {0, 1}ω ;

s← [[S ∪ KPub ∪ KAdv ∪ RAdv ∪M]]tη ;

m← A(1η, s) :

m ∈ supp [[M]]tη] ≤ neg(η)

Here, supp D means the support of distribution D. When the support of a distribution contains one

element, we will treat the distribution itself as a singleton set.

This definition is still problematic, however, for two technical reasons. First, the input to the

adversary might be of infinite length. The set S may be of infinite length, or there may be an infinite

number of elements inM, RAdv , KPub and KAdv . If any of these are the case, then the restriction of

the adversary to probabilistic polynomial-time is meaningless. No computational encryption scheme

would remain secure against an infinite-time adversary. For this reason, we require that S be of

finite size. The setsM, RAdv , KPub and KAdv might still be infinite, so instead of passing them as

input we represent them via oracles:

• Mt
η(x) returns (the encoding of) the identifier of the xth participant.

• Rt
η(x) returns the (encoding of) the xth nonce in RAdv ,

• PbKt
η(x) returns the public key of principal x, and

• PrKt
η(x) returns the private key of x of x ∈

[[

K−1
]]t

η
if K−1 ∈ KAdv .

18

The second problem is that our results rely upon a technical limitation: acyclicity of encryptions.

A set of encryptions is acyclic if, when K1 encrypts K−1
2 in some element of S, and K2 encrypts

K−1
3 , and so on, this sequence of keys encrypting keys never loops back on itself. More formally:

Definition 6 (Acyclic) For an expression M , construct a graph GM where the nodes are the pub-

lic/private key pairs used in the expression. We draw an edge from p1 → p2 if in M the private key

K−1
2 associated with pair p2 is encrypted with K1, the public key associated with p1. The expression

M is acyclic if the graph GM is acyclic.

For example, the message
{∣

∣K−1
1

∣

∣

}

K2

{∣

∣K−1
2

∣

∣

}

K3

is acyclic, but the message
{
∣

∣K−1
1

∣

∣

}

K2

{
∣

∣K−1
2

∣

∣

}

K1

is not. Our results will only hold for acyclic sets S. However, protocols analyzed in the Dolev-Yao

model typically operate in one of three ways:

• Long-term keys are used to encrypt session keys, which themselves never encrypt other keys,

• The present session key is used to encrypt the next session key, but never the previous, or

• Keys are never encrypted at all.

None of these cases will produce cyclic encryptions.

Thus, we arrive at our final security condition:

Definition 7 (Dolev-Yao weak non-malleability) An encryption scheme (G, E, D) provides weak

Dolev-Yao non-malleability if, when used in [[·]]tη,

∀PPT adversaries A, ∀ acyclic finite S ⊆ A, ∀M 6∈ C[S] ,

Pr[t← {0, 1}ω

s← [[S]]
t
η ;

m← AM
t
η(·),PbK

t
η(·),PrK

t
η(·),R

t
η(·)(1η, s) :

m ∈ supp [[M]]
t
η] ≤ neg(η)

The main result of [30] is that this definition can be satisfied by a standard definition of security

in the computational world: plaintext-aware cryptography.

1.6 Plaintext-Aware Encryption

Intuitively, a public-key encryption scheme is plaintext-aware [10, 7] if it reveals nothing about the

plaintext to encryptions created by honest principals, but ensures that the adversary knows the

19

η

G
e

dA

c

E

p

D

c

p′

Figure 1-2: The basic plaintext-awareness ”game” (attempt)

plaintext to any ciphertext it creates. This intuition is represented by insisting that there exist an

“extractor” E that can produce the plaintext of all ciphertexts of adversarial origin. That is, the

extractor is going to play the following game (also shown in Figure 1-2):

• A key pair (e, d) is chosen honestly and randomly according to the key-generation algorithm

G.

• The adversary A is given e and allowed to perform any efficient computation. At the end, it

must produce a ciphertext c.

• The extractor E is given e and c, and must produce a candidate plaintext g.

The extractor “wins” if the guess g is also what would have been produced by decrypting c with

d. An encryption scheme is plaintext aware if there exists an extractor that can win against every

adversary (almost) all the time. If such an adversary exists, then the adversary must know (or

rather, be able to know by running the extractor) the plaintext to every ciphertext it creates.

To formalize (incorrectly) this intuition:

Attempt 3 A public-key encryption algorithm (G, E, D) is plaintext-aware if it is semantically se-

cure and:

∃ EPPT , ∀ PPT algorithms A,

Pr[(e, d)← G(1η);

c← A(1η, e);

g ← E(1η, d, c) :

g = D(c, d)] ≥ 1− neg(η)

However, the above definition is a contradiction. There cannot be such an extractor for a semantically-

secure encryption scheme. If there were, then the adversary in Definition 3 could simply use it to

decrypt and learn whether the challenge ciphertext c contained message m0 or m1 as a plaintext.

20

η

G
e

dA

c

E

p

D

c

p′=

O

O

Q

Figure 1-3: The plaintext-awareness game (final)

However, all is not lost. The resolution of this difficulty is to limit somehow the extractor

to ciphertext of the adversary’s creation. To do this, we define the extractor to use some extra

information that the adversary can provide about its own ciphertexts, but cannot also provide

about the ciphertexts of honest participants.

To accomplish this, the encryption algorithm is redefined to use a random oracle O(·): an oracle

that provides a random mapping from inputs to bit-strings of sufficient length. The adversary is

also given access to this oracle, but the extractor is now given (as the additional information) all

the oracle queries made by the adversary (as shown in Figure 1-3:

Definition 8 (Plaintext-Aware Encryption) An encryption scheme (GO, EO, DO) is plaintext-

aware if it is semantically secure and

∃ EPPT , ∀ PPT algorithms A,

Pr[(e, d)← G(1η);

c, Q← AO(·)(1η , e);

g ← E(1η, e, c, Q) :

g = DO(·)(c, d)] ≥ 1− neg(η)

where Q is a transcript of every query and response communicated between A to O(·).

Giving the extractor access to the adversary’s oracle queries in the above definition makes it signif-

icantly more powerful than the adversary in Definition 3, which presumably does not see the oracle

queries made by honest parties. Thus, the adversary can simply run the extractor to learn the

plaintexts of its own ciphertexts, but cannot run the extractor to decrypt the ciphertexts of honest

participants.

21

1.7 Our Previous Results

Plaintext-aware encryption, it turns out, is sufficiently strong to satisfy Definition 7. As we showed

in [30]:

Theorem 1 A plaintext-aware encryption scheme provides weak Dolev-Yao non-malleability.

Thus, sufficiently strong computational cryptography can enforce a connection between the formal

and computational worlds. However, Theorem 1—while being true—has a number of weaknesses:

• The formalization of the Dolev-Yao adversary in Definition 7 is weak. Informally, it states that

the adversary cannot create a given message M . That is, the ability of the adversary to hit

one particular target is small. However, the Dolev-Yao algebra is infinite; one would instead

wish to know that the adversary has only negligible probability of hitting any valid target.

• Plaintext-aware encryption requires the use of a random oracle, and hence has been considered

somewhat suspect. The random oracle model was originally proposed as an abstraction for

such algorithms as SHA-1 [54] or HMAC [35]. The idea was to use the random oracle when

proving properties of higher-level schemes, but to replace the external oracle with internal calls

to these algorithms when creating the implementation. However, this does not seem feasible

for two reasons:

1. Recent work [16, 29] indicates that this substitution may not be even possible in general.

2. The random oracle is used in the definition of plaintext awareness to give the extractor a

“window” into the internal state of the adversary (as revealed through its queries). If the

external random oracle is replaced by an internal algorithm, then this window is closed.

Thus, it seems that plaintext awareness requires the use of an external oracle.

However, any plaintext-aware encryption scheme that uses communication with an actual ora-

cle must be both inefficient and untrustworthy. It must be inefficient because both encryption

and decryption require communication with the oracle, incurring an unacceptable communica-

tion overhead. It must also be untrustworthy because the scheme is secure only if the adversary

does not learn the oracle queries. Thus, a plaintext-aware encryption scheme that uses an ora-

cle is only secure if the oracle is honest and communication with it is confidential—two strong

and untenable assumptions.

Hence, the use of the random oracle has prevented the notion of plaintext awareness from

receiving widespread acceptance as a viable goal.

Thus, Theorem 1 shows only that a weak version of the Dolev-Yao assumptions can be satisfied by

a problematic definition of computational security.

22

1.8 Results of This Thesis

In this work, we strengthen Theorem 1 in four ways.

• Firstly, we investigate stronger versions of the Dolev-Yao assumptions, Assumption 3 in par-

ticular. While Definition 7 fixes the target Dolev-Yao message M , one could consider stronger

definitions that do not. For example, one might consider a definition which stipulates that the

adversary cannot create a message outside the encoding, even if the adversary itself gets to

choose the message to be created. Stronger yet, one might want to show that no matter what

the adversary outputs, it will not be the encoding of any message outside the closure. We call

this intuition strong Dolev-Yao non-malleability:

Attempt 4 An abstract encryption operator provides strong Dolev-Yao non-malleability if

∀ APPT , ∀finite, acyclic S ⊆ A :

Pr[t← {0, 1}ω

s← [[S]]
t
η ;

m← AM
t
η(·),PbK

t
η(·),PrK

t
η(·),R

t
η(·)(1η , s) :

∃M ∈ A \ C[S] .m ∈ supp [[M]]
t
η] ≤ neg(η)

(This differs from Definition 7 in that instead of being universally quantified outside the prob-

ability, M is existentially quantified in the predicate defining success for the adversary.)

Unfortunately, the above property may not be realizable. As we note above, the Dolev-Yao

model is not necessarily restricted to finite algebras. (It is for this reason that the adversary’s

knowledge of e.g., RAdv was represented via an oracle in Definition 7.) If the Dolev-Yao algebra

contains an infinite number of nonces, for example, then every bit-string of the appropriate

length will be the encoding of an infinite number of nonces. Hence, the adversary could be

virtually ensured of creating the encoding of some honest party’s nonce by outputting a random

bit-string of nonce length.

The central core of this difficulty is that Assumption 1 (unique representation of messages)

cannot hold even approximately when the Dolev-Yao algebra is infinite but its computational

encoding must fit in a finite space. We consider two possible and mutually consistent resolu-

tions. The first and simpler resolution is to require the Dolev-Yao algebra to be finite. The

second possibility is to somehow give each Dolev-Yao message a unique representation in the

computational setting. We have explored these possibilities in depth and have produced from

them two realizable definitions of strong Dolev-Yao non-malleability (Definitions 10 and 12 of

Section 2).

23

• Theorem 1 shows that one notion of security (weak Dolev-Yao non-malleability) is satisfied by

another (plaintext awareness of encryption). There are two ways in which such a statement can

be strengthened. First, one can strengthen the satisfied notion, which we discuss above. The

second is to weaken the satisfying notion, and it is imperative that this be done for Theorem 1.

As we have previously mentioned, plaintext awareness is rightfully considered suspect due to

its reliance on the random oracle. So long as Dolev-Yao non-malleability relies on plaintext

awareness, and hence the random oracle, it will be considered suspect as well.

One of two things must be done. Either Dolev-Yao non-malleability must be shown to be

satisfied by other definitions of encryption security, or plaintext awareness must be re-defined

in a way that does not use the random oracle. In this work, we do both.

• First, we show that Dolev-Yao non-malleability can be satisfied by a weaker, more generally-

accepted notion of encryption security called security against the chosen ciphertext attack

(Definition 13). This notion has been widely studied [57, 52, 59] and there exist efficient im-

plementations [17]. We show that strong Dolev-Yao non-malleability—both the finite-algebra

version (Definition 10) and the infinite-algebra version (Definition 12)—are satisfied by chosen-

ciphertext security (Theorem 5).

• We also propose another definition of plaintext awareness that does not rely on the random

oracle (Section 3.1.2). This definition replies upon an alternate model of public-key encryption

in which both the sender and the receiver have public keys. Furthermore, both the sender and

the receiver must register their public keys with a trusted third party called the registration

authority. (This is not an unreasonable model. In practice, users already register their keys

with a certification authority.)

Plaintext awareness in this setting requires that the adversary must know (meaning that

an extractor can extract) the plaintext of any ciphertext it creates, so long as the nominal

sender’s keys have been registered. That is, if a party P has registered their public keys with

the registration authority, then whenever the adversary creates a ciphertext ostensibly from P

it will also know the plaintext. However, we require that our scheme tolerate the corruption of

the trusted third party in that it remain chosen-ciphertext secure even when the registration

authority is subverted by the adversary.

We explain this new model and definition at length in Section 3.1. We also provide an imple-

mentation for this new definition (Section 3.3) which is conceptually simple and relies only on

general assumptions. That is, it only assumes other standard cryptographic definitions and

does not rely upon particular intractability assumptions. In fact, this scheme can be thought

of as a slight variant to the first known implementation of chosen-ciphertext security [59].

24

• Lastly, we begin to look beyond the standard Dolev-Yao model. As is typically presented,

the Dolev-Yao model contains only one operator which is cryptographic in nature: encryption.

There exist variants in the literature that contain operators for signatures and hashing, as well.

However, the most popular protocols in real-world practice are not captured by these, and will

not until the Dolev-Yao model is expanded to include the Diffie-Hellman key-agreement scheme.

However, this is more easily said than done. As opposed to encryption and signing, for example,

the Diffie-Hellman scheme is not an abstract definition but a specific number-theoretic algo-

rithm. The security of this scheme depends, in turn, upon a specific computational assumption.

The issue here is not whether an established formal model can be made computationally sound,

but how best to reflect a computational assumption in a formal setting. The Diffie-Hellman

scheme relies upon a non-free operation, as opposed to the traditionally free Dolev-Yao alge-

bra. Also, it is not immediately clear what the powers of the formal adversary should be—any

efficient computation is possible.

We consider these issues at length in Chapter 4. In particular, we formulate a reasonable way

to express the Diffie-Hellman scheme in the Dolev-Yao framework (Definition 34). We also

consider the issues of non-freeness that are inevitably raised, and show how to represent the

opportunities they present to the adversary (Definition 37).

We then show how the Diffie-Hellman assumption (which provides security to the similarly-

named key-agreement scheme) can be represented in the Dolev-Yao model. This property

(Condition DH, Definition 40) is strong enough to enable proofs in the Dolev-Yao model. We

also show that if there exists a Dolev-Yao execution that violates it, there exists an adversary

that can violate the (computational) Diffie-Hellman assumption.

However, this is not enough to guarantee computational soundness. The adversary so produced

may not be efficient in its execution, and thus would not violate the Diffie-Hellman assumption.

This possibility results from the fact that protocols in the Dolev-Yao model do not a priori

need to be efficiently executable. Thus, the execution of the Dolev-Yao protocol may not be

efficiently executable either.

We resolve this by considering only the sub-class of “silent” Dolev-Yao protocols (Defini-

tion 41). In these protocols, honest participants do not use the secret Diffie-Hellman values as

plaintexts, but only as keys. We show that these protocols must be efficiently executable if the

underlying cryptographic algorithms are sufficiently strong. In fact, we use the same strong

computational assumption that enabled Theorem 1: the random oracle. If the random oracle

exists, we show that condition DH is computationally sound for silent Dolev-Yao protocols.

(Just as the random oracle will be removed from Theorem 1 in Chapters 2 and 3.1, we will

consider in Section 5.3 possible ways by which it could be removed from this result also.)

25

Chapter 2

Stronger Dolev-Yao Properties

In this section, we strengthen the result of [30] in two important ways:

• We strengthen the computational interpretation of the Dolev-Yao model beyond that contained

in Definition 7. In particular, we propose two new notions of Dolev-Yao non-malleability.

Whereas weak Dolev-Yao non-malleability considered the probability that the adversary can

create a given, fixed message, our new notions consider the probability that the adversary can

create any message. The first of these notions (finite Dolev-Yao non-malleability)considers the

case where the algebra has a finite number of elements, as one would encounter in the setting or

a bounded number of participants engaging in a bounded number of protocol executions. The

second notion (infinite Dolev-Yao non-malleability considers the case of an infinite algebra,

and requires the adversary to not only produce a message but also to know which message is

created.

• We show that our new definitions can be satisfied by computational encryption strictly weaker

than plaintext-awareness. In particular, we show that both notions are satisfied by encryption

secure against the chosen-ciphertext attack (also known as chosen-ciphertext security). This

definition of security is like that of semantic security, except that the adversary has (slightly

limited) access to a decryption oracle. It does not use a trusted third party, and hence is not

susceptible to the same criticisms as plaintext-awareness.

The proof that chosen-ciphertext security satisfies strong Dolev-Yao non-malleability will first

use an indistinguishability lemma like that of Abadi and Rogaway[4], which is mildly interesting

in its own right.

26

2.1 New Definitions

As mentioned above, the security property in Definition 7 concerns only the probability that the

adversary can produce some given “bad” message M . However, what does this tell us about the

ability of the adversary to produce some bad message of its choice? The simplest approach to this

question is to use Definition 7 and a union bound. Intuitively (and in the style of Assumption 1)

the union bound tells us that:

Pr [A(S) produces an M ∈ A \ C[S]] ≥
∑

M∈A\C[S]

Pr [A(S) produces M]

≥
∑

M∈A\C[S]

ε

= ε |A \ C[S]|

Even though Definition 7 tells us that ε is negligible, this is not enough to show that ε |A \ C[S]|

is also negligible. In particular, there are as yet no assumptions that limit the size of |A \ C[S]|.

Consider, for example, the nonces. There is no requirement yet that the set of nonces R be finite,

much less a function of the security parameter. Thus, R\RAdv might be infinite also, as well as the

number of nonces in A \ C[S].

One can see the difficulty in another way. Recall that the encoding of a nonce is chosen uniformly

from bit-strings of length η. If there are an infinite number of nonces, then any bit-string of length

η is guaranteed to be the encoding of an infinite number of them, including an infinite number in

R\RAdv (if the tape t is chosen randomly). Thus, by choosing a random string of the right length,

the adversary is guaranteed to produce the encoding of some “bad” nonce.

There are a number of ways around this difficulty. First, we can simply restrict the set of nonces,

and other aspects of the algebra, to polynomial size. If the number of nonces is polynomial in the

security parameter, then a random bit-string will have only a negligible probability of being the

valid encoding of a nonce. To formalize:

Definition 9 Let Aη be the smallest free algebra where atomic terms are of four types:

1. Names (M)

2. Nonces (Rη)

3. Public keys (KPubη), and

4. Private keys (KPrivη)

where Rη, KPubη, KPrivη are all of size η, and compound terms are created via

• encrypt : KPub ×A → A

27

• pair : A×A → A

Intuitively, restricting ourselves to a finite algebra such as this is not too onerous a restriction: it

might simply reflect a bounded setting with a polynomial number of participants willing to engage

in the protocols a polynomial number of times.1 One might also expect that the number of names

be bounded by η for the same reason, or the size of compound messages. These other restrictions

might also follow from the bounded setting, but it turns out that we will not require them in our

proofs.

If we restrict ourselves to this finite algebra, we can strengthen our notion of Dolev-Yao security

in the natural way:

Definition 10 A computational encryption scheme (G, E, D) provides strong finite Dolev-Yao non-

malleability if, when used in [[·]]tη:

∀ APPT , ∀finite, acyclic S ⊆ Aη :

Pr[t← {0, 1}ω

s← [[S]]
t
η ;

m← AM
t
η(·),PbK

t
η(·),PrK

t
η(·),R

t
η(·)(1η, s) :

∃M ∈ Aη \ C[S] .m ∈ supp [[M]]
t
η] ≤ neg(η)

Another way to side-step the problem is to allow the algebra to remain infinite, but to require

more from the adversary. We would like to ensure that a random guess is unlikely to be a valid

message. However, this seems difficult. So long as the encoding algorithm maps an infinite number of

formal messages to a finite space of bit-strings, any element of that space will be the valid encoding of

some message. However, it seems reasonable to require the adversary to not only create a message,

but to also know which message it created.

To formalize this, we introduce the notion of a tag, which will serve to identify a message without

revealing the values of its components:

Definition 11 Let t (·) : A → {0, 1}∗ be the function where:

• For N ∈ M, t (N) = 〈“name”, µ(N)〉, where µ is the function used to encode names in the

encoding mapping,

• For N ∈ R, t (N) = 〈“nonce”, ln(N)〉 where ln(N) produces a finite machine-readable label

uniquely identifying the nonce N , where l(N) is completely independent of the distribution

[[N]]η.

• For K ∈ KPub, t (N) = 〈“pubkey”, lk(N)〉 where lk(N) produces a finite machine-readable label

uniquely identifying the key K, where lk(K) is completely independent of the distribution [[K]]η.

1Purely computational approaches to protocol analysis often make exactly this assumption. See [9] for an example.

28

• For K ∈ KPriv, t (N) = 〈“privkey”, lk(N)〉 where lk(N) produces a finite machine-readable

label uniquely identifying the key K, where lk(K) is completely independent of the distribution

[[K]]η.

• For the pair term M N , t (M N) = 〈“pair”, t(M), t(N)〉

• For the encryption term {|M |}K , t ({|M |}K) = 〈“enc”, t(M), t(K)〉

For example, the tag of the message {|A Na|}KB
(the first message in the Needham-Schroeder pro-

tocol) would be:

t
(

{|A Na|}KB

)

=
〈

“enc”,
〈

“pair” 〈“name”, µ(A)〉 , 〈“nonce”, ln(Na)〉
〉

, 〈“key”, lk(KB)〉
〉

The tag of a message provides the message’s entire parse tree, except that the leaves are replaced

with identifiers that do not reveal the true value of non-name leaves. Therefore, a tag can serve as

an identifier for a message, and the tags of two different messages will show how they relate.

To use this in our Dolev-Yao security condition, we give the adversary a set S of messages and

their tags. We require that the adversary not only produce a “bad” message M , but indicate that

it knows which message it produced by also producing M ’s tag:

Definition 12 A computational encryption scheme (G, E, D) provides strong infinite Dolev-Yao non-

malleability if, when used in [[·]]tη:

∀ APPT , ∀finite, acyclic S ⊆ A :

Pr[t← {0, 1}ω

s← [[S]]
t
η ;

m, τ ← AM
t
η(·),PbK

t
η(·),PrK

t
η(·),R

t
η(·)(1η, s, t (S)) :

∃M ∈ A \ C[S] .τ = t (M) and m ∈ supp [[M]]
t
η] ≤ neg(η)

Here, the oracles PbK
t
η, PrK

t
η and R

t
η return both a value and the appropriate tag.

As in Theorem 1, we will show that both of these security conditions—finite and infinite strong

Dolev-Yao non-malleability—can be satisfied by sufficiently strong computational cryptography

(Theorem 5). However, we here address the second strengthening of Theorem 1. Instead of using

plaintext-aware encryption, we will use the more commonly accepted definition of security against

the chosen-ciphertext attack:

A computational public-key encryption scheme provides security against the chosen-ciphertext

attack2 (also written CCA-2 security in the notation of [7]) if no adversary has a chance significantly

2See [59], which builds on the work of [52]. See also [17] for a practical implementation. Technically, we give the
definition for indistinguishability under the chosen-ciphertext attack. However, since this is provably equivalent to all
other notions of security under the chosen-ciphertext attack, we will simply use the more generic term of “security.”

29

A

T

η

G
e, d

η

e

m0, m1

Bb

E

mb, e

c

c

g

b = g?

D

c′

m′

c′ 6= c

m′

Figure 2-1: The chosen-ciphertext security game

better than random of determining accurately whether a ciphertext c is the encryption of message

m0 or message m1, even if:

• the adversary chooses m0 and m1 itself, after seeing the given public key, and

• the adversary can access a decryption oracle both before choosing the messages and after

receiving the ciphertext in question. (The decryption oracle will not decrypt c itself, however.)

That is, the chosen-ciphertext security “game” is exactly like that of semantic security, except that

the adversary now also has almost-unlimited access to a decryption oracle (as shown in Figure 2-1).

Chosen-ciphertext security means that no adversary can win this game with probability better than

a random guess:

Definition 13 (Chosen-ciphertext security) A computational public-key encryption scheme

30

(G, E, D) provides indistinguishability under the chosen-ciphertext attack if

∀PPT adversaries A :

Pr[(e, d)← G(1η);

m0, m1 ← AD1(·)(e);

i← {0, 1} ;

c← E(mi, e);

g ← AD2(·)(c) :

b = g] ≤ 1
2 + neg(η)

The oracle D1(x) returns D(x, d), and D2(x) returns D(x, d) if x 6= c and returns ⊥ otherwise. The

adversary is assumed to keep state between the two invocations. It is required that m0 and m1 be of

the same length.

In this chapter, we will show that both finite and infinite strong Dolev-Yao non-malleability can

be satisfied by computational encryption satisfying chosen-ciphertext security. First, however, we

will prove a useful indistinguishability lemma.

2.2 An Indistinguishability Lemma

In this section, we consider the indistinguishability-based definitions of Dolev-Yao security originally

derived by Abadi and Rogaway [3, 4]. Intuitively, the definition of that paper describes when two

formal messages should “look” the same to the formal adversary. A formal adversary has the power

to make certain, limited deductions from formal messages; two given formal messages should “look”

the same when all possible deductions that can be made about them yield the same results. In

particular, the formal adversary of [3, 4] is assumed to be unable to distinguish between two different

encryptions (unless it has the corresponding private key or keys). For example, if the adversary of

[3, 4] has no other information, the two messages

{∣

∣{|A|}K2
B

∣

∣

}

K1

K−1
1 and

{∣

∣{|C D|}K3
B

∣

∣

}

K1

K−1
1

should be indistinguishable to it no matter what A, B, C and D are.

The fundamental result of Abadi and Rogaway is that if the encoding algorithm uses sufficiently

strong computational encryption, then two messages indistinguishable to the formal adversary will

encode to distributions indistinguishable to the computational adversary. Their result applies to

the case of symmetric encryption, and we will here translate it to the case of public-key encryption.

This translation will simultaneously strengthen and weaken the result. Indistinguishability in the

public-key setting requires a stronger similarity between messages than was necessary in the case

31

of symmetric encryption. However, our results will be able to tolerate the presence of a previously-

absent strong decryption oracle.

Let T be a set of keys and suppose that the formal adversary can decrypt with regard to them.

Then we represent the information that such an adversary can deduce from a formal message by its

public-key pattern3:

Definition 14 (Public-key pattern) Let T ⊆ KPub. We recursively define the function p(M, T)

to be:

• p(K, T) = K if K ∈ K

• p(A, T) = A if A ∈M

• p(N, T) = N if N ∈ R

• p(N1 N2, T) = p(N1, T) p(N2, T)

• p({|M |}K , T) =

{|p(M, T)|}K if K ∈ T

〈|TM |〉K o.w. (where TM is the type tree of M)

Then patternpk (M, T), the public-key pattern of an expression M relative to the set T , is

p(M,KPub ∩ C[{M} ∪ T]).

If S ⊆ A is a set of messages, then patternpk (S, T) is

〈p(s1, C[S ∪ T]), p(s2, C[S ∪ T]), . . .〉

where s1, s2, . . . are the elements of S is some canonical order. The base pattern of a message

M , denoted patternpk (M), is defined to be patternpk (M, ∅), and patternpk (S) is defined to be

patternpk (S, ∅).

The grammar/algebra for patterns is exactly that of messages, with the addition of a new kind

of leaf node: 〈|TM |〉K (a “blob” of type-tree TM under key K) which represents undecipherable

encryptions. Unlike the “blobs” of the symmetric-encryption patterns of [3, 4], these “blobs” are

labeled with K and TM . This is because computational encryption schemes do not necessarily hide

either the encrypting key or the plaintext length.

For convenience, we define a useful relationship between two patterns:

Definition 15 (Ingredient) If M , M ′ are two patterns, then M is an ingredient of M ′, written

M vM ′, if the parse tree of M is a sub-tree of the parse tree of M ′.

3We will use “pattern” to indicate public-key pattern, as opposed to the stronger, symmetric-key definition of
“pattern” in [4].

32

We note that since messages are special forms of patterns, this relationship can be applied between

two messages as well as between a message and a pattern. We also note a relationship between a

message and its pattern:

Theorem 2 If M , M ′ are messages and M ′ v patternpk (M), then M ′ ∈ C[M].

Proof. Suppose that M ′ v patternpk (M). Consider the same path from root to M ′ in the parse

tree of M . Along this path, if an interior node (not itself M ′) is in C[M] then both child nodes are

in C[M]:

• C[M] is closed under separation. Hence, if a node is the pair N N ′ and the node is in C[M],

then both N and N ′ are in C[M].

• The two children of a node {|N |}K are N and K. Since K ∈ KPub, K ∈ C[M] automatically.

Furthermore, K−1 ∈ C[M] as well: if it were not, then this node of M ’s parse tree would have

been replaced with 〈|TN |〉K in the parse tree of patternpk (M). But 〈|TN |〉K is not a message

and will not contain M ′ in its parse tree. So K−1 ∈ C[M], and since C[M] is closed under

decryption with keys it contains, N ∈ C[M].

Since the root of this path, M itself, is in C[M] by definition, it must be the case that every child

of every node above M ′ in the parse tree of M is in the set C[M]. Hence, M ′ ∈ C[M] as well.

We can extend the encoding operation to the pattern algebra:

Definition 16 (Encoding: patterns) Let:

• [[〈|M |〉]]t
η

be any fixed bit-string of length
∣

∣

∣
[[M]]tη

∣

∣

∣
such as the all-zero string, and

• [[〈|M |〉K]]
t

η
be the the mapping from distributions to distributions given by

〈

E
(

[[〈|M |〉]]t
η
, [[K]]

t
η

)

, [[K]]
t
η , “enc”

〉

.

Patterns allow us to state when two messages appear to be the same to the formal adversary:

when they have the same pattern. The standard definition of ‘appears to be the same’ in the world

of computational encryption is that of computational indistinguishability. We present a more general

definition, which incorporates the possibility of an oracle:

Definition 17 (Computational indistinguishability) Suppose that {Dη}η and
{

D′
η

}

η
are two

families of distributions indexed by the security parameter. Then they are computationally indistin-

guishable with respect to a family of oracles Ox, written Dη
∼=Ox

D′
η, if

∀PPT adversaries A :
∣

∣

∣
Pr[d← Dη : 1← AOd(·)(d, 1η)]− Pr[d← D′

η : 1← AOd(·)(d, 1η)]
∣

∣

∣
≤ neg(η)

33

We note that if no oracle access is granted at all, then the above definition reduces to the standard

notion of computational indistinguishability.

Our intuitive notion is that a message and its pattern should appear to be the same. We formalize

this notion by saying that a message and its pattern should encode to computationally indistinguish-

able probability distributions. To make this formalization completely meaningful, however, we must

consider what oracle (if any) the adversary can access. This will be determined by the oracles allowed

by the underlying computational encryption scheme.

We will assume that the encoding mapping uses CCA-2 secure cryptography. Thus, the oracle

we will use in Definition 17—to show that a message and its pattern produce indistinguishable

encodings—will exactly mirror the decryption oracles of Definition 13. Those oracles will decrypt,

with respect to a given public key, anything but a given “challenge” ciphertext. Our oracles will

do the same. However, a message and its pattern can be thought of as possibly many different

“challenge” ciphertexts under possibly many different keys. It is simple to define the keys with

respect to which our oracles will decrypt:

Definition 18 Let M be a pattern. Then M |KP ub
= {K ∈ KPub : K vM}. If S is a set of mes-

sages, then S|KP ub
= {K ∈ KPub : ∃M ∈ S s. t. K vM}.

In addition, the oracle may decrypt with respect to additional keys in some set T . (We use this

additional flexibility in the proof of our main theorem.) Due to efficiency concerns, however, the set

T must be finite.

It is more difficult to define the “challenge” ciphertexts which our oracle will not decrypt. Most

directly, they are those encryptions which differ between [[M]]
t
η and

[[

patternpk (M, T)
]]t

η
. That is, the

challenge ciphertexts should be those which correspond to “blobs” in the pattern of M relative to

the set of keys T . However, for convenience, we will define a larger but equivalent set of challenge

ciphertexts which correspond not only to the “blobs” but all encryptions visible in M to a Dolev-Yao

adversary.

Definition 19 (Visible) Let σ be a bit-string, and τ a set of computational public keys. Then let

visτ (σ) be the smallest set so that

• σ ∈ visτ (σ),

• if 〈a, b, “pair”〉 ∈ visτ (σ), then a ∈ visτ (σ) and b ∈ visτ (σ),

• if 〈c, k, “enc”〉 ∈ visτ (σ), k ∈ τ , and k′ is the secret key corresponding to k, then D(c, k′) ∈

visτ (σ), and

• if 〈c, k, “enc”〉 ∈ visτ (σ), 〈k′, “privkey”〉 ∈ visτ (σ), and k′ is the secret key corresponding to

k, then D(c, k′) ∈ visτ (σ).

34

A bit-string m is a visible element in σ relative to τ if m ∈ vis τ (σ).

Intuitively, x ∈ visτ (σ) iff x is an encoding of X , σ is an encoding of M , τ is an encoding of T and

X v patternpk (M, T). That is, a bit-string is a visible element of σ if the adversary can derive it

from σ using only Dolev-Yao-style operations using σ and keys in τ . The set vis τ (σ) contains every

ciphertext which corresponds to a “blob” in patternpk (M, T). However, it also contains every other

ciphertext that has an corresponding analogue in patternpk (M, T). The decryption oracle will not

decrypt these, but this is not worrisome: the computational adversary can decrypt these “non-blobs”

itself. Just as these encryptions are not “blobbed” in patternpk (M, T) because the required formal

private key is in T or derivable from M , the adversary can decrypt the corresponding computational

ciphertext from keys in τ or derivable from σ itself. Thus, we can prohibit the decryption of this

more general set without losing generality.

Now that we know the nature of our decryption oracle, we can finally define our indistinguisha-

bility property between messages and their patterns:

Definition 20 (Dolev-Yao public-key indistinguishability) A computational encryption

scheme provides Dolev-Yao public-key indistinguishability if, when used in [[·]]tη, for all acyclic formal

messages M and finite T ⊆ KPub:

[[M]]η
∼=

O
M,T
x

[[

patternpk (M, T)
]]

η

where O
T,M
d (x, e) returns ⊥ unless e is a valid public key and

• either e ∈ [[K]]
t
η for some K ∈ T , or

• e ∈ [[K]]
t
η for some K ∈ (M |KP ub

\ T) and x is not in vis [[T]]tη
(d).

(The tape t is assumed to be consistent with that used to form the sample from
[[

patternpk (M, T)
]]

η

or [[M]]η.) In these cases, OT,M
d (x, e) returns D(x, d) where d is the private key corresponding to e.

In the next section, we will show that Dolev-Yao public-key indistinguishability implies Dolev-Yao

weak non-malleability. Before this, however, we show that Dolev-Yao public-key indistinguishability

can be satisfied by CCA-2 security.

Theorem 3 If the public-key encryption scheme (G, E, D) provides indistinguishability under the

chosen-ciphertext attack, (G, E, D) provides Dolev-Yao public-key indistinguishability.

Proof.

Suppose that the encoding mapping uses a computational encryption scheme (G, E, D). Further,

suppose that there exists a formal message M , a set of keys T and a PPT adversary A that can

distinguish between a sample from [[M]]
t
η and a sample from

[[

patternpk (M, T)
]]t

η
(given access to the

oracle in Definition 20). Then (G, E, D) does not satisfy CCA-2 security.

35

We prove this by hybrid argument. Since M is acyclic, we can order the key-pairs used in the

parse tree of M as K1, K2 . . .Kk so that if Ki → Kj in the graph GM , then i ≥ j. That is, the

deeper the key in the encryptions, the smaller the number.

We go about the hybrid argument by constructing a number of intermediate patterns between

M and patternpk (M, T). In particular, we construct patterns M0, M1,. . . Mk such that:

• M0 = M = patternpk

(

M, T ∪
{

K−1
1 , K−1

2 , . . . K−1
k

})

,

• Mi = patternpk

(

M, T ∪
{

K−1
i−1, K

−1
i−2, . . . K

−1
k

})

, and

• Mk = patternpk (M, T).

That is, between Mi and Mi+1 we pick a key K and replace all encryptions with that key with

blobs of the appropriate length.

We use this typeface for a running example. Suppose

M = {|A|}K1

{∣

∣K−1
1

∣

∣

}

K2

{|B|}K3
{|A B|}K2

and

T = {K3, K4}

Assume for now that KAdv = ∅. The pattern of M is

patternpk (M, T) = 〈|M|〉K1
〈|KPriv |〉K2

{|B|}K3
〈|MM|〉K2

By using the order on keys suggested by the notation, we can let

M0 = M = {|A|}K1

{∣

∣K−1
1

∣

∣

}

K2

{|B|}K3
{|A B|}K2

M1 = 〈|M|〉K1

{
∣

∣K−1
1

∣

∣

}

K2

{|B|}K3
{|A B|}K2

M2 = 〈|M|〉K1
〈|KPriv |〉K2

{|B|}K3
〈|MM|〉K2

M3 = 〈|M|〉K1
〈|KPriv |〉K2

{|B|}K3
〈|MM|〉K2

M4 = 〈|M|〉K1
〈|KPriv |〉K2

{|B|}K3
〈|MM|〉K2

We will use the hybrid argument on this table.

Now, suppose that the distributions [[M]]η and
[[

patternpk (M, T)
]]

η
—the top and bottoms rows

of our table—are distinguishable. That is, [[M]]η 6
∼=

O
M,T
x

[[

patternpk (M, T)
]]

η
. Then we know by a

(standard) hybrid argument that two consecutive rows are also distinguishable.4 We continue the

4This only follows if the number of rows in the table is polynomial in the security parameter. In this case, however,
the number of rows in the table is constant with respect to η.

36

hybrid argument by creating a new table between the two distinguishable rows. Suppose that Ki is

the key being “blobbed” between the two rows. Then there are a fixed number of encryptions being

converted to “blobs”. Create a row for each such encryption, so that two consecutive rows differ

only in a single encryption being replaced with a blob.

For example, if the two rows are

M1 = 〈|M|〉K1

{
∣

∣K−1
1

∣

∣

}

K2

{|B|}K3
{|A B|}K2

and

M2 = 〈|M|〉K1
〈|KPriv |〉K2

{|B|}K3
〈|MM|〉K2

Then we could expand this into the table:

M1 = 〈|M|〉K1

{
∣

∣K−1
1

∣

∣

}

K2

{|B|}K3
{|A B|}K2

M1.5 = 〈|M|〉K1
〈|KPriv |〉K2

{|B|}K3
{|A B|}K2

M2 = 〈|M|〉K1
〈|KPriv |〉K2

{|B|}K3
〈|MM|〉K2

Two of these rows must be distinguishable.

Again, there must exist two consecutive rows R1 and R2 that can be distinguished. Since the rows

differ only in the contents of a single encryption and every other part of the row can be created

independently, distinguishing between the encoding of two rows reduces to distinguishing between

two encryptions.

Let A be the adversary that can distinguish between the two rows, and let E = {|P |}K be the

encryption that is being changed into 〈|TP |〉K . Then to break the CCA-2 security of the encryption

scheme we will distinguish between an encryption of m0 and m1 under public key e by:

• letting m0 ← [[P]]
t
η ,

• letting m1 ← [[〈|TP |〉]]
t

η
, and

• treating e as the encoding of K.

More formally:

• On input e, select random t← {0, 1}ω . Then draw p← [[P]]
t
η [e/K], where [[M]]

t
η [x/X, y/Y, . . .]

is the same as [[M]]
t
η except that x is assumed to be the value for X , y the value for Y , and

so on. (If X is an encryption and occurs more than once, then x is used as the value for the

instance of X indicated by context. Values for the other instances are still drawn as before.)

Note that because M is acyclic, we do not need to know the value
[[

K−1
]]t

η
to draw from [[P]]

t
η .

37

Return p and [[〈|TP |〉]]
t

η
as candidate plaintexts. (Recall that [[〈|TP |〉]]

t

η
is a fixed string of the

appropriate length, such as the all-zero string.)

• On input c, an encryption of either [[〈|TP |〉]]
t

η
or p, sample s ← [[R1]]

t
η [c/P, e/K]. Note that,

since both t and e were selected randomly, [[R1]]
t
η [c/P, e/K] is the same distribution as [[R1]]η if

c encrypts p. Similarly, [[R1]]
t
η [c/P, e/K] is the same distribution as [[R2]]η if c encrypts [[〈|TP |〉]]

t

η
.

Feed (s, 1η) to A.

• If A makes an oracle call on (x, e), we check that e = [[K0]]
t
η for some K0 ∈M |KP ub

∪ T . If not,

we return ⊥. If so, we decrypt or not as follows:

– If K0 = K, we check that x is not visible in x relative to t = [[T]]
t
η. Since x is not visible

in s relative to t, and c is visible in s relative to t, x 6= c. Hence, the decryption oracle

D2 in Definition 13 will happily decrypt x for us.

– If K0 6= K, we can produce
[[

K−1
0

]]t

η
ourselves from the tape t. If K0 ∈ T , we decrypt x

with the value so produced. If K0 ∈ M |KP ub
\ T , we also check to see if x is visible in s

relative to t. We return ⊥ if it is, and decrypt x if it is not.

Assume in our example that rows M1.5 and M2 can be distinguished by A. Then P = A B

and K = K2. We build the two candidate ciphertexts by selecting t← {0, 1}ω. We then

select p ← [[A B]]tη, and return p, [[〈|MM|〉]]t
η

as candidate ciphertexts. When we get c, a

value either from
[[

〈|MM|〉K2

]]t

η
or

[[

{|A B|}K2

]]t

η
, we draw

s←
[[

〈|M|〉K1
〈|KPriv |〉K2

{|B|}K3
{|A B|}K2

]]t

η
[c/ {|A B|}K2

, e/K2]

Since either s ∈ supp [[M1.5]]
t
η or s ∈ supp [[M2]]

t
η, the adversary A will tell us which one,

and this answer will tell us if c encrypts [[A B]]
t
η or [[〈|MM|〉]]t

η
.

We simulate A on s: when A requests that we decrypt a string x with
[[

K−1
1

]]t

η
, we make

sure that it isn’t c, [[B]]
t
η, or the bit-strings in s that represent 〈|M|〉K1

and 〈|KPriv |〉K2
.

If it is not these four things, we use the tape t to create the secret key and decrypt x.If

A asks us to decrypt something with
[[

K−1
2

]]t

η
, we check that it is not any of the four

ciphertexts above. If it is not, then we send it to the decryption oracle provided to us

in Definition 13, which will decrypt it for us. If A asks us to decrypt with
[[

K−1
3

]]t

η
or

[[

K−1
4

]]t

η
, we create the keys from the tape and decrypt any ciphertext.

The answer from A directly corresponds to the plaintext chosen for c, which allows us to

distinguish whether it encrypts [[〈|MM|〉]]t
η

or p.

A(s, η) will eventually return an answer that distinguishes between samples from R1 and R2. The

answer from A will signify whether c encrypted p or [[〈|TP |〉]]
t

η
.

38

We note as a corollary that the exact analogue of the Abadi-Rogaway result holds: if two messages

M and N have the same pattern (with respect to some set T) then they produce indistinguishable

encodings:

Corollary 4 Suppose that M , N are two acyclic messages, T ⊆ A is a set of keys, and M |KP ub
=

N |KP ub
. If patternpk (M, T) = patternpk (N, T), then [[M]]η

∼=
O

M,T
x

[[N]]η.

Proof. By assumption and Theorem 20, we know that

[[M]]η
∼=

O
M,T
x

[[

patternpk (M, T)
]]

η
=

[[

patternpk (N, T)
]]

η
∼=

O
N,T
x

[[N]]η

Since M |KP ub
= N |KP ub

and patternpk (M, T) = patternpk (N, T), the oracle OM,T
x is the same as

the oracle ON,T
x . The ∼=

O
M,T
x

relation is transitive (by hybrid argument), and so the result follows.

We end by noting that we do not lose generality in this corollary by requiring that M |KPub
=

N |KP ub
. If M and N have the same pattern but have different public keys in their parse trees, then

we can simply form M ′ by pairing with M every key in M |KP ub
∪ N |KP ub

, and similarly for N ′.

Since we add only public keys, patternpk (M ′, T) = patternpk (N ′, T). However, it is now the case

that M ′|KP ub
= N ′|KP ub

and the corollary holds.

2.3 Strong Dolev-Yao Non-Malleability

Theorem 5 Suppose that (G, E, D) is a computational public-key encryption scheme that provides

Dolev-Yao public-key indistinguishability. Then (G, E, D) provides both finite and infinite strong

Dolev-Yao non-malleability.

Proof.

Suppose that the theorem is false. Then there is an adversary that is able to produce a message

outside the closure of its input set. In the finite case:

∃ APPT , ∃finite, acyclic S ⊆ Aη, ∃ polynomial q, for infinitely many η :

Pr[t← {0, 1}ω

s← [[S]]tη ;

m← AM
t
η(·),PbKt

η(·),PrKt
η(·),Rt

η(·)(1η, s) :

∃M ∈ Aη \ C[S] .m ∈ supp [[M]]
t
η] ≥ 1

q(η)

39

In the infinite case:

∃ APPT , ∃ finite, acyclic S ⊆ A, ∃ polynomial q, for infinitely many η :

Pr[t← {0, 1}ω

s← [[S]]tη ;

m, τ ← AM
t
η(·),PbKt

η(·),PrKt
η(·),Rt

η(·)(1η, s, t (S)) :

∃M ∈ A \ C[S] .τ = t (M) and m ∈ supp [[M]]
t
η] ≥ 1

q(η)

In each of these cases, we will construct from the counter-example adversary a new adversary A1

that serves as a counter-example to Theorem 20. But first, consider the parse tree of M . Suppose

that every path from the root of the parse tree to a leaf passes through an element of C[S]. Then it

must be that the root message, M , is in C[S] — a contradiction. Hence, there must be some path

in the parse tree of M such that no element along that path is in C[S], including the leaf Ml.

Now, consider the simple, intermediate adversary A2, which operates as follows:

1. It first chooses a random tape t← {0, 1}ω.

2. It then uses that tape to sample s← [[S]]tη.

3. It simulates the counter-example adversary A on input (1η, s).

4. When A makes an oracle query, A2 responds appropriately. (Because it knows the random tape

t, it can compute any atomic value it wishes, including those returned by the oracles.)

5. When A responds with m ∈ supp [[M]]
t
η, A2 uses this to produce a value ml ∈ [[Ml]]

t
η. That is, it

progresses down the path in the parse tree of M that leads to Ml:

• It starts with a value for [[M]]tη , and at the root of the parse tree.

• If the current node is a pair, M ′ N ′, then it separates the current bit-string value into

[[M ′]]tη and [[N ′]]tη . It progresses down the path in the parse tree toward Ml, and keeps the

value for the new node as its new current value.

• If the current node is an encryption, {|M ′|}K , it uses the tape t to find the value for
[[

K−1
]]t

η
. It then uses that to decrypt the current bit-string value to get [[M]]

t
η , and

progresses down the path in the parse tree toward Ml. (Note: we know that Ml cannot

be K, since K ∈ C[S] and we know this to not be the case for Ml.)

At the end, this adversary will have a value for [[Ml]]
t
η . Now, consider what Ml might be:

• Ml cannot be a compound term, since it is a leaf of the parse tree.

• Suppose Ml ∈ M. Then Ml ∈ C[S], no matter what S is—a contradiction.

• Suppose Ml ∈ KPub. Then, as mentioned above, Ml ∈ C[S] always.

40

• Suppose Ml ∈ R. If Ml ∈ RAdv then Ml ∈ C[S]. So, we only need to worry about Ml ∈

R \RAdv . There are two cases: either Ml is in the parse tree of something in S, or it is not.

The second case leads to a contradiction. If Ml is not in the parse tree of any element of S,

then the input to the adversary is completely independent of the output. Thus, the adversary

in question is able to produce a η-bit value which happens to be the encoding of a nonce Ml. If

we are discussing the setting of finite strong Dolev-Yao non-malleability, then there are only η

nonces, and the probability that the adversary can guess the encoding of one is bounded above

by η
2η . Thus, the adversary cannot produce a nonce not in S with non-negligible probability.

If, on the other hand, we are in the infinite setting, then the adversary must have also produced

a tag τ . Since t = t (M), one can recover t (Ml) by descending the parse tree of τ . Thus, the

adversary is able to recover the encoding of one particular nonce, Ml, which has a random

η-bit encoding. Again, the adversary cannot do this with non-negligible probability. Thus, in

neither case can it be with non-negligible probability that Ml is in R \ RAdv but not in the

parse tree of anything in S.

• Suppose Ml ∈ KPriv . Then, we proceed similar to above. If Ml ∈ KAdv , then Ml ∈ C[S]. If

Ml ∈ KPriv \KAdv but not in the parse tree of some element of S, the adversary is able to guess

a private key based on the corresponding public key, possibly encryptions using the public key,

and values independent of the private key. Since we are assuming that the encryption scheme

provides indistinguishability against chosen-ciphertext attacks, the probability of this must be

negligible. Again, we find a contradiction.

Thus, the only possibility that occurs with non-negligible probability is that Ml is in R \ RAdv

or in KPriv \KAdv , and that Ml is in the parse tree of some element of S. However, it cannot be the

case that Ml itself is in S, or that Ml can be produced from S only by separating pairs. (If either

of those were true, then Ml would be in C[S] itself, a contradiction.) Thus, Ml must only appear in

S in the plaintext of encryptions.

Thus, we have an adversary A2 which takes an element of [[S]]
t
η and produces the plaintext to

some encryption in S. Granted, A2 created [[S]]tη itself and knows every secret. Hence A2 does not

serve as the counter-example to anything. However, a simple modification to A2 will serve as a

counterexample to Theorem 20. Let:

S′ =

S ∪ S|R if Ml ∈ R

S ∪
{

{|Np|}K : K ∈ S|KP ub

}

(where Np ∈ RAdv) if Ml ∈ KPriv

Then we will be able to distinguish between [[S ′]]η and
[[

patternpk (S′, T)
]]

η
where T is M |KP ub

\S|KPub
.

(Note that if Ml is a private key, then it is in neither C[S] or T . Hence the encryption {|Np|}M−1

l

will become 〈|R|〉M−1

l
in patternpk (M, T).)

41

Consider the adversary A1 that does the following:

1. It receives as input the value d, which is drawn either from [[S ′]]
t
η or from

[[

patternpk (S′, T)
]]t

η

(for some tape t). It separates d into dS and dtest , where dS ∈ [[S]]
t
η and either dMl

∈ [[Ml]]
t
η if

Ml is a nonce, or dMl
∈

[[{

Np, {|Np|}M−1

l

}]]t

η
or

[[{

Np, 〈|R|〉M−1

l

}]]t

η
if Ml is a private key.

2. It simulates A on (1η, dS). (We will postpone consideration of any oracle calls that A makes

for one moment.)

3. When A returns m (and τ if we are in the infinite case) A1 will attempt to extract the value

[[Ml]]
t
η from m. That is, it recurses down the parse tree of M to Ml, separating pairs and

decrypting encryptions, until it arrives at Ml. If we are in the infinite setting, then the tag τ

will provide the path to Ml. If we are in the finite setting, then we simply go down every path

until we reach the leaf or we are halted:

• If M = N1 N2 and m = 〈n1, n2, “pair”〉, then A continues recursively on n1 or n2 or both.

• If M = {|N |}K , m = 〈c, k, “enc”〉 and k ∈ [[K]]tη, then A1 sends (c, k) to the decryption

oracle. Will the decryption oracle decrypt? If not, we halt. But along the path to Ml, it

must. There are two cases:

– By definition, K ∈ M |KP ub
. If K 6∈ S|KP ub

also, then K ∈ T . Hence, the oracle of

Defintion 20 will decrypt c.

– If K ∈ S|KP ub
, then K ∈ S|KP ub

\(M |KP ub
\ S|KP ub

). But S|KP ub
\(M |KP ub

\ S|KP ub
) =

S|KP ub
\ T . Hence, the decryption oracle of Definition 20 will decrypt c if c is not

in vis [[T]]tη
(d). However, could c be visible in d with respect to [[T]]tη? If it is, then

by the definition of visibility, {|N |}K v patternpk (S, T). In this case, however,

T = M |KP ub
\ S|KP ub

, and so contains no keys in the parse tree of S. Allowing

the adversary to decrypt with respect to T does not give it more information about

S. Hence, patternpk (S, T) = patternpk (S). Thus, if {|N |}K v patternpk (S, T) then

{|N |}K v patternpk (S) and so by Theorem 2 it must be that {|N |}K ∈ C[S]. How-

ever, this contradicts the assumption that no node on the path from M to Ml is in

C[S], and so c cannot be visible in d. Hence, the decryption oracle of Definition 20

will decrypt it.

Thus, the decryption oracle will always return p, the plaintext of c. A1 then moves down

the parse tree to the node for N and recursively applies this process to p.

4. If we fail to reach a leaf Ml which is not in the closure, then A immediately stops and outputs

0. Otherwise, A1 will acquire a value ml which may be the encoding of Ml. A1 tests this using

the string dtest , which it reserved at the beginning. If Ml is a nonce, then dtest will contain

the value for Ml; A can simply test that ml is a substring of dtest . If Ml is a private key, then

42

dtest contains an encryption of a known plaintext [[Np]]
t

η
under the corresponding public key.

A1 simply decrypts each encryption with ml. One of the results should be the same as [[Np]]
t

η
.

If these tests are satisfied, then A1 outputs 1. Otherwise, it outputs 0.

A1 will return 1 whenever A produces an element of supp [[M]]
t
η . Hence, A1 will return 1 with

probability at least 1
q(η) given that d is in fact drawn from [[S]]η . If, on the other hand, d is drawn

from
[[

patternpk (M, T)
]]

η
, then A cannot have a non-negligible chance of producing a m ∈ supp [[M]]

t
η

for any M ∈ A \ C[S] (or Aη \ C[S] in the finite case). Since Ml 6∈ C[S], it cannot be that

Ml v patternpk (S) = patternpk (S, T).

• If Ml is a nonce, then this implies that the sample d will be entirely independent of the actual

value for [[Ml]]
t
η.

• If Ml is a private key, on the other hand, then d may include encryptions made using the

public key
[[

M−1
l

]]t

η
. But the encryption provides indistinguishability against chosen-ciphertext

attack, so it is infeasible to recover a private key using only encryptions under the corresponding

public key. Since d is otherwise independent of [[Ml]]
t
η , A cannot have a non-negligible chance

of recovering [[Ml]]
t
η.

Thus, the probability that A1 will return 1 given that d is sampled from
[[

patternpk (S, T)
]]t

η
must be

bounded above by either:

• The probability of guessing some nonce or private key, in the finite setting, or

• The probability of guessing the particular nonce or private key indicated by the tag, in the

infinite setting.

In both of these cases, the probability of a successful guess must be negligible.

Hence, if A has a non-negligible chance of constructing m ∈ supp [[M]]
t
η from a sample from [[S]]

t
η, for

any M 6∈ C[S], then A1 has a non-negligible chance of distinguishing [[S ′]]η from
[[

patternpk (S′, T)
]]

η
,

a contradiction of Theorem 20.

There remains only one last complication: A has access to oracles while operating. In particular,

A can request any public key, any private key in KAdv , any identifier, and any nonce in RAdv . How

does A1 respond to these oracle calls when it simulates A?

The answer is that we slightly modify the set S ′ to include the information needed to respond.

In particular, let S|KP ub
and S|RAdv

be defined analogously to S|KP ub
.Then the set S′ is will actually

be

S′ =

S ∪ S|KPub
∪ S|KAdv

∪ S|RAdv
∪ {Ml} if Ml ∈ R

S ∪ S|KPub
∪ S|KAdv

∪ S|RAdv
∪

{

Np, {|Np|}M−1

l

}

if Ml ∈ KPriv

When A1 receives the input d it strips off dS as before and simulates A. When A makes an oracle

call, however, A1 can respond:

43

• If the oracle is being asked for an identifier, A1 computes the representation of that identifier.

(As mentioned before, we assume that the encoding of identifiers is efficiently computable.)

• If the oracle is being called on an ingredient of S, then the additional information in s contains

the needed bit-string.

• Otherwise, the needed value is a random variable independent of d. A1 can sample from the

relevant distribution to produce an indistinguishable value. It then stores the value for future

use (and if the value is a key, the corresponding secret or public key also), and returns it.

Since the formal messages we added to S ′ are already in C[S], they do not change the pattern of

the original S. Hence, adding them to S ′ does not change the distribution of dS , and A will progress

as before.

Thus, both of our stronger formalizations of the Dolev-Yao assumption can be satisfied by stan-

dard, known definitions of computational security. Thus, the results of [30] are no longer hindered

by the criticisms of plaintext-aware encryption. In the next chapter, however, we address these

criticisms directly by proposing a new definition (and implementation) of plaintext awareness itself.

44

Chapter 3

Plaintext Awareness via Key

Registration

As stated above, an encryption scheme is plaintext-aware if, whenever an adversary creates a cipher-

text, it must “know” its corresponding plaintext. However, existing definitions of plaintext-awareness

have been rightfully criticized for their reliance upon the existence and the trustworthiness of the

random oracle. In this chapter, we discuss our work in this area [31] which demonstrates that this

criticism applies only to the original definitions, not the underlying notion. In particular, we put

forth two main contributions: a new definition and an implementation.

1. As opposed to previous definitions, our definition of plaintext-aware encryption does not use

the random oracle. We still need a trusted third party, but our party is much more natural

(being already used in practice), much less trusted, and is used only once rather than at every

encryption.

2. Our implementation is a self-referential variation on an earlier, well-known encryption scheme

due to Sahai [59]. In particular, our variation will require the sender to encrypt messages in

its own keys as well as those of the intended sender. Strong cryptographic primitives called

zero-knowledge proofs will prove to the receiver that the sender performed this action and that

the sender knows his or her own private keys. Thus, the receiver can know that the sender is

able to decrypt any ciphertext that it creates.

3.1 A New Definition of Plaintext Awareness

Our new definition requires a particular model for public-key encryption: All users will have either

or both of a receiving key-pair and a sending key-pair. Furthermore users are assumed to registered

45

their public sending keys with a trusted registration authority. Lastly, we make a new assumption

about the adversary: that it is history-preserving, meaning that it records and never erases its input

and internal coin-flips.

However, these are not radical changes. Firstly, users already have two key-pairs: one for signing

messages (which corresponds to the sending key-pair) and one to decrypt messages sent to them (the

receiving key-pair). Furthermore, a trusted registration authority is essentially already implicit in

any actual implementation of public-key encryption. Such implementations enforce an association

between users and public keys by requiring that users register their public key with a certification

authority. These authorities verify the identity of the applicant and that the applicant knows the

corresponding secret key. It is natural, therefore, to assume the existence of a trusted third party

for key registration. Lastly, it is not unreasonable to expect the adversary to record its input and

coin-flips: we do not weaken the abilities of the adversary by prohibiting erasures.

Our definition of plaintext awareness requires that the adversary know the plaintext to any

ciphertext it creates, provided the (apparent) sender has registered its sending key with an honest

registration authority. In particular, there should exist an extractor which can, given that a successful

registration had previously occurred, predict the output of the receiver’s decryption algorithm.

However, the addition of a trusted authority should only strengthen the security of the scheme, not

weaken it. Our definitions, therefore, require that the scheme should remain CCA-2 secure (i.e., the

most secure as is possible without a trusted third party) even if the registration authority is itself

corrupt.

Our new definitions serve as yet another example of one of the grand paradigms of cryptography:

if one wishes a protocol or primitive P to have some property, it can often be achieved by adding a

set-up phase that provides P . For example, one can achieve secrecy of communication by engaging

in a set-up phase in which a secret key is exchanged. Also, authentication in the retrieval stage for

A’s public key later allows the authentication of messages from A.

In this chapter, we wish to add to public-key encryption the property of plaintext-awareness, or

knowledge of the plaintext. Therefore, our definitions add a set-up phase to asymmetric encryption,

and our implementation will use during this phase a protocol that achieves knowledge. In particu-

lar, we will use an (interactive) proof of knowledge protocol at set-up to achieve (non-interactive)

plaintext knowledge for later encryptions.

3.1.1 Preliminaries

We say that an algorithm or interactive TM A is history-preserving if it “never forgets” anything.

As soon as it flips a coin or receives an input or a message, A writes it on a separate history tape that

is write-only and whose head always moves from left to right. The history tape’s content coincides

with A’s internal configuration before A executes any step.

46

If A is an history-preserving algorithm and it A appears more than once in a piece of GMR

notation (e.g, Pr[. . . ; a ← A(x); . . . ; b ← A(y); . . . : p(· · · , a, b, · · ·)]) then the history and state of A

is preserved from the end of one “use” to the beginning of the next.

The notation h
H
←− A indicates that h is the current content of A’s history tape.

We assume the adversary to be an efficient (probabilistic polynomial-time) history-preserving

algorithm (interactive TM).

Following [26], we consider a two-party protocol as a pair, (A, B), of interactive Turing machines.

By convention, A takes input (x, rA) and B takes input (y, rB) where x and y are arbitrary and

rA and rB are random tapes. On these inputs, protocol (A, B) computes in a sequence of rounds,

alternating between A-rounds and B-rounds. In an A-round only A is active and sends a message

(i.e., a string) that will become an available input to B in the next B-round. (Likewise for B-rounds.)

A computation of (A, B) ends in a B-round in which B sends the empty message and both A and

B compute a private output.

Letting E be an execution of protocol (A, B) on input (x, y) and random input (rA, rB), we make

the following definitions:

• The transcript of E consists of the sequence of messages exchanged by A and B, and is denoted

by TRANSA,B (x, rA|y, rB);

• The view of A in execution E consists of the triplet (x, rA, t), where t is E’s transcript, and is

denoted by VIEW
A,B
A (x, rA|y, rB);

• The view of B consists of the triplet (y, rB , t), where t is E’s transcript, and is denoted by

VIEW
A,B
B (x, rA|y, rB);

• If E is an execution of (A, B) on inputs (x, rA) and (y, rB) then the output of A in E, denoted

OUT
A,B
A (x, rA|y, rB), consists of the string z output by A after the last round. Similarly,

OUT
A,B
B (x, rA|y, rB) is the output of B in the same execution.

• We also define the random distribution OUT
A,B
A (x, ·|y, ·) to be OUT

A,B
A (x, rA|y, rB) where rA

and rB are selected randomly, and similarly for OUT
A,B
B (x, ·|y, ·).

We say that an execution of a protocol (A, B) has security parameter η if the private input of A

is of the form (1η , x′) and the private (non-random) input of B is of the form (1η , y′).

3.1.2 Formal Definitions

A registration-based plaintext-aware encryption scheme consists of a registration protocol (RU,

RA)and a public-key encryption scheme (G, E, D), where:

47

• (RU, RA) is the two-party protocol in which the sender keys are generated and registered. The

registration authority RA should output es, the public key of the sender. The registering user

RU output both es and ds, the public and private keys for the sender. After a successful run

of the protocol, one can imagine the public sending key is inserted in a public file or that the

user is given a certificate, but the precise mechanism of publication is irrelevant here. What

is crucial, however, is that the registration protocol be a secure atomic operation. That is, we

can think of it as being run one user at a time, in person, and from beginning to end.1

It is worth noting that either RU or RA may reject in the registration protocol (presumably

when the other party is dishonest), in which case we assume the output is ⊥. For ease in the

definitions, we assume that if ⊥ is any input to either E or D, the output will also be ⊥ or

(⊥,⊥) as appropriate.

• (G, E, D) is a public-key encryption scheme, where:

– G(1η) produces (er, dr), a key pair for the receiver,

– E(m, er, ds) produces a ciphertext c, where m is the message to encrypt, er is the receiver’s

public key, and ds is the sender’s private key. (We assume without loss of generality that

a private key also contains the corresponding public key.) The ciphertext c is assumed to

explicitly indicate which public keys were used in its creation.

– D(c, dr, es) produces m, a message, where c is the ciphertext to decrypt, dr is the receiver’s

private key, and es is the sender’s public key. Note that this algorithm takes both the

receiver’s private receiving key and the sender’s public sending key. If the ciphertext is

invalid, the output is ⊥.

The protocol (RU, RA) and the encryption scheme (G, E, D) must satisfy the following conditions:

Registration Completeness. The key registration protocol between an honest registrant and

an honest registration authority will almost always be successful. Furthermore, the user and the

authority will agree on the public key.

Pr[r1 ← {0, 1}∗; r2 ← {0, 1}∗;

(es, ds)← OUT
RU,RA
RU (1η, r1|1η, r2) ;

e′s ← OUT
RU,RA
RA (1η, r1|1η, r2) :

es = e′s 6= ⊥] ≥ 1− neg(η)

1Without this assumption, we would have to worry about man-in-the-middle, concurrency and other types of
attacks which will obscure both the definitional and implementation aspects of our model.

48

T

RU

A

G

D

η

dr

er
ds

es

E

m0, m1

B b mb,ds

c

c

g

b = g?

As in the chosen-ciphertext game, the adversary cannot send the challenge ciphertext c to the
decryption oracle D. (Not shown: transmission of dr from D to T .)

Figure 3-1: The honest security game

Encryption Completeness. If an honest sender encrypts a message m into a ciphertext c, then

the honest recipient will almost always decrypt c into m.

∀m ∈ {0, 1}η

Pr[(es, ds)← OUT
RU,RA
RU (1η, ·|1η, ·) ;

(er, dr)← G(1η);

c← E(m, er, ds);

g ← D(c, dr, es) :

g = m] ≥ 1− neg(η)

Honest Security. If recipient and sender are honest, then the encryption is adaptively chosen-

ciphertext secure even if the adversary controls the registration authority. Note that the definition

of chosen-ciphertext security use here differs from Definition 13 in two ways. (Contrast the original

chosen-ciphertext “game” of Figure 2-1 with the new honest-security “game” of the key-registration

setting in Figure 3-1.) First, the encryption and decryption algorithms now use keys of both sender

and receiver. More importantly, however, the adversary now also has access to an encryption oracle.

49

Definition 13 allows the adversary to have arbitrary ciphertexts decrypted by a decryption oracle.

The corresponding encryption oracle was not needed: if the encryption algorithm used only public

keys, the adversary can encrypt on its own. Now that encryption may require the sender’s private

key, however, we need to provide access to an encryption oracle explicitly:

∀ oracle-calling adversaries A

Pr[(dr, er)← G(1η);

(es, ds)← OUT
RU,A
RU (1η, ·|1η, ·) ;

m0, m1 ← AE(·,·,ds),D(·,dr,·)(er, es);

b← {0, 1} ;

c← E(mb, er, ds);

g ← AE(·,·,ds),D(·,dr,·)−{c,es}(c) :

b = g] ≤ 1
2 + neg(η)

where

• m0 and m1 have the same length,

• E(·, ·, ds) is the oracle that returns E(m′, e′r, ds) on input (m′, e′r).

• D(·, dr, ·) is the oracle that returns D(m′, dr, e
′
s) on input (m′, e′e).

• D(·, dr, ·) − {c, es} is the oracle that on input (c′, e′s) returns D(c′, dr, e
′
s) if c′ 6= c or e′s 6= es,

and returns ⊥ otherwise.

If the input to any of these oracles includes ⊥, then the output will also be ⊥. Also, recall that

the adversary is assumed to be history-preserving, so that it ‘remembers’ es and er from the first

invocation.

Plaintext Awareness. If the registration authority is honest and player X (either the adversary

or an honest player) registers a key, then the adversary can decrypt any string it sends to an honest

participant ostensibly encrypted by X. More specifically, there exists an extractor that can determine

the result of the recipient’s decryption algorithm without access to the recipient’s private key. As

mentioned in Section 1.6, the ciphertext alone cannot contain enough information to enable this ex-

traction without violating the semantic (and hence chosen-ciphertext) security of the scheme. Thus,

the extractor needs access to some additional information. In the original definition of plaintext-

awareness, this additional information was a list of the queries made by the adversary to the random

oracle. These queries presented an opportunity to see the internal state of the adversary. Since this

opportunity is no longer present, we will use as our additional information the adversary’s state

directly—as represented by its history tape.

50

In our implementation, the extractor will use this history tape to simulate the adversary. That is,

the extractor is assumed to have the adversary’s code ’hard-wired’ into it. The order of quantifiers

below allows this: the extractor can be chosen after the adversary. However, this is not necessary:

the extractor can be chosen before the adversary if the adversary provides its own code as well as its

internal history tape. That is, our implementation will satisfy this variation as well. However, we

believe that the weaker form below to be more appropriate as the “official” definition of plaintext-

awareness.

However, in its effort to create an “undecipherable” challenge plaintext the adversary will have

access to additional information of its own. It will have access to a decryption oracle, as above. One

might also expect the adversary to have access to an encryption oracle, and in a way it will. However,

a mere encryption oracle is not sufficient. To model realistic scenarios in which our encryption scheme

may be used, we must consider the fact that the adversary may (as a result of higher-level protocols)

gain ciphertexts to which it does not know the plaintext. It may be counter-intuitive to think that

these might help the adversary in any way, but recall that the goal of the adversary is to create a

ciphertext whose plaintext is unknown to it. One must consider the possibility that the adversary

cannot do this on its own but can do so by manipulating a “valid” ciphertext (with an unknown

plaintext) from an external source.

For this reason, it is insufficient to give the adversary access only to decryption and encryption

oracles. The decryption oracle does not provide new ciphertexts, and the encryption oracle is

insufficient for two reasons:

• If the adversary merely had access to an encryption oracle, then it must “know” the plaintext

to all so-produced ciphertexts.

• Even if the above objection could be nullified (e.g., by allowing erasures) it still only allows the

adversary access to ciphertexts whose plaintexts it can generate. Suppose, for example, that a

higher-level protocol gives the adversary both a large graph and an encryption of a Hamiltonian

circuit. A mere encryption oracle would not be sufficient to simulate this scenario.

We represent the possible activity of a higher-level protocol as an “ally” PPT oracle L. When

activated, L examines the history of the adversary. It then generates any plaintext and public

receiver key that it pleases. This plaintext is then encrypted with the appropriate sending key, and

the ciphertext is given to the adversary. Note that this ally is a generalization of a simple encryption

oracle: one can imagine an ally that simply outputs as message and key the last two elements of the

adversary’s history. Hence, there is no need to give access to an encryption oracle explicitly.

To summarize (see Figure 3-2) the definition of plaintext awareness requires that there exist an

extractor that can produce the plaintexts to adversarily-chosen ciphertexts, given only the ciphertext

and the adversary’s history. The adversary has access to a decryption algorithm and an arbitrary

51

A

RA G

L

D

E

p′ p

h

dr
er

es

es

c

Figure 3-2: The game of plaintext awareness via key registration

ally oracle which has its own private input. The challenge ciphertext given to the extractor cannot

be the result of a call to the ally. The extractor can depend on the choice of adversary, but must

then work for all allies:

∀ adversaries A, ∀ X ∈ {A, RU} , ∃ efficient algorithm EX, ∀ PPT allies L

Pr[(er, dr)← G(1η);

eX ← OUT
X,RA
RA (er, ·|1η, ·) ;

h
H
←− A;

c← AL
′

dX
(·),D(·,dr,·)(eX, er) :

EX(h, c, er, eX) = D(c, dr, eX) given that c 6∈ Lc)] ≥ 1− neg(η)

where the oracle L′dX operates as follows: on any input, run L on the history h′ of the adversary at

the time of the call to L′. When L produces an output (m, e′r, d
′
s), run E(m, e′r, d

′
s) to produce the

output c. Add c to the (initially empty) set Lc and also return c to the adversary.

(Note that if X = RU, then it expects its input to the registration protocol to be 1η and not

er. Hence, we assume that if RU finds input er that it extracts 1η from it and proceeds as normal.

Also note that if the sender key is registered by an honest participant RU then h, the history of the

adversary, will be empty.)

Remarks. Note that these definitions do not guarantee anonymity of the sender. That is, senders

must register their keys, and so it might be that they can no longer send messages without their

name attached in some way. We note three things with respect to this.

1. If plaintext-awareness is not required, a sender may simply use an unregistered key. Encryption

will still be secure against the chosen-ciphertext attack.

2. Each registered key does not necessarily represent a sender but rather one incarnation of a

52

sender. Senders may register many keys in order to bolster their anonymity.

3. In our implementation, registration uses only the values of keys and not the identity of the

registrant. Thus, the registration process could remain anonymous. It will still be possible to

trace multiple messages back to the same sender, but the identity of the sender will not be

revealed.

We choose to regard the possibility of sender authentication as an opportunity rather than a draw-

back, and use it in an essential way in our implementation.

3.2 Cryptographic Building-Blocks

The two implementations that follow use a wide variety of powerful cryptographic primitives.

Semantically-secure encryption for public-key encryption has already been introduced (Definition 3).

We will also use digital signatures:

Definition 21 (Digital Signature Scheme) A digital signature scheme is a triple (Gsig , Ssig , Vsig)

where:

• Gsig is the (probabilistic) key generator, which generates pairs (s, v) of signature generation

keys (s) and verification keys (v),

• Ssig is the (probabilistic) signing algorithm, which takes an arbitrary message and a signature

verification key and returns a signature, and

• Vsig is the verification algorithm, which takes a message, a signature, and a verification key to

return a single bit;

such that for all security parameters η and messages m,

Pr [(s, v)← Gsig(1η); sig← Ssig (m, s) : Vsig (m, sig, v) = 1] = 1

Digital signatures are the dual to public-key encryption: the signature does not hide the message in

any way, and can be verified by anyone. However, only the entity that should be able to create a

valid signature (one that verifies against a given message and verification key) should be the one who

knows the signing key. In particular, an adversary (who does not know the signature verification

key) should not be able to find a signature that verifies against a given message and verification key,

even if it can choose the message itself [27]:

53

Definition 22 (Security for digital signatures) A digital signature scheme is secure against

the chosen-message attack if

∀PPT adversaries A :

Pr[(s, v)← Gsig (1η);

(m, sig)← ASsig(·,s)(1η, v) :

V(m, sig, v) = 1] ≤ neg(η)

It is required that the m produced by the adversary not have previously been given as input to the

oracle.

Note that this definition of security could allow the adversary to transform one valid signature sig of

a message m into another valid signature sig′ of that same message. We will wish to prohibit this,

and so consider the special case where each message has a single valid signature relative to a given

verification key [28, 41, 22, 44]:

Definition 23 A digital signature scheme (Gsig , Ssig , Vsig) provides unique signatures if Ssig is de-

terministic.

We will also use a series of powerful tools based on computational proofs, where a proof scheme

is a game between two interacting machines, one playing the prover and one playing the verifier.

Suppose that L is a language in NP with witness relation LR. The prover wishes to convince the

verifier of a theorem: that a given l is in L. The real prover should be able to do so if the theorem

is true and the prover has a witness for l (i.e. an element of LR(l)) but no prover (even malicious

ones) should be able to do so otherwise:

Definition 24 (Interactive proof system) A pair of interactive PPT Turing machines, a prover

P and a verifier V, are an interactive proof system for a language L ∈ NP with witness relation LR

if:

1. Completeness: If l ∈ L and the honest prover has a valid witness, then it can produce a proof

which is acceptable to the verifier (except with negligible probability):

Pr
[

b← OUT
P,V
V

(〈l, R(l)〉 , ·|l, ·) : b = 1
]

≥ 1− neg(|l|)

2. Soundness: If l 6∈ L then no prover (even a malicious one that wishes to “fool” the verifier)

can produce a proof which is acceptable to the verifier (except with negligible probability): P′,

Pr
[

b← OUT
P
′,V

V
(l, ·|l, ·) : b = 1

]

≤ neg(|l|)

54

The above definition is satisfied by the trivial protocol where the prover simply sends the witness to

the verifier. In our application of such protocols, we will require in addition that the proof system

be zero-knowledge [8, 24, 26] meaning that the verifier learns nothing from the proof other than the

truth of the theorem. That is, we wish that anything a (possibly malicious) verifier could do after

the proof it could have also accomplished before. We formalize this by requiring the existence of

a simulator that can create valid-seeming proofs for a given l ∈ L but without the witness itself.

Then, if the malicious verifier can perform some action after the proof, it could have done so without

the proof by running the simulator and continuing as if the proof had occurred.

Definition 25 (Zero-knowledge (ZK) proof system) A pair of interactive PPT Turing ma-

chines, a prover P and a verifier V, are a zero-knowledge interactive proof system for a language

L ∈ NP with witness relation LR if they are an interactive proof system for L and for every ma-

licious verifier V′ there exists a probabilistic polynomial-time simulator S such that for every l ∈ L

and w ∈ LR(l):
{

〈l, t〉 : t← TRANSP,V
′

(〈l, w〉 , ·|l, ·)
}

∼= {〈l, t〉 : t← S(l)}

A proof of knowledge [8] is a proof system where the prover proves knowledge of a witness. At first

glance, it would seem that the definition of a proof system captures this. However, there may be

languages in NP where it is easy to decide membership but hard to find witnesses. In particular,

one could imagine public-key encryption schemes where public keys are all of a certain simple form.

Thus, it is easy to decide if a given string is in the language of public keys. However, this is

quite different from asserting that one knows the corresponding secret key. For example, one may

consider the language COMP of composite natural numbers, where the witness for a x ∈ COMP is its

factorization. Although one can efficiently recognize elements of COMP [5], it is widely assumed to be

hard to compute x’s witness from x alone.2

Also, a formal definition makes the concept of algorithm’s “knowledge” explicit: an algorithm

“knows” a value if it is possible to extract that value from the algorithm. That is, a proof scheme

for L ∈ NP is also a proof of knowledge for the witness relation if there exists an extractor that can

produce a witness to a given theorem by repeated interaction with the prover. Specifically, suppose

that a (possibly malicious) prover can produce with probability p a valid-seeming proof for a given

theorem. Then the extractor can produce a witness to that theorem with probability close to p. To

do so, extractor can “reset” the prover into its original, pre-proof state, and can see and take part

in multiple (interactive) proofs of the given theorem. (Note that the prover uses the same witness

for each proof.)

Definition 26 (Proof of knowledge system) A pair of interactive PPT Turing machines, a

2Indeed, the security of the RSA scheme [58], where public keys are in COMP and witnesses are private keys, depends
on this assumption.

55

prover P and a verifier V, are a proof-of-knowledge system for a language L ∈ NP with witness

relation LR if (P, V) are an interactive proof system for L and there exists a oracle-calling probabilis-

tic polynomial-time machine E such that for every malicious prover P′, every l ∈ L, every y ∈ {0, 1}∗

(which may or may not be a witness to l), and random tape r ∈ {0, 1}∗:

Pr
[

w ← OUT
P
′,E

E
((l, y), r|l, ·) : w ∈ R(l)

]

≥ Pr
[

b← OUT
P
′,V

V
((l, y), r|l, ·) : b = 1

]

− neg(η)

A non-interactive proof system [12] is a special type of proof system that consists of a single message

from prover to verifier. However, if the entire protocol is under the control of the prover, it is

difficult to prohibit it from “proving” false theorems. For this reason, we assume the existence of

a common reference string of randomness, readable by both prover and verifier but writable by

neither. Intuitively, the string provides a random challenge to the prover, which restricts its control

over the protocol and keeps it honest:

Definition 27 (Non-interactive proof system) Let f : N− > N be a polynomial. Then (f, P, V)

is a non-interactive proof system for a language L ∈ NP with witness relation LR if

1. Completeness: For all l ∈ L, all w ∈ R(l), and all reference strings σ ∈ {0, 1}f(|l|),

V(l, P(l, w, σ), σ) = 1

2. Soundness: For all malicious provers P′, then

Pr[σ ← {0, 1}f(η)
;

(x, p)← P′(σ) :

x 6∈ L but V(x, p, σ) = 1] ≤ neg(η)

We can also modify the definition of zero-knowledge for the special setting of non-interaction [11, 60,

12, 14]. Simulation is possible if the common, supposedly-random, reference string is deliberately

chosen by the simulator S:

Definition 28 (Non-interactive zero-knowledge (NIZK) proof system) (f, P, V, S) is a non-

interactive zero-knowledge proof system [12] for a language L ∈ NP with witness relation LR if

1. (f, P, V) is a non-interactive proof system for L, and

56

2. Zero-Knowledge: For all malicious verifiers V′, Exp1(η) ∼= Exp(η) where

Exp1(η) = Pr[σ ← {0, 1}f(|η|)
;

(l, w)← V′(σ);

p← P(l, w, σ) :

V′(p)],

Exp2(η) = Pr[σ ← S(1η);

(l, w)← V′(σ);

p← S′(l) :

V′(p)]

(Both the simulator S and the malicious verifier V′ keep state between their invocations.)

Definition 27 above prevents a malicious prover from producing a proof of a false theorem. It does

not, however, prevent a malicious prover from modifying a proof of one (true) theorem into a valid-

seeming proof of another (false) theorem. In a manner analogous to chosen-ciphertext security, we

wish to prevent the corrupt prover from producing a false proof even after having seen proofs for

theorems of its choice. For technical reasons, the definition gives the adversary simulated proofs

instead of real ones.3 However, this weaker definition will suffice for our purposes.

Definition 29 (Non-malleable NIZK (NM-NIZK) proof system) (f, P, V, S) is a non-malleable

non-interactive zero-knowledge proof system [59] for a language L if

1. There exists a non-interactive proof system π = (f ′, P′, V′) for L, and

2. For all adversaries A and all polynomial-time relations R′, there exists an oracle-calling ma-

chine M such that Exp1(η) ∼= Exp2(η) where

Exp1(η) = Pr[Σ← S(1η);

(l′, p′, a)← AS(·,Σ,κ)(l, p, Σ) :

p′ not produced by S2 ∧ (V(x′, p′, Σ) = 1) ∧ R(x′, a)],

Exp2(η) = Pr[σ ← {0, 1}η ;

(x′, p′, a)← MA(σ) :

(V(x′, p′, σ) = 1) ∧ R(x′, a)]

Here, the algorithm M plays the role of the simulator, and produces the new proof p′ with access

only to A and not to the source of valid (seeming) proofs.4

3Real proofs require a witness, which may not be simulatable.
4We note that this is stronger than the form of non-malleability originally used to implement chosen-ciphertext

security [59]. That form of this definition allowed the adversary access to only one externally-generated valid proof.
Although we will be using it in much the same way, we require non-malleability even when the adversary has access
to many proofs. Also, an implementation of this stronger form was also given in the original paper [59].

57

3.3 Our Implementation

In this section, we propose an implementation of a registration-based plaintext-aware encryption

scheme. That is, we provide a protocol for sender-key creation and registration, and algorithms

for receiver-key generation, encryption, and decryption. The scheme must provide plaintext aware-

ness when the registration authority is honest and chosen-ciphertext security when the registration

authority is corrupt.

The intuition of our implementation is simple:

• Following Rackoff and Simon [57], we make the encryption of a message depend on the public

keys of both sender and receiver. In particular, we ensure that the ciphertexts of our scheme

can be decrypted using the private keys of either receiver or sender.

• Our registration process requires that the sender prove to the registration authority (in a zero-

knowledge way) knowledge of their private keys. Thus, a successful registration ensures that the

registrant knows enough information to decrypt any ciphertext they create. However, because

the registration process is zero-knowledge, no registration authority (honest or corrupt) can

gain any information about the sender’s secret key.

• Lastly, we use digital signatures to ensure that only the registrant can make valid ciphertexts.

Thus, valid ciphertexts must come only from parties that can prove possession of knowledge

sufficient to decrypt.

The actual encryption mechanism is based on the schemes of Naor and Yung [52] and Sahai [59].

In those schemes, the receiver’s public keys is a triple of two public keys for some semantically-secure

encryption scheme and a reference string for a NIZK proof system. The sender encrypts the plaintext

under both component keys individually. It sends not only the two resulting ciphertexts, but also

a non-interactive zero-knowledge proof (relative to the reference string in the receiver’s public key)

that they do in fact contain the same plaintext. If the NIZK proof system is also non-malleable,

then the resulting encryption scheme is chosen-ciphertext secure [59].

Our scheme takes this one step further by adding a self-referential “twist:” the sender now

encrypts in both of the receiver’s keys and in one of his own. The NIZK proof shows that all three

contain the same plaintext. Lastly, we require that the sender sign each ciphertext with some secure

signature scheme. Thus, if a ciphertext is well-formed (meaning that the proof and signature are

both valid) then the sender must know their own key and be able to decrypt it.

More formally, our scheme S = (G, E ,D,RU ,RA) uses the following four cryptographic primi-

tives as building-blocks:

• (G, E, D), a semantically secure cryptosystem in the sense of [25].

58

• (f, P, V, S), a non-malleable NIZK proof system for NP in the sense of [59], where P is the

proving algorithm, V is the verification algorithm, S is the simulator, and f(η) is the length of

the reference string for security parameter η.

• a zero-knowledge proof of knowledge system for NP [8, 24, 26], and

• A secure signature scheme (Gsig , Ssig , Vsig) [27].

Given these, the scheme S is as follows:

• G (receiver key generation): Generate (e1, d1) and (e2, d2) according to G(1η). Pick a random

σ from {0, 1}f(η). The public (receiver’s) key is er = (e1, e2, σ) and the secret key is dr =

(er, d1, d2).

• RU and RA (sender key-generation and registration): First, RU generates (e3, d3) according

to G(1η). Next, generate (s, v) according to Gsig . The public (sender’s) key is es = (1η, e3, v),

and the private key is ds = (es, d3, s). Next, RU engages RA in a zero-knowledge proof of

knowledge for d3 and s. If the zero-knowledge proof of knowledge terminates correctly, RA

outputs es and RA output (es, ds). Otherwise, they both output ⊥.

Recall that we assume the key-registration process to be a secure atomic operation. In par-

ticular, we assume that the adversary cannot interfere with the protocol executions of honest

parties (unless it is the ostensible user or authority). In particular, we assume that the adver-

sary cannot execute the protocol concurrently with other (honest) executions, or modify the

messages of a protocol between two honest users.

• E , on input (m, (e1, e2, σ), ((1η , e3, v), d3, s)) first computes c1 = E(e1, m), c2 = E(e2, m), and

c3 = E′(e3, m). Then, it computes π, a non-malleable NIZK proof against reference string σ

that c1, c2, and c3 all encrypt the same message relative to e1, e2, and e3, respectively. It then

creates sig← Ssig ((c1, c2, c3, π), s), and outputs (c1, c2, c3, π, sig).

• D, on input ((c1, c2, c3, π, sig), ((e1, e2, σ), d1, d2), (1
η, e3, v)) first determines if the signature

sig is valid for message (c1, c2, c3, π) with respect to verification key v. If not, it outputs ⊥.

Otherwise, it then determines if π is a valid proof (relative to the reference string σ) that c1, c2

and c3 are encryptions of the same message under e1, e2 and e3, respectively. If so, it outputs

D′(d1, c1). Otherwise, it outputs ⊥.

3.3.1 Security of S

Theorem 6 The scheme S is registration-based plaintext-aware encryption scheme.

We prove this via several lemmas.

59

Lemma 7 S satisfies registration completeness.

Proof. By definition, the honest registrant knows the witness dd for theorem ed. Hence, the

completeness property of the proof-of-knowledge scheme ensures that the registration authority will

accept the theorem and proof almost all of the time.

Lemma 8 S satisfies encryption completeness.

Proof. If the sender is honest, then it produces (c1, c2, c3, π, sig) where c1, c2 and c3 all contain

the same plaintext m and π is an honest proof of that fact. Thus, the signature sig will always

verify and the completeness property of the NIZK proof system ensures that the proof π will almost

always be accepted. Thus, the decryption algorithm will almost always output D(c1, dr, es). Due

to the fact that (G, E, D) is a public-key encryption scheme, this decryption will reveal the intended

plaintext.

Lemma 9 S satisfies honest security.

Proof. We will prove chosen-ciphertext security by the contrapositive. Suppose there is an

adversary A that succeeds in an adaptive chosen ciphertext attack against an honest sender and an

honest recipient. In particular, we will give two algorithms, R and R′ respectively, and we will prove

that one of the two must break the underlying encryption scheme.

R uses the adversary A to break the semantic security of the encryption scheme (G, E, D) as

follows:

1. It receives as input (e, 1η).

2. First, we create the receiver’s public key er = (e1, e2, σ) and the sender’s public key es =

(1η, e3, v) as follows. Pick a at random from {1, 2}. Set e3−a to be e and set (ea, da)← G(1η).

Generate σ according to the simulator S for the NIZK proof system. Set (e3, d3)← G(1η). Set

(s, v)← Gsig (1η).

3. Run A on input (er, es).

(a) Whenever A asks for a decryption of (c′1, c
′
2, c

′
3, π

′, sig′), encrypted with sending key e′, we

verify the signature sig′ using the verification key in e′. We check the correctness of π′

using V. If it verifies, we decrypt c′a using da and output that as the result. Otherwise

we return ⊥.

(b) Whenever A asks for the encryption of (m′, (e′1, e
′
2, σ

′)), we encrypt m′ under e′1, e′2 and e3

to get c′1, c′2 and c′3 respectively. We create the NIZK proof π′ that all three contain the

same ciphertext, and sign (c′1, c
′
2, c

′
3, π

′) with s to get sig′. We return (c′1, c
′
2, c

′
3, π

′, sig′).

60

4. Eventually A will output (m0, m1). Output (m0, m1) and obtain challenge c. For notation

later, let us say that mβ is the message c encrypts.

5. We then simulate the ciphertext challenge for A. Pick b at random from {0, 1}. Let ca ←

E′(ea, mb), and set c3−a ← c. With probability 1/2, let c3 ← E′(e3, mb) and otherwise, let

c3 ← E′(e3, m1−b). Fake the NIZK proof π using the simulator S, and sign the ciphertexts and

proof with s.

6. Run A on input (c1, c2, c3, π).

7. Again, whenever A asks for a decryption we check the signature, verify the proof, and decrypt

using da. Whenever A asks for an encryption, we create one as above.

8. Eventually A outputs an answer b′. If b = b′, output b′. Otherwise, output a random bit.

There are three kinds of input the adversary can get.

I. First, it is possible that c1, c2, and c3 all encrypt the same message mβ . In this case, the input

given to the adversary is indistinguishable from the input in the real attack the adversary

succeeds in. Thus, the adversary must return β with probability 1/2 + ε, where ε is some

non-negligible function of η.

II. Second, it may be that c1 and c2 both encrypt the same message mβ but c3 encrypts m1−β .

Let x be the probability that the adversary returns β in this case.

III. Finally, it may be that c1 and c2 encrypt different messages. Note that there are two subcases:

• ca and c3 encrypt the same message while c3−a encrypts the other, and

• c3−a and c3 encrypt the same message while ca encrypts the other

These two cases are indistinguishable to the adversary. Since the adversary cannot make any

proofs of false theorems, the oracle will return ⊥ if the adversary ever makes a decryption

query when c1 and c2 encrypt different messages. Thus, the case a = 1 and the case a = 2 give

the same distribution. (See [59]. This is just like one of the main details from Sahai’s proof

that his scheme is CCA2-secure.)

Let mβ′ be the message encrypted in c3, and let y be the probability that the adversary returns

β′ in this case.

This reduction is parameterized by the values x and y, both of which can be chosen by the

adversary. However, we will show that the only value of interest to us is x. In fact, we will show that

for almost all values of x, the above reduction violates the semantic security of (G, E, D). However,

61

the reduction R will not work for certain values of x, so we will show that in those cases a different

algorithm R′ will.

To begin: what is the probability that R returns the correct answer? Again, we consider two

cases: when b = β and when b 6= β:

• In the case that b = β, the adversary sees an input of type I with probability 1/2. When the

adversary sees an input of type I, R is correct with probability
(

1
2 + ε

)

+ 1
2

(

1
2 − ε

)

= 3
4 + ε

2 . If

the adversary does not see an input of type I even though b = β, then it sees an input of type II.

In this case, R is correct with probability x+(1−x)/2 (since whenever the adversary returns β

in an input of type II, R is correct, and the rest of the time, R is correct with probability 1/2).

Thus, the total probability that R is correct when b = β is 1
2 ((3/4 + ε/2) + (1/2 + x/2)).

• Now let us examine the case that b 6= β. Any time this is true, we give input type III to

the adversary. However, with probability 1/2, mb is encrypted in c3 and with probability 1/2,

m1−b is encrypted in c3. (Recall, these two cases are indistinguishable to the adversary.) Thus,

the adversary returns b with probability 1
2y + 1

2 (1 − y), and otherwise returns 1 − b. In this

case, our total probability of being correct is (y/4)+(1−y)/4 = 1/4 , since we are only correct

when the adversary returns 1− b, and then, only half the time.

Taking into account all cases, the probability that R is correct is

1

2

(

1

2
(3/4 + ε/2) +

1

2
(1/2 + x/2) +

1

4

)

This expression evaluates to

3

16
+

ε

8
+

1

8
+

x

8
+

1

8
=

7

16
+

ε + x

8
.

Now if ε+x is non-negligibly different from 1/2 then the above expression is also, and R violates

the semantic security of (G, E, D). If x ≈ 1/2− ε, on the other hand, then we can use A to break the

security of (G, E, D) in a different way. Let R′ be the algorithm that, on input e, operates as follows:

1. Generate (e1, d1) and (e2, d2) by running G′(1η). Generate σ according to the simulator S for

the NIZK proof system. Generate (s, v) by running Gsig . Set e3 to e.

2. Run A on input ((e1, e2, σ), (e3, s)).

(a) Whenever A asks for a decryption query, verify the proof and signature. If both verify,

we decrypt c1 using d1 and output that as the result. Otherwise we return ⊥.

(b) Whenever A′ makes an encryption query, we encrypt, create the proof, and sign as in the

previous reduction.

62

3. Obtain m0, m1 as the output of A. Output (m0, m1) and obtain challenge c. For notation

later, let us say that mβ is the message c encrypts.

4. Pick b at random from {0, 1}. Let c1 ← E′(e1, mb), let c2 ← E′(e2, mb), and let c3 be c.

5. Fake the NIZK proof π using the simulator S.

6. Sign with s to make signature sig.

7. Run A on input (c1, c2, c3, π, sig). Again, whenever A asks for a decryption, we check the

signature and proof, and decrypt using d1. Whenever A asks for an encryption, we create one

as above. Eventually A outputs an answer b′. Output b′.

The proof that R′ works is simple. If R′ picks b = β then A outputs b with probability 1/2 + ε.

If R′ picks b 6= β then A sees input type II and so it outputs b with probability x = 1/2 − ε + ν ′

where ν′ is (positively or negatively) negligible. Thus in either case, we output β with probability

at least 1/2 + ε− |ν ′/2|.

Lemma 10 S enjoys plaintext awareness.

Proof. There are two cases. In this first case, suppose that X = RU. We need an extractor ERU

such that ERU will accurately predict the output of the receiver’s decryption algorithm. Let ERU be

the algorithm that simply returns ⊥. If this ERU is not correct a non-negligible proportion of the

time, then the adversary has a non-negligible probability of forging a signature. Because the digital

signature scheme is secure against the chosen-plaintext attack, this is a contradiction.

Let us show this formally. Suppose that for some adversary, the extractor ERU is incorrect with

a polynomial probability. Then with that same polynomial probability, the adversary produces

something that does not decrypt to ⊥:

∃ adversary A, ∃ PPT ally L, ∃ polynomial q, for infinitely many η

Pr[(er, dr)← G(1η);

eX ← OUT
X,RA
RA (er, ·|1η, ·) ;

h
H
←− A;

c← A
L
′

dRU
(·),D(·,dr,·)(eX, er) :

D(c, dr, eX) 6= ⊥ given that c 6∈ Lc)] ≥ 1
q(η)

We use A and L to construct an adversary A′ that will violate the security of the signature scheme

(Gsig , Ssig , Vsig). This new adversary A′ works as follows:

• On input 1η and v, A′ will pick (e1, d1) ← G′(1η), (e2, d2) ← G′(1η), (e3, d3) ← G′(1η), σ ←

{0, 1}f(η)
. It gives eRU = (e3, v) and er = (e1, e2, σ) to A.

63

• If A makes a call to D(·, dr, ·) with c′ and e′s, A
′ will decrypt as usual. That is, it checks the

signature component in c′ with the verification key in e′ and the proof component of c′ against

the reference string in dr. It then decrypts with d1 and returns the result.

• If A makes a call to L′s(·), then A′ simulates L on the history of A (which it is also simulating).

It then takes the resulting (m, e′r) and creates the return value c′ as thus:

– It encrypts m in e3 from es. It also encrypts m in the e′1 and e′2 from e′r.

– It proves, relative to the reference string σ′ from e′s, that all three of these ciphertexts

contain the same plaintext.

– It then sends the three ciphertexts and the proof to the signing oracle Ssig (s, ·) to get a

signature.

The three ciphertexts, proof, and signature from the oracle are jointly returned to A′.

• When A returns a ciphertext (c1, c2, c3, π, sig), return (c1, c2, c3, π) as the message m and sig

as the signature.

Suppose that D((c1, c2, c3, π, sig), dr = ((e1, e2, σ), d1, d2), eRU = (e3, v)) returns anything other than

⊥. Then it must be that Vsig ((c1, c2, c3, π), sig, v) = 1. Furthermore, we know that (c1, c2, c3, π, sig)

cannot be a ciphertext returned by the ally. Thus, either (c1, c2, c3, π) is not a message sent to the

signature oracle, or it was but sig is not the signature that it returned for that message. However,

we know that every message has a unique signature. Hence, it must be that (c1, c2, c3, π) was not

signed by the signing oracle, and the adversary has created a new message (c1, c2, c3, π) and a valid

signature sig for it. Thus, if ERU does not predict the receiver’s output (except for a negligible

fraction of the time) then A′ violates the security of the digital signature scheme.

In the other case, X = A, and the adversary registered eA. Then the simulator EA is as follows:

• On input (h, (c1, c2, c3, π, sig), er = (e1, e2, σ), eA = (e3, v)), we use h to rewind the adversary

to the point where A engages in key registration with RA. This key-registration process is

the execution of a zero-knowledge proof of knowledge for the private key. Hence, there exists

an extractor E for the proof system that will be able to extract the public keys given oracle

access to the (possibly malicious) prover A. By assumption, A is able to register its public key,

so we run the extractor (with oracle access to A, rewound to the registration step) to extract

d = (d3, v), the secret key associated with eA.

• We then verify the signature sig and verify the proof π; if either are invalid, we output ⊥.

• Otherwise, we use d3 to decrypt c3 and give the result as the answer.

64

From the extractibility property of the proof system, d must be a secret key relative to e. However,

we need to show that the decryption under d will always be the same as the decryption under dr.

If the signature sig or the proof π in c fails to verify, then certainly we are correct to output ⊥.

If both verify, however, we need to show that (except with negligible probability) that c1, c2, and

c3 all encrypt the same message. However, this is the same as showing that the proof system is

non-malleable even when the adversary has access to a polynomial number of valid proofs, which

is our assumption. Hence, if the proof π verifies then all three ciphertexts will contain the same

plaintext. By decrypting c3 with d3 we will produce the same plaintext as the decryption algorithm

would by decrypting c1 with d1.

65

Chapter 4

Diffie-Hellman Key Exchange in

the Dolev-Yao model

In this chapter, we introduce consider the extension of the Dolev-Yao model to include the Diffie-

Hellman key-agreement scheme. This widely-used scheme relies upon properties of a commutative

algebra and, as opposed to the basic Dolev-Yao algebra, requires non-freeness of terms.

We introduce an extension of the Dolev-Yao algebra that allows protocol designers to express the

Diffie-Hellman scheme as part of their protocols. This extension allows the adversary to perform any

efficient computation on Diffie-Hellman values, and considers the non-freeness that they (and the

Diffie-Hellman scheme itself) introduce. We also formulate a formal version of the Diffie-Hellman

assumption in the extended Dolev-Yao model that is targeted for the analysis of real-world protocols.

Lastly, we consider the computational soundness of our extension. In particular, we introduce

a computational interpretation of attacks in the Dolev-Yao model. We show that under this inter-

pretation, any Dolev-Yao attack that violates the formal version of the Diffie-Hellman assumption

maps to a computational algorithm that violates the computational Diffie-Hellman assumption also.

4.1 Overview

In the two previous sections, we have shown that it is possible to ground a large part of the standard

Dolev-Yao model in the more concrete world of computational cryptography. Many popular real-

world protocols will not be affected by this grounding, however, because they do not yet fit into the

Dolev-Yao model.

Consider the Transport Layer Security (TLS) [19] protocol. This widely-used key-exchange

protocol does not use public-key encryption at all, but requires symmetric encryption, hashing,

digital signatures, and the Diffie-Hellman key-exchange scheme. At its most distilled form, this

66

protocol is a series of four messages between a client (C) and server (S)1:

1. C −→ S : C

2. S −→ C : S [gx]KS

3. C −→ S : [gy]KC
{|T1 C S |}K′

4. S −→ C : {|T2 C S |}K′

where

• T1, T2 are fixed tags to distinguish the third message from the fourth,

• [M]KX
is the message M together with a signature that can be verified using the verification

key KX ,

• {|M |}K′ is the message M encrypted with the symmetric key K ′,

• g is a generator for some group G,

• x, y are randomly chosen elements of {1, 2, . . . |G|}, and

• K ′ is a symmetric key created by hashing the value gxy.

The first three of these operations—symmetric encryption, digital signatures, and hashing—are not

totally foreign to the Dolev-Yao model. Like public-key encryption, they are general definitions

that can be satisfied by a variety of implementations. It is reasonable to treat them as public-key

encryption was treated: represented by formal operations which allow the formal adversary only

limited abilities while also showing that the same limitation applies to the computational adversary.

We anticipate that there will soon appear an analysis, like that of Chapter 2, demonstrating

computational soundness for these three operations, and hence do not focus on them here. (We

will require a strong security condition on hashing later in this chapter, however.) Computational

soundness for the Diffie-Hellman scheme, on the other hand, seems to be tricker:

• Firstly, it is not obvious which is the best way to even represent the Diffie-Hellman scheme

in the Dolev-Yao model. The Dolev-Yao model assumes that the algebra is free, and one

can conceive of encoding operations that preserve this freeness. The Diffie-Hellman scheme,

on the other hand, requires non-freeness: the correct operation of the scheme requires that

(gx)y = (gy)x. Given this, it is not obvious how to capture the non-free group and its operations

in the (traditionally) free Dolev-Yao algebra.2

1The full TLS protocol is much more elaborate, primarily to ensure robustness and compatibility. It actually
has two basic forms, one based on Diffie-Hellman and one based on public-key encryption. We show here only the
security-relevant messages of the Diffie-Hellman version.

2There are approaches to Diffie-Hellman in formal cryptography which do not use the Dolev-Yao model and which
use non-free cryptosystems. See Lynch[40] for an example.

67

• Also, it is not clear what powers the Dolev-Yao adversary has with respect to the Diffie-Hellman

scheme. Some candidate abilities spring quickly to mind:

– Just as it can always create fresh nonces and keys, the Dolev-Yao adversary should be

able to create fresh Diffie-Hellman values.

– Since the Diffie-Hellman scheme requires the honest participants to calculate the group

operation (and exponentiation) the adversary must be able to do so as well.

As reasonable as these two operations are, it is unreasonable to assume that an adversary

would be limited to them—in either model.

There are many possible resolutions to these difficulties, and to choose among them one must

decide whether to use the Dolev-Yao model to find flaws or to generate proofs. If one wishes to find

flaws (but does not necessarily need completeness of the flaw-finding algorithm) then one can simply

select any convenient representation and any convenient set of Dolev-Yao operations. If these are

chosen carefully, then automated flaw-finding algorithms can be applied to uncover any flaws from

a given class. (This is the approach taken in, for example, [56].)

We, however, take a different tactic in this chapter. We wish to use the Dolev-Yao model to

generate high-level proofs that remain valid in the computational model. To do this, we will take an

approach much like that in Chapter 2: we present a syntactic limitation on the Dolev-Yao adversary,

and prove that it corresponds to an analogous restriction on the computational adversary. However,

we will now do this in the absence of any obvious closure operation. To define a new closure

operation for Diffie-Hellman would require that the adversary’s powers be rigorously enumerated,

and as mentioned above, we do not know what this enumeration should be.

However the closure operation in Chapters 1 and 2 was only an intermediate definition between

the assumptions of the Dolev-Yao model and the computational definition of chosen-ciphertext

security. Such an intermediate step is not strictly necessary. Our intent in the present chapter is

to disregard this intermediate step and connect the Dolev-Yao model directly to the Diffie-Hellman

assumption. With this decided, our resolution to the two difficulties above becomes clear.

The Diffie-Hellman assumptions stipulate that given computation is beyond the reach of any

reasonable adversary, and so there is no need to decide on explicit powers for the Dolev-Yao adversary.

If we represent the Diffie-Hellman assumption properly, then it will remain sound even if we allow

the Dolev-Yao adversary to perform efficient computations. This is exactly what we will do: rather

than limit the adversary to some artificial set, we allow it to perform any efficient calculation.3

We develop our approach in several parts. First, we expand the Dolev-Yao model to incorporate

the Diffie-Hellman key-exchange scheme. This expansion itself takes multiple steps:

3As an added benefit, this ensures that our results will remain valid even if the adversary is limited in order to aid
the discovery of flaws.

68

• First, the algebra A is itself expanded. We add operations for symmetric encryption, sig-

natures, and hashing. Because we later allow the adversary to perform arbitrary efficient

computations, we will also include a new symbol to represent each such calculation. However,

we insist that the Dolev-Yao algebra remain free. As mentioned above, we cannot continue

to assume non-freeness when we add arbitrary computation. Furthermore, the Diffie-Hellman

scheme requires non-freeness to even operate. However, both of these statements refer to

non-freeness in the computational setting. Thus, we can continue to assume freeness in the

Dolev-Yao setting and non-freeness in the computational setting. We reconcile the freeness or

lack thereof of the two setting when we show how attacks in the formal world map to attacks

(or algorithms) in the computational one.

• We perform this reconciliation when we revise the notion of a valid trace. Our new definition

serves two purposes: first, it makes explicit the internal operations of the adversary (which

Assumption 3 hid behind the closure operation). Second, it captures the realities of the

computational non-freeness. That is, a valid trace can now use two different Dolev-Yao terms

interchangeably, so long as they have the same computational interpretation.

We note that as a result valid Dolev-Yao traces are now defined (in part) in terms of the

underlying bit-string representation—a departure from the encoding algorithm of Section 1.3.

Given the expanded Dolev-Yao model, it is almost trivial to define the Dolev-Yao representation of

the Diffie-Hellman assumption. The Dolev-Yao model, after all, is an alternative model of executions.

There is a natural mapping from Dolev-Yao traces to computational algorithms. Given this, there

is a similarly natural way to characterize traces that “solve” the Diffie-Hellman problem and to give

a syntactic security condition (Property DH, definition 40) that prohibits them. We show this, and

that traces that violate condition DH map to algorithms that solve the computational Diffie-Hellman

problem—no matter which cryptographic algorithms are chosen to implement the mapping.

This, however, is not enough. Dolev-Yao protocols are not a priori required to be efficiently

computable. Hence, traces over infeasible protocols may not map to efficient algorithms. Such

algorithms that solve the Diffie-Hellman problem do not necessarily violate the Diffie-Hellman as-

sumption. It is legitimate for traces to violate condition DH if the honest participants inadvertently

aid the adversary in doing so.

We resolve this difficulty by imposing efficiency upon the protocols. In particular, we define what

it means for a protocol to be “silent” (Definition 41), a natural and purely syntactic condition on

protocols. A silent protocol is one where honest participants will never use a secret Diffie-Hellman

value as a message or a plaintext, but only as key material. One the one hand, this condition is

natural enough to capture a large class of real-world protocols such as TLS and SSH. On the other

hand, this condition allows us to use security properties of the computational algorithms to restrict

69

the honest participants. In particular, we show that traces of silent traces map to efficient algorithms

if hashing can be implemented with our friend, the random oracle.

Thus, a trace that violates security condition DH maps to an algorithm that solves Diffie-

Hellman. Furthermore, a trace over a silent protocol can be mapped, via the random oracle, to

an efficient algorithm. Hence, the main result of this work that under the random oracle and

computational Diffie-Hellman assumptions, there can be no trace over a silent protocol that also

violates condition DH. Thus, it is computationally sound to use and assume property DH. (See [32]

for an example.)

The use of the random oracle here is analogous to its use in Theorem 1. That is, it is used to

show that a connection between the Dolev-Yao and computational models can be made. Just as

Chapters 2 and 3 remove the random oracle in the case of the standard Dolev-Yao model, we expect

future work to remove the random oracle from this chapter as well. In fact, we will mention some

possible approaches to this in Chapter 5.

The rest of this chapter is as follows. First, we quickly review the Diffie-Hellman assumption given

in Chapter 1.4, and present a weaker form that will be useful for our present purposes (Section 4.2).

We then extend the Dolev-Yao model to include the Diffie-Hellman scheme by first expanding the

algebra (Section 4.3.1) and then by expanding the notion of valid traces (Section 4.3.2).

We then define the security condition DH and the notion of silent protocols. We first “derive”

these definitions informally (Section 4.4). We then give the mapping from valid Dolev-Yao traces

to algorithms (Section 4.5) and the first of our primary results: a proof that a trace that violates

condition DH maps to an algorithm that solves Diffie-Hellman (Theorem 12). We then restrict our

attention to silent protocols (Section 4.6) and show that the random oracle allows us to efficiently

simulate their computational interpretations. Thus, traces over silent protocols that violate condition

DH map to algorithms that solve Diffie-Hellman efficiently (Theorem 11).

4.2 The Diffie-Hellman Problem

In this section, we review the Diffie-Hellman key-agreement scheme that was introduced in Sec-

tion 1.4. All participants of this scheme must agree on a family {gη, Gη}η (where each Gη is a cyclic

group generated by gη) which is fixed and indexed by the security parameter. When the security

parameter η is clear from context, we will refer to Gη and gη as simply G and g. It is assumed that

every element of Gη can be represented with a number of bits polynomial in η.

Two entities A and B can use this family to agree on a secret random value in the following way:

• A value of the security parameter η is chosen via some external mechanism.4

4In practice, this is either fixed in a standards document or negotiated via a preliminary round of communication.

70

• A chooses a random element x ∈ {1 . . . |Gη|} and sends to B the value gx, and

• B chooses a random element y ∈ {1 . . . |Gη |} and sends to A the value gy.

The random value upon which they have agreed is gxy, which both can calculate:

• A can calculate gxy from x and gy via (gy)
x

= gxy and

• B can calculate gxy from y and gx via (gx)y = gxy.

We will call the values gx and gy the base Diffie-Hellman values, and call gxy the Diffie-Hellman

secret.

Note that the scheme provides no authentication. Although A can be sure that the secret value

gxy is known only to A herself and the entity that generated y, A cannot tell who that entity is.

Authentication and identification must be ensured by some other mechanism.

The scheme is, however, assumed to provide secrecy in the sense that no agent other than A and

B should be able to learn the value gxy. This notion can be formalized in two different ways. The

stronger formalization is the decisional Diffie-Hellman assumption, which is given in Section 1.4.

Briefly, this assumption states that no efficient adversary can distinguish the actual Diffie-Hellman

key from a random group element:

Definition 30 The decisional Diffie-Hellman assumption for a group family {gη, Gη}η is:

∀ PPT algorithms A, |Exp1(η)−Exp2(η)| ≤ neg(η)

where

Exp1(η) = Pr[x, y ← {1, 2, . . . , |Gη |} ;

b← A(1η, Gη , gη, gx
η , gy

η , gxy
η) :

b = 1]

Exp2(η) = Pr[x, y, z ← {1, 2, . . . , |Gη |} ;

b← A(1η, Gη , gη, gx
η , gy

η , gz
η) :

b = 1]

This is the form we will assume for this chapter. However, we will also use the original weaker form

known as the computational Diffie-Hellman assumption, which simply requires that the adversary

be unable to produce gxy from only gx and gy:

Definition 31 The computational Diffie-Hellman problem over for a group family {Gη}η to produce

gxy from input gx and gy. The computational Diffie-Hellman assumption is that the computational

71

Diffie-Hellman problem is hard if x and y are chosen randomly:

∀ PPT algorithms A :

Pr[x, y ← {1, 2, . . . , |Gη |} ;

h← A(1η, Gη, gη, gx
η , gy

η) :

h = gxy
η] ≤ neg(η)

Note that the decisional form of the assumption implies the computational one, and thus is the

one usually assumed. We, however, will use the computational Diffie-Hellman assumption in this

chapter. To do so, we first need to extend the Dolev-Yao algebra to the point that the assumption

can be even expressed.

4.3 Extending the Dolev-Yao Model

In incorporate Diffie-Hellman into the Dolev-Yao model, we expand the Dolev-Yao model in two

ways: we enlarge the algebra, and we reconsider the joint definition of the adversary and trace

validity.

4.3.1 Extending the Algebra

We will extend and modify the algebra of Chapter 1 in three ways.

We add operators for symmetric encryption, signatures and hashing. This is for two reasons:

1. We will later use properties of the hash algorithm in an essential way.

2. One of our ultimate goals is to enable the analysis of popular protocols such as TLS and SSH,

and these protocols use the above operations.

Signing a term is not assumed to hide the message in any fashion. Hashing a term is assumed to result

in a key appropriate for symmetric encryption. We will assume that keys for asymmetric encryption,

symmetric encryption and signatures are mutually disjoint, and that symmetric encryption keys

created through hashing are disjoint from those created directly.

Next, we add an additional type D for Diffie-Hellman messages (i.e. group elements). We will use

d1, d2. . . as elements of D, and we assume there exists an operation DH : D ×D → D to represent

the Diffie-Hellman operation. We denote the range of DH by DDH . In the literature and in practice,

the notation gx is often used as both a computational and formal variable and gxy used instead of

the admittedly cumbersome DH (d1, d2). In contexts where the model is clear, this overloading of

notation presents no difficulty. In this work, however, we are interested in the exact relationship

between the formal and computational models, and will use notation to distinguish the two. Thus,

72

we will use the notation d1, d2 and DH (d1, d2) only for the formal model, and the notation gx, gy

and gxy only for the computational one.

Lastly, we will want (in the next section) to capture the possible behaviors of the adversary. As

mentioned above, we will allow the adversary to perform any efficient computation, which requires

us to define what we mean by this.

Definition 32 A function f : N → R is noticeable if there exists a polynomial q such that f(η) ≥

1
q(η) for all sufficiently large η.

For our purposes, computation can be performed efficiently if there is a machine with a noticeable

probability of performing it.

Definition 33 A function f : {0, 1}∗ → {0, 1}∗ is efficient or efficiently computable if there exists

a probabilistic Turing machine Mf so that Pr [Mf (x) = f(x)] is noticeable in |x|.

Since we will allow the adversary to perform any efficient computation, we will need a notation

to represent output so produced. Therefore, we add to the Dolev-Yao algebra a constructor for

each efficiently computable function. However, we will assume that the adversary can only perform

these computations on Diffie-Hellman values and only to produce Diffie-Hellman values. (We leave

consideration of the adversary’s ability to produce values of other types to analyses like that in

Chapter 2.)

To combine and formalize these modifications:

Definition 34 The set of terms A is (now) assumed to be freely generated from four disjoint sets:

• T ⊆ A, which contains predictable texts,

• R ⊆ A, which contains unpredictable random values,

• K ⊆ A, which contains keys, and

• D ⊆ A, which contains Diffie-Hellman values.

The set of keys (K) is divided into five disjoint sets:

• encryption keys (KPub),

• decryption keys (KPriv)

• signature keys (KSig),

• verification keys (KVer), and

• keys for symmetric encryption (KSym).

73

We assume a mapping inv which maps one member of a key pair to the other, and a symmetric key

to itself. Compound terms are built by the operations:

• hash : A → KSym, representing hashing into keys. We will denote the range of hash by Khash .

• encrypt : (KSym ∪ KPub)×A → A, which represents encryption.

• sig : KSig ×A → A, which represents signing a message.

• pair : A×A → A, which represents concatenation of terms.

• DH : D ×D → D, which represents the Diffie-Hellman operation. (As mentioned previously,

we denote the range of DH by DDH .)

• The operator Ff : D∗ → D for each efficiently-computable f , where D is the set of finite

sequences from D. Note that although f is a function from bit-strings to bit-strings, we are

here using it as a function from D-sequences to D.

We will write sig(K, M) as [M]K . We also note that a previous definition of “ingredient” still

applies:

Definition 15 If M , N are two elements of A, then M is an ingredient of M ′, written M v N , if

the parse tree of M is a sub-tree of the parse tree of N .

That is, the ingredients of a message M are those which must have been used in its creation. In

particular, this implies that the values d1 and d2 are ingredients of DH (d1, d2), as well as ingredients

of Ff (d1, d2). Also, M is an ingredient of hash (M).

We will also need a slight variation on this intuition [63] to denote those messages which could

possibly be learned from M :

Definition 35 We say that M is a subterm of N , written M ≺ N , if:

• M = N , or

• if N = N ′ N ′′, then M ≺ N ′ or M ≺ N ′′,

• if N = {|N ′|}K , then M ≺ N ′,

• if N = [N ′]K , then M ≺ N ′,

• if N = DH (d1, d2), then M ≺ d1 or M ≺ d2,

• if N = FF (d1, d2, . . . , dn), then there exists a di so that M ≺ di.

74

In particular, it is conceivable that one can learn gx from gxy (if, for example, y is chosen to be 1).

Hence, d1 can possibly be learned from DH (d1, d2) and d1 ≺ DH (d1, d2). Likewise, the function

f might be invertible, and so di ≺ FF (d1, d2, . . . dn) for each di. Note, however, that K is not a

subterm of {|M |}K or [M]K (unless K is also a subterm of M). This is because it is impossible to

learn a key from a symmetric encryption. Further, all public keys are already known and so it is

meaningless to speak of “learning” them from an encryption or signature.

4.3.2 Traces and the Adversary

In this chapter, as in Chapter 1, the adversary and the set of valid traces are defined in terms of

each other. One can think of a valid trace as one in which the adversary performs only the allowed

actions, or an adversary as an entity that can non-deterministically choose between valid traces. In

this chapter, however, we will not use any closure operation to compactly represent the adversary’s

powers. Hence, the connection between the adversary and trace will be a little more direct.

We first list the powers which we assume the adversary possesses. The adversary can:

• make any predictable text,

• say any key it knows, whether in KAdv , KPub or KVer ,

• encrypt any message it knows with any encryption or symmetric key that it knows

• decrypt an encryption given that it knows the decryption key,

• sign any message it knows with any signature key it knows,

• extract the “plaintext” from any signature,

• hash any value it knows,

• make fresh random values, which we represent by allowing it to produce whatever it wants

from a distinguished set RAdv ⊆ R,

• generate new Diffie-Hellman values, which we represent by distinguishing the set DP ⊆ D and

allowing the adversary to produce any value in that set. (We assume that DP and DDH are

disjoint.)

• perform the Diffie-Hellman operation, given that it knows one of the appropriate exponents.

That is, if it knows d1 and created d2 (that is, d2 ∈ DP) it can generate DH (d1, d2).

• for every efficiently computable function f , we allow the adversary to generate Ff (d1, d2, . . . dn)

if it knows d1, d2, . . . dn.

75

We note that although the Dolev-Yao algebra is free, two terms (such as Ff (d1, d2, . . . dn) and

Ff ′(d′1, d
′
2, . . . d

′
n)) may represent the same “real” value. We will need to handle this possibility

when we define valid traces, and so need to formalize this notion. This, in turn, requires us to

extend the encoding operation to Diffie-Hellman additions to the Dolev-Yao algebra

Definition 36 (Extended encoding) Let η ∈ N be the security parameter. Let t ∈ {0, 1}ω be a

random tape, partitioned into a length-η segment for each element of R, K and D. Let {gη, Gη}η

be a family of cyclic groups. Then for any M ∈ D, M of the form DH (d1, d2), or M of the form

M = Ff (d1, d2, . . . dn), the encoding of M , written [[M]]
t
η, is defined recursively:

• If M ∈ D, then [[M]]tη = 〈gx, “DH value”〉 where g is the generator for Gη and the randomness

of σM is used to generate an x uniformly from {1, 2, . . . |G|}. (Note: since each element

of G is assumed to have a η-bit representation, there is more than enough randomness to

in σM to generate the required uniform distribution.) σM is being interpreted as the binary

representation of a natural number.)

• If M = DH (d1, d2) then [[d1]]
t
η is 〈gx, “DH value〉 for some gx ∈ Gη and [[d2]]

t
η is 〈gy, “DH value〉

for some gy ∈ Gη. Then [[DH (d1, d2)]]
t
η = 〈gxy, “dh value”〉. We note that calculating gxy from

gx and gy may not be efficiently computable, but delay discussion of this issue until Section 4.6.

• If M = Ff (d1, d2, . . . dn), then [[M]]
t
η is the mapping from distributions to distributions given by

〈

f([[d1]]
t
η , [[d2]]

t
η , . . . [[dn]]tη), “DH value”

〉

.

Note that the encoding [[Ff (d1, d2, . . . dn)]]
t

η
is given in terms of f and not Mf . Hence, the distribution

of [[Ff (d1, d2, . . . dn)]]t
η

will be a fixed value if the same is true for each [[di]]
t
η . This differs from

[[{|M |}K]]
t

η
which may be a non-trivial distribution for all values of [[M]]

t
η and [[K]]

t
η are. This is because

the encrypting algorithm may be probabilistic, and hence there may be many valid ciphertexts for

any given plaintext/key pairs. Therefore, there are many valid encodings of {|M |}K , even for M

and K that have unique representations. However, f is defined to be a function, and so the value

f([[d1]]
t
η , [[d2]]

t
η , . . . [[dn]]

t
η) will only be as probabilistic as the individual [[di]]

t
η .

Now that we know what Dolev-Yao values represent, we can formalize their proper usage. In

previous chapters, a Dolev-Yao trace was an alternating sequence of adversary queries and the

responses of honest parties. A valid trace was one in which each adversary query was derivable

from the trace’s previous messages of via a finite number of atomic operations—represented by

the application of a single closure operation. Although this representation is compact, it hides the

internal operation of the adversary. This internal reasoning of the adversary will be convenient for

our purposes, and so we will use an alternate, equivalent, representation that makes this reasoning

explicit. In this alternate representation, each adversary query must be derivable from previous

messages via a single atomic operation, but the adversary is allowed to apply any finite number of

them between participant responses.

76

We require that the definition of valid traces also handle the inherent non-freeness of the adver-

sary’s arbitrary computations. In particular, we will allow the adversary to apply the function f

to values d1, d2, . . . dn but produce a Dolev-Yao message M other than Ff (d1, d2, . . . dn). We will

require, however, that the Dolev-Yao message M represent merely another way of performing the

same calculation.

Definition 37 A valid explicit Dolev-Yao trace for a group family {qη , Gη}η is an alternating se-

quence:

R0 Q1 R1 Q2 R2 . . . Qn−1 Rn−1 Qn Rn

such that:

• Each Ri is a response from an honest participant, and is of the form 〈n1, n2, . . . nj , Mi〉. Each

Mi ∈ A is a message from the algebra and n1, n2,. . .nj are the indices of previous elements of

the sequence which were received or sent by that participant. (The first actions of a participant

will contain no indicies.)

• Each Qi = 〈Qi,1, Qi,2, Qi,3, . . . Qi,j〉 is a sequence of adversary operations, where Qi,k has one

of the following forms:

– 〈“new text”, M〉 where M ∈ T ,

– 〈“new nonce”, M〉 where M ∈ RAdv ,

– 〈“new DH value”, M〉 where M ∈ DP ,

– 〈“encryption key”, M〉 where M ∈ KPub,

– 〈“decryption key”, M〉 where M ∈ KPriv ∩ KAdv ,

– 〈“signature key”, M〉 where M ∈ KSig ,

– 〈“verification key”, M〉 where M ∈ KVer ∩ KAdv ,

– 〈“symmetric key”, M〉 where M ∈ KSym ∩ KAdv ,

– 〈“concatenation”, n1, n2, M〉 where M = M1 M2 and M1 (resp. M2) is the message of the

sequence (or sub-sequence) element indexed by n1 (resp. n2),

– 〈“separation-left”, n1, M〉 where M ′ is the message of the sequence or subsequence element

indexed by n1 and M ′ = M M ′′ for some M ′′,

– 〈“separation-right”, n1, M〉 where M ′ is the message of the sequence or subsequence ele-

ment indexed by n1 and M ′ = M ′′ M for some M ′′,

– 〈“encryption”, n1, n2, M〉 where M = {|M ′|}K and M ′ (resp K) is the message in the

sequence or subsequence element indexed by n1 (resp. n2), and K ∈ KPub ∪ KSym,

77

– 〈“decryption”, n1, n2, M〉 where M ′ = {|M |}K for some K ∈ KPub ∪ KSym and M ′ (resp.

K−1) is the message in the sequence (or subsequence) element indexed by n1 (resp n2),

– 〈“signing”, n1, n2, M〉 where M = [M ′]K for some K ∈ KVer and M ′ (resp. K−1) is the

message in the sequence (or subsequence) element indexed by n1 (resp n2),

– 〈“message from sig”, n1, M〉 where M ′ = [M]K for some K ∈ KVer and M ′ is the message

in the sequence or subsequence element indexed by n1,

– 〈“hashing”, n1, M〉 where M ∈ hash (M ′) and M ′ is the message of the sequence (or

sub-sequence) element indexed by n1, or

– 〈“knownDH ′′, n1, n2, M〉 where M = DH d1, d2, n1 references a node with message d1,

and n2 references a node previous in the trace of the form 〈“new DH value”, M〉,

– 〈“function”, n1, n2, . . . ni, f, M〉 where

∗ M is an element of D,

∗ each Mi, the message of node ni, is an element of D,

∗ f is the description of a PPT-computable function, and

∗ For all tape← {0, 1}∗, [[Ff (M1, M2, . . .Mi)]]
t

η
= [[M]]

t
η.

In keeping with notation from other frameworks in formal cryptography [63, 62], we will denote by

“node” the sequence elements of honest participants and the elements of adversary sub-sequences.

We will call the last component of a node its “message.”

It will soon be convenient to define the first point in a trace that uses elements from a set S:

Definition 38 A set S arises at a node n of a trace iff n is the first node of the trace with a message

in the set I = {M ′ : ∃M ∈ S such that M vM ′}.

That is, a set arises at the first node whose message has, as an ingredient, elements of the set. Such

nodes are important because they indicate the genesis of certain elements. The node on which a

random nonce arises, for example, indicates the point at which it was randomly selected and thus

the entity that flipped the needed coins.

We will also require an analogous definition (originally from [63]) for the subterm relation:

Definition 39 A set S originates at a node n of a trace iff n is the first node of the trace with a

message in the set I = {M ′ : ∃M ∈ S such that M ≺M ′}.

We also speak of a single message M arising or originating at a node n, by which we actually mean

the set {M}.

hence, an origination point for a value v is the first place at which v could be learned or said by

the adversary. The concept of origination points is usually used in the negative, meaning that we

very often wish to prove that certain values do not originate at all. Note that the adversary is able

78

to “say” (put in the trace) anything that it can deduce. Hence, one proves that a value v is secret

by showing that no trace can contain that value. More specifically, if one can show that there is

no point on which v originates, then there is no node which has that value as a subterm. (If there

is at least one node with v as a subterm, then there must be a first instance, which would be an

origination point.) Thus, to prove the non-origination of v is the Dolev-Yao way to prove secrecy of

that value.

4.4 The Security Property DH and Conservative Protocols

In this section, we will define a condition on traces which represents the computational Diffie-Hellman

assumption, and a condition on protocols which makes them efficient to execute.

The computational Diffie-Hellman assumption is relatively easy to embed in the expanded Dolev-

Yao model. Informally, the computational Diffie-Hellman assumption states that if gx and gy are

chosen by honest participants, then the adversary has only negligible probability of computing gxy.

In keeping with Section 4.3.1, we represent gx by d1 and gy by d2. We represent the fact that they

are chosen by honest participants by having them arise on participant nodes. The message DH d1, d2

represents gxy. We ignore negligible probabilities, and represent adversary computation via traces.

Hence, the computational Diffie-Hellman assumption can be represented as:

Definition 40 (Security Property DH) Suppose that T is a valid, explicit Dolev-Yao trace over

a protocol. The trace T satisfies condition DH if, for all da and db ∈ D, whenever da and db arise

on participant nodes in T , then DH (da, db) does not originate on an adversary node in T .

That is, if da and db arise on honest nodes, meaning that they are chosen by honest participants,

then DH (d1, d2) does not originate at all, meaning that in particular it is secret from the adversary.

This condition easily represents the inability of the adversary to solve the computational Diffie-

Hellman problem on its own. Suppose a trace violates this condition but contains no non-trivial

participant nodes. That is, assume that the trace contains only two participant nodes, R1 = 〈d1〉

and R2 = 〈d2〉, and that all other nodes in the trace are adversarial. Each adversary node represents

one calculation, and each such calculation can be performed efficiently. The terms d1, d2, and

DH (d1, d2) represent gx, gy, and gxy respectively, and so the trace represents an algorithm that

takes in gx and gy from the participants and outputs gxy at the node containing DH (d1, d2). Note,

also, all of this is independent of the exact cryptographic algorithms. Hence, if the Diffie-Hellman

problem is hard, then there exists no trace that violates condition DH—which does not also contain

participant actions.

But what about traces that do involve participants? For these traces, condition DH may be too

strong. There is no restriction on the actions of participants, after all, and so there is no prohibition

against the protocol (for example):

79

On input d1 and d2, output Ff (DH (d1, d2))

where f is some easily invertible permutation on the underlying group. Although DH (d1, d2) does

not syntactically originate from this adversary, the protocol enables the adversary to compute it (by

calculating f−1. A trace involving this protocol could violate condition DH, but the adversary does

not actually violate the Diffie-Hellman assumption. There is no reason to assume that the Diffie-

Hellman problem remains hard if the adversary has access to oracles (participants) that perform

intractable calculations. Hence, there is no a priori reason that condition DH must hold for traces

over arbitrary protocols.

Therefore, we restrict our attention to those protocols that do not provide assistance to the

adversary. In general, this means that protocols must be simulatable. If the (computational) adver-

sary can simulate the execution of the protocol, then honest participants give no assistance to the

adversary. Any help they could give would be already available.

Rather than to consider all simulatable protocols, which may not be easy to characterize syn-

tactically, we instead consider only a sub-class. There are many classes from which to choose; we

choose ours based on such protocols as TLS and SSH. These protocols share a natural but important

condition: participants do not “say” the key gxy, but only hash it into key material.

Definition 41 (Silence) We say that a protocol is silent with respect to Diffie-Hellman if no ele-

ment of DDH originates on a participant node.

Here, we do mean “originate” and not “arise.” The definition allows elements of DDH to arise on

participant nodes so long as they do not originate there. That is, a protocol is silent with respect

to Diffie-Hellman if, whenever DH (d1, d2) arises, it has been hashed into a symmetric key. This

property is purely syntactic and easy to verify. It also allows us to prevent, in the following way, the

honest participants from solving the computational Diffie-Hellman problem for the adversary.

In the next section, we are going to give a mapping from traces to algorithms. We will then show

that a trace T which violates condition DH must map to an algorithm that solves the computational

Diffie-Hellman problem. Interestingly enough, this result is independent of the exact computational

algorithms used in the encoding operator [[·]]tη. Thus, T actually maps to an infinite number of

algorithms—one for each choice of computational algorithms—and each one of them must solve the

computational Diffie-Hellman problem.

These algorithms do not necessarily violate the computational Diffie-Hellman assumption, since

the honest participants may not be efficient. Thus, even if they compute the Diffie-Hellman secret

for the Dolev-Yao adversary, the running time of the joint system (participants and adversary) will

still be larger than polynomial. If a protocol is silent, however, then we can prevent the honest

participants from aiding the adversary in any way.

If a protocol is silent, then participants can only use DH (d1, d2) as an ingredient of a symmetric

80

key. This means that DH (d1, d2) must be hashed before it is used, and this gives us a chance to

prevent it from being “leaked” to the computational adversary. If the computational hash algo-

rithm completely hides the pre-image, as the random oracle will, then the behavior of the honest

participant will be completely independent of the value gxy. By using the random oracle as the hash

algorithm, we can map the trace T to an algorithm where the (bounded) adversary must still solve

the computational Diffie-Hellman problem even though it receives no aid from the (unbounded)

participants.

More formally:

Theorem 11 Suppose that T is a valid, explicit Dolev-Yao trace (for {gη, Gη}η) over a silent pro-

tocol that violates condition DH. Then the existence of random oracles implies the falsehood of the

computational Diffie-Hellman assumption for {gη , Gη}η.

We have used this theorem with great success to analyze real-world protocols. (See [32] for an

analysis of TLS.) Here, however, we focus not on its usage but upon its computational justification,

which we develop in the next two sections.

4.5 A Mapping from Traces to Algorithms

In this section, we provide two things:

1. A natural mapping from traces to computational algorithms that uses arbitrary computational

sub-algorithms, and

2. A proof that for any such choice of algorithms, a trace which violates condition DH maps to

an algorithm that solves the computational Diffie-Hellman problem.

The mapping will use the encoding operator [[·]]tη in an essential way, so we must extend this

operator to the remaining operations of the extended Dolev-Yao algebra:

Definition 42 (Extended encoding, II) Let η ∈ N be the security parameter. Let t ∈ {0, 1}ω

be a random tape, partitioned into a length-η segment for each element of R, K, and D. Let

(G, E, D) be an asymmetric encryption scheme, (Gsym, Esym, Dsym) be a symmetric encryption scheme,

(Gsig , Ssig , Vsig) be a digital signature scheme, and H be a hash scheme. Let {gη, Gη}η be a family

of cyclic groups. Then for any M ∈ A, the encoding of M , written [[M]]
t
η, is defined recursively:

• If M ∈ D, M is of the form DH (d1, d2), or M is of the form Ff (d1, d2, . . . dn), then [[M]]
t
η is

as in Definition 36.

• If M ∈ R, M ∈ KPub, M ∈ KPriv, M ∈ M, M is of the form M1 M2, or M is of the form

{|M ′|}K for some K ∈ KPub, then [[M]]
t
η is as defined in Definition 5.

81

• If M = hash (M ′), then [[M]]
t
η is the mapping from pairs of distributions to distributions given

by
〈

Gsym

(

1η, H
(

[[M ′]]tη

))

, “symkey”
〉

. Note that the hash output is used as randomness to

generate a symmetric key.

• If (M, M−1) is a signature/verification key pair, then [[M]]
t
η = 〈s, “sigkey”〉 and

[[

M−1
]]t

η
=

〈v, “verkey”〉 where (s, v) is the output of Gsig (1η, σM).

• If M = [M ′]K is an encryption, then [[M]]
t
η is the mapping from pairs of distributions to

distributions given by
〈

[[M ′]]tη , Ssig

(

[[M ′]]tη , [[K]]tη

)

, “sig”
〉

• If M ∈ KSym is a symmetric key, then [[M]]
t
η = 〈k, “symkey”〉 where k is the output of

Gsym(1η, σM).

• If M = {|M ′|}K is a symmetric encryption (meaning that K ∈ KSym) then [[M]]
t
η is the mapping

from pairs of distributions to distributions given by
〈

E
(

[[M ′]]
t
η , [[K]]

t
η

)

, “symenc”
〉

A word about how the mapping from traces to algorithms will proceed: The resulting algorithm

will calculate (and store in a table) a value for each node and ingredient thereof in the trace. Very

often, but not always, the value for a message M will be drawn from [[M]]
t
η. The mapping itself

assumes no properties about the cryptographic sub-algorithms, meaning we are free to choose these

sub-algorithms arbitrarily.

Definition 43 Let (G, E, D) be an asymmetric encryption scheme, (Gsym, Esym, Dsym) be a symmetric

encryption scheme, (Gsig , Ssig , Vsig) be a digital signature scheme, and H be a hash scheme. Let

{Gη}η be a family of cyclic groups. Let T be a trace over A. Then AT (1η) is the following algorithm:

• First, a table T is created to map elements of A to bit-strings.At the beginning of the execution,

this table is empty.

• A tape t is randomly selected from {0, 1}∗.

• Each node in the trace is then replaced with a bit-string value, starting with the first node and

working forward. Let node n have message M . The exact manner in which a string is chosen

for n depends on n’s type:

• Suppose that n is of the form 〈“function”, n1, n2, . . . ni, f, M〉. Then:

– f is a PPT-computable function, and

– By inductive hypothesis, a value vnj
has already been chosen for each node nj .

The value vn for n is chosen by running Mf (vn1
, vn2

, . . . vni
) and returning the output. Addi-

tionally, this is the value for T (M) (i.e., stored in the table T for message M) if no value is

already present there.

82

• If n (containing message M) is any other kind of node, then there are two cases:

– If T (M) exists, then vn is given the value of TM .

– If T (M) is not assigned (meaning that M is not in the table T) then a value vn ← [[M]]
t
η

is generated. Since the [[·]]tη operator is defined recursively on the parse tree of M , the

ingredients of M are drawn from or stored in the table T during this process as well.

The above algorithm converts each node of the trace T into a bit-string. We now define what it

means for it to have performed the conversion correctly:

Definition 44 Let T be a trace and AT be the algorithm derived from T as per Definition 43. Then

an execution of AT is “correct” if, given that t is the tape selected at the beginning of the execution

and T is the table at the end, T (M) ∈ [[M]]
t
η for all M with entries in T .

Theorem 12 If T is a valid, explicit Dolev-Yao trace, then Pr [AT (η) computes correctly] is noti-

cable.

Proof. The only part of the algorithm what would store a value in T (M) which is not in the support

of [[M]]
t
η is that which processes “function” nodes. Let n be a node of the form

〈“function”, n1, n2, . . . ni, f, M〉 .

Then by induction, each nj is a previous node with message Mj , and the probability

vnj
∈ supp [[Mj]]

t

η
≥

1

qj(η)

for some polynomial qj and sufficiently large η.

The value vn is found by running Mf on v1, v2,. . . vn. By assumption

Pr [Mf (vn1
, vn2

, . . . vni
) = f(vn1

, vn2
, . . . vni

)] ≥
1

q(η)

for some polynomial q and all sufficiently large η. But notice that the distribution

f([[M1]]
t
η , [[M2]]

t
η , . . . [[Mi]]

t
η) =

[[

Ff ([[M1]]
t
η , [[M2]]

t
η , . . . [[Mi]]

t
η)

]]t

η
.

Thus

Pr

[

f(vn1
, vn2

, . . . vni
) ∈ supp

[[

Ff ([[M1]]
t
η , [[M2]]

t
η , . . . [[Mi]]

t
η)

]]t

η

]

≥
i

∏

j=1

Pr
[

vnj
∈ supp [[Mj]]

t

η

]

≥
i

∏

j=1

1

qj(η)

83

and

Pr

[

a← Mf (vn1
, vn2

. . . vni
) : a ∈ supp

[[

Ff ([[M1]]
t
η , [[M2]]

t
η , . . . [[Mi]]

t
η)

]]t

η

]

≥
1

q(η)

i
∏

j=1

1

qj(η)
.

However, we know from the definition of valid traces that
[[

Ff ([[M1]]
t
η , [[M2]]

t
η , . . . [[Mi]]

t
η)

]]t

η
= [[M]]tη .

Furthermore, the value T (M) stored in the table is drawn from Mf (vn1
, vn2

, . . . vni
). Thus

Pr
[

t← {0, 1}ω : T (M) ∈ supp [[M]]
t
η

]

≥
1

q(η)

i
∏

j=1

1

qj(η)

for some all sufficiently large η.

Furthermore, a trace has only a constant number of “function” nodes, so the probability the

algorithm calculates and stores the correct value for each remains noticeable over the entire execution

of the algorithm.

Corollary 13 Suppose AT correctly executes, and let T be the table at the end of the execution. For

all d1, d2 ∈ D, if T (d1) = gx and T (d2) = gy, then T (DH (d1, d2)) = gxy.

Proof. If the algorithm correctly executes, then T (M) ∈ supp [[M]]
t
η. Thus if T (d1) contains gx,

then [[d1]]
t
η = gx with probability 1 (where t is the tape chosen by AT . Similarly, [[(]]

t
η d2) − gy with

probability 1. Hence, [[DH (d1, d2)]]
t
η = gxy with probability 1, and T (DH (d1, d2)) will contain gxy.

Hence, if a trace uses DH (d1, d2) at any point, then the algorithm can be used to solve the Diffie-

Hellman problem. Notice that the cryptographic algorithms are not used except to convert messages

to bit-strings, so AT will work no matter how they are chosen. However, the algorithm AT may not

be computable in PPT. As described, it requires that the computational Diffie-Hellman problem be

solved for each term DH (d1, d2) in the trace that doesn’t arise on an f -node. In particular, if the

trace contains an instance of DH (d1, d2) that arises on a participant node, the resulting algorithm

may be forced to solve the computational Diffie-Hellman problem. In the next section, we discuss a

way around this difficulty.

4.6 Hashing and the Random Oracle

Assume that there exists a trace over a silent protocol which violates security propertyDH. As shown

in the previous section, this trace maps to an algorithm that solves the Diffie-Hellman problem no

matter how the computational cryptographic algorithms are chosen for the encoding operation.

However, the resulting algorithm may not be efficient. In particular, the algorithm assigns the

value gxy to the formal term DH (d1, d2) (when it also assigns gx to d1 and gy to d2). This may

84

require the algorithm to solve the computational Diffie-Hellman problem directly—an operation we

are explicitly assuming to be inefficient.

However, all adversary nodes are efficiently computable; the algorithm would only need to solve

Diffie-Hellman when calculating the values on participant nodes. Furthermore, we now assume that

all of the participant nodes are silent, and hence Diffie-Hellman values are only used on participant

nodes to make symmetric keys. Since we assume that making a key from a Diffie-Hellman value

involves hashing it first, we can use this to avoid an infeasible computation.

The central idea is that, if the output of the hashing algorithm is completely independent of the

input, then the honest participants can provide no aid to the adversary. More formally, the honest

participants can be simulated by simply choosing random values for the hash algorithm to output—

thus avoiding the need to calculate the pre-image, which might include the secret Diffie-Hellman

value. For simplicity, we use the strongest possible hash algorithm: the random oracle. (We will

later discuss the possibility of weaker constructions.)

Theorem 11 Suppose that T is a valid, explicit Dolev-Yao trace (for {gη, Gη}η) over a silent pro-

tocol that violates condition DH. Then the existence of random oracles implies the falsehood of the

computational Diffie-Hellman assumption for {gη , Gη}η.

Proof. By assumption, T is over a silent protocol and violates security property DH. Then:

• d1 and d2 arise only on participant nodes in T ,

• DH (d1, d2) does not originate on a participant node, but

• DH (d1, d2) originates in T .

Let n be the node on which DH (d1, d2) originates. Note that n must be an adversary node. By

inspecting the form of adversary nodes, we see that the message of n must be DH (d1, d2) itself. (If

the message contained DH (d1, d2) as a subterm, then DH (d1, d2) must be an subterm of a previous

node and n would origination at n.)

Let T |n be the set of all nodes in T which are before n. We construct an adversary A that breaks

the computational Diffie-Hellman assumption in the following way: A(1η, g, gx, gy) simulates AT |n ,

with the following important exceptions:

1. Instead of the table T being empty at initialization, it contains an entry mapping d1 to gx and

an entry mapping d2 to gy.

2. When AT |n calculates a value for DH (da, db), it seems to need to solve the Diffie-Hellman

problem in order to do so. However, we can avoid this calculation by considering the kinds of

nodes which would cause AT |n to calculate a value for DH (da, db).

85

• It could be a f node, in which case A simulates Mf as AT |n would.

• It could be an adversary node of the form 〈“knownDH ′′, n1, n2,DH (d1, d2)〉. In this case,

however, d2 ∈ DP , and so the exponent of gy = T (d2) can be found on the segment of

tape t assigned to d2.

• If could be a participant node, in which case we know that DH (da, db) is not a subterm

of the node in question. (If it were, then it would have originated there.) Let the node in

question contain message M . Since it is an ingredient but not a subterm of M , we can

see that DH (da, db) v hash (N) v M by examination of the term structure. Therefore,

we only need to calculate a Diffie-Hellman value to hash it into a symmetric key.

We employ a trick: instead of calculating the hash, we store a random value instead.

That is, instead of calculating M normally, A chooses a random r of the proper length

for hash (N) and stores it in the table T . It does not calculate a value for N or any of its

ingredients (including DH (da, db)) as part of this calculation.

When finished simulating AT |n , the adversary A selects the value gz calculated for the node n

and returns gz as its output.

What is the likelihood that the new algorithm A will output the correct value?

Let us revisit the original algorithm AT |n . We know from Theorem 12 that for some polynomial

q and all sufficiently large η:

Pr
[

AT |n(1η) computes properly
]

≥
1

q(η)
.

Note that we can modify AT |n to take the values for d1 and d2 as inputs. In that case, running the

new algorithm on random inputs is exactly the same as running it before the modifications:

Pr[x, y ← {1, 2, . . . , |Gη |} :

AT |n(1η, gx, gy) computes properly] ≥ 1
q(η)

We can also modify AT |n to output gz, where 〈gz, “DH value”〉 is the value computed for node n.

Due to Corollary 13:

Pr[x, y ← {1, 2, . . . , |Gη |} ;

gz ← AT |n(1η, g, gx, gy) :

gxy = gz] ≥ 1
q(η)

That is, the original algorithm AT |n can calculate the Diffie-Hellman value gxy with some polynomial

probability. But we are running A, not AT |n . Will the new algorithm have the same advantage? A

uses random values for hashing, while the original algorithm AT |n calculates the values by application

of the hash algorithm for AT |n . However, we can choose the hash algorithm arbitrarily, and so we

86

can choose the random oracle. In this case, the hash values are random, and so this A has exactly

the same probability of success as AT |n .

In other words, suppose that the random oracle exists. If there exists a valid, explicit Dolev-Yao

trace over a silent protocol that violates the security propertyDH of Definition 40, the computational

Diffie-Hellman assumption is false over the group family in question. Conversely, if the Diffie-Hellman

problem is hard over the group and the random oracle is assumed, then there can be no silent and

conservative trace which violates the security condition DH.

87

Chapter 5

Related and Future Work

5.1 Computational Soundness for the Dolev-Yao Model

The first connection between the Dolev-Yao and the computational models was established in work

by Abadi and Rogaway ([3, 4], and continued in [2] and [45, 46]) which served as a great source of

inspiration for this work. In particular, these authors derived and implemented the symmetric-key

version of Theorem 3. Our indistinguishability property is derived for the public-key encryption

setting, and is both stronger than theirs in some places and weaker than theirs in others. More

importantly, however, we go on to use our indistinguishability property to achieve non-malleability.

The relationship between indistinguishability and non-malleability depends on the setting (see [7]

for an examination of this issue). In purely computational definitions of encryption security, for

example, non-malleability always implies indistinguishability, but the converse is not always true.

The results of this paper, interestingly, are exactly the opposite. We show that indistinguishability

(Theorem 3) implies non-malleability (Definitions 10 and 12) in the Dolev-Yao setting. This serves

as strong evidence that non-malleability implies indistinguishability, but the question is still open.

Another two related research efforts in this area are those of Backes, Pfitzmann and Waidner [6],

and Micciancio and Warinschi [47]. In general, these investigations represent protocol executions in

two different ways: a “real” setting and an “ideal” setting. In the “real” setting, the execution of a

protocol is represented as the communication of Turing machines that use computational encryption

to create bit-string messages. The two lines of research differ in their representation of the “ideal”

setting. Backes et al. use a ‘database’ that stores all messages and tracks which ones are known by

whom. This database allows the adversary to access only those messages it would be able to deduce

in the Dolev-Yao paradigm. Micciancio and Warinschi, on the other hand, represent the ideal setting

directly as symbolic execution in the Dolev-Yao model. The main results of both efforts state that

any behavior that an honest participant can see in the “real” setting could also be seen in the “ideal”

88

setting. Hence, a proof of security in the “ideal” setting will serve as a proof in the “real” setting

(modulo negligible probabilities).

These works are extremely compelling. However, they focus attention onto the behavior of the

adversary as a whole. That is, they regard the adversary’s behavior as an unknowable mystery

which cannot be broken into component parts. We, on the other hand, regard the behavior of the

adversary as a series of message creations, and leverage a statement about a single creation into a

statement about the adversary’s behavior as a whole.

A less similar approach to the same problem is a recent effort to incorporate polynomial-time

indistinguishability into process algebras [36, 37, 42, 48, 49]. Process algebras introduce grammars for

processes that typically encompass a large number of higher-level programming constructs. They

also introduce a number of algebraic rewrite and cancellation laws that allow one to prove two

processes equivalent, that their observable behaviors are equivalent, or that the observable behavior

of one process is a subset of the observable behavior of another. In this framework, one can prove

a given process to be “safe” by showing that its observable behavior is the same as, or a subset of,

the observable behavior of an idealized “specification” process.

This idea has recently been expanded to include new types of “equivalent” behavior. In particular,

the definitions of both process and observable behavior have been expanded to include probabilistic

behavior. This allows the definition of “observationally equivalent” to mean “indistinguishable

to any polynomial-time environment or distinguisher.” This approach does not provide the tools

necessary to prove an original indistinguishability result, but it does allow one to prove that some

given indistinguishability result follows from another one. Furthermore, this derivation uses the

high-level rewrite and cancellation rules of the algebra rather than direct reductions.

5.2 Plaintext-Aware Encryption

Plaintext-awareness (the random-oracle form) was originally introduced as an intermediate definition

in the chosen-ciphertext security proof of an asymmetric encryption scheme [10]. However, it was

later shown to be strictly stronger than chosen-ciphertext security [7]. This same work also showed

that plaintext-awareness implied chosen-ciphertext security. It further refined the original definition

in much the same way that the ally oracle refines ours: by incorporating the adversary’s access to

externally-generated ciphertexts.

There have been previous efforts to remove the random-oracle assumption from the definition of

plaintext-awareness [51]. However, these apply only to specific encryption schemes, and are not as

strong as the original definition. We are, as far we know, the only work to propose such a radical

redefinition of plaintext awareness.

89

5.3 Diffie-Hellman and the Dolev-Yao Model

We believe this to be the first effort to use the computational model to incorporate Diffie-Hellman

into the formal model. Previous work on protocols that use Diffie-Hellman [56, 40] have assumed a

strictly formal adversary. That is, they assume an adversary with an explicitly enumerated set of

operations. Although the sets of operations chosen in these works include some appropriate to the

Diffie-Hellman scheme, they do not consider the possibility of arbitrary efficient computations. Our

work, on the other hand, assumes only what can be justified in terms of computational cryptography.

Hence, proofs in our framework will be as strong as the Diffie-Hellman assumption. (Note, however,

our work is not as widely applicable as that in [56]: we cannot yet consider common group-keying

protocols, for example.)

However, our approach currently uses the random oracle. Of course, our original results on the

standard Dolev-Yao model used the random oracle as well. We believe that the random oracle

plays the same role in both instances: a technical simplification that bridges some purely computa-

tional difficulties. In the case of our original Dolev-Yao work, the random oracle (via the original

definition of plaintext-awareness) allowed us to prove that computational soundness for Dolev-Yao

non-malleability existed. This, in turn, allowed us to find a more sophisticated soundness that did

not use the random oracle. Similarly, now that we have demonstrated one version of soundness for

the Dolev-Yao Diffie-Hellman, we anticipate future work that remove the random oracle.

In particular, the random oracle was used here to make the hash of a secret independent of

the secret itself. The fact that it is a secret being hashed indicates that the same result could

be accomplished with a weaker construction. In particular, a pseudo-random function might work

instead, although a chicken-and-egg problem could result if the seed for this function needs to be

secret and independent. Another possibility is to extract the (limited) amount of computational

entropy guaranteed by the computational Diffie-Hellman assumption. (See [13] for a discussion of

entropy under this assumption. See also [23] for a study of a very similar problem.)

We trust that future work will examine this issue, and will be able to remove the random oracle

from our results.

90

Chapter 6

Acknowledgements

I have no shortage of people to thank, beginning with my committee.

Nancy Lynch inspired me with her tireless curiosity. Many were the times that her perceptive

questions revealed solutions to what had previously been difficulties.

Ron Rivest provided priceless guidance and advice throughout my tenure as his student. I am

indebted to the wise counsel he dispensed most generously.

Silvio Micali, through his classes, taught me everything I know about cryptography. Furthermore,

he taught me everything I presently know about what it means to do cryptographic research.

Both Silvio Micali and Moses Liskov allowed me the pleasure and honor authoring a paper with

them. All the insight and originality to be found in Chapter 4 are theirs; all mistakes and oversights

are my own.

Be Blackburn simultaneously served as an anchor to the “real” world of common sense while

also providing unmeasurable amounts of assistance to those of us who had somehow lost outs. It is

also likely that much of this document would not have been possible without her steady supply of

cryptography fuel: chocolates.

My researches were supported by the Cambridge-MIT Institute and by NSF grant CCR-0326277.

It was my mentor at mentor at MITRE, Josh Guttman, who taught me how to do mathematical

research, a lesson that has served me well in graduate school. It is the possibility of working with

him again that makes a return to MITRE so appealing.

Lastly, none of this would have even been possible without the support and love of my wife, Amy

Herzog, who is lying next to me as I write—and finish writing—these words.

91

Appendix A

Index of notation

A.1 The standard Dolev-Yao model

We use the following notation for sets and operations in the setting of formal cryptography:

A→ B : M Entity A sends the message M , addressed to B. (No guarantee that it
reaches B.)

M , N Arbitrary elements of A
{|M |}K Message M encrypted using key K.
K−1 Function that maps an asymmetric key the other of the pair, and a sym-

metric key to itself
M N The concatenation of messages M and N
A The formal algebra of terms
T The set of plaintexts
M The set of names
R The set of nonces
K The set of keys
KPub The set of public keys
KPriv The set of private keys
C[S] The closure of set S
RAdv Nonces chosen by the adversary
KAdv Private keys chosen adversary
R \RAdv Nonces whose values are picked randomly by honest participants
KSubv Keys of principals subverted by the adversary after their keys have been

chosen
KA The public key of entity A
patternpk (M, T) The public-key pattern of M Given the set of keys T .
TM The type tree of M
M v N M is an ingredient of M
M ≺ N M is a subterm of M
T A Dolev-Yao trace
n A node

92

A.2 Computational sets and operations

We use the following notation for sets and operations in the setting of computational cryptography:

η Security parameter
f ≤ neg(η) The function f is negligible in the security parameter
Dη
∼= D′

η Distribution families Dη and D′
η are computationally indistinguishable

Dη
∼=O D′

η Distribution families Dη and D′
η are computationally indistinguishable

with respect to oracle O

N The natural numbers
x← D x is drawn from the distribution D. (If D is a set, x is drawn uniformly

from D.)
Pr [a1, a2, . . . : p] The probability that predicate p is true after experiments a1, a2. . .
G The key generation algorithm for public-key encryption
E The encryption algorithm for public-key encryption
D The decryption algorithm for public-key encryption
Gsym, Esym, Dsym The key generation, encryption and decryption algorithms (respec-

tively) for symmetric encryption
Gsig , Ssig , Vsig Signature key generation, signature and verification algorithms (respec-

tively)
H The hash evaluation algorithm
e A computational encryption key
d A computational decryption key
s A computational signature key
v A computational verification key
k A computational symmetric key
c A computational ciphertext
sig A signature
Parameter The set of security parameters (typically N)
Coins The set of random tapes (coin flips)
PublicKey The set of possible public keys
PrivateKey The set of possible private keys
Ciphertext The set of possible encryptions
Plaintext The set of possible plaintexts
String {0, 1}∗, the set of finite bit strings
A The adversary
D1
∼= D2 Distributions D1 and D2 are computationally indistinguishable

P The prover of an interactive proof system
V The verifier of an interactive proof system
S The simulator
σ The reference string for a NIZK
E The extractor
O An oracle
NP The complexity class
PPT The complexity class
supp D The support of probability distribution D

TRANSA,B (x, rA|y, rB) Transcript of protocol between A and B

VIEW
A,B
A (x, rA|y, rB) View of A during protocol with B

OUT
A,B
A (x, rA|y, rB) Output of A after protocol with B

G, Gη Group over which Diffie-Hellman exchange is performed
g Generator of Diffie-Hellman group

93

A.3 Expansions to the Dolev-Yao model

Aη The finite version of the A
Rη The finite version of R
KPubη The finite version of KPub

KPrivη The finite version of KPriv

[M]K Message M with a signature verifiable with key K.
D Set of formal Diffie-Hellman values
DH Formal Diffie-Hellman operation
DDH Set of Diffie-Hellman values which result from the Diffie-Hellman operation

(range of DH)
DP Set of formal Diffie-Hellman values generated by the adversary (subset of

D)
hash Hash operation
Ff Dolev-Yao operator to represent function f
KSig The set of signing keys
KVer The set of verification keys
KSym The set of symmetric keys

A.4 Sets and operations used to connect formal and compu-

tational settings

We use the following notation for sets and operations used to bridge and connect the formal and

computational settings:

[[M]]
t
η The distribution of M , induced by running the Convert algorithm on

M
µ Function from formal name to bit-strings
t The tape used to generate atomic terms
t () Function from expressions to tags
visτ (σ) String σ is visible in string τ
vn Value given to node in algorithm AT
T Table of algorithm AT
Mf Machine to evaluate function f

A.5 Mathematics

x← D x is drawn from distribution D
x← S x is drawn uniformly from distribution D
∀ s.l. η For all sufficiently large η (∃η0 s. t. ∀η ≥ η0)
|x| Bit-length of x

A.6 Plaintext-Awareness

h
H
←− A Extract current history from A

RU Registration user
RA Registration authority
L Ally oracle
s Private input for ally

94

Bibliography

[1] Proceedings of the 12th IEEE Computer Security Foundations Workshop (CSFW 12). IEEE

Computer Society, June 1999.

[2] Mart́ın Abadi and Jan Jürjens. Formal eavesdropping and its computational interpretation. In

Naoki Kobayashi and Benjamin C. Pierce, editors, Proceedings, 4th International Symposium

on Theoretical Aspects of Computer Software TACS 2001, volume 2215 of Lecture Notes in

Computer Science, pages 82–94. Springer, 2001.

[3] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the computational

soundness of formal encryption). In Jan van Leeuwen, Osamu Watanabe, Masami Hagiya, Pe-

ter D. Mosses, and Takayasu Ito, editors, IFIP International Conference on Theoretical Com-

puter Science (IFIP TCS2000), volume 1872 of Lecture Notes in Computer Science, pages 3–22.

Springer-Verlag, August 2000.

[4] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the computational

soundness of formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

[5] Manindra Agarwal, Nitin Saxena, and Neeraj Kayal. PRIMES is in P. Available at

http://www.cse.iitk.ac.in/news/primality.html, 2003.

[6] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with

nested operations (extended abstract). In Proceedings, 10th ACM conference on com-

puter and communications security (CCS), October 2003. Full version available at

http://eprint.iacr.org/2003/015/.

[7] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among notions

of security for public-key encryption schemes. In Krawczyk [34], pages 26–45. Full version found

at http://www.cs.ucsd.edu/users/mihir/papers/relations.html.

[8] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Brickell [15], pages

390–420.

95

[9] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In D. Stin-

son, editor, Advances in Cryptology - CRYPTO 1993, volume 773 of Lecture Notes in Com-

puter Science, pages 232–249. Springer-Verlag, August 1993. Full version of paper available at

http://www-cse.ucsd.edu/users/mihir/.

[10] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption– how to encrypt with

RSA. In A. De Santis, editor, Advances in Cryptology – Eurocrypt 94 Proceedings, volume 950

of Lecture Notes in Computer Science, pages 92–111. Springer-Verlag, 1995.

[11] M. Blum, P. Feldman, and S. Micali. Non-interactive zero knowledge proof systems and appli-

cations. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pages

103–112, 1988.

[12] M. Blum, A. De Santis, S. Micali, and G. Persiano. Noninteractive zero knowledge. SIAM

Journal on Computing, 20(6):1084–1118, December 1991.

[13] D. Boneh and R. Venkatesan. Hardness of computing the most significant bits of secret keys in

Diffie-Hellman and related schemes. In Advances (CRYPTO 96), volume 1109 of Lecture Notes

in Computer Science, pages 129–142. Springer-Verlag, August 1996.

[14] Joan Boyar, Ivan Damg̊ard, and René Peralta. Short non-interactive cryptographic proofs.

Journal of Cryptology: the journal of the International Association for Cryptologic Research,

13(4):449–472, 2000.

[15] Ernest F. Brickell, editor. Advances in Cryptology (CRYPTO 1992), volume 740 of Lecture

Notes in Computer Science. Springer-Verlag, 1992.

[16] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. In

Proceedings of the 30th ACM Symp. on Theory of Computing (STOC), pages 209–218, May

1998.

[17] R Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive

chosen ciphertext attack. In Krawczyk [34], pages 13–25.

[18] T. Dierks and C. Allen. The TLS protocol. RFC 2246, January 1999.

[19] T. Dierks and C. Allen. The TLS protocol. RFC 2246, January 1999.

[20] D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions on Informa-

tion Theory, 29:198–208, 1983.

[21] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.

In Proceedings of Advances of Cryptology (CRYPTO 84), number 196 in Lecture Noted in

Computer Science, 1984.

96

[22] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signatures without the

random oracle. In J. Stern, editor, Advances in Cryptology– EUROCRYPT ’99, volume 1592

of Lecture Notes in Computer Science, pages 123–139. Springer-Verlag, May 1999.

[23] Rosario Gennaro, Hugo Krawczyk, and Tal Rabin. Secure hashed Diffie-Hellman over non-DDH

groups. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EURO-

CRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 361–381. Springer,

May 2004.

[24] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity or all

languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(1):691–729, 1991.

[25] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sci-

ences, 28(2):270–299, 1984.

[26] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowedge complexity of interactive

proof systems. In Proceedings of the 17th ACM Symposium on Theory of Computing, pages

291–304, 1985. Superseded by journal version.

[27] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital-signature scheme secure against

adaptive chosen-message attacks. SIAM J. Computing, 17(2):281–308, April 1988.

[28] Shafi Goldwasser and Rafail Ostrovsky. Invariant signatures and non-interactive zero-knowledge

proof are equivelent. In Brickell [15], pages 228–244.

[29] Shafi Goldwasser and Yael Taumann. On the (in)security of the Fiat-Shamir paradigm. In

Proceedings of 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS),

October 2003.

[30] Jonathan Herzog. Computational soundness for formal adversaries. Master’s thesis, Mas-

sachusetts Institute of Technology, October 2002.

[31] Jonathan Herzog, Moses Liskov, and Silvio Micali. Plaintext awareness via key registration. In

Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in

Computer Science, pages 548–564. Springer-Verlag, August 2003.

[32] Jonathan C. Herzog. The Diffie-Hellman key-agreement scheme in the Strand-Space model.

In Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW 16), pages

234–247. IEEE Computer Society, June 2003.

[33] J. Kohl and C. Neuman. The Kerberos network authentication service (v5). RFC 1510, Septem-

ber 1993.

97

[34] H. Krawczyk, editor. Advances in Cryptology - CRYPTO 1998, volume 1462 of Lecture Notes

in Computer Science. Springer-Verlag, August 1998.

[35] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message au-

thentication. Request For Comments (RFC) 2104, February 1997. Available at

http://www.cs.ucsd.edu/users/mihir/papers/rfc2104.txt.

[36] P. D. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework

for protocol analysis. In Proceedings of the 5th ACM Conference on Computer and Communi-

cation Security (CCS ’98), pages 112–121, November 1998.

[37] P. D. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. Probabilistic polynomial-time

equivalence and security protocols. In Jeannette M. Wing, Jim Woodcock, and Jim Davies,

editors, World Congress on Formal Methods, volume 1708 of Lecture Notes in Computer Science,

pages 776–793. Springer, September 1999.

[38] Gavin Lowe. An attack on the Needham–Schroeder public-key authentication protocol. Infor-

mation Processing Letters, 56:131–133, 1995.

[39] Gavin Lowe. Breaking and fixing the Needham–Schroeder public-key protocol using FDR.

In Margaria and Steffen, editors, Tools and Algorithms for the Construction and Analysis of

Systems, volume 1055 of Lecture Notes in Computer Science, pages 147–166. Springer–Verlag,

1996.

[40] Nancy Lynch. I/O automaton models and proofs for shared-key communication systems. In

Proceedings of the 12th IEEE Computer Security Foundations Workshop (CSFW 12) [1], pages

14–29.

[41] Anna Lysyanskaya. Signature Schemes and Applications to Cryptographic Protocol Design. PhD

thesis, Massachusetts Institute of Technology, September 2002.

[42] P. Mateus, J.C. Mitchell, and A. Scedrov. Composition of cryptographic protocols in a prob-

abilistic polynomial-time process calculus. In Roberto M. Amadio and Denis Lugiez, editors,

Proceedings, 14th International Conference on Concurrency Theory, volume 2761 of Lecture

Notes in Computer Science, pages 323–345. Springer, 2003.

[43] Catherine Meadows. Formal methods for cryptographic protocol analysis: Emerging issues and

trends. IEEE Journal on Selected Areas in Communication, 21(1):44–54, January 2003.

[44] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In IEEE

Symposium on Foundations of Computer Science (FOCS), pages 120–130, 1999.

98

[45] Daniele Micciancio and Bogdan Warinschi. Completeness theorems for the Abadi-Rogaway logic

of encrypted expressions. Workshop on Issues in the Theory of Security (WITS ’02), January

2002.

[46] Daniele Micciancio and Bogdan Warinschi. Completeness theorems for the Abadi-Rogaway

logic of encrypted expressions. Journal of Computer Security, 12(1):99–129, 2004.

[47] Daniele Micciancio and Bogdan Warinschi. Soundness of formal encryption in the presence of

active adversaries. In Proceedings, Theory of Cryptography Conference, number 2951 in Lecture

Notes in Computer Science, pages 133–151. Springer, February 2004.

[48] J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic polynomial-time cal-

culus for analysis of cryptographic protocols (preliminary report). In Proc. 17th Annual Con-

ference on the Mathematical Foundations of Programming Semantics (MFPS 2001), volume 45

of Electronic Notes in Theoretical Computer Science, May 2001.

[49] J. C. Mitchell, M. Mitchell, and A. Scedrov. A linguistic characterization of bounded oracle

computation and probabilistic polynomial time. In 39th Annual Syposium on Foundations of

Computer Science (FOCS 1998), pages 725–733. IEEE Computer Society, November 1998.

[50] John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated analysis of cryptographic pro-

tocols using Murϕ. In Proceedings, 1997 IEEE Symposium on Security and Privacy, pages

141–153. IEEE, Computer Society Press of the IEEE, 1997.

[51] Siguna Müller. On the security of a Williams based public key encryption scheme. In Kwangjo

Kim, editor, 4th International Workshop on Practice and Theory in Public Key Cryptography

(PKC 2001), volume 1992 of Lecture Notes in Computer Science. Springer, February 2001.

[52] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext

attacks. In Proceedings of the Twenty Second Annual ACM Symposium on Theory of Computing,

pages 427–437, May 1990.

[53] Roger Needham and Michael Schroeder. Using encryption for authentication in large networks

of computers. Communications of the ACM, 21(12):993–999, 1978.

[54] National Institute of Standards and Technology (NIST). Secure hash standard. Fed-

eral Information Processing Standards (FIPS) Publication 180-1, April 1995. Available at

http://www.itl.nist.gov/fipspubs/fip180-1.htm.

[55] L C Paulson. The inductive approach to verifying cryptographic protocols. Journal of Computer

Security, 6:85–128, 1998.

99

[56] Olivier Pereira and Jean-Jacques Quisquater. A security analysis of the cliques protocols suites.

In 14th IEEE Computer Security Foundations Workshop — CSFW’01, pages 73–81, Cape

Breton, Canada, 11–13 June 2001. IEEE Computer Society Press.

[57] C. Rackoff and D. Simon. Noninteractive zero-knowledge proof of knowledge and the chosen-

ciphertext attack. In Advances in Cryptology– CRYPTO 91, Lecture Notes in Computer Science,

pages 433–444.

[58] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[59] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext

security. In 40th Annual Syposium on Foundations of Computer Science (FOCS 1999), pages

543–553. IEEE Computer Society, October 1999.

[60] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-knowledge proof

systems. In Carl Pomerance, editor, Advances in Cryptology - CRYPTO 1988, number 293 in

Lecture Notes in Computer Science, pages 52–72. Springer-Verlag, 1988.

[61] D. Song. Athena, an automatic checker for security protocol analysis. In Proceedings of the

12th IEEE Computer Security Foundations Workshop (CSFW 12) [1], pages 192–202.

[62] F. Javier Thayer Fábrega, Jonathan C. Herzog, and Joshua D. Guttman. Mixed strand spaces.

In Proceedings of the 12th IEEE Computer Security Foundations Workshop. IEEE Computer

Society Press, June 1999.

[63] F. Javier Thayer Fábrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces:

Proving security protocols correct. Journal of Computer Security, 7(2/3):191–230, 1999.

[64] T. Ylonen, T. Kivinen, and M. Saarinen. SSH protocol architecture. Internet draft, November

1997. Also named draft-ietf-secsh-architecture-01.txt.

100

