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Abstract

The Dolev-Yao model is a simple and useful framework in which to analyze security
protocols, but it assumes that the adversary is extremely limited. We show that
it is possible for the results of this model to remain valid even if the adversary is
given additional power. In particular, we show that there exist situations in which
Dolev-Yao adversary can be viewed as a valid abstraction of all realistic adversaries.
We do this in a number of steps:

(1) We summarize the strong assumptions placed on the Dolev-Yao adversary
as a non-malleability property of public-key encryption in the computational
model, an alternate framework with a very powerful adversary.

(2) We re-derive and discuss the indistinguishability property of Abadi and Rog-
away [2] in the public-key setting, and show that it is satisfied by computational
encryption secure against the chosen-ciphertext attack.

(3) We show that any encryption scheme that satisfies the indistinguishability
property also satisfies our (more natural) non-malleability property.

1 Introduction

How can we tell if a cryptographic protocol is secure? Phrased another way,
how can we be sure that a given protocol meets a given security goal? Before we
can analyze a protocol we need to choose a model : a collection of assumptions
and proof methods.

The computational model, for example, is well known. The messages of a pro-
tocol are assumed to be bit-strings from some distribution and the adversary
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is assumed to be an arbitrary algorithm. The cryptographic primitives are as-
sumed to be algorithms (or tuples of algorithms) that satisfy some asymptotic
property even in the presence of an arbitrary adversary.

To prove a protocol secure in this model, one would use a reduction from the
protocol to the underlying primitive. That is, one would show that if there
exists an adversary with a significant chance of successfully attacking the pro-
tocol, then it can be used to construct an adversary with a significant chance
of breaking some cryptographic primitive. If the protocol uses encryption, for
example, then one would reduce the security of the protocol to the security
of the encryption scheme. Thus, an attack that can successfully break the
protocol can be transformed into an attack that can successfully break the
encryption scheme. Similarly, if the protocol is based on signatures, the one
would show that an attack on the protocol can be transformed into one that
can forge a signature. By doing so, one can conclude that if the underlying
cryptographic primitives (encryption, signatures) are secure then the protocol
must be secure also. (See [5] for an example.)

This is a fairly strong model for analysis. The only assumption placed on the
adversary is that it is efficient : executing in probabilistic polynomial time
(PPT). 1 This assumption is fairly weak, giving the model a solid and mean-
ingful grounding in complexity theory. On the other hand, this model is ex-
tremely difficult to use. Reductions tend to be fairly tedious to design, and
must be produced ‘by hand’ for each protocol.

Fortunately, there are alternate models such as the Dolev-Yao model [7]. In
this setting, messages are assumed to be elements of some abstract algebra,
and encryption is an abstract operation on that algebra. The adversary is
assumed to be a specific (albeit non-deterministic) state machine, and the
only way for the adversary to produce new messages is to perform certain
operations on messages it already “knows”.

This model has an extremely nice feature: simplicity. Because the computation
model is symbolic and the adversary is restricted, it is possible to explicitly
represent all of the adversary’s possible behaviors in a compact way. General
theorems can be proven about the limits of the adversary’s powers, and it is
relatively easy to show the adversary’s goals to be outside its range of possible
behaviors. This simplicity allows a great deal of automation. Although the
problem of protocol security is undecidable in general [8], it is decidable for
an important sub-class of protocols [24]. Furthermore, several automated tools
have been successfully used. (See [14,23,26] for typical examples. Also see [16]
for a recent survey of the field.)

1 That is, it has access to an infinite tape of random bits and executes in time
polynomial in the length of its (non-random) input.
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However, this model also has a drawback: the Dolev-Yao adversary is ac-
tually quite weak. Although it can pick from among the allowed operations
non-deterministically, the set of allowed operations is fixed and quite small.
It is unclear whether security against this restricted adversary implies secu-
rity against more realistic adversary models. It is also unclear how security
statements from the Dolev-Yao model transfer to the computational model.

It seems that one must choose between the simplicity of the Dolev-Yao model
and the solid grounding of the computational model. However, is this choice
necessary? Are the two models irreconcilable? In particular, is it necessarily
true that Dolev-Yao proofs of security will have no computational meaning?

This is a large question, and in this paper we only discuss one small part: the
adversary. In particular, we show that the use of sufficiently strong primitives
from computational cryptography forces an equivalence of sorts between the
Dolev-Yao adversary and all computational adversaries. That is, we do four
things:

• We describe the Dolev-Yao model, and extract a natural computational
security condition that summarizes its strong assumptions regarding the
adversary (Sections 3 and 4).
• We investigate a previous effort in this area [2] that related, in the symmetric-

key setting, the passive Dolev-Yao adversary to the passive computational
one. In particular, this effort showed that if two Dolev-Yao messages are
indistinguishable to the passive Dolev-Yao adversary, then the natural in-
terpretations of these two messages in the computational setting will be
indistinguishable to the passive computational adversary. We translate this
result to the public-key setting (Section 5).
• We show that this indistinguishability property is no more powerful than

other, standard definitions of security from computational cryptography
(also Section 5).
• Lastly, we show that our more natural security condition is no more powerful

than the indistinguishability property (Section 6).

We finish by discussing avenues for future work (Section 7). First, however,
we discuss other efforts in this same area.

2 Related Work

The question we discuss has already been partially addressed in work by Abadi
and Rogaway ( [1,2], and continued in [10] and [17,18]) which served as a great
source of inspiration for this work. In particular, these authors derived and
implemented the indistinguishability property that will play such a central
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role here. The indistinguishability property we define and use in this paper is
a direct analogue of theirs, translated from the symmetric-encryption setting
to that of asymmetric encryption. Because of differences between these two
settings, our indistinguishability property will be stronger than theirs in some
places and weaker than theirs in others. More importantly, we will go on to
relate our indistinguishability property to the property of malleability. That
is, we show that the computational adversary can be prohibited from produc-
ing any message that could not also be produced by the Dolev-Yao adversary.
The relationship between indistinguishability and non-malleability depends
on the setting (see [4] for an examination of this issue). In the purely compu-
tational setting, for example, non-malleability is strictly stronger than indis-
tinguishability if the computational adversary only has access to the public
key. However, non-malleability and indistinguishability are equivalent against
the chosen-ciphertext attack (i.e, when the adversary has constant access to a
decryption oracle, as it will in Definition 12). We will show that indistinguisha-
bility implies a weak form on non-malleability in that encryption that satisfies
our Dolev-Yao indistinguishability property also satisfies our Dolev-Yao non-
malleability property. The converse is commonly true in other settings, and is
likely to be true here as well. However, this remains an open question for time
being.

Another two related research efforts in this area are those of Backes, Pfitz-
mann and Waidner [3], and Micciancio and Warinschi [19]. In general, these
investigations represent protocol executions in two different ways: a “real” set-
ting and an “ideal” setting. In the “real” setting, the execution of a protocol is
represented as the communication of Turing machines that use computational
encryption to create bit-string messages. The two lines of research differ in
their representation of the “ideal” setting. Backes et. al. use a ‘database’ that
stores all messages and tracks which ones are known by whom. This database
allows the adversary to access only those messages it would be able to deduce
in the Dolev-Yao paradigm. Micciancio and Warinschi, on the other hand,
represent the ideal setting directly as symbolic execution in the Dolev-Yao
model. The main results of both efforts state that any behavior that an hon-
est participant can see in the “real” setting could also be seen in the “ideal”
setting. Hence, a proof of security in the “ideal” setting will serve as a proof
in the “real” setting (modulo negligible probabilities).

These works are extremely compelling. However, they focus attention onto
the behavior of the adversary as a whole. That is, they regard the adversary’s
behavior as an unknowable mystery which cannot be broken into component
parts. We, on the other hand, regard the behavior of the adversary as a series
of message creations, and leverage a statement about a single creation into a
statement about the adversary’s behavior as a whole.

A less similar approach to the same problem is a recent effort to incorporate
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polynomial-time indistinguishability into process algebras [12,13,15,20,21]. Pro-
cess algebras introduce grammars for processes that typically encompass a
large number of higher-level programming constructs. They also introduce a
number of algebraic rewrite and cancellation laws that allow one to prove two
processes equivalent, that their observable behaviors are equivalent, or that
the observable behavior of one process is a subset of the observable behav-
ior of another. In this framework, one can prove a given process to be “safe”
by showing that its observable behavior is the same as, or a subset of, the
observable behavior of an idealized “specification” process.

This idea has recently been expanded to include new types of “equivalent”
behavior. In particular, the definitions of both process and observable be-
havior have been expanded to include probabilistic behavior. This allows the
definition of “observationally equivalent” to mean “indistinguishable to any
polynomial-time environment or distinguisher.” This approach does not pro-
vide the tools necessary to prove an original indistinguishability result, but
it does allow one to prove that some given indistinguishability result follows
from another one. Furthermore, this derivation uses the high-level rewrite and
cancellation rules of the algebra rather than direct reductions.

3 The Dolev-Yao Model

We begin our work by exploring the powers of the adversary in the Dolev-Yao
model. There are actually several variations on the Dolev-Yao model, each
tailored to a specific tool or application. We provide and discuss a generic ex-
ample which uses public-key encryption. In this setting, messages are assumed
to be elements of an algebra A of values. There are four types of atomic mes-
sages:

• Identifiers (public, predictable, denoted by I)
• Random nonces (private, unpredictable, denoted by R),
• Public keys (KPub), and
• Private keys (KPriv)

Compound messages are created by two deterministic operations:

• encrypt : KPub ×A → A
• pair : A×A → A
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We write {|M |}K for enc(K, M) and M N for pair(M, N). 2 We require that
there be a bijection

inv : KPub → KPriv

and by K−1 we mean inv(K) when K is a public key and inv−1(K) when K
is a private key.

Although we will consider only public-key encryption in this paper, one could
also easily add symmetric encryption to the Dolev-Yao model by introducing
a new key type on which the inv operation is the identity function.

The algebra is assumed to be free: every value has a unique representation.

In the Dolev-Yao model, there are two kinds of active parties: honest par-
ticipants and the adversary. The honest participants follow the steps of the
protocol without deviation. They can engage in multiple runs of the protocol
simultaneously and with different parties. Some versions of the model also
contain the internal states of honest participants, others do not. We will not
consider them in this paper.

The network is assumed to be completely under the control of the adversary,
who can record, delete, replay, reroute, reorder, and completely control the
scheduling of messages. This is modeled by letting the adversary be the net-
work: the honest participants send their messages only to the adversary and
receive messages only from the adversary. Thus, we can consider each exe-
cution of the protocol to be an alternating sequence of adversary messages
(qi ∈ A) and environment responses (ri ⊆ A):

r0 q1 r1 q2 r2 . . . qn−1 rn−1 qn rn

Typically, each message or response will be accompanied by such auxiliary
information as nominal sender, intended receiver, and so forth. We will ignore
this auxiliary information in this work. Such issues as scheduling and routing
of messages are considered in the Dolev-Yao analysis of a protocol, which will
assume that the adversary can choose the recipient and auxiliary information
for its messages with total non-determinism. Hence, the Dolev-Yao analysis
will capture any strategy chosen by the efficient adversaries of the computa-
tional model in choosing the routing information of their messages. In this
work, we will focus on the limited non-determinism allowed to the Dolev-Yao
adversary in choosing its messages’ contents.

The main limitation on the choice of message content is that every query qi

must be derivable from what is known initially and r0, r1, r2. . . ri−1. The initial

2 When three or more terms are written together, such as M1 M2 M3, we assume
they are grouped to the left. That is, M1 M2 M3 = pair(pair(M1,M2),M3).
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knowledge of the adversary includes at least the following:

(1) the public keys (KPub),
(2) the private keys of subverted participants (KAdv ⊆ KPriv),
(3) the identifiers of the principals (I), and
(4) the nonces the adversary itself generates (RAdv ⊆ R) which are assumed

to be distinct from all nonces generated by honest participants.

(Note that the the adversary must receive a set r0 before it sends its first
message. This message can be thought of as an “initialization” from the envi-
ronment which provides the adversary with any extra information that might
be available to it in a particular setting.)

The Dolev-Yao model places severe restrictions on what messages are deriv-
able from others. Analyses in this model tend to focus on the structure of
protocols. That is, they wish to identify those properties of protocols that ex-
ist independently of the encryption schemes used to implement them. Hence,
the Dolev-Yao model assumes that the only manipulations the adversary can
apply with respect to pairing and encryption are those that must be allowed.
The pairing operation must allow pairing and separation, and the encryption
operator must allow encryption and decryption (with known keys). Thus, for a
given message M to be derivable from a set of messages S, it must be possible
to produce it by applying the following operations a finite number of times:

• decryption with known or learned private keys,
• encryption with public keys,
• pairing of two known elements, and
• separation of a pair into its components.

To combine these two intuitions:

Definition 1 (Closure) The closure of S, written C[S], is the smallest sub-
set of A such that:

(1) S ⊆ C[S],
(2) I ∪ KPub ∪ KAdv ∪RAdv ⊆ C[S],
(3) If {|M |}K ∈ C[S] and K−1 ∈ C[S], then M ∈ C[S],
(4) If M ∈ C[S] and K ∈ C[S], then {|M |}K ∈ C[S],
(5) If M N ∈ C[S], then M ∈ C[S] and N ∈ C[S], and
(6) If M ∈ C[S] and N ∈ C[S], then M N ∈ C[S].

It is the central assumption of the Dolev-Yao model that this closure operation
represents the limit of the ability of the adversary to create new messages:
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Definition 2 (Dolev-Yao adversary) Suppose that

r0 q1 r1 q2 r2 . . . qn−1 rn−1 qn rn

is a protocol execution in the Dolev-Yao model, where q1, q2,. . . qn ∈ A are
messages from the adversary to honest participants and r0, r1,. . . rn ⊆ A are
the honest participants’ responses. Then for all i, qi ∈ C[r0 ∪ . . . ∪ ri−1].

That is, although the Dolev-Yao adversary can choose its messages non-
deterministically, it must choose them from within the closure. It is this intu-
ition that we will translate into the computational model.

4 Relating the Dolev-Yao and Computational Messages

In this section, we formalize the intuition of Definition 2 in the language of
computational cryptography, using a series of intermediate attempts. Intu-
itively, we would like to say that it should be hard for the computational
adversary to produce a single message outside the closure of its input. Infor-
mally:

Attempt 1 An abstract encryption operator provides weak 3 Dolev-Yao non-
malleability if ∀PPT adversaries A, ∀S ⊆ A, ∀M ∈ (A \ C[S])

Pr[N ← A(S) : N = M ] is small.

Here, Pr[A; B; C : P ] indicates the probability of predicate P being true after
running experiments A, B and C in series. The notation x ← D indicates x
being drawn from distribution D. If D is a set, the uniform distribution is
used. If D is an algorithm, we use the distribution over output induced by the
distribution of the input and the distribution of D’s random coin flips.

Although this attempt contains the desired intuition, there are two small prob-
lems:

• It is unclear how a set S of Dolev-Yao messages can be passed as input to a
computational adversary, or how a Dolev-Yao message M can be produced
as output.
• It is not clear what a “small” probability is.

The purpose of this section is to make the above definition meaningful. Our
main tool for doing so will be a mapping from Dolev-Yao messages to their

3 In Section 7, we will consider stronger formalizations of this same intuition.
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computational analogues: probability distributions on bit-strings. The map-
ping we present here is congruent to that given by Abadi and Rogaway[1,2],
adapted to the public-key encryption setting.

The “encoding” of a message M , written [[M ]]tη, is a probability distribution
that depends on four things:

• The formal message M ,
• The tape (t) which is an infinite sequence of bits. We assume for conve-

nience that we have random access to this tape, although this can be easily
simulated using a standard tape and some book-keeping. In usage, we will
assume that the bits on this tape are random.
• A security parameter, which is a natural number η represented in unary.

This parameter represents the amount of security present in the system. In
encryption schemes, for example, the security parameter can be thought of
as the size of keys.
• An arbitrary public-key encryption scheme, which in the computational

setting is a triple of algorithms:
· G is the key generation algorithm, which takes as input a security param-

eter η, and η bits of randomness. It outputs a public/private key pair.
· E is the encryption algorithm, which takes in as input a public key, a

plaintext string, and η bits of randomness. The output is the ciphertext.
We will write E(x, pk) for the distribution induced by running E (over all
choices of randomness) on plaintext x and public key pk .
· D is the decryption algorithm, which takes as input a private key and

a string. It is required that D(sk , E(pk , x, σ)) = x for all valid key pairs
(pk , sk), all plaintexts x, and all choices of randomness σ ∈ {0, 1}η.

Note that the key generation and encryption algorithms are randomized.
The randomness used by these algorithms will be polynomial in the se-
curity parameter η; we assume without loss of generality that all of these
polynomials are the identity polynomial f(η) = η.

Definition 3 (Encoding: messages) Let η ∈ N be the security parameter.
Let t ∈ {0, 1}ω be a random tape, partitioned into a length-η segment for each
nonce and public key in A. Let (G, E, D) be a public-key encryption scheme.
Then for any M ∈ A, the encoding of M , written [[M ]]tη, is defined recursively
as:

• If M ∈ R is a nonce, then [[M ]]tη = 〈σM , “nonce”〉, where σM is the value of
the tape partition associated with M .

• If (M, M−1) is a public/private key pair, then [[M ]]tη = 〈e, “pubkey”〉 and

[[M−1]]
t
η = 〈d, “privkey”〉 where (e, d) is the output of G(1η, σM). Note that

σM is used for randomness.
• If M ∈ I is an identifier, then [[M ]]tη is mapped to 〈m, “id”〉 where m is any

(short) bit-string uniquely associated with M . That is, we do not care how
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identifiers are mapped to bit-strings so long as each identifier is uniquely
represented. We assume that it is efficient to compute the encoding of a
given identifier.

• If M = M1 M2, then [[M ]]tη is the mapping from pairs of distributions to

distributions given by
〈
[[M1]]

t
η , [[M2]]

t
η , “pair”

〉
.

• If M = {|M ′|}K is an encryption, then [[M ]]tη is the mapping from pairs of

distributions to distributions given by
〈
E

(
[[M ′]]tη , [[K]]tη

)
, [[K]]tη , “enc”

〉
If S ⊆ A, then by [[S]]tη we mean

〈
[[s1]]

t
η , [[s2]]

t
η , . . .

〉
where s1, s2 are the elements

of S in some canonical order. By [[M ]]η we mean the distribution

{
t← {0, 1}ω ; m← [[M ]]tη : m

}
.

The bits on the tape are used to represent the coin flips used to make atomic
elements, and we will later enforce that the tape is filled with random bits.
Compound terms are made via either bit-string concatenation or a compu-
tational encryption scheme. Note that the coin flips used by the encryption
algorithm are not taken from the tape. Hence, [[{|M ′|}K ]]tη remains a distribution
even if t is fixed.

There are two properties of computational public-key encryption that our
encoding mapping will need to accommodate. First, public-key encryption is
not required to hide the key used to encrypt. We make this possible leak of
information explicit in the definition above by explicitly concatenating each
ciphertext with the encrypting key.

Secondly, computational public-key encryption is not generally required to
hide the length of the plaintext. For this reason, we need to limit the amount
of information about a plaintext that will be revealed by its length. We will
assume that the length of a message depends only on the message’s structure,
not any of its component values. More formally, let the type tree of a formal
message be the same as its parse tree except that each leaf is replaced by its
type. We use the same notation for type trees that we do for messages. Thus,
the type tree of a message {|A N |}K (where A ∈ I, N ∈ R and K ∈ KPub) is
{|I R|}KPub

.

We assume that the length of a formal message M depends only on TM ,
the type tree of M , and the security parameter. This is not an unreasonable
assumption. The above definition of the encoding mapping implies that all
nonces encode to the same length. The assumption can be trivially enforced
for other type trees by padding out to some maximal length. Thus, we will
use

∣∣∣[[M ]]tη

∣∣∣ to designate the unique length of encodings of M .
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The encoding mapping allows formal messages to be represented as bit-strings,
which allows formal messages to be passed to and returned by the computa-
tional adversary. This solves the first problem with Attempt 1. Because the
mapping also introduced the security parameter, we can solve the second prob-
lem. A probability is “small” if it is negligible in the security parameter:

Definition 4 (Negligible) A function f : N → R is negligible if, for any
polynomial q, f(η) ≤ 1

q(η)
for all sufficiently large η.

(The phrase “for all sufficiently large η” is equivalent to ∃η0.∀η ≥ η0.)

With these two problems solved, we can re-attempt to translate Definition 2
into computational terms:

Attempt 2 An encryption scheme (G, E, D) provides weak Dolev-Yao non-
malleability if, when used in [[·]]tη,

∀PPT adversaries A, ∀S ⊆ A, ∀M ∈ (A \ C[S])

∀ polynomials q, ∀ sufficiently large η :

Pr[ t← {0, 1}ω ;

s← [[S ∪ KPub ∪ KAdv ∪RAdv ∪ I]]tη ;

m← A(1η, s) :

m ∈ supp [[M ]]tη ] ≤ 1
q(η)

Here, supp D means the support of distribution D. When the support of a
distribution contains one element, we will treat the distribution itself as a
singleton set.

This definition is still problematic, however, for two technical reasons. First,
the input to the adversary might be of infinite length. The set S may be of
infinite length. There may be an infinite number of elements in I, RAdv , KPub

and KAdv . If any of these are the case, then the restriction of the adversary
to probabilistic polynomial-time is meaningless. No computational encryption
scheme would remain secure against an infinite-time adversary. For this reason,
we require that S be of finite size. The sets I, RAdv , KPub and KAdv might still
be infinite, so instead of passing them as input we represent them via oracles:

• Mt
η(x) returns (the encoding of) the identifier of the xth participant.

• Rt
η(x) returns the (encoding of) the xth nonce in RAdv ,

• PbKt
η(x) returns the public key of principal x, and

• PrKt
η(x) returns the private key of x of x ∈ [[K−1]]

t
η if K−1 ∈ KAdv .
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The second problem is that our results rely upon a technical limitation: acyclic-
ity of encryptions. A set of encryptions is acyclic if, when K1 encrypts K−1

2

in some element of S, and K2 encrypts K−1
3 , and so on, this sequence of keys

encrypting keys never loops back on itself. More formally:

Definition 5 (Acyclic) For an expression M , construct a graph GM where
the nodes are the public/private key pairs used in the expression. We draw
an edge from p1 → p2 if in M the private key K−1

2 associated with pair p2

is encrypted with K1, the public key associated with p1. The expression M is
acyclic if the graph GM is acyclic.

Our results will only hold for acyclic sets S. However, protocols analyzed in
the Dolev-Yao model typically operate in one of three ways:

• Long-term keys are used to encrypt session keys, which themselves never
encrypt other keys,
• The present session key is used to encrypt the next session key, but never

the previous, or
• Keys are never encrypted at all.

None of these cases will produce cyclic encryptions.

Thus, we arrive at our final security condition:

Definition 6 (Dolev-Yao weak non-malleability) An encryption scheme
(G, E, D) provides weak Dolev-Yao non-malleability if, when used in [[·]]tη,

∀PPT adversaries A, ∀ acyclic finite S ⊆ A, ∀M 6∈ C[S] ,

∀ polynomials q, ∀ sufficiently large η :

Pr[ t← {0, 1}ω

s← [[S]]tη ;

m← AM
t
η(·),PbKt

η(·),PrKt
η(·),Rt

η(·)(1η, s) :

m ∈ supp [[M ]]tη ] ≤ 1
q(η)

The main purpose of this section has been to derive this security condition,
which directly captures the assumptions of the Dolev-Yao adversary. However,
there exist other security conditions that formalize the Dolev-Yao model. We
consider one of these in the next section.
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5 An Indistinguishability Lemma

In this section, we consider the indistinguishability-based definitions of Dolev-
Yao security originally derived by Abadi and Rogaway [1,2]. Intuitively, the
definition of that paper describes when two formal messages should “look”
the same to the formal adversary. A formal adversary has the power to make
certain, limited deductions from formal messages; two given formal messages
should “look” the same when all possible deductions that can be made about
them yield the same results. In particular, the formal adversary of [1,2] is
assumed to be unable to distinguish between two different encryptions (unless
it has the corresponding private key or keys). For example, if the adversary of
[1,2] has no other information, the two messages{∣∣∣{|A|}K2

B
∣∣∣}

K1

K−1
1 and

{∣∣∣{|C D|}K3
B

∣∣∣}
K1

K−1
1

should be indistinguishable to it no matter what A, B, C and D are.

The fundamental result of Abadi and Rogaway is that if the encoding algo-
rithm uses sufficiently strong computational encryption, then two messages
indistinguishable to the formal adversary will encode to distributions indistin-
guishable to the computational adversary. Their result applies to the case of
symmetric encryption, and we will here translate it to the case of public-key
encryption. This translation will simultaneously strengthen and weaken the
result. Indistinguishability in the public-key setting requires a stronger similar-
ity between messages than was necessary in the case of symmetric encryption.
However, our results will be able to tolerate the presence of a previously-absent
strong decryption oracle.

Let T be a set of keys and suppose that the formal adversary can decrypt with
regard to them. Then we represent the information that such an adversary can
deduce from a formal message by its public-key pattern 4 :

Definition 7 (Public-key pattern) Let T ⊆ KPub. We recursively define
the function p(M, T ) to be:

• p(K, T ) = K if K ∈ K
• p(A, T ) = A if A ∈ I
• p(N, T ) = N if N ∈ R
• p(N1 N2, T ) = p(N1, T ) p(N2, T )

• p({|M |}K , T ) =

 {|p(M, T )|}K if K ∈ T

〈|TM |〉K o.w. (where TM is the type tree of M)

4 We will use “pattern” to indicate public-key pattern, as opposed to the stronger,
symmetric-key definition of “pattern” in [2].
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Then patternpk (M, T ), the public-key pattern of an expression M relative to
the set T , is

p(M,KPub ∩ C[{M} ∪ T ]).

If S ⊆ A is a set of messages, then patternpk (S, T ) is

〈p(s1, C[S ∪ T ]), p(s2, C[S ∪ T ]), . . .〉

where s1, s2, . . . are the elements of S is some canonical order. The base pat-
tern of a message M , denoted patternpk (M), is defined to be patternpk (M, ∅),
and patternpk (S) is defined to be patternpk (S, ∅).

The grammar/algebra for patterns is exactly that of messages, with the ad-
dition of a new kind of leaf node: 〈|TM |〉K (a “blob” of type-tree TM under
key K) which represents undecipherable encryptions. Unlike the “blobs” of
the symmetric-encryption patterns of [1,2], these “blobs” are labeled with K
and TM . This is because computational encryption schemes do not necessarily
hide either the encrypting key or the plaintext length.

For convenience, we define a useful relationship between two patterns:

Definition 8 (Ingredient) If M , M ′ are two patterns, then M is an ingre-
dient of M ′, written M vM ′, if the parse tree of M is a sub-tree of the parse
tree of M ′.

We note that since messages are special forms of patterns, this relationship
can be applied between two messages as well as between a message and a
pattern. We also note a relationship between a message and its pattern:

Theorem 9 If M , M ′ are messages and M ′ v patternpk (M), then M ′ ∈
C[M ].

PROOF. Suppose that M ′ v patternpk (M). Consider the same path from
root to M ′ in the parse tree of M . Along this path, if an interior node (not
itself M ′) is in C[M ] then both child nodes are in C[M ]:

• C[M ] is closed under separation. Hence, if a node is the pair N N ′ and the
node is in C[M ], then both N and N ′ are in C[M ].
• The two children of a node {|N |}K are N and K. Since K ∈ KPub, K ∈ C[M ]

automatically. Furthermore, K−1 ∈ C[M ] as well: if it were not, then this
node of M ’s parse tree would have been replaced with 〈|TN |〉K in the parse
tree of patternpk (M). But 〈|TN |〉K is not a message and will not contain M ′

in its parse tree. So K−1 ∈ C[M ], and since C[M ] is closed under decryption
with keys it contains, N ∈ C[M ].

Since the root of this path, M itself, is in C[M ] by definition, it must be the
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case that every child of every node above M ′ in the parse tree of M is in the
set C[M ]. Hence, M ′ ∈ C[M ] as well. �

We can extend the encoding operation to the pattern algebra:

Definition 10 (Encoding: patterns) Let:

• [[〈|M |〉]]t
η be any fixed bit-string of length

∣∣∣[[M ]]tη

∣∣∣ such as the all-zero string,
and

• [[〈|M |〉K ]]tη be the the mapping from distributions to distributions given by〈
E

(
[[〈|M |〉]]t

η , [[K]]tη

)
, [[K]]tη , “enc”

〉
.

Patterns allow us to state when two messages appear to be the same to the
formal adversary: when they have the same pattern. The standard definition
of ‘appears to be the same’ in the world of computational encryption is that
of computational indistinguishability. We present a more general definition,
which incorporates the possibility of an oracle:

Definition 11 (Computational indistinguishability) Suppose that {Dη}η
and

{
D′

η

}
η

are two families of distributions indexed by the security parameter.

Then they are computationally indistinguishable with respect to a family of
oracles Ox, written Dη

∼=Ox D′
η, if

∀PPT adversaries A, ∀ polynomials q, ∀ sufficiently large η :∣∣∣Pr[d← Dη : 1← AOd(·)(d, η)]− Pr[d← D′
η : 1← AOd(·)(d, η)]

∣∣∣ ≤ 1

q(η)

We note that if no oracle access is granted at all, then the above definition
reduces to the standard notion of computational indistinguishability.

Our intuitive notion is that a message and its pattern should appear to be
the same. We formalize this notion by saying that a message and its pattern
should encode to computationally indistinguishable probability distributions.
To make this formalization completely meaningful, however, we must consider
what oracle (if any) the adversary can access. This will be determined by the
oracles allowed by the underlying computational encryption scheme.

A computational public-key encryption scheme provides indistinguishability
against the chosen-ciphertext attack 5 (also written CCA-2 secure in the no-
tation of [4]) if no adversary has a chance significantly better than random of

5 See [25], which builds on the work of [22]. See also [6] for a practical implemen-
tation.
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determining accurately whether a ciphertext c is the encryption of message
m0 or message m1, even if:

• the adversary chooses m0 and m1 itself, after seeing the given public key,
and
• the adversary can access a decryption oracle both before choosing the mes-

sages and after receiving the ciphertext in question. (The decryption oracle
will not decrypt c itself, however.)

More formally:

Definition 12 (Chosen-ciphertext security) A computational public-key
encryption scheme (G, E, D) provides indistinguishability under the chosen-
ciphertext attack if

∀PPT adversaries A, ∀ polynomials q, ∀ sufficiently large η :

Pr[ (pk , sk)← G(1η);

m0, m1 ← AD1(·)(pk);

i← {0, 1} ;

c← E(mi, pk);

g ← AD2(·)(c) :

b = g ] ≤ 1
2

+ 1
q(η)

The oracle D1(x) returns D(x, sk), and D2(x) returns D(x, sk) if x 6= c and
returns ⊥ otherwise. The adversary is assumed to keep state between the two
invocations. It is required that m0 and m1 be of the same length.

In the terminology of [1,2], this definition requires that encryption be message-
hiding. It does not, on the other hand, require that it be key-hiding or length-
hiding. It is for this reason that “blobs” in Definition 7 are labeled with both
encrypting key and type-tree (which indicates length of plaintext).

We will assume that the encoding mapping uses CCA-2 secure cryptography.
Thus, the oracle we will use in Definition 11—to show that a message and
its pattern produce indistinguishable encodings—will exactly mirror the de-
cryption oracles of Definition 12. Those oracles will decrypt, with respect to a
given public key, anything but a given “challenge” ciphertext. Our oracles will
do the same. However, a message and its pattern can be thought of as possibly
many different “challenge” ciphertexts under possibly many different keys. It
is simple to define the keys with respect to which our oracles will decrypt:

Definition 13 Let M be a pattern. Then M |KPub
= {K ∈ KPub : K vM}. If

S is a set of messages, then S|KPub
= {K ∈ KPub : ∃M ∈ S s. t. K vM}.
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In addition, the oracle may decrypt with respect to additional keys in some
set T . (We use this additional flexibility in the proof of our main theorem.)
Due to efficiency concerns, however, the set T must be finite.

It is more difficult to define the “challenge” ciphertexts which our oracle will
not decrypt. Most directly, they are those encryptions which differ between

[[M ]]tη and
[[
patternpk (M, T )

]]t

η
. That is, the challenge ciphertexts should be

those which correspond to “blobs” in the pattern of M relative to the set
of keys T . However, for convenience, we will define a larger but equivalent
set of challenge ciphertexts which correspond not only to the “blobs” but all
encryptions visible in M to a Dolev-Yao adversary.

Definition 14 (Visible) Let σ be a bit-string, and τ a set of computational
public keys. Then let visτ (σ) be the smallest set so that

• σ ∈ visτ (σ),
• if 〈a, b, “pair”〉 ∈ visτ (σ), then a ∈ visτ (σ) and b ∈ visτ (σ),
• if 〈c, k, “enc”〉 ∈ visτ (σ), k ∈ τ , and k′ is the secret key corresponding to

k, then D(c, k′) ∈ visτ (σ), and
• if 〈c, k, “enc”〉 ∈ visτ (σ), 〈k′, “privkey”〉 ∈ visτ (σ), and k′ is the secret key

corresponding to k, then D(c, k′) ∈ visτ (σ).

A bit-string m is a visible element in σ relative to τ if m ∈ visτ (σ).

Intuitively, x ∈ visτ (σ) iff x is an encoding of X, σ is an encoding of M ,
τ is an encoding of T and X v patternpk (M, T ). That is, a bit-string is a
visible element of σ if the adversary can derive it from σ using only Dolev-
Yao-style operations using σ and keys in τ . The set visτ (σ) contains every
ciphertext which corresponds to a “blob” in patternpk (M, T ). However, it
also contains every other ciphertext that has an corresponding analogue in
patternpk (M, T ). The decryption oracle will not decrypt these, but this not
worrisome: the computational adversary can decrypt these “non-blobs” itself.
Just as these encryptions are not “blobbed” in patternpk (M, T ) because the
required formal private key is in T or derivable from M , the adversary can
decrypt the corresponding computational ciphertext from keys in τ or deriv-
able from σ itself. Thus, we can prohibit the decryption of this more general
set without losing generality.

Now that we know the nature of our decryption oracle, we can finally define
our indistinguishability property between messages and their patterns:

Definition 15 (Dolev-Yao public-key indistinguishability) A computa-
tional encryption scheme provides Dolev-Yao public-key indistinguishability
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if, when used in [[·]]tη, for all acyclic formal messages M and finite T ⊆ KPub:

[[M ]]η
∼=O

M,T
x

[[
patternpk (M, T )

]]
η

where O
T,M
d (x, pk) returns ⊥ unless pk is a valid public key and

• either pk ∈ [[K]]tη for some K ∈ T , or

• pk ∈ [[K]]tη for some K ∈ (M |KPub
\ T ) and x is not in vis [[T ]]tη

(d).

(The tape t is assumed to be consistent with that used to form the sample

from [[M ]]η or
[[
patternpk (M, T )

]]
η
.) In these cases, OT,M

d (x, pk) returns D(x, sk)

where sk is the private key corresponding to pk.

In the next section, we will show that Dolev-Yao public-key indistinguisha-
bility implies Dolev-Yao weak non-malleability. Before this, however, we show
that Dolev-Yao public-key indistinguishability can be satisfied by CCA-2 se-
curity.

Theorem 16 If (G, E, D) provides indistinguishability under the chosen-
ciphertext attack, then (G, E, D) provides Dolev-Yao public-key indistinguisha-
bility.

PROOF.

Suppose that the encoding mapping uses a computational encryption scheme
(G, E, D). Further, suppose that there exists a formal message M , a set of
keys T and a PPT adversary A that can distinguish between a sample from

[[M ]]tη and a sample from
[[
patternpk (M, T )

]]t

η
(given access to the oracle in

Definition 15). Then (G, E, D) does not satisfy CCA-2 security.

We prove this by hybrid argument. Since M is acyclic, we can order the key-
pairs used in the parse tree of M as K1, K2 . . . Kk so that if Ki → Kj in the
graph GM , then i ≥ j. That is, the deeper the key in the encryptions, the
smaller the number.

We go about the hybrid argument by constructing a number of intermediate
patterns between M and patternpk (M, T ). In particular, we construct patterns
M0, M1,. . .Mk such that:

• M0 = M = patternpk

(
M, T ∪

{
K−1

1 , K−1
2 , . . . K−1

k

})
,

• Mi = patternpk

(
M, T ∪

{
K−1

i−1, K
−1
i−2, . . . K

−1
k

})
, and

• Mk = patternpk (M, T ).
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That is, between Mi and Mi+1 we pick a key K and replace all encryptions
with that key with blobs of the appropriate length.

We use this typeface for a running example. Suppose

M = {|A|}K1

{∣∣∣K−1
1

∣∣∣}
K2

{|B|}K3
{|A B|}K2

and
T = {K3, K4}

Assume for now that KAdv = ∅. The pattern of M is

patternpk (M, T ) = 〈|I|〉K1
〈|KPriv|〉K2

{|B|}K3
〈|I I|〉K2

By using the order on keys suggested by the notation, we can let

M0 = M = {|A|}K1

{∣∣∣K−1
1

∣∣∣}
K2

{|B|}K3
{|A B|}K2

M1 = 〈|I|〉K1

{∣∣∣K−1
1

∣∣∣}
K2

{|B|}K3
{|A B|}K2

M2 = 〈|I|〉K1
〈|KPriv|〉K2

{|B|}K3
〈|I I|〉K2

M3 = 〈|I|〉K1
〈|KPriv|〉K2

{|B|}K3
〈|I I|〉K2

M4 = 〈|I|〉K1
〈|KPriv|〉K2

{|B|}K3
〈|I I|〉K2

We will use the hybrid argument on this table.

Now, suppose that the distributions [[M ]]η and
[[
patternpk (M, T )

]]
η
—the top

and bottoms rows of our table—are distinguishable. That is, [[M ]]η 6∼=O
M,T
x[[

patternpk (M, T )
]]

η
. Then we know by a (standard) hybrid argument that

two consecutive rows are also distinguishable. 6 We continue the hybrid argu-
ment by creating a new table between the two distinguishable rows. Suppose
that Ki is the key being “blobbed” between the two rows. Then there are a
fixed number of encryptions being converted to “blobs”. Create a row for each
such encryption, so that two consecutive rows differ only in a single encryption
being replaced with a blob.

For example, if the two rows are

M1 = 〈|I|〉K1

{∣∣∣K−1
1

∣∣∣}
K2

{|B|}K3
{|A B|}K2

and
M2 = 〈|I|〉K1

〈|KPriv|〉K2
{|B|}K3

〈|I I|〉K2

6 This only follows if the number of rows in the table is polynomial in the security
parameter. In this case, however, the number of rows in the table is constant with
respect to η.
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Then we could expand this into the table:

M1 = 〈|I|〉K1

{∣∣∣K−1
1

∣∣∣}
K2

{|B|}K3
{|A B|}K2

M1.5 = 〈|I|〉K1
〈|KPriv|〉K2

{|B|}K3
{|A B|}K2

M2 = 〈|I|〉K1
〈|KPriv|〉K2

{|B|}K3
〈|I I|〉K2

Two of these rows must be distinguishable.

Again, there must exist two consecutive rows R1 and R2 that can be dis-
tinguished. Since the rows differ only in the contents of a single encryption
and every other part of the row can be created independently, distinguish-
ing between the encoding of two rows reduces to distinguishing between two
encryptions.

Let A be the adversary that can distinguish between the two rows, and let
E = {|P |}K be the encryption that is being changed into 〈|TP |〉K . Then to break
the CCA-2 security of the encryption scheme we will distinguish between an
encryption of m0 and m1 under public key pk by:

• letting m0 ← [[P ]]tη,

• letting m1 ← [[〈|TP |〉]]tη, and
• treating pk as the encoding of K.

More formally:

• On input pk , select random t← {0, 1}ω. Then draw p← [[P ]]tη [pk/K], where

[[M ]]tη [x/X, y/Y, . . .] is the same as [[M ]]tη except that x is assumed to be the
value for X, y the value for Y , and so on. (If X is an encryption and occurs
more than once, then x is used as the value for the instance of X indicated
by context. Values for the other instances are still drawn as before.) Note
that because M is acyclic, we do not need to know the value [[K−1]]

t
η to draw

from [[P ]]tη. Return p and [[〈|TP |〉]]tη as candidate plaintexts. (Recall that [[〈|TP |〉]]tη
is a fixed string of the appropriate length, such as the all-zero string.)
• On input c, an encryption of either [[〈|TP |〉]]tη or p, sample s← [[R1]]

t
η [c/P, pk/K].

Note that, since both t and pk were selected randomly, [[R1]]
t
η [c/P, pk/K] is

the same distribution as [[R1]]η if c encrypts p. Similarly, [[R1]]
t
η [c/P, pk/K] is

the same distribution as [[R2]]η if c encrypts [[〈|TP |〉]]tη. Feed (s, 1η) to A.

• If A makes an oracle call on (x, pk), we check that pk = [[K0]]
t
η for some

K0 ∈M |KPub
∪ T . If not, we return ⊥. If so, we decrypt or not as follows:

· If K0 = K, we check that x is not visible in x relative to t = [[T ]]tη. Since
x is not visible in s relative to t, and c is visible in s relative to t, x 6= c.
Hence, the decryption oracle D2 in Definition 12 will happily decrypt x
for us.
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· If K0 6= K, we can produce
[[
K−1

0

]]t

η
ourselves from the tape t. If K0 ∈ T ,

we decrypt x with the value so produced. If K0 ∈ M |KPub
\ T , we also

check to see if x is visible in s relative to t. We return ⊥ if it is, and
decrypt x if it is not.

Assume in our example that rows M1.5 and M2 can be distinguished by A.
Then P = A B and K = K2. We build the two candidate ciphertexts by
selecting t ← {0, 1}ω. We then select p ← [[A B]]tη, and return p, [[〈|I I|〉]]tη
as candidate ciphertexts. When we get c, a value either from

[[
〈|I I|〉K2

]]t

η
or[[

{|A B|}K2

]]t

η
, we draw

s←
[[
〈|I|〉K1

〈|KPriv|〉K2
{|B|}K3

{|A B|}K2

]]t

η
[c/ {|A B|}K2

, pk/K2]

Since either s ∈ supp [[M1.5]]
t
η or s ∈ supp [[M2]]

t
η, the adversary A will tell us

which one, and this answer will tell us if c encrypts [[A B]]tη or [[〈|I I|〉]]tη.
We simulate A on s: when A requests that we decrypt a string x with[[

K−1
1

]]t

η
, we make sure that it isn’t c, [[B]]tη, or the bit-strings in s that repre-

sent 〈|I|〉K1
and 〈|KPriv|〉K2

. If it is not these four things, we use the tape t
to create the secret key and decrypt x.If A asks us to decrypt something with[[
K−1

2

]]t

η
, we check that it is not any of the four ciphertexts above. If it is

not, then we send it to the decryption oracle provided to us in Definition 12,

which will decrypt it for us. If A asks us to decrypt with
[[
K−1

3

]]t

η
or

[[
K−1

4

]]t

η
,

we create the keys from the tape and decrypt any ciphertext.
The answer from A directly corresponds to the plaintext chosen for c,

which allows us to distinguish whether it encrypts [[〈|I I|〉]]tη or p.

A(s, η) will eventually return an answer that distinguishes between samples
from R1 and R2. The answer from A will signify whether c encrypted p or
[[〈|TP |〉]]tη. �

We note as a corollary that the exact analogue of the Abadi-Rogaway result
holds: if two messages M and N have the same pattern (with respect to some
set T ) then they produce indistinguishable encodings:

Corollary 17 Suppose that M , N are two acyclic messages, T ⊆ A is a set
of keys, and M |KPub

= N |KPub
. If patternpk (M, T ) = patternpk (N, T ), then

there exists an [[M ]]η
∼=O

M,T
x

[[N ]]η.
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PROOF. By assumption and Theorem 15, we know that

[[M ]]η
∼=O

M,T
x

[[
patternpk (M, T )

]]
η

=
[[
patternpk (N, T )

]]
η
∼=O

N,T
x

[[N ]]η

Since M |KPub
= N |KPub

and patternpk (M, T ) = patternpk (N, T ), the oracle
OM,T

x is the same as the oracle ON,T
x . The ∼=O

M,T
x

relation is transitive (by hybrid
argument), and so the result follows. �

We end by noting that we do not lose generality in this corollary by requiring
that M |KPub

= N |KPub
. If M and N have the same pattern but have different

public keys in their parse trees, then we can simply form M ′ by pairing with
M every key in M |KPub

∪N |KPub
, and similarly for N ′. Since we add only public

keys, patternpk (M ′, T ) = patternpk (N ′, T ). However, it is now the case that
M ′|KPub

= N ′|KPub
and the corollary holds.

6 Ideal Encryption

Theorem 18 Suppose that (G, E, D) is a computational public-key encryption
scheme that provides Dolev-Yao public-key indistinguishability. Then (G, E, D)
provides Dolev-Yao weak non-malleability.

PROOF.

Suppose that the theorem is false. Then there is an adversary that is able to
produce a message outside the closure of its input set:

∃PPT adversaries A, ∃ acyclic finite S ⊆ A, ∃M 6∈ C[S] ,

∃ polynomials q, for infinitely many η :

Pr[ t← {0, 1}ω

s← [[S]]tη ;

m← AM
t
η(·),PbKt

η(·),PrKt
η(·),Rt

η(·)(1η, s) :

m ∈ supp [[M ]]tη ] ≥ 1
q(η)

We will construct from this adversary a new adversary A1 that serves as a
counter-example to Theorem 15. But first, consider the parse tree of M . Sup-
pose that every path from the root of the parse tree to a leaf passes through
an element of C[S]. Then it must be that the root message, M , is in C[S] —
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a contradiction. Hence, there must be some path in the parse tree of M such
that no element along that path is in C[S], including the leaf Ml.

Now, consider the simple, intermediate adversary A2, which operates as follows:

(1) It first chooses a random tape t← {0, 1}ω.
(2) It then uses that tape to sample s← [[S]]tη.
(3) It simulates the counter-example adversary A on input (1η, s).
(4) When A makes an oracle query, A2 responds appropriately. (Because it

knows the random tape t, it can compute any atomic value it wishes,
including those returned by the oracles.)

(5) When A responds with m ∈ supp [[M ]]tη, A2 uses this to produce a value

ml ∈ [[Ml]]
t
η. That is, it progresses down the path in the parse tree of M

that leads to Ml:
• It starts with a value for [[M ]]tη, and at the root of the parse tree.
• If the current node is a pair, M ′ N ′, then it separates the current bit-

string value into [[M ′]]tη and [[N ′]]tη. It progresses down the path in the
parse tree toward Ml, and keeps the value for the new node as its new
current value.
• If the current node is an encryption, {|M ′|}K , it uses the tape t to find

the value for [[K−1]]
t
η. It then uses that to decrypt the current bit-string

value to get [[M ]]tη, and progresses down the path in the parse tree toward
Ml. (Note: we know that Ml cannot be K, since K ∈ C[S] and we know
this to not be the case for Ml.)

At the end, this adversary will have a value for [[Ml]]
t
η. Now, consider what Ml

might be:

• Ml cannot be a compound term, since it is a leaf of the parse tree.
• Suppose Ml ∈ I. Then Ml ∈ C[S], no matter what S is—a contradiction.
• Suppose Ml ∈ KPub. Then, as mentioned above, Ml ∈ C[S] always.
• Suppose Ml ∈ R. If Ml ∈ RAdv then Ml ∈ C[S]. So, we only need to worry

about Ml ∈ R \RAdv . There are two cases: either Ml is in the parse tree of
something in S, or it is not. The second case leads to a contradiction. If Ml

is not in the parse tree of any element of S, then the input to the adversary
is completely independent of the required output. Thus, the adversary in
question is able to guess a η-bit random value based only on independent
input. The probability of this must be bounded above by 2−η, contradicting
our assumption that the probability of creating an element of supp [[M ]]tη
(and hence an element of supp [[Ml]]

t
η) is non-negligible.

• Suppose Ml ∈ KPriv. Then, we proceed similar to above. If Ml ∈ KAdv , then
Ml ∈ C[S]. If Ml ∈ KPriv \KAdv but not in the parse tree of some element of
S, the adversary is able to guess a private key based on the corresponding
public key, encryptions using the public key, and values independent of
the private key. Since we are assuming that the encryption scheme provides
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indistinguishability against chosen-ciphertext attacks, the probability of this
must be negligible. Again, we find a contradiction.

Thus, the only possibility is that Ml is in R\RAdv or in KPriv \KAdv , and that
Ml is in the parse tree of some element of S. However, it cannot be the case that
Ml itself is in S, or that Ml can be produced from S only by separating pairs.
(If either of those were true, then Ml would be in C[S] itself, a contradiction.)
Thus, Ml must only appear in S in the plaintext of encryptions.

Thus, we have an adversary A2 which takes an element of [[S]]tη and produces

the plaintext to some encryption in S. Granted, A2 created [[S]]tη itself and
knows every secret. Hence A2 does not serve as the counter-example to any-
thing. However, a simple modification to A2 will serve as a counterexample to
Theorem 15. Let:

S ′ =


S ∪ {Ml} if Ml ∈ R

S ∪
{
Np, {|Np|}M−1

l

}
(where Np ∈ RAdv) if Ml ∈ KPriv

Then we will be able to distinguish between [[S ′]]η and
[[
patternpk (S ′, T )

]]
η

where T is M |KPub
\ S|KPub

. (Note that if Ml is a private key, then it is in
neither C[S] or T . Hence the encryption {|Np|}M−1

l
will become 〈|R|〉M−1

l
in

patternpk (M, T ).)

Consider the adversary A1 that does the following:

(1) It receives as input the value d, which is drawn either from [[S ′]]tη or from[[
patternpk (S ′, T )

]]t

η
(for some tape t). It separates d into dS and dtest ,

where dS ∈ [[S]]tη and either dMl
∈ [[Ml]]

t
η if Ml is a nonce, or dMl

∈[[{
Np, {|Np|}M−1

l

}]]t

η
or

[[{
Np, 〈|R|〉M−1

l

}]]t

η
if Ml is a private key.

(2) It simulates A on (1η, dS). (We will postpone consideration of any oracle
calls that A makes for one moment.)

(3) When A returns m, A1 will attempt to extract the value [[Ml]]
t
η from m.

That is, it recurses down the parse tree of M to Ml, separating pairs and
decrypting encryptions, until it arrives at Ml:
• If M = N1 N2 and m = 〈n1, n2, “pair”〉, then A continues recursively on

n1 or n2 depending on whether N1 or N2 is on the path to Ml.
• If M = {|N |}K , m = 〈c, k, “enc”〉 and k ∈ [[K]]tη, then A1 sends (c, k) to

the decryption oracle. Will the decryption oracle decrypt? There are
two cases:
· By definition, K ∈M |KPub

. If K 6∈ S|KPub
also, then K ∈ T . Hence,

the oracle of Defintion 15 will decrypt c.
· If K ∈ S|KPub

, then K ∈ S|KPub
\ (M |KPub

\ S|KPub
). But S|KPub

\
(M |KPub

\ S|KPub
) = S|KPub

\ T . Hence, the decryption oracle of
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Definition 15 will decrypt c if c is not in vis [[T ]]tη
(d). However, could

c be visible in d with respect to [[T ]]tη? If it is, then by the defini-
tion of visibility, {|N |}K v patternpk (S, T ). In this case, however,
T = M |KPub

\ S|KPub
, and so contains no keys in the parse tree

of S. Allowing the adversary to decrypt with respect to T does
not give it more information about S. Hence, patternpk (S, T ) =
patternpk (S). Thus, if {|N |}K v patternpk (S, T ) then {|N |}K v
patternpk (S) and so by Theorem 9 it must be that {|N |}K ∈ C[S].
However, this contradicts the assumption that no node on the path
from M to Ml is in C[S], and so c cannot be visible in d. Hence,
the decryption oracle of Definition 15 will decrypt it.

Thus, the decryption oracle will always return p, the plaintext of c.
A1 then moves down the parse tree to the node for N and recursively
applies this process to p.

(4) If any of the above conditions fail, then A immediately stops and outputs
0. Otherwise, A1 will acquire a value ml which may be the encoding of
Ml. A1 tests this using the string dtest , which it reserved at the beginning.
If Ml is a nonce, then dtest will be the value for Ml; A can simply test that
ml = dtest . If Ml is a private key, then dtest contains a plaintext [[Np]]

t
η and

an encryption of that plaintext. A1 simply decrypts the encryption with
ml. If the result should be the same as the other value of dtest . If these
tests are satisfied, then A1 outputs 1. Otherwise, it outputs 0.

A1 will return 1 whenever A produces an element of supp [[M ]]tη. Hence, A1 will

return 1 with probability at least 1
q(η)

given that d is in fact drawn from [[S]]η.

If, on the other hand, d is drawn from
[[
patternpk (M, T )

]]
η
, then A cannot have

a non-negligible chance of producing a m ∈ supp [[M ]]tη. Since Ml 6∈ C[S], it
cannot be that Ml v patternpk (S) = patternpk (S, T ).

• If Ml is a nonce, then this implies that the sample d will be entirely inde-
pendent of the actual value for [[Ml]]

t
η.

• If Ml is a private key, on the other hand, then d may include encryptions

made using the public key
[[
M−1

l

]]t

η
. But the encryption provides indistin-

guishability against chosen-ciphertext attack, so it is infeasible to recover
a private key using only encryptions under the corresponding public key.
Since d is otherwise independent of [[Ml]]

t
η, A cannot have a non-negligible

chance of recovering [[Ml]]
t
η.

Thus, the probability that A1 will return 1 given that d is sampled from[[
patternpk (S, T )

]]t

η
must be negligible.

Hence, if A has a non-negligible chance of constructing m ∈ supp [[M ]]tη from

a sample from [[S]]tη, then A1 has a non-negligible chance of distinguishing [[S ′]]η
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from
[[
patternpk (S ′, T )

]]
η
, a contradiction of Theorem 15.

There remains only one last complication: A has access to oracles while op-
erating. In particular, A can request any public key, any private key in KAdv ,
any identifier, and any nonce in RAdv . How does A1 respond to these oracle
calls when it simulates A?

The answer is that we slightly modify the set S ′ to include the information
needed to respond. In particular, let S|KPub

and S|RAdv
be defined analogously

to S|KPub
.Then the set S ′ is will actually be

S ′ =


S ∪ S|KPub

∪ S|KAdv
∪ S|RAdv

∪ {Ml} if Ml ∈ R

S ∪ S|KPub
∪ S|KAdv

∪ S|RAdv
∪

{
Np, {|Np|}M−1

l

}
if Ml ∈ KPriv

When A1 receives the input d it strips off dS as before and simulates A. When
A makes an oracle call, however, A1 can respond:

• If the oracle is being asked for an identifier, A1 computes the representation
of that identifier. (As mentioned before, we assume that the encoding of
identifiers is efficiently computable.)
• If the oracle is being called on an ingredient of S, then the additional infor-

mation in s contains the needed bit-string.
• Otherwise, the needed value is a random variable independent of d. A1 can

sample from the relevant distribution to produce an indistinguishable value.
It then stores the value for future use (and if the value is a key, the corre-
sponding secret or public key also), and returns it.

Since the formal messages we added to S ′ are already in C[S], they do not
change the pattern of the original S. Hence, adding them to S ′ does not change
the distribution of dS, and A will progress as before. �

7 Conclusion and Open Problems

The primary contribution of this paper is three-fold:

(1) First, we presented a definition of Dolev-Yao weak non-malleability, which
directly captures the main assumptions of the Dolev-Yao model.

(2) We then translated the definition of Dolev-Yao indistinguishability from
the secret-key to the public-key setting, and showed that it is satisfied by
encryption that provides indistinguishability under the chosen-ciphertext
attack.

(3) Lastly, we showed that Dolev-Yao indistinguishability implies Dolev-Yao
weak non-malleability.
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One obvious extension of this work would be to examine the relationship be-
tween Dolev-Yao indistinguishability and non-malleability further. In many
settings, non-malleability is either equivalent to or strictly stronger than in-
distinguishability. The fact that Dolev-Yao indistinguishability implies Dolev-
Yao non-malleability is strong evidence for their equivalence in this setting,
but the question remains open.

Another interesting way to extend this work would be to strengthen the defi-
nition of Dolev-Yao non-malleability. The current definition states, informally,
that the adversary has only a negligible chance of “hitting” a given target (i.
e., producing an encoding of a given M). If possible, it would be interesting to
find an encryption scheme that keeps the adversary from hitting any target:

Definition 19 (Strong Dolev-Yao non-malleability) A computational
encryption scheme provides strong Dolev-Yao non-malleability if, when used
in the [[·]]tη operation, the adversary cannot create anything outside the closure:

∀PPT adversaries A, ∀ finite, acyclic S ⊆ A,

∀ polynomials q, ∀ sufficiently large η :

Pr[ t← {0, 1}ω

s← [[S]]tη ;

m← AM
t
η(·),PbKt

η(·),PrKt
η(·),Rt

η(·)(1η, s) :

∃M ∈ A \ C[S] .m ∈ supp [[M ]]tη ] ≤ 1
q(η)

A third way to improve this work would be to remove the requirment that S
be acyclic. (This would most likely also remove the same assumption from the
results of Abadi and Rogaway [1].)

Lastly, it would interesting to incorporate into this approach cryptographic
operations other than encryption, such as hashes and signatures.
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