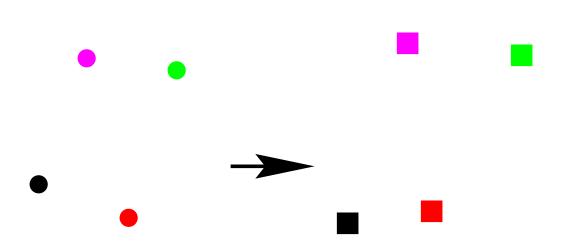
Algorithmic Applications of Low-distortion Geometric Embeddings

Piotr Indyk

MIT

Low-distortion geometric embeddings



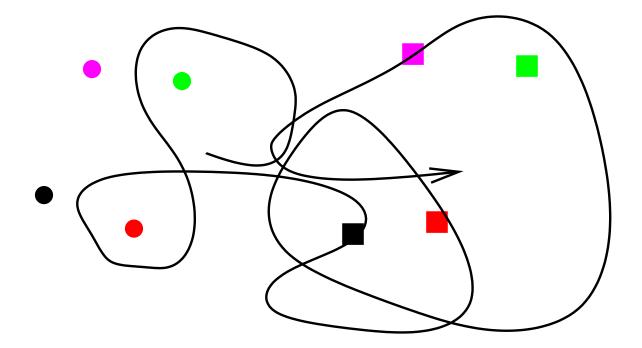
Formally: a mapping $f: P_A \rightarrow P_B$:

- P_A : points from metric space with distance $D(\cdot, \cdot)$
- P_B : points from some normed space, e.g., l_2^d
- For any $p, q \in P_A$

$$1/c \cdot D(p,q) \leq \|f(p) - f(q)\| \leq D(p,q)$$

Parameter c is called "distortion".

Other embedding definitions possible

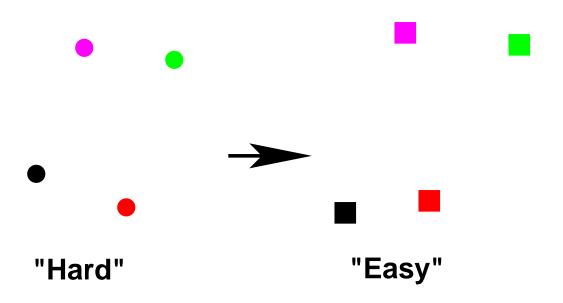


Overview of the remainder of the talk

- Motivation
 - General
 - Example: diameter in l_1^d
- Embeddings of finite metrics
 - into norms (Bourgain's theorem, Matousek's theorem, etc.)
 - into probabilistic trees (Bartal's theorem)
- Embeddings of norms into norms
 - dimensionality reduction (e.g., $l_2^{high} \rightarrow l_2^{small}$)
 - switching norms (e.g., $l_2 \rightarrow l_1$)
- Embeddings of special metrics into norms
 - string edit distance
 - Hausdorff metric

Why embeddings

• Reductions from "hard" to "easy" spaces:

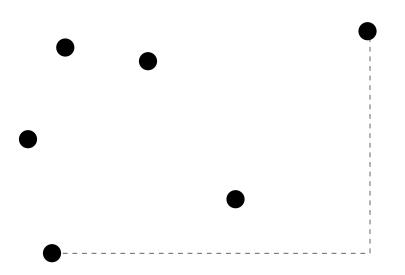


- Widely applicable
- Many tools available (combinatorics, functional analysis)

Example: diameter in l_1^d

- Given: a set P of n points in l_1^d
- Goal: the diameter of *P*, i.e.,

 $\max_{p,q\in P} \|p-q\|_1$



Algorithms for diameter in l_1

- Easy: $O(dn^2)$ time
- Can we reduce the dependence on n (e.g., if d constant) ?

We will show $O(2^d n)$ -time algorithm via:

- Embedding l_1^d into $l_\infty^{2^d}$
- $\bullet\,$ Solving the problem in ${\it l}_\infty$

Algorithm for diameter in $l_{\infty}^{d'}$

$$\max_{p,q\in P} \|p-q\|_{\infty}$$

=

$$\max_{\substack{p,q \in P \ i=1...d'}} \max_{\substack{p_i - q_i \\ =}} |p_i - q_i|$$

$$\max_{\substack{i=1...d' \\ p,q \in P}} |p_i - q_i|$$

$$=$$

$$\max_{\substack{i=1...d' \\ p \in P}} \left(\max_{\substack{p \in P \\ q \in P}} p_i - \min_{\substack{q \in P \\ q \in P}} q_i\right)$$

Running time: O(d'n).

Embedding l_1^d into $l_\infty^{2^d}$

The mapping f is defined as:

$$f(p) = \langle s_0 \cdot p, s_1 \cdot p, \dots, s_{2^d-1} \cdot p \rangle$$

where s_i is the *i*th vector in $\{-1, 1\}^d$. Then

$$||f(p) - f(q)||_{\infty} = ||f(p - q)||_{\infty} = \max_{s} |s \cdot (p - q)|$$

$$= \max_{s} \left| \sum_{i=1}^{d} s_{i} \cdot (p-q)_{i} \right| = \left| \sum_{i=1}^{d} \operatorname{sgn}((p-q)_{i})(p-q)_{i} \right|$$
$$= \sum_{i=1}^{d} \left| (p-q)_{i} \right| = \|p-q\|_{1}$$

Running time: $O(d2^dn)$.

8

Properties of the embedding

- Isometry (distortion c = 1)
- Linear
- \bullet Oblivious: f(p) does not depend on P
- Deterministic
- Explicit

Overview of the talk

- Motivation
 - General
 - Example: diameter in l_1^d

• Embeddings of graph-induced metrics

- into norms (Bourgain's theorem, Matousek's theorem, etc.)
- into probabilistic trees (Bartal's theorem)
- Embeddings of norms into norms
 - dimensionality reduction (Johnson-Lindenstrauss lemma, etc.)
 - switching norms
- Embeddings of special metrics into norms
 - string edit distance
 - Hausdorff metric

Embeddings of M = (X, D) into l_p^d

- X finite set, |X| = n
- *D* distance metric (symmetry, triangle inequality etc)
- D(p,q) shortest distance between p and q in some graph:
 - general graphs \Rightarrow general metrics
 - planar graphs, trees etc \Rightarrow more specialized metrics

General finite metric into norms

Bourgain's theorem (1985):

Any M = (X, D) can be embedded into l_2^d with distortion $O(\log n)$.

- d: originally exponential in n, can be reduced to $O(\log^2 n)$ [Linial-London-Rabinovitch'94]
- Proof yields randomized algorithm with $O(n^2 \log^2 n)$ running time, can be derandomized

Seminal result:

- Initiated the investigation of embedding finite metrics
- Introduced proof technique which works for other norms and graph classes

The l_{∞} version

Matousek's theorem (1996):

For any b > 0, any metric M = (X, D) can be embedded into l_{∞}^{d} with distortion c = 2b - 1 for $d = O(bn^{1/b} \log n)$.

- Implies $O(\log n)$ -distortion embedding into $l_{\infty}^{\log^2 n}$ $\Rightarrow O(\log^2 n)$ -distortion embedding into l_2
- Proof somewhat easier than Bourgain's proof
- Same technique

Proof: no-distortion case

Assume c = 1. Will show d = n (Frechet, 1???).

Let $X = \{p_1, \ldots, p_n\}$. Consider a mapping f defined as:

$$f(p) = \langle D(p, p_1), \dots, D(p, p_n) \rangle$$

Need to show $|f(p) - f(q)|_{\infty} = D(p,q)$.

• f is a contraction, since for any $p_i \in X$

$$|D(p, p_i) - D(q, p_i)| \le D(p, q)$$

 $\Rightarrow |f(p) - f(q)|_{\infty} = \max_{p_i} |D(p, p_i) - D(q, p_i)| \le D(p, q)$

• f does not "shrink" too much, since

$$|f(p) - f(q)|_{\infty} = \max_{p_i} |D(p, p_i) - D(q, p_i)|$$

 $\ge |D(p, p) - D(p, q)| = D(p, q)$

14

Proof: general distortion

Modifications:

- "Witness" is a *set*, not a point, i.e.,
 - Define $D(p, A) = \min_{a \in A} D(p, a)$
 - Define

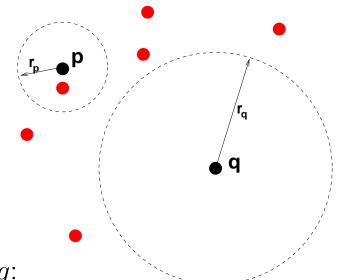
$$f(p) = \langle D(p, A_1), \dots, D(p, A_d) \rangle$$

for carefully chosen sets $A_i \subset X$

- Advantage: can achieve d = o(n)
- Drawback: "non-shrinking" only approximate, i.e., for any p, q there exists A_i such that

$$|D(p, A_i) - D(q, A_i)| \ge D(p, q)/c$$

Matousek's proof by picture



For each p, q:

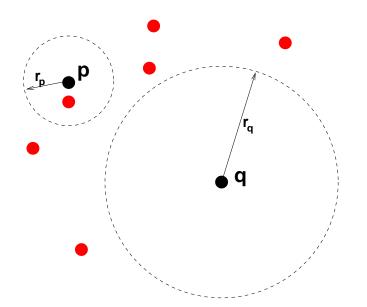
- 1. There are $r_p, r_q > 0 \text{, } r_q \geq r_p + D(p,q)/c \text{, and } A_i \text{, such that}$
 - A_i hits the ball B_p of radius r_p around p
 - A_i avoids the ball B_q of radius r_q around q

(or the same for p swapped with q). This implies

 $|D(p, A_i) - D(q, A_i)| \ge D(p, q)/c$, for some A_i

2. $|D(p, A_i) - D(q, A_i)| \le D(p, q)$ for all A_i (follows from triangle inequality)

Matousek's proof, ctd.



Need to construct the sets A_i (the red dots).

Main ideas:

- 1. Ensure existence of r_p, r_q such that the volume of B_p is not much smaller than the volume of B_q , and B_p, B_q disjoint (volume \equiv cardinality)
- 2. Choose A_i 's at random with proper density, so that with good probability it hits B_p and avoids B_q (prob. of including each point $\approx 1/\text{vol.}$ of B_q)

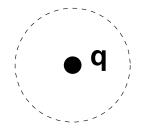
Main lemma

Lemma: For each p, q there exists r such that

$$\frac{|B(p,r)|}{|B(q,r+D(p,q)/c)|} \ge 1/n^{1/b}$$

or vice-versa, and the two balls are disjoint. (recall that c = 2b - 1)

Proof: Start from r = 0. Check if |B(p,0)| not much smaller than |B(q,D(p,q)/c)|.



If so, we are done.

Main lemma: proof ctd.

Otherwise, swap the roles of p,q and take r = D(p,q)/c.

Check if B(q,r) not much smaller than B(p,r+D(p,q)/c). If so, we are done. Otherwise, repeat.

Observations:

- The process could take b steps until B_p, B_q overlap
- If the balls grew by $> n^{1/b}$ each time, they would have > n volume at the end

We know that there exists r such that

$$|B(p,r)| \geq \frac{|B(q,r+D(p,q)/c)|}{n^{1/b}}$$

and the two balls are disjoint.

If we choose A_i by including each point to A_i with probability $\approx 1/|B(q,r+D(p,q)/c)|$, then with probability $\approx 1/n^{1/b}$:

- A_i hits B(p,r)
- A_i avoids B(q, r + D(p, q)/c)

Now:

• Generate $A_i s$ using $\log n$ different probabilities $1/2, 1/4, \ldots 1/n$ (to make sure we are OK for all densities)

- For each probability, generate $O(n^{1/b} \log n)$ sets A_i , to get a high probability of success
- Total number of sets: $O(n^{1/b} \log^2 n)$ (can be improved by a factor of $\log n/b$ using slightly different method)

Summing up

- Any metric can be embedded into l_{∞}^d with distortion c = 2b 1, $d = O(bn^{1/b} \log n)$
- For $b = \log n$ we get $c = O(\log n)$, $d = O(\log^2 n)$ $\Rightarrow O(\log^2 n)$ -distortion embedding into l_2
- Proof of Bourgain's theorem requires more "counting"

From	То	Distortion	Reference
any	l_2	$O(\log n)$	Bourgain'85
any	$l_{\infty}^{O(bn^{1/b}\log n)}$	2b - 1	Matousek'96
expanders	$l_p, p = O(1)$	$\Omega(\log n)$	LLR'94
high girth graphs	any norm with dim $\Omega(n^{1/b})$	2b - 1	Matousek'96 (Erdos conj.)
planar	l_2	$\Theta(\sqrt{\log n})$	Rao'99, Newman- Rabinovich'02
planar	$l_\infty^{\log^2 n}$	O(1)	
outerplanar	l_1	O(1)	GNRS'99
trees	l_1	1	folklore
trees	$l_\infty^{O(\log n)}$	1	LLR'94
trees	l_2	$\Theta(\sqrt{\log\log n})$	Matousek
(1,2)-metric with B 1's	$l_{\infty}^{O(B\log n)}$ (also l_p 's)	1	Trevisan'97, I'00 ₂₃

- Stricter notion of embedding
- Ensures low distortion of *k*-dimensional "volumes"
- Specializes to ordinary embedding for k=2
- Proof uses Bourgain's technique in elaborate way (and implies Bourgain's theorem for k = 2)

Applications (of embeddings into norms)

- Approximation algorithms: Bourgain's theorem, volume-respecting embeddings
- Proximity-preserving labelling: Matousek's theorem
- Hardness results: (1,2)-metrics

App I: Approximation algorithms

Sparsest cut problem:

Given:

- graph G = (V, E), cost $c : E \to \Re^+$
- k terminal pairs $\{s_i, t_i\}$, with demands d(i)

Goal: find $S \subset V$ minimizing

$$\rho(S) = \frac{\sum_{u \in S, v \in V-S} c(\{u, v\})}{\sum_{i:s_i \in S, t_i \in V-S} d(i)}$$

Sparsest cut: algorithm

- Long history, starting from [Leighton-Rao'88]
- Best so far: $O(\log k)$ -approximation [Linial-London-Rabinovich'94, Aumann-Rabani'94]
- Method:
 - Solve linear relaxation of the problem the solution forms a metric
 - Embed the metric into l_1
 - Solve the problem optimally assuming a metric induced by $l_{\rm 1}$
- Comments:
 - $O(\log k)$ comes from Bourgain's theorem
 - Easier metric \Rightarrow better bounds (e.g., planar graphs)
 - Embedding does not provide a straightforward reduction

Applications of v. r. embeddings

- Min graph bandwidth: $\log^{O(1)} n$ -approximation [Feige'98, Dunagan-Vempala'01]
- VLSI design problems [Vempala'98]

Again, embeddings do not provide straightforward reductions.

App II: Proximity-preserving labelling

Proximity-preserving labelling [Peleg'99]

- Given: a metric M = (X, D), distortion c
- Goal: to find a labelling $f: X \to \{0, 1\}^d$ such that
 - given f(p),f(q) we can estimate D(p,q) up to a factor of \boldsymbol{c}
 - d as small as possible

Proximity-preserving labelling

Immediate application of low-distortion embeddings:

- Matousek's theorem gives best bound for general metrics
- Best isometric labelling scheme for trees also follows from embeddings (but not for constant tree-width graphs)

Implications in other direction [GPPR'01]:

- $\Omega(n^{1/2}/\log n)$ dimension lower bound for isometric embeddings of bounded degree graphs
- $\Omega(n^{1/3}/\log n)$ for bounded degree planar graphs

App III: Hardness

Necessity of double exponential dependence on d of PTAS's in l_p^d (e.g., for TSP) [Trevisan'97, I'00]

- Consider (1,2)-B metrics:
 - Distances 1 and 2,
 - At most B 1's per vertex, B = O(1)
- $(1 + \epsilon)$ -approximating TSP in such metrics is NP-hard [Papadimitriou-Yannakakis'87]
- But such metrics can be embedded into $l_p^{O(B\log n)}$
 - With very small distortion (and somewhat weaker def of embedding) for $p < \infty$ [Trevisan'97]
 - With no distortion for $p = \infty$ [I'00]
- $\bullet\,$ Therefore, cannot have $2^{2^{o(d)}}$ time unless

$$\mathsf{NP} \ \subset \ \mathsf{DTIME} \ \left(2^{2^{o(\log n)}}\right) \subset \ \mathsf{DTIME} \ \left(2^{o(n)}\right)$$

A digression

Embeddings used for all of the aforementioned applications:

- Approximation algorithms
- Proximity-preserving labelling
- Hardness (for l_{∞})

are based on Bourgain's technique of "witness sets".

Overview of the talk

- Motivation
 - General
 - Example: diameter in l_1^d
- Embeddings of graph-induced metrics
 - into norms (Bourgain's theorem, Matousek's theorem, etc.)
 - into probabilistic trees (Bartal's theorem)
- Embeddings of norms into norms
 - dimensionality reduction (Johnson-Lindenstrauss lemma, etc.)
 - switching norms
- Embeddings of special metrics into norms
 - string edit distance
 - Hausdorff metric

Embeddings into probabilistic trees

Probabilistic metric is a convex combination of metrics, i.e.,

- if T_1, \ldots, T_k are metrics, $T_i = (X, D_i)$
- and $\alpha_1 \dots \alpha_n > 0$, $\sum_i \alpha_i = 1$
- then the prob. metric $M=(X,\overline{D})$ is defined by

$$\overline{D}(p,q) = \sum_{i} \alpha_i D_i(p,q)$$

If T_i chosen with probability α_i , then

$$E[D_i(p,q)] = \overline{D}(p,q)$$

Probabilistic embeddings

For

- a metric $M_Y = (Y, D)$, and
- probabilistic metric $M_X = (X, \overline{D})$ defined by $T_i = (X, D_i)$, $i = 1 \dots k$

a mapping $f: Y \to X$ is a probabilistic embedding of M_Y into M_X with distortion c if for any $p, q \in Y$:

1. f expands by at most a factor of c on the average, i.e.,

$$\overline{D}(f(p), f(q)) \le cD(p, q)$$

2. f never contracts, i.e,

$$\min_{i} D_i(f(p), f(q)) \ge D(p, q)$$

This is more than just an ordinary embedding of ${\cal M}_Y$ into ${\cal M}_X$!

Why embed into probabilistic trees ?

Not possible to embed a cycle metric into a tree metric [Rabinovitch-Raz, Gupta'01] with o(n) distortion.

Can do much better for probabilistic trees ! (for any metric)

- [AKPW'91]: $2^{O(\sqrt{\log n \log \log n})}$ distortion
- [Bartal'96] and [Bartal'98]:
 - $O(\log^2 n)$ and $O(\log n \log \log n)$ distortion
 - Simpler class of trees
 (Hierarchically Well-Separated Trees)
 - Many applications

Imply identical results for embeddings into l_1

Proof of weaker bound

We'll "show" $O(\log^3 n \cdot \log \Delta)$ distortion (Δ - furthest/closest pair ratio)

Contains essential elements of [Bartal'96], with additional ideas.

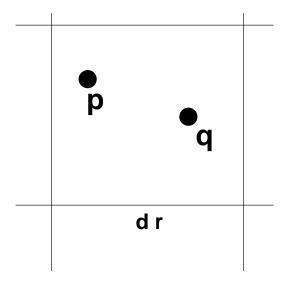
Proof:

- Embed M = (Y, D) into l_{∞}^d with distortion $\log n$, $d = O(\log^2 n)$
- From now on, we assume M induced by $l_\infty,$ multiply final distortion by $\log n$
- Partition the l^d_∞ space probabilistically into clusters of different diameters
- "Stitch" the clusters together into a tree

Probabilistic partitions

- l-partition: any partition of Y into clusters of diameter $\leq l$
- (r, ρ) -partition: a distribution over $r \cdot \rho$ partitions, such that for any $p, q \in Y$, the prob. that p, q go to different clusters is at most D(p,q)/r

In l_{∞}^d , (r,d)-partitions are easy to get by randomly shifting a grid of side $r \cdot d$



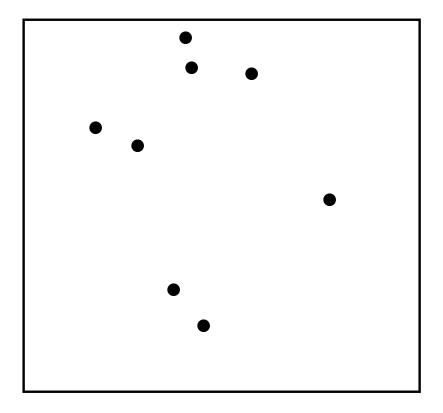
Probability of a cut $\leq d \cdot \frac{D(p,q)}{dr}$

Probabilistic tree construction

Recursive construction of a random tree. Initially $r = \Delta$.

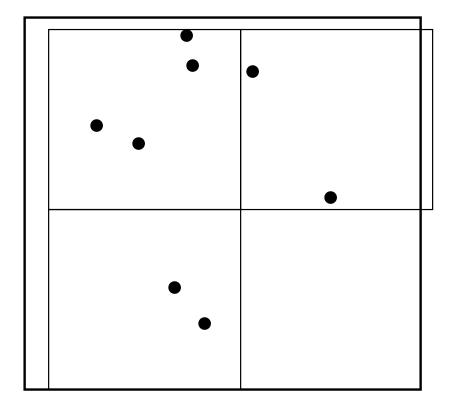
- Generate an $r \cdot \rho\text{-partition}\ P$ from a $(r,\rho)\text{-partition}$
- Within any cluster Y_i of P, generate a random tree T_i with root u_i using r/2
- Create artificial node u and connect u to $u_i{'}{\rm s}$ using edges of length $\rho\cdot r/2$

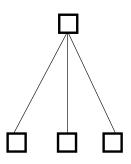
Construction: I



• We will create subtrees recursively

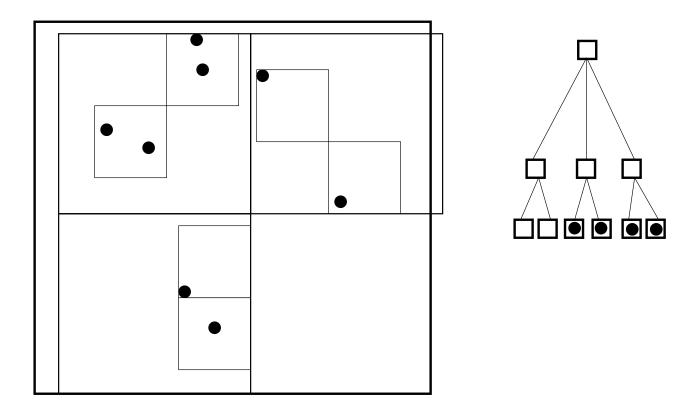
Construction: II





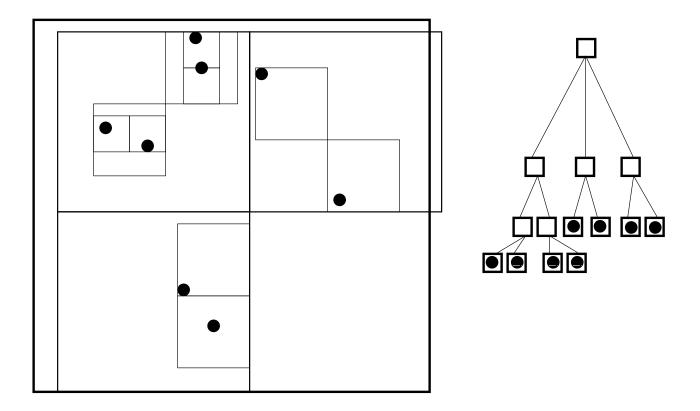
- Subdivide using a randomly shifted grid
- Create nodes for each cell
- Edge length proportional to the side of the grid cell
- Close points unlikely to be separated

Construction: III



- Further subdivide within each cell
- Stop when single points are reached

Construction: IV



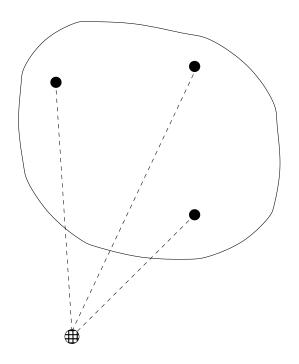
Distortion:

- One factor $\log n$ comes from embedding into l_∞
- One factor comes from $\log\Delta$ levels in the tree
- One factor $\log^2 n$ comes from ρ (ratio between probability of cutting and the edge length)

Non-contraction

No tree contracts the distances:

- Consider any cluster Y of diameter $\leq r\rho$
- Adding new node u with distance $r\rho/2$ to all points in Y cannot increase the distance



Distortion

Fix pair $p, q \in Y$. The pair p, q.

- Is separated by (Δ, ρ) -partition with prob. $\frac{D(p,q)}{\Delta}$ \Rightarrow tree distance $\Delta \cdot \rho$
- Is separated by $(\Delta/2, \rho)$ -partition with prob. $\frac{D(p,q)}{\Delta/2}$ \Rightarrow tree distance $\Delta/2 \cdot \rho$, etc...

Expected distance:

•
$$2^{i}r \cdot \rho \cdot \frac{D(p,q)}{2^{i}r} = \rho \cdot D(p,q)$$
 per level

• times $O(\log \Delta)$ levels

 $= \underline{O(\rho \log \Delta)} \cdot D(p,q)$

Summing up

- Overall distortion: $O(\log^3 n \cdot \log \Delta)$
- Trees have special structure (HST):
 - On the way from the root to a leaf distances decrease exponentially
 - All distances from a node to its children are the same
- Can get rid of the additional nodes $\Rightarrow X = Y$

From	Distortion	Reference	
any	$O(\log n \log \log n)$	Bartal'98	
high-girth	$\Omega(\log n)$	Bartal'96	
planar	$O(\log n)$	GKR	
l_2^d	$O(\sqrt{d}\log n)$	CCGGP'98	

Algorithms (approximate, on-line):

- Prob. embeddings provide fairly general reductions from problems over metrics to problems over trees
- Approximation algorithm for metric M:
 - Let A be an a-approximation algorithm for trees
 - Replace M by a random tree T $\Rightarrow OPT_T < c \cdot OPT_M$
 - Use A on T to produce a solution for T with cost $\leq a \cdot OPT_T \leq a \cdot c \cdot OPT_M$
 - Interpret it as a solution for ${\cal M}$
 - Final cost $\leq a \cdot c \cdot OPT_M$
- Similar approach works for on-line problems
- The structure of HST makes the task even easier

Applications: on-line algorithms

Metrical task systems [Borodin,Linial,Saks'87]:

- Defined by a metric M = (X,D), initial server position $p \in X$
- Input: a sequence of tasks $\tau = \tau_1, \tau_2, \ldots$, $\tau_i : X \to [0, \infty)$
- Given next task τ_i , the algorithm:
 - Moves the server from its current position x to a new position y
 - Serves the task from y
 - Incurred cost: $D(x,y) + \tau(y)$
- Want: to design an algorithm A with small competitive ratio, i.e.,

 $\max_{\tau} \frac{\text{Cost incurred by } A \text{ on } \tau}{\text{Optimal cost of serving } \tau}$

Prob. embeddings for MTS

- We have seen prob. embedding of M=(X,D) into $(X,\overline{D}),$ where (X,\overline{D}) is a convex combination of HSTs
- Can use it to reduce the problem over general metrics to problem over HSTs:
 - Let A be a b-competitive algorithm for HST
 - Choose a random HST ${\cal T}$
 - Feed all tasks to A
 - Interpret all server moves of A as moves in M
- Cost estimations:
 - Let OPT be optimal server trajectory in M with cost ${\cal C}$
 - It corresponds to a server trajectory in T with expected cost $\leq c \cdot C$, where c is the distortion
 - A will find a solution S for T with cost $\leq b \cdot c \cdot C$
 - Interpreting ${\cal S}$ as a solution for ${\cal M}$ only decreases the cost

Applications of prob. embeddings

- For "metric" problems, a *b*-competitive algorithm for HSTs implies a (randomized) $O(b \log^{O(1)} n)$ -competitive algorithm for general metric:
 - $O(\log^{O(1)} n)$ -competitive algorithm for metrical task systems [BBBT'98,FM'00]
 - distributed problems [Bartal'98]
- Same holds for approximation algorithms:
 - "Buy-at-bulk" network design [Azar-Awerbuch'97]
 - Group Steiner problem
 - ...(≈ 10 problems)

Overview of the talk

- Motivation
 - General
 - Example: diameter in l_1^d
- Embeddings of graph-induced metrics
 - into norms (Bourgain's theorem, Matousek's theorem, etc.)
 - into probabilistic trees (Bartal's theorem)

• Embeddings of norms into norms

- dimensionality reduction (Johnson-Lindenstrauss lemma, etc.)
- switching norms
- Embeddings of special metrics into norms
 - string edit distance
 - Hausdorff metric

Embeddings of norms into norms

Different from finite metrics:

- Embeddings of *infinite* spaces
- Advantage: we do not have to know all points in advance
- Drawback: sometimes guarantees only randomized

Randomized embeddings

For metrics M = (X, D), M' = (X', D'), a distribution \mathcal{F} over mappings $f : X \to X'$ is a randomized embedding with

- \bullet distortion c
- contraction probability P_{con}
- expansion probability P_{exp}

if for any $p,q \in X$ we have

- $D'(f(p), f(q)) < 1/c \cdot D(p, q)$ with prob. $\leq P_{con}$
- D'(f(p), f(q)) > D(p, q) with prob. $\leq P_{exp}$

 $P = P_{con} + P_{exp}$ is called *failure probability*

Dimensionality reduction in l_2

Johnson-Lindenstrauss (1984):

There is a randomized embedding from l_2^d into $l_2^{d'}$ with distortion $1 + \epsilon$ and failure probability $e^{-\Omega(d'/\epsilon^2)}$.

Corollary: For any set $P \subset l_2^d$ there exists an embedding of (P, l_2) into $l_2^{d'}$ with distortion $1 + \epsilon$, where $d' = \frac{const}{\epsilon^2} \cdot \ln |P|$.

($const \approx 4$ for small enough $\epsilon > 0$)

Proof

- Several proofs known [JL'84, FM'88, IM'98, DG'99, AV'99]
- All of them proceed by showing:

Take any $u \in \Re^d$, $||u||_2 = 1$. Let $A_1, \ldots A_{d'}$ be "random" vectors from \Re^d , and let $A = [A_1 \ldots A_{d'}]^T$. Then $||Au||_2$ is sharply concentrated around its mean (equal to 1).

• Linearity of A implies that for $p, q \in l_2^d$, we have

 $\|Ap - Aq\|_2 = \|A(p - q)\|_2 = \|p - q\|_2 \cdot \|Au\|_2 \approx \|p - q\|_2$

where $u = (p - q) / ||p - q||_2$.

Proof (sketch)

We show a proof when all entries in A chosen from Gaussian distribution ${\cal N}(0,1)$ [I-Motwani'98]

- Sum of independent random variables from Gaussian distribution has Gaussian distribution
 ⇒ each A_iu has Gaussian distribution
- The variance of a sum is a sum of variances \Rightarrow the variance of each $A_i u$ is $\sum_j u_j^2 = 1$ \Rightarrow each $A_i u$ is indep. chosen from N(0, 1)
- $||Au||_2^2$ is a sum of squares of independent Gaussians
 - sum of squares of two Gaussians has exponential distribution
 - sum of squares of many Gaussian has chi-square distribution
 - the distributions well understood
 - "Plug and Play"

Summary of the results

- Distortion: $1 + \epsilon$
- Prob. of contraction: P_{con}
- Prob. of expansion: P_{exp}
- Failure probability $P = P_{con} + P_{exp}$

Norm	Dimension	Reference
l_2	$O(\log(1/P)/\epsilon^2)$	JL'84
l_2	$\Omega(1/\log(1/\epsilon) \cdot \log(1/P)/\epsilon^2)$	A+C+M
l_1	$(\log(1/P_{con}) + 1/P_{exp})^{O(1/\epsilon)}$	I'00
Hamming	$O(\log(1/P)/\epsilon^2)$	KOR'98 I'00
(dist. range)		

Techniques used

- *l*₂ upper bound: random projection on a plane spanned by set of random vectors
 - chosen i.i.d. from *d*-dim Gaussian distribution (can be efficiently derandomized [EIO'02])
 - chosen i.i.d. from uniform dist. over a sphere
 - forced to be orthonormal (Haar measure) [JL,FM]
 - chosen i.i.d. from $\{-1,1\}^d$ or $\{-1,0,1\}^d$ [Achlioptas'01]

Can be derandomized using [Shivakumar'02]

- l_2 lower bound: upper bound on "almost orthogonal" vectors in \Re^d [Alon, Charikar, Matousek]
- l_1 upper bound: 1-stable distributions, i.e., generate A such that $||Ax||_1$ estimates $||x||_1$
- Hamming metric: random linear mapping over GF(2)

Application of dimensionality reduction

- "Straightforward" applications
- Faster embedding computation
- Continuous (clustering) problems
- Sublinear-storage computation
- Miscellaneous:
 - learning robust concepts [Arriaga-Vempala'99]
 - deterministic approximation algorithms using semidefinite programming [Engebretsen-I-O'Donnell'02, Shivakumar'02]

Running time:

 $T(n,d) \Rightarrow T(n,\log n) + d\log n \cdot (\# \text{ points to embed})$

• Linear improvement: closest pair, nearest neighbor, diameter, MST etc.

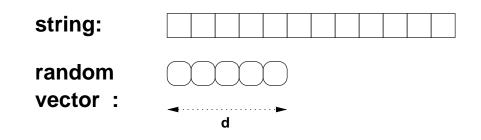
- time: $O(dn^2) \Rightarrow O(\log n \cdot n^2) + O(dn \log n)$

• Exponential improvement: nearest neighbor [Kushilevitz-Ostrovsky-Rabani'98, I-Motwani'98]

- space:
$$n2^{O(d)} \Rightarrow n^{O(1)}$$

- query: $(d + \log n)^{O(1)} \Rightarrow O(d \log n + \log^{O(1)} n)$

- Computing embedding in o(dn) time
- Feasible if the pointset defined implicitly, e.g., as a set of all *d*-substrings of a given string
- A *substring difference* problem: preprocess the data to estimate (quickly) the distance between two given *d*-substrings [I-Koudas-Muthukrishnan'00]
 - dim. reduction gives $O(n \log n)$ space and $O(\log n)$ query time
 - ... but $\Theta(dn\log n)$ preprocessing time
 - embedding linear \Rightarrow can use FFT to get $O(n \log d \log n)$ preprocessing time



- Other string problems: variable *d*, string nearest neighbor problem [I-Koudas-Muthukrishnan'00]
- Line crossing metric [Har-Peled-I'00]

• Generic problem:

- Given: n points in l_p^d
- Find: k centers in \Re^d to minimize the total distance between the points and their nearest centers

(total distance \in {max dist., sum of dist.,...})

- Simple dimensionality reduction does not work! (solution in the reduced space could be bogus)
- Idea [Dasgupta'99]:
 - Reduce the dimension
 - Identify (or guess) the clusters (not centers!) in the low-dimensional space
 - For each cluster, find its center in original space
- Works for learning mixtures of Gaussians [D'99], k-median for small k [OR'00], k-center

Low-storage computation

- Dimensionality reduction reduces *space* as well
- Prototypical example: vector maintenance
 - Data structure maintaining $x \in \Re^d$ (x_i - counter for element i)
 - Enables increments/decrements of coordinates
 - Reports estimation of $||x||_p$
- Applications:
 - p = 0: # non-zero positions (distinct elements)
 - p = 2: self-join size

Norm maintenance: results

 $(1+\epsilon)$ -approximation in $(\log n + 1/\epsilon)^{O(1)}$ space:

- p = 0 (but $x \ge 0$): Flajolet-Martin'85
- p = 2: Alon-Matias-Szegedy'96 (also any integer p with sublinear storage)
- $p \in [0, 2]$: I'00, Cormode-Muthukrishnan'01 (earlier FKSV'99,FS'00)

Norm maintenance: approach

- Maintain low-dimensional $\boldsymbol{A}\boldsymbol{x}$ to represent \boldsymbol{x}
- Reduce the amount of randomness used in A
- Implementation:
 - [AMS'96]:
 - \ast 4-wise independent entries of A
 - * Use median (not sum) to estimate the norm
 - [l'00]:
 - * Use Nisan's generator to generate A
 - * Can "simulate" JL lemma
 - \ast Works for any $p \in [0,2]$ via $p\mbox{-stable}$ distributions

Other low-storage results

- Maintaining string properties [CM'01]
- Norm maintenance in fixed window [DGIM'02]
- Maintaining approximations of a vector (wavelet [GKMS'01], piecewise-linear [GGIKMS'01])
- ...

Overview of the talk

- Motivation
 - General
 - Example: diameter in l_1^d
- Embeddings of graph-induced metrics
 - into norms (Bourgain's theorem, Matousek's theorem, etc.)
 - into probabilistic trees (Bartal's theorem)
- Embeddings of norms into norms
 - dimensionality reduction (Johnson-Lindenstrauss lemma, etc.)
 - switching norms
- Embeddings of special metrics into norms
 - string edit distance
 - Hausdorff metric

Switching norms

- We have seen one already $(l_1 \rightarrow l_\infty)$
- Mostly ordinary embeddings, at last! (although often constructed using random mappings)
- Switch from "hard" to "easy" norms (l_1 or l_∞)
- All constructed using linear mappings
- Topic extensively investigated in functional analysis

Embeddings

Embeddings from l_p^d into $l_1^{d^\prime}$

From	Dist.	d'	Reference	
p = 2	$1+\epsilon$	$O(d\log(1/\epsilon)/\epsilon^2)$	FLM'77	ala JL
	$\sqrt{2}$	$O(d^2)$	Berger'97	explicit
	$1 + \epsilon$	$d^{O(\log d)}$	1'00	explicit
$p \in [1,2]$	$1 + \epsilon$	$O(d\log(1/\epsilon)/\epsilon^2)$	JS'82	

Embeddings from l_p^d into $l_\infty^{d'}$

From	Dist.	d'	Reference
p = 1	1	2^{d-1}	folklore
polyhedral	1	F/2	folklore
norm		(F = # faces)	
any norm	$1 + \epsilon$	$O(1/\epsilon)^{d/2}$ (Dudley's theorem)	folklore
p = 2	$1 + \epsilon$	$(\log(1/P_{con}) + 1/P_{exp})^{O(1/\epsilon)}$	l'01

Applications of norm switching

- Embeddings into l_1 norm
 - $l_2 \rightarrow l_1 \rightarrow$ Hamming: approx. nearest neighbor algorithms
 - [Kushilevitz-Ostrovsky-Rabani'98, I-Motwani'98]
 - same route: k-median algorithm [Ostrovsky-Rabani'00]
- Embeddings into l_∞ norm
 - Diameter/furthest neighbor in l_1 , l_2
 - Nearest neighbor in product of l_2 norms [I'01]

Overview of the talk

- Embeddings of graph-induced metrics
 - into norms (Bourgain's theorem, Matousek's theorem, etc.)
 - into probabilistic trees (Bartal's theorem)
- Embeddings of norms into norms
 - dimensionality reduction (Johnson-Lindenstrauss lemma, etc.)
 - switching norms
- Embeddings of special metrics into norms
 - string edit distance
 - Hausdorff metric

Special metrics

• Hausdorff metric: for any two sets $A, B \subset X$ in a metric M = (X, D), define

$$\overrightarrow{D}_{H}(A,B) = \max_{a \in A} \min_{b \in B} D(a,b)$$

$$D_H(A,B) = \max(\overrightarrow{D_H}(A,B), \overrightarrow{D_H}(B,A))$$

Applications: vision, pattern recognition $(M = l_2^2, l_2^3)$

• Levenstein metric: $D_L(s,s') = \text{minimum number}$ of insertions/deletions/substitutions/etc. needed to transform s into s'

Applications: computational biology, etc.

Special metrics

- Would like to solve problems (e.g., nearest neighbor, clustering) over D_H, D_L
- However, these metrics are more complex than normed spaces
 - D_H "contains" l_∞
 - D_L "contains" Hamming metric
- Thus, would like to embed them into proper normed spaces
- Additional benefit: if embedding is fast, can get fast approximate algorithm for computing $D(\cdot, \cdot)$

From	То	Dist.	Dim.	Ref
D_H over (X,D)	l_{∞}	1	X	FI'99
D_H over l_p^d (s-subsets)	l_∞	$1 + \epsilon$	$s^2/\epsilon^{O(d)}$	FI'99
D_L with block moves	Hamm.	$\approx \log d$		CPSC'00, MS'00,CM'01

Other metrics:

 Permutation distances [Cormode-Muthukrishnan-Sahinalp'01]

Conclusions

- We have seen lots of embeddings!
- But also main techniques used:
 - Finite metrics: "witness sets"
 - Normed spaces: random linear mappings
 - Probabilistic trees: stitching prob. partitions into trees
- Tools mostly taken from combinatorics and functional analysis

Open problems

- General open problems:
 - More embeddings
 - More applications of embeddings
- Specific problems:
 - Planar graph metrics into l_1
 - $O(\log n)$ distortion for embedding metrics into probabilistic trees
 - Dimensionality reduction for l_1
 - Embeddings of Levenstein metric