Algorithmic Applications of Low-distortion Geometric Embeddings

Piotr Indyk

MIT

Low-distortion geometric embeddings

Formally: a mapping $f: P_{A} \rightarrow P_{B}$:

- P_{A} : points from metric space with distance $D(\cdot, \cdot)$
- P_{B} : points from some normed space, e.g., l_{2}^{d}
- For any $p, q \in P_{A}$

$$
1 / c \cdot D(p, q) \leq\|f(p)-f(q)\| \leq D(p, q)
$$

Parameter c is called "distortion".

Other embedding definitions possible

Overview of the remainder of the talk

- Motivation
- General
- Example: diameter in l_{1}^{d}
- Embeddings of finite metrics
- into norms (Bourgain's theorem, Matousek's theorem, etc.)
- into probabilistic trees (Bartal's theorem)
- Embeddings of norms into norms
- dimensionality reduction (e.g., $l_{2}^{\text {high }} \rightarrow l_{2}^{\text {small }}$)
- switching norms (e.g., $l_{2} \rightarrow l_{1}$)
- Embeddings of special metrics into norms
- string edit distance
- Hausdorff metric

Why embeddings

- Reductions from "hard" to "easy" spaces:

"Hard"
"Easy"
- Widely applicable
- Many tools available
(combinatorics, functional analysis)

Example: diameter in l_{1}^{d}

- Given: a set P of n points in l_{1}^{d}
- Goal: the diameter of P, i.e.,

$$
\max _{p, q \in P}\|p-q\|_{1}
$$

Algorithms for diameter in l_{1}

- Easy: $O\left(d n^{2}\right)$ time
- Can we reduce the dependence on n (e.g., if d constant) ?

We will show $O\left(2^{d} n\right)$-time algorithm via:

- Embedding l_{1}^{d} into $l_{\infty}^{2^{d}}$
- Solving the problem in l_{∞}

$\underline{\text { Algorithm for diameter in } l_{\infty}^{d^{\prime}}}$

$$
\max _{p, q \in P}\|p-q\|_{\infty}
$$

$$
=
$$

$$
\begin{gathered}
\max _{p, q \in P} \max _{i=1 \ldots d^{\prime}}\left|p_{i}-q_{i}\right| \\
= \\
\max _{i=1 \ldots d^{\prime}}\left(\max _{p, q \in P}\left|p_{i}-q_{i}\right|\right) \\
= \\
\max _{i=1 \ldots d^{\prime}}\left(\max _{p \in P} p_{i}-\min _{q \in P} q_{i}\right)
\end{gathered}
$$

Running time: $O\left(d^{\prime} n\right)$.

Embedding l_{1}^{d} into $l_{\infty}^{2^{d}}$

The mapping f is defined as:

$$
f(p)=<s_{0} \cdot p, s_{1} \cdot p, \ldots, s_{2^{d}-1} \cdot p>
$$

where s_{i} is the i th vector in $\{-1,1\}^{d}$. Then

$$
\begin{gathered}
\|f(p)-f(q)\|_{\infty}=\|f(p-q)\|_{\infty}=\max _{s}|s \cdot(p-q)| \\
=\max _{s}\left|\sum_{i=1}^{d} s_{i} \cdot(p-q)_{i}\right|=\left|\sum_{i=1}^{d} \operatorname{sgn}\left((p-q)_{i}\right)(p-q)_{i}\right| \\
=\sum_{i=1}^{d}\left|(p-q)_{i}\right|=\|p-q\|_{1}
\end{gathered}
$$

Running time: $O\left(d 2^{d} n\right)$.

Properties of the embedding

- Isometry (distortion $c=1$)
- Linear
- Oblivious: $f(p)$ does not depend on P
- Deterministic
- Explicit

Overview of the talk

- Motivation
- General
- Example: diameter in l_{1}^{d}
- Embeddings of graph-induced metrics
- into norms (Bourgain's theorem, Matousek's theorem, etc.)
- into probabilistic trees (Bartal's theorem)
- Embeddings of norms into norms
- dimensionality reduction (Johnson-Lindenstrauss lemma, etc.)
- switching norms
- Embeddings of special metrics into norms
- string edit distance
- Hausdorff metric

Embeddings of finite metrics into norms

Embeddings of $M=(X, D)$ into l_{p}^{d}

- X - finite set, $|X|=n$
- D - distance metric (symmetry, triangle inequality etc)
- $D(p, q)$ - shortest distance between p and q in some graph:
- general graphs \Rightarrow general metrics
- planar graphs, trees etc \Rightarrow more specialized metrics

General finite metric into norms

Bourgain's theorem (1985):

Any $M=(X, D)$ can be embedded into l_{2}^{d} with distortion $O(\log n)$.

- d : originally exponential in n, can be reduced to $O\left(\log ^{2} n\right)$ [Linial-London-Rabinovitch'94]
- Proof yields randomized algorithm with $O\left(n^{2} \log ^{2} n\right)$ running time, can be derandomized

Seminal result:

- Initiated the investigation of embedding finite metrics
- Introduced proof technique which works for other norms and graph classes

$\underline{\text { The } l_{\infty} \text { version }}$

Matousek's theorem (1996):

For any $b>0$, any metric $M=(X, D)$ can be embedded into l_{∞}^{d} with distortion $c=2 b-1$ for $d=O\left(b n^{1 / b} \log n\right)$.

- Implies $O(\log n)$-distortion embedding into $l_{\infty}^{\log ^{2} n}$ $\Rightarrow O\left(\log ^{2} n\right)$-distortion embedding into l_{2}
- Proof somewhat easier than Bourgain's proof
- Same technique

Proof: no-distortion case

Assume $c=1$. Will show $d=n$ (Frechet, 1???).
Let $X=\left\{p_{1}, \ldots, p_{n}\right\}$. Consider a mapping f defined as:

$$
f(p)=<D\left(p, p_{1}\right), \ldots, D\left(p, p_{n}\right)>
$$

Need to show $|f(p)-f(q)|_{\infty}=D(p, q)$.

- f is a contraction, since for any $p_{i} \in X$

$$
\begin{gathered}
\left|D\left(p, p_{i}\right)-D\left(q, p_{i}\right)\right| \leq D(p, q) \\
\Rightarrow|f(p)-f(q)|_{\infty}=\max _{p_{i}}\left|D\left(p, p_{i}\right)-D\left(q, p_{i}\right)\right| \leq D(p, q)
\end{gathered}
$$

- f does not "shrink" too much, since

$$
\begin{gathered}
|f(p)-f(q)|_{\infty}=\max _{p_{i}}\left|D\left(p, p_{i}\right)-D\left(q, p_{i}\right)\right| \\
\geq|D(p, p)-D(p, q)|=D(p, q)
\end{gathered}
$$

Proof: general distortion

Modifications:

- "Witness" is a set, not a point, i.e.,
- Define $D(p, A)=\min _{a \in A} D(p, a)$
- Define

$$
f(p)=<D\left(p, A_{1}\right), \ldots, D\left(p, A_{d}\right)>
$$

for carefully chosen sets $A_{i} \subset X$

- Advantage: can achieve $d=o(n)$
- Drawback: "non-shrinking" only approximate, i.e., for any p, q there exists A_{i} such that

$$
\left|D\left(p, A_{i}\right)-D\left(q, A_{i}\right)\right| \geq D(p, q) / c
$$

Matousek's proof by picture

For each p, q :

1. There are $r_{p}, r_{q}>0, r_{q} \geq r_{p}+D(p, q) / c$, and A_{i}, such that

- A_{i} hits the ball B_{p} of radius r_{p} around p
- A_{i} avoids the ball B_{q} of radius r_{q} around q
(or the same for p swapped with q). This implies

$$
\left|D\left(p, A_{i}\right)-D\left(q, A_{i}\right)\right| \geq D(p, q) / c, \text { for some } A_{i}
$$

2. $\left|D\left(p, A_{i}\right)-D\left(q, A_{i}\right)\right| \leq D(p, q)$ for all A_{i} (follows from triangle inequality)

Matousek's proof, ctd.

Need to construct the sets A_{i} (the red dots). Main ideas:

1. Ensure existence of r_{p}, r_{q} such that the volume of B_{p} is not much smaller than the volume of B_{q}, and B_{p}, B_{q} disjoint (volume \equiv cardinality)
2. Choose A_{i} 's at random with proper density, so that with good probability it hits B_{p} and avoids B_{q} (prob. of including each point $\approx 1 / \mathrm{vol}$. of B_{q})

Main lemma

Lemma: For each p, q there exists r such that

$$
\frac{|B(p, r)|}{|B(q, r+D(p, q) / c)|} \geq 1 / n^{1 / b}
$$

or vice-versa, and the two balls are disjoint. (recall that $c=2 b-1$)

Proof: Start from $r=0$. Check if $|B(p, 0)|$ not much smaller than $|B(q, D(p, q) / c)|$.

If so, we are done.

Main lemma: proof ctd.

Otherwise, swap the roles of p, q and take $r=$ $D(p, q) / c$.

- 9

Check if $B(q, r)$ not much smaller than $B(p, r+$ $D(p, q) / c)$. If so, we are done. Otherwise, repeat.

Observations:

- The process could take b steps until B_{p}, B_{q} overlap
- If the balls grew by $>n^{1 / b}$ each time, they would have $>n$ volume at the end

Matousek's proof: the end

We know that there exists r such that

$$
|B(p, r)| \geq \frac{|B(q, r+D(p, q) / c)|}{n^{1 / b}}
$$

and the two balls are disjoint.
If we choose A_{i} by including each point to A_{i} with probability $\approx 1 /|B(q, r+D(p, q) / c)|$, then with probability $\approx 1 / n^{1 / b}$:

- A_{i} hits $B(p, r)$
- A_{i} avoids $B(q, r+D(p, q) / c)$

Now:

- Generate $A_{i} s$ using $\log n$ different probabilities $1 / 2,1 / 4, \ldots 1 / n$ (to make sure we are OK for all densities)
- For each probability, generate $O\left(n^{1 / b} \log n\right)$ sets A_{i}, to get a high probability of success
- Total number of sets: $O\left(n^{1 / b} \log ^{2} n\right)$ (can be improved by a factor of $\log n / b$ using slightly different method)

Summing up

- Any metric can be embedded into l_{∞}^{d} with distortion $c=2 b-1, d=O\left(b n^{1 / b} \log n\right)$
- For $b=\log n$ we get $c=O(\log n), d=O\left(\log ^{2} n\right)$ $\Rightarrow O\left(\log ^{2} n\right)$-distortion embedding into l_{2}
- Proof of Bourgain's theorem requires more "counting"

From	To	Distortion	Reference
any	l_{2}	$O(\log n)$	Bourgain'85
any	$l_{\infty}^{O\left(b n^{1 / b} \log n\right)}$	$2 b-1$	Matousek'96
expanders	$l_{p}, p=O(1)$	$\Omega(\log n)$	LLR'94
high girth graphs	any norm with $\operatorname{dim} \Omega\left(n^{1 / b}\right)$	$2 b-1$	Matousek'96 (Erdos conj.)
planar	l_{2}	$\Theta(\sqrt{\log n})$	Rao'99, NewmanRabinovich'02
planar	$l_{\infty} \log ^{2} n$	$O(1)$	
outerplanar	l_{1}	$O(1)$	GNRS'99
trees	l_{1}	1	folklore
trees	$l_{\infty}^{O(\log n)}$	1	LLR'94
trees	l_{2}	$\Theta(\sqrt{\log \log n})$	Matousek
(1,2)-metric with B 1's	$\begin{aligned} & l_{\infty}^{O(B \log n)} \\ & \text { (also } l_{p} \text { 's) } \end{aligned}$	1	$\begin{aligned} & \text { Trevisan'97, } \\ & \text { I'00 } \end{aligned}$

Volume-respecting embeddings [Feige'98]

- Stricter notion of embedding
- Ensures low distortion of k-dimensional "volumes"
- Specializes to ordinary embedding for $k=2$
- Proof uses Bourgain's technique in elaborate way (and implies Bourgain's theorem for $k=2$)

Applications (of embeddings into norms)

- Approximation algorithms: Bourgain's theorem, volume-respecting embeddings
- Proximity-preserving labelling: Matousek's theorem
- Hardness results: $(1,2)$-metrics

App I: Approximation algorithms

Sparsest cut problem:
Given:

- graph $G=(V, E)$, cost $c: E \rightarrow \Re^{+}$
- k terminal pairs $\left\{s_{i}, t_{i}\right\}$, with demands $d(i)$

Goal: find $S \subset V$ minimizing

$$
\rho(S)=\frac{\sum_{u \in S, v \in V-S} c(\{u, v\})}{\sum_{i: s_{i} \in S, t_{i} \in V-S} d(i)}
$$

Sparsest cut: algorithm

- Long history, starting from [Leighton-Rao'88]
- Best so far: $O(\log k)$-approximation [Linial-LondonRabinovich'94, Aumann-Rabani'94]
- Method:
- Solve linear relaxation of the problem - the solution forms a metric
- Embed the metric into l_{1}
- Solve the problem optimally assuming a metric induced by l_{1}
- Comments:
- $O(\log k)$ comes from Bourgain's theorem
- Easier metric \Rightarrow better bounds (e.g., planar graphs)
- Embedding does not provide a straightforward reduction

Applications of v. r. embeddings

- Min graph bandwidth: $\log ^{O(1)} n$-approximation [Feige'98, Dunagan-Vempala'01]
- VLSI design problems [Vempala'98]

Again, embeddings do not provide straightforward reductions.

App II: Proximity-preserving labelling

Proximity-preserving labelling [Peleg'99]

- Given: a metric $M=(X, D)$, distortion c
- Goal: to find a labelling $f: X \rightarrow\{0,1\}^{d}$ such that
- given $f(p), f(q)$ we can estimate $D(p, q)$ up to a factor of c
- d as small as possible

Proximity-preserving labelling

Immediate application of low-distortion embeddings:

- Matousek's theorem gives best bound for general metrics
- Best isometric labelling scheme for trees also follows from embeddings
(but not for constant tree-width graphs)
Implications in other direction [GPPR'01]:
- $\Omega\left(n^{1 / 2} / \log n\right)$ dimension lower bound for isometric embeddings of bounded degree graphs
- $\Omega\left(n^{1 / 3} / \log n\right)$ for bounded degree planar graphs

App III: Hardness

Necessity of double exponential dependence on d of PTAS's in l_{p}^{d} (e.g., for TSP) [Trevisan'97, l'00]

- Consider (1,2)-B metrics:
- Distances 1 and 2,
- At most B 1's per vertex, $B=O(1)$
- $(1+\epsilon)$-approximating TSP in such metrics is

NP-hard [Papadimitriou-Yannakakis'87]

- But such metrics can be embedded into $l_{p}^{O(B \log n)}$
- With very small distortion (and somewhat weaker def of embedding) for $p<\infty$ [Trevisan'97]
- With no distortion for $p=\infty$ [l'00]
- Therefore, cannot have $2^{2^{o(d)}}$ time unless

$$
\mathrm{NP} \subset \operatorname{DTIME}\left(2^{2^{o(\log n)}}\right) \subset \operatorname{DTIME}\left(2^{o(n)}\right)
$$

A digression

Embeddings used for all of the aforementioned applications:

- Approximation algorithms
- Proximity-preserving labelling
- Hardness (for l_{∞})
are based on Bourgain's technique of "witness sets".

Overview of the talk

- Motivation
- General
- Example: diameter in l_{1}^{d}
- Embeddings of graph-induced metrics
- into norms (Bourgain's theorem, Matousek's theorem, etc.)
- into probabilistic trees (Bartal's theorem)
- Embeddings of norms into norms
- dimensionality reduction (Johnson-Lindenstrauss lemma, etc.)
- switching norms
- Embeddings of special metrics into norms
- string edit distance
- Hausdorff metric

Embeddings into probabilistic trees

Probabilistic metric is a convex combination of metrics, i.e.,

- if T_{1}, \ldots, T_{k} are metrics, $T_{i}=\left(X, D_{i}\right)$
- and $\alpha_{1} \ldots \alpha_{n}>0, \sum_{i} \alpha_{i}=1$
- then the prob. metric $M=(X, \bar{D})$ is defined by

$$
\bar{D}(p, q)=\sum_{i} \alpha_{i} D_{i}(p, q)
$$

If T_{i} chosen with probability α_{i}, then

$$
E\left[D_{i}(p, q)\right]=\bar{D}(p, q)
$$

Probabilistic embeddings

For

- a metric $M_{Y}=(Y, D)$, and
- probabilistic metric $M_{X}=(X, \bar{D})$ defined by $T_{i}=\left(X, D_{i}\right), i=1 \ldots k$
a mapping $f: Y \rightarrow X$ is a probabilistic embedding of M_{Y} into M_{X} with distortion c if for any $p, q \in Y$:

1. f expands by at most a factor of c on the average, i.e.,

$$
\bar{D}(f(p), f(q)) \leq c D(p, q)
$$

2. f never contracts, i.e,

$$
\min _{i} D_{i}(f(p), f(q)) \geq D(p, q)
$$

This is more than just an ordinary embedding of M_{Y} into M_{X} !

Why embed into probabilistic trees ?

Not possible to embed a cycle metric into a tree metric [Rabinovitch-Raz, Gupta'01] with $o(n)$ distortion.

Can do much better for probabilistic trees !
(for any metric)

- [AKPW'91]: $2^{O(\sqrt{\log n \log \log n})}$ distortion
- [Bartal'96] and [Bartal'98]:
- $O\left(\log ^{2} n\right)$ and $O(\log n \log \log n)$ distortion
- Simpler class of trees
(Hierarchically Well-Separated Trees)
- Many applications

Imply identical results for embeddings into l_{1}

Proof of weaker bound

We'll "show" $O\left(\log ^{3} n \cdot \log \Delta\right)$ distortion
(Δ - furthest/closest pair ratio)
Contains essential elements of [Bartal'96], with additional ideas.

Proof:

- Embed $M=(Y, D)$ into l_{∞}^{d} with distortion $\log n$, $d=O\left(\log ^{2} n\right)$
- From now on, we assume M induced by l_{∞}, multiply final distortion by $\log n$
- Partition the l_{∞}^{d} space probabilistically into clusters of different diameters
- "Stitch" the clusters together into a tree

Probabilistic partitions

- l-partition: any partition of Y into clusters of diameter $\leq l$
- (r, ρ)-partition: a distribution over $r \cdot \rho$ partitions, such that for any $p, q \in Y$, the prob. that p, q go to different clusters is at most $D(p, q) / r$

In $l_{\infty}^{d},(r, d)$-partitions are easy to get by randomly shifting a grid of side $r \cdot d$

Probability of a cut $\leq d \cdot \frac{D(p, q)}{d r}$

Probabilistic tree construction

Recursive construction of a random tree. Initially $r=\Delta$.

- Generate an $r \cdot \rho$-partition P from a (r, ρ)-partition
- Within any cluster Y_{i} of P, generate a random tree T_{i} with root u_{i} using $r / 2$
- Create artificial node u and connect u to u_{i} 's using edges of length $\rho \cdot r / 2$

Construction: I

\square

- Create a root
- We will create subtrees recursively

Construction: II

- Subdivide using a randomly shifted grid
- Create nodes for each cell
- Edge length proportional to the side of the grid cell
- Close points unlikely to be separated

Construction: III

- Further subdivide within each cell
- Stop when single points are reached

Construction: IV

Distortion:

- One factor $\log n$ comes from embedding into l_{∞}
- One factor comes from $\log \Delta$ levels in the tree
- One factor $\log ^{2} n$ comes from ρ (ratio between probability of cutting and the edge length)

Non-contraction

No tree contracts the distances:

- Consider any cluster Y of diameter $\leq r \rho$
- Adding new node u with distance $r \rho / 2$ to all points in Y cannot increase the distance

Distortion

Fix pair $p, q \in Y$. The pair p, q,:

- Is separated by (Δ, ρ)-partition with prob. $\frac{D(p, q)}{\Delta}$ \Rightarrow tree distance $\Delta \cdot \rho$
- Is separated by $(\Delta / 2, \rho)$-partition with prob. $\frac{D(p, q)}{\Delta / 2}$ \Rightarrow tree distance $\Delta / 2 \cdot \rho$, etc...

Expected distance:

- $2^{i} r \cdot \rho \cdot \frac{D(p, q)}{2^{i} r}=\rho \cdot D(p, q)$ per level
- times $O(\log \Delta)$ levels

$$
=\underline{O(\rho \log \Delta)} \cdot D(p, q)
$$

Summing up

- Overall distortion: $O\left(\log ^{3} n \cdot \log \Delta\right)$
- Trees have special structure (HST):
- On the way from the root to a leaf distances decrease exponentially
- All distances from a node to its children are the same
- Can get rid of the additional nodes $\Rightarrow X=Y$

Summary of the prob. emb. into HSTs

From	Distortion	Reference
any	$O(\log n \log \log n)$	Bartal'98
high-girth	$\Omega(\log n)$	Bartal'96
planar	$O(\log n)$	GKR
l_{2}^{d}	$O(\sqrt{d} \log n)$	CCGGP'98

Applications (of embeddings into prob. trees)

Algorithms (approximate, on-line):

- Prob. embeddings provide fairly general reductions from problems over metrics to problems over trees
- Approximation algorithm for metric M :
- Let A be an a-approximation algorithm for trees
- Replace M by a random tree T $\Rightarrow O P T_{T} \leq c \cdot O P T_{M}$
- Use A on T to produce a solution for T with cost

$$
\leq a \cdot O P T_{T} \leq a \cdot c \cdot O P T_{M}
$$

- Interpret it as a solution for M
- Final cost $\leq a \cdot c \cdot O P T_{M}$
- Similar approach works for on-line problems
- The structure of HST makes the task even easier

Applications: on-line algorithms

Metrical task systems [Borodin,Linial,Saks'87]:

- Defined by a metric $M=(X, D)$, initial server position $p \in X$
- Input: a sequence of tasks $\tau=\tau_{1}, \tau_{2}, \ldots$, $\tau_{i}: X \rightarrow[0, \infty)$
- Given next task τ_{i}, the algorithm:
- Moves the server from its current position x to a new position y
- Serves the task from y
- Incurred cost: $D(x, y)+\tau(y)$
- Want: to design an algorithm A with small competitive ratio, i.e.,

$$
\max _{\tau} \frac{\text { Cost incurred by } A \text { on } \tau}{\text { Optimal cost of serving } \tau}
$$

Prob. embeddings for MTS

- We have seen prob. embedding of $M=(X, D)$ into (X, \bar{D}), where (X, \bar{D}) is a convex combination of HSTs
- Can use it to reduce the problem over general metrics to problem over HSTs:
- Let A be a b-competitive algorithm for HST
- Choose a random HST T
- Feed all tasks to A
- Interpret all server moves of A as moves in M
- Cost estimations:
- Let OPT be optimal server trajectory in M with cost C
- It corresponds to a server trajectory in T with expected cost $\leq c \cdot C$, where c is the distortion
- A will find a solution S for T with cost $\leq b \cdot c \cdot C$
- Interpreting S as a solution for M only decreases the cost

Applications of prob. embeddings

- For "metric" problems, a b-competitive algorithm for HSTs implies a (randomized) $O\left(b \log ^{O(1)} n\right)$ competitive algorithm for general metric:
- $O\left(\log ^{O(1)} n\right)$-competitive algorithm for metrical task systems [BBBT'98,FM'00]
- distributed problems [Bartal'98]
- Same holds for approximation algorithms:
- "Buy-at-bulk" network design [Azar-Awerbuch'97]
- Group Steiner problem
- ...(≈ 10 problems)

Overview of the talk

- Motivation
- General
- Example: diameter in l_{1}^{d}
- Embeddings of graph-induced metrics
- into norms (Bourgain's theorem, Matousek's theorem, etc.)
- into probabilistic trees (Bartal's theorem)
- Embeddings of norms into norms
- dimensionality reduction (Johnson-Lindenstrauss lemma, etc.)
- switching norms
- Embeddings of special metrics into norms
- string edit distance
- Hausdorff metric

Embeddings of norms into norms

Different from finite metrics:

- Embeddings of infinite spaces
- Advantage: we do not have to know all points in advance
- Drawback: sometimes guarantees only randomized

Randomized embeddings

For metrics $M=(X, D), M^{\prime}=\left(X^{\prime}, D^{\prime}\right)$, a distribution \mathcal{F} over mappings $f: X \rightarrow X^{\prime}$ is a randomized embedding with

- distortion c
- contraction probability $P_{\text {con }}$
- expansion probability $P_{\text {exp }}$
if for any $p, q \in X$ we have
- $D^{\prime}(f(p), f(q))<1 / c \cdot D(p, q)$ with prob. $\leq P_{c o n}$
- $D^{\prime}(f(p), f(q))>D(p, q)$ with prob. $\leq P_{e x p}$
$P=P_{c o n}+P_{\exp }$ is called failure probability

Dimensionality reduction in l_{2}

Johnson-Lindenstrauss (1984):
There is a randomized embedding from l_{2}^{d} into $l_{2}^{d^{\prime}}$ with distortion $1+\epsilon$ and failure probability $e^{-\Omega\left(d^{\prime} / \epsilon^{2}\right)}$.

Corollary: For any set $P \subset l_{2}^{d}$ there exists an embedding of $\left(P, l_{2}\right)$ into $l_{2}^{d^{\prime}}$ with distortion $1+\epsilon$, where $d^{\prime}=\frac{\text { const }}{\epsilon^{2}} \cdot \ln |P|$.
(const ≈ 4 for small enough $\epsilon>0$)

Proof

- Several proofs known [JL'84,FM'88,IM'98,DG'99,AV'99]
- All of them proceed by showing:

Take any $u \in \Re^{d},\|u\|_{2}=1$.
Let $A_{1}, \ldots A_{d^{\prime}}$ be "random" vectors from \Re^{d}, and let $A=\left[A_{1} \ldots A_{d^{\prime}}\right]^{T}$. Then $\|A u\|_{2}$ is sharply concentrated around its mean (equal to 1).

- Linearity of A implies that for $p, q \in l_{2}^{d}$, we have

$$
\|A p-A q\|_{2}=\|A(p-q)\|_{2}=\|p-q\|_{2} \cdot\|A u\|_{2} \approx\|p-q\|_{2}
$$

where $u=(p-q) /\|p-q\|_{2}$.

Proof (sketch)

We show a proof when all entries in A chosen from Gaussian distribution $N(0,1)$ [l-Motwani'98]

- Sum of independent random variables from Gaussian distribution has Gaussian distribution
\Rightarrow each $A_{i} u$ has Gaussian distribution
- The variance of a sum is a sum of variances \Rightarrow the variance of each $A_{i} u$ is $\sum_{j} u_{j}^{2}=1$ \Rightarrow each $A_{i} u$ is indep. chosen from $N(0,1)$
- $\|A u\|_{2}^{2}$ is a sum of squares of independent Gaussians
- sum of squares of two Gaussians has exponential distribution
- sum of squares of many Gaussian has chi-square distribution
- the distributions well understood
- "Plug and Play"

Summary of the results

- Distortion: $1+\epsilon$
- Prob. of contraction: $P_{\text {con }}$
- Prob. of expansion: $P_{\text {exp }}$
- Failure probability $P=P_{\text {con }}+P_{\exp }$

Norm	Dimension	Reference
l_{2}	$O\left(\log (1 / P) / \epsilon^{2}\right)$	$\mathrm{JL'84}$
l_{2}	$\Omega\left(1 / \log (1 / \epsilon) \cdot \log (1 / P) / \epsilon^{2}\right)$	$\mathrm{A}+\mathrm{C}+\mathrm{M}$
l_{1}	$\left(\log \left(1 / P_{\text {con }}\right)+1 / P_{\text {exp }}\right)^{O(1 / \epsilon)}$	I'00
Hamming	$O\left(\log (1 / P) / \epsilon^{2}\right)$	KOR'98
(dist. range)		I'00

Techniques used

- l_{2} upper bound: random projection on a plane spanned by set of random vectors
- chosen i.i.d. from d-dim Gaussian distribution (can be efficiently derandomized [EIO'02])
- chosen i.i.d. from uniform dist. over a sphere
- forced to be orthonormal (Haar measure) [JL,FM]
- chosen i.i.d. from $\{-1,1\}^{d}$ or $\{-1,0,1\}^{d}$ [Achlioptas'01]
Can be derandomized using [Shivakumar'02]
- l_{2} lower bound: upper bound on "almost orthogonal" vectors in \Re^{d} [Alon, Charikar, Matousek]
- l_{1} upper bound: 1-stable distributions, i.e., generate A such that $\|A x\|_{1}$ estimates $\|x\|_{1}$
- Hamming metric: random linear mapping over GF(2)

Application of dimensionality reduction

- "Straightforward" applications
- Faster embedding computation
- Continuous (clustering) problems
- Sublinear-storage computation
- Miscellaneous:
- learning robust concepts [Arriaga-Vempala'99]
- deterministic approximation algorithms using semidefinite programming [Engebretsen-l-O'Donnell'02, Shivakumar'02]

App I: Straightforward applications

Running time:
$T(n, d) \Rightarrow T(n, \log n)+d \log n \cdot(\#$ points to embed)

- Linear improvement: closest pair, nearest neighbor, diameter, MST etc.
- time: $O\left(d n^{2}\right) \Rightarrow O\left(\log n \cdot n^{2}\right)+O(d n \log n)$
- Exponential improvement: nearest neighbor [Kushilevitz-Ostrovsky-Rabani'98, I-Motwani'98]
- space: $n 2^{O(d)} \Rightarrow n^{O(1)}$
- query: $(d+\log n)^{O(1)} \Rightarrow O\left(d \log n+\log ^{O(1)} n\right)$

App II: Faster embedding computation

- Computing embedding in $o(d n)$ time
- Feasible if the pointset defined implicitly, e.g., as a set of all d-substrings of a given string
- A substring difference problem: preprocess the data to estimate (quickly) the distance between two given d-substrings [l-Koudas-Muthukrishnan'00]
- dim. reduction gives $O(n \log n)$ space and $O(\log n)$ query time ... but $\Theta(d n \log n)$ preprocessing time
- embedding linear \Rightarrow can use FFT to get $O(n \log d \log n)$ preprocessing time
string:

random \square vector : d

App II: Faster embedding computation, ctd.

- Other string problems: variable d, string nearest neighbor problem [l-Koudas-Muthukrishnan'00]
- Line crossing metric [Har-Peled-l'00]

App III: Continuous (clustering) problems

- Generic problem:
- Given: n points in l_{p}^{d}
- Find: k centers in \Re^{d} to minimize the total distance between the points and their nearest centers
(total distance $\in\{\max$ dist., sum of dist.,... $\}$)
- Simple dimensionality reduction does not work! (solution in the reduced space could be bogus)
- Idea [Dasgupta'99]:
- Reduce the dimension
- Identify (or guess) the clusters (not centers!) in the low-dimensional space
- For each cluster, find its center in original space
- Works for learning mixtures of Gaussians [D'99], k-median for small k [OR'00], k-center

Low-storage computation

- Dimensionality reduction reduces space as well
- Prototypical example: vector maintenance
- Data structure maintaining $x \in \Re^{d}$ (x_{i} - counter for element i)
- Enables increments/decrements of coordinates
- Reports estimation of $\|x\|_{p}$
- Applications:
- $p=0$: \# non-zero positions (distinct elements)
- $p=2$: self-join size

Norm maintenance: results

$(1+\epsilon)$-approximation in $(\log n+1 / \epsilon)^{O(1)}$ space:

- $p=0$ (but $x \geq 0$): Flajolet-Martin'85
- $p=2$: Alon-Matias-Szegedy'96
(also any integer p with sublinear storage)
- $p \in[0,2]$: I'00, Cormode-Muthukrishnan'01 (earlier FKSV'99,FS'00)

Norm maintenance: approach

- Maintain low-dimensional $A x$ to represent x
- Reduce the amount of randomness used in A
- Implementation:
- [AMS'96]:
* 4-wise independent entries of A
* Use median (not sum) to estimate the norm
- [l'00]:
* Use Nisan's generator to generate A
* Can "simulate" JL lemma
* Works for any $p \in[0,2]$ via p-stable distributions

Other low-storage results

- Maintaining string properties [CM'01]
- Norm maintenance in fixed window [DGIM'02]
- Maintaining approximations of a vector (wavelet [GKMS'01], piecewise-linear [GGIKMS'01])

Overview of the talk

- Motivation
- General
- Example: diameter in l_{1}^{d}
- Embeddings of graph-induced metrics
- into norms (Bourgain's theorem, Matousek's theorem, etc.)
- into probabilistic trees (Bartal's theorem)
- Embeddings of norms into norms
- dimensionality reduction (Johnson-Lindenstrauss lemma, etc.)
- switching norms
- Embeddings of special metrics into norms
- string edit distance
- Hausdorff metric

Switching norms

- We have seen one already $\left(l_{1} \rightarrow l_{\infty}\right)$
- Mostly ordinary embeddings, at last!
(although often constructed using random mappings)
- Switch from "hard" to "easy" norms (l_{1} or l_{∞})
- All constructed using linear mappings
- Topic extensively investigated in functional analysis

Embeddings

Embeddings from l_{p}^{d} into $l_{1}^{d^{\prime}}$

From	Dist.	d^{\prime}	Reference	
$p=2$	$1+\epsilon$	$O\left(d \log (1 / \epsilon) / \epsilon^{2}\right)$	FLM'77	ala JL
	$\sqrt{2}$	$O\left(d^{2}\right)$	Berger'97	explicit
	$1+\epsilon$	$d^{O(\log d)}$	I'00	explicit
$p \in[1,2]$	$1+\epsilon$	$O\left(d \log (1 / \epsilon) / \epsilon^{2}\right)$	JS'82	

Embeddings from l_{p}^{d} into $l_{\infty}^{d^{\prime}}$

From	Dist.	d^{\prime}	Reference
$p=1$	1	$2^{\text {d-1 }}$	folklore
polyhedral	1	$F / 2$	folklore
norm		(F=\# faces)	
any norm	$1+\epsilon$	$O(1 / \epsilon)^{d / 2}$ (Dudley's theorem)	folklore
$p=2$	$1+\epsilon$	$\left(\log \left(1 / P_{\text {con }}\right)+1 / P_{\text {exp }}\right)^{O(1 / \epsilon)}$	I'01

Applications of norm switching

- Embeddings into l_{1} norm
$-l_{2} \rightarrow l_{1} \rightarrow$ Hamming: approx. nearest neighbor algorithms [Kushilevitz-Ostrovsky-Rabani'98, I-Motwani'98]
- same route: k-median algorithm [OstrovskyRabani'00]
- Embeddings into l_{∞} norm
- Diameter/furthest neighbor in l_{1}, l_{2}
- Nearest neighbor in product of l_{2} norms [l'01]

Overview of the talk

- Embeddings of graph-induced metrics
- into norms (Bourgain's theorem, Matousek's theorem, etc.)
- into probabilistic trees (Bartal's theorem)
- Embeddings of norms into norms
- dimensionality reduction (Johnson-Lindenstrauss lemma, etc.)
- switching norms
- Embeddings of special metrics into norms
- string edit distance
- Hausdorff metric

Special metrics

- Hausdorff metric: for any two sets $A, B \subset X$ in a metric $M=(X, D)$, define

$$
\begin{gathered}
\overrightarrow{D_{H}}(A, B)=\max _{a \in A} \min _{b \in B} D(a, b) \\
D_{H}(A, B)=\max \left(\overrightarrow{D_{H}}(A, B), \overrightarrow{D_{H}}(B, A)\right)
\end{gathered}
$$

Applications: vision, pattern recognition ($M=l_{2}^{2}, l_{2}^{3}$)

- Levenstein metric: $D_{L}\left(s, s^{\prime}\right)=$ minimum number of insertions/deletions/substitutions/etc. needed to transform s into s^{\prime}

Applications: computational biology, etc.

Special metrics

- Would like to solve problems (e.g., nearest neighbor, clustering) over D_{H}, D_{L}
- However, these metrics are more complex than normed spaces
- D_{H} "contains" l_{∞}
- D_{L} "contains" Hamming metric
- Thus, would like to embed them into proper normed spaces
- Additional benefit: if embedding is fast, can get fast approximate algorithm for computing $D(\cdot, \cdot)$

Embeddings of special metrics

From	To	Dist.	Dim.	Ref
D_{H} over (X, D)	l_{∞}	1	$\|X\|$	Fl'99
D_{H} over l_{p}^{d}	l_{∞}	$1+\epsilon$	$s^{2} / \epsilon^{O(d)}$	Fl'99
$(s$-subsets $)$				

Other metrics:

- Permutation distances
[Cormode-Muthukrishnan-Sahinalp'01]

Conclusions

- We have seen lots of embeddings!
- But also main techniques used:
- Finite metrics: "witness sets"
- Normed spaces: random linear mappings
- Probabilistic trees: stitching prob. partitions into trees
- Tools mostly taken from combinatorics and functional analysis

Open problems

- General open problems:
- More embeddings
- More applications of embeddings
- Specific problems:
- Planar graph metrics into l_{1}
- $O(\log n)$ distortion for embedding metrics into probabilistic trees
- Dimensionality reduction for l_{1}
- Embeddings of Levenstein metric

