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1. INTRODUCTION
Sketching via hashing is a popular and useful method

for processing large data sets. Its basic idea is as follows.
Suppose that we have a large multi-set of elements S =
{a1, . . . as} ⊂ {1 . . . n}, and we would like to identify the el-
ements1 that occur “frequently” in S. The algorithm starts
by selecting a hash function h that maps the elements into an
array c[1 . . .m]. The array entries are initialized to 0. Then,
for each element a ∈ S, the algorithm increments2 c[h(a)].
At the end of the process, each array entry c[j] contains the
count of all data elements a ∈ S mapped to j. It can be
observed that if an element a occurs frequently enough in
the data set S, then the value of the counter c[h(a)] must be
large. That is, “frequent” elements are mapped to “heavy”
buckets. By identifying the elements mapped to heavy buck-
ets and repeating the process several times, one can effi-
ciently recover the frequent elements, possibly together with
a few extra ones (false positives).

1These elements are often referred to as heavy hitters or
elephants.
2Typically, the value is incremented by 1. However, some
algorithms such as Count Sketch [CCF02] or the pre-
identification procedure of [GGI+02b] use randomly chosen
increments.
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Variants of this method have originated in several fields,
including databases [FSGM+98, CM03a, CM03b], computer
networks [FCAB98, EV02] (cf. [BM04]) and theoretical
computer science [CCF02, GGI+02b, CM04]. One of the
key features of this method is that it allows to approximate
the counts of the elements using very limited storage while
making only a single pass over the data. As a result, the
method has become one of the staples in the field of data
stream computing [Mut05]. However, this was just the be-
ginning. Over the last decade, this approach has been used
to design improved algorithms for remarkably diverse tasks
such as compressive sensing, dimensionality reduction and
sparse Fourier transforms. In this survey we give a brief
overview of how hashing is used in the aforementioned ap-
plications.

In order to apply the approach to those tasks, the first
step is to view the hashing process as a linear mapping of the
characteristic vector x of the set S to the vector c. Specif-
ically, for any j = 1 . . .m, c[j] =

∑
a:h(a)=j xa. This can

be written as c = Ax where A is a sparse binary m × n
matrix. The algorithmic benefit of using such mappings is
due to the sparsity of the matrix A (which makes it easy to
perform various tasks such as matrix-vector multiplication
efficiently) as well as the overall simplicity of the hashing
process.

2. COMPRESSED SENSING
In compressed sensing [Don06, CRT06] one is given the

vector Ax and the goal is to recover an approximation x′

to x that is k-sparse, i.e., that has at most k non-zero en-
tries. The approximation should (approximately) minimize
the error ‖x′ − x‖p for some choice of the `p norm. Note
that for any value of p, the error ‖x − x′‖p is minimized
when the approximation x′ consists of the k largest (in mag-
nitude) coefficients of x. This problem has numerous appli-
cations in signal processing or imaging, where signals are
quite sparse, possibly after applying an appropriate change-
of-basis transform. In those applications compressed sens-
ing allows one to recover a good approximation to a signal x
from only few “measurements”Ax. In particular, the result
of [CRT06] shows that one can recover a k-sparse approx-
imation to x using only m = O(k log(n/k)) measurements,
and it is known that this bound cannot be improved [Don06,
DIPW10, FPRU10]. The bound is achieved using matrices
A with random i.i.d. Gaussian or Bernoulli entries. Un-
fortunately, any operation on such matrices takes O(nm)



time, which makes the recovery algorithms somewhat slow
for high values of n.3

It was observed in [CM06] (cf. [GI10]) that the algorithm
of [CCF02] yields a recovery procedure and a matrix A with
O(k logn) measurements, which is not too far from the opti-
mal bound (although the recovery procedure is only correct
with high probability). At the same time, thanks to the spar-
sity of the matrix A, the approximation x′ can be computed
in only O(n logn) time. Compressive sensing via sparse ma-
trices has attracted a considerable interest in the literature,
see e.g., [SBB06, CM06, WGR07, GSTV07, XH07, SBB10,
WWR10, KDXH11, Ind08, LMP+08, BGI+08, IR08, BIR08,
JXHC09, GLPS10, GM11, PR12, BJCC12] or a survey [GI10].
In particular, the results of [BGI+08, IR08, BIR08, GLPS10]
show that sparse matrices can match the optimalO(k log(n/k))
measurement bound achieved via fully random matrices while
supporting faster algorithms, albeit in some cases providing
somewhat weaker approximation guarantees.

3. DIMENSIONALITY REDUCTION
A mapping from x to Ax can be also used to reduce the

dimensionality of general (non-sparse) vectors x, as per the
Johnson-Lindenstrauss theorem [JL84]. The original theo-
rem used random dense matrices, which necessitated O(nm)
matrix-vector multiplication time. Faster dimensionality re-
duction is possible by using structured matrices that support
much faster matrix-vector multiplication procedures [AC10,
AL11, KW11, NPW12], but the reduced dimension is either
sub-optimal or restricted. Moreover, the running times of
those procedures do not scale with the the sparsity of the
vector x. In contrast, the line of research on sparse dimen-
sionality reduction matrices [SPD+09, WDL+09, DKS10,
BOR10, KN12] has led to matrices with optimal reduced di-
mension bounds that are supported by algorithms with run-
time O(εkm), where k is the number of non-zero entries in x
and ε > 0 is an approximation parameter that is arbitrarily
close to 0. Using such matrices, [CW13] (see also [NN12,
MM13]) recently showed almost linear time approximate al-
gorithms for sparse regression and low-rank approximation,
the key problems in numerical linear algebra.

4. SPARSE FOURIER TRANSFORM
The Discrete Fourier Transform (DFT) maps an n-dimensional

signal x sampled in time domain into an n-dimensional spec-
trum x̂. The widely used Fast Fourier Transform algo-
rithm performs this task in O(n logn) time. It is not known
whether this algorithm can be further improved. However,
it is known that one can compute DFT significantly faster
for signals whose spectrum is (approximately) sparse. Such
sparsity is common for many data sets occurring in signal
processing, imaging and communication. For such signals,
one may hope for faster algorithms.

The first algorithms of this type were designed for the
Hadamard Transform, i.e., the Fourier transform over the
Boolean cube [KM91, Lev93] (cf. [GL89, Gol99]). Soon, al-
gorithms for the complex Fourier transform were discovered

3This issue can be alleviated by using random structured
matrices, which support matrix-vector product in O(n logn)
time [CT06, RV06, CGV13, NPW12]. However, even the
best construction due to [NPW12] requires the number of
measurements to be O(log2 n) times larger than optimal, at
least in theory.

as well [Man92, GGI+02a, AGS03, GMS05, Iwe10, Iwe12,
Aka10, HIKP12b, HIKP12a, LWC12, BCG+12, GHI+13,
HKPV13]. In particular, the algorithm given in [HIKP12a]
computes the DFT of a signal with k-sparse spectrum in
O(k logn) time. Note that this running time improves over
the FFT as long as k = o(n). In fact, for low values of k
the running time is sub-linear in n, i.e., the algorithm does
not even read its input. Instead, it infers the large Fourier
coefficients by randomly sampling the signal x.

Perhaps surprisingly, most of the aforementioned algo-
rithms (notably [Lev93, GGI+02a, GMS05, Iwe10, Iwe12,
Aka10, HIKP12b, HIKP12a, LWC12, BCG+12, GHI+13,
HKPV13])4 use sketching via hashing, albeit in the fre-
quency domain. Specifically, the algorithms utilize multiple
band-pass filters which bin the spectrum coefficients into
a number of “buckets”. The process is randomized to en-
sure that each coefficient is mapped to a “random” bucket
and that two large coefficients are not likely to collide. A
somewhat distinctive feature of this process is that can yield
“leaky” buckets, where a large coefficient affects not only the
bucket it is mapped into, but also the nearby ones. Fortu-
nately, thanks to a careful filter design, the leakage can be
made negligible [HIKP12b, HIKP12a, BCG+12, HKPV13]
or even be completely eliminated [Iwe10, Iwe12, LWC12,
GHI+13].

For further overview of recent work on sub-linear algo-
rithms for sparse Fourier transform as well their applica-
tions, see [GIKR13].
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