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Definition

« Given: a set P of n points in R®

* Nearest Neighbor: for any query
g, returns a point peP
minimizing ||p-q||

» r-Near Neighbor: for any query
g, returns a point peP s.t.

llp-q|| < r (if it exists)
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Nearest Neighbor: Motivation

* Learning: nearest N’

neighbor rule
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MNIST data set “2”
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Nearest Neighbor: Motivation

* Learning: nearest f‘R

neighbor rule
 Database retrieval

* Vector quantization,
compression/clustering
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Brief History of NN
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The case of d=2

« Compute Voronoi diagram

* Given q, perform point
location

* Performance:
— Space: O(n)
— Query time: O(log n)
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The case of d>2

Voronoi diagram has size n®©

We can also perform a linear scan: O(dn)
time

That is pretty much all what known for

exact algorithms with theoretical
guarantees

In practice:

— kd-trees work “well” in “low-medium”
dimensions
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Approximate Near Neighbor

* c-Approximate Nearest 0
Neighbor: build data structure

which, for any query q <) e
—returns p'eP, ||p-ql| = cr,
— where r iIs the distance to the ]

nearest neighbor of q 0 ©
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Plan

e |Intro

* (Main memory) data structures:
— Today: Kd-trees

e Low-medium dimensions

« A proud member of a (huge) family of tree-based
data structures

— Tomorrow: Locality Sensitive Hashing (LSH)

» Dimensionality does not really matter
(but other things do)
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Kd-tree
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Kd-trees [Bentley'79]

* Not the most efficient solution in theory
* Everyone uses it in practice
* Algorithm:

— Choose x or y coordinate (alternate)

— Choose the median of the coordinate; this defines a horizontal or
vertical line

— Recurse on both sides
* We get a binary tree:
— Size: O(N)
— Depth: O(log N)
— Construction time: O(N log N)
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Kd-tree: Example

Each tree node v corresponds to a region Reg(v).
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Searching in kd-trees

* Range Searching in 2D

—Given a set of n points,
build a data structure that

for any query rectangle R,
reports all points In R
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Kd-tree: Range Queries

1. Recursive procedure, starting from v=root
2. Search (v,R):

a) If vis aleaf, then report the point stored in v if it lies
In R

b) Otherwise, if Reg(v) is contained in R, report all
points in the subtree of v

c) Otherwise:
If Reg(left(v)) intersects R, then Search(left(v),R)
If Reg(right(v)) intersects R, then Search(right(v),R)
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Query demo
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Query Time Analysis

* We will show that Search takes at most
O(n"2+P) time, where P is the number
of reported points

— The total time needed to report all points in
all sub-trees (i.e., taken by step b) is O(P)

— We just need to bound the number of nodes
v such that Reg(v) intersects R butis not = A
contained in R. In other words, the boundary 5 f
of R intersects the boundary of Reg(v)

— Will make a gross overestimation: will bound
the number of Reg(v) which are crossed by
any of the 4 horizontal/vertical lines
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Query Time Continued

* What is the max number Q(n)
of regions in an n-point kd-tree
intersecting (say, vertical) line ?
—If we split on x, Q(n)=1+Q(n/2)
—If we splitony, Q(n)=2*Q(n/2)+2
—Since we alternate, we can write

Q(n)=3+2Q(n/4)

» This solves to O(n'?)
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Analysis demo
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Exercises

« Construct a set of n points, and a range
guery R such that:

— R does not contain any of the points
— The search procedure takes Q(n'"?) time

* What happens if the query range is a
circle, not a square?
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Back to (1+¢)-Nearest Neighbor

We will solve the problem using kd-trees

“Analysis”...under the assumption that all
leaf cells of the kd-tree for P have
bounded aspect ratio

Assumption somewhat strict, but satisfied
in practice for most of the leaf cells

We will show
—O(log n*0O(1/¢)?) query time
— O(n) space (inherited from kd-tree)
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ANN Query Procedure

* Locate the leaf cell
containing q °©10©

 Enumerate all leaf cells C
In the increasing order of 0
distance from ¢ 0

(denote it by r) q®

« Keep updating p’ so that it

Is the closest point seen so ©
far

— Note: r increases, dist(q,p’)
decreases

+ Stop if dist(q,p’)<(1+&)*r
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Analysis

 Let R be the value of r before the last cell was examined

« Each cell C seen (except maybe for the last one) has
diameter > R

« ...Because if not, then the point p in C would have been a
(1+¢)-approximate nearest neighbor (by now), so we
would have stopped earlier

dist(q,p) < dist(q,C) + diameter(C) <R + eR = (1+ ¢)R

* The number of cells with diameter cR, bounded aspect

ratio, and touching a ball of radius R is at most O(1/¢)°
— Ball of radius R has volume O(R)¢
— Each cell has volume Q(cR/sqrt{d})d
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