
Helsinki, May 2007

Algorithms for Finding Nearest 
Neighbors  (and Relatives)

Piotr Indyk



Helsinki, May 2007

Definition
• Given: a set P of n points in Rd

• Nearest Neighbor: for any query 
q, returns a point p∈P
minimizing ||p-q||

• r-Near Neighbor: for any query 
q, returns a point p∈P s.t. 
||p-q|| ≤ r (if it exists)

q

r



Helsinki, May 2007

Nearest Neighbor: Motivation

• Learning: nearest 
neighbor rule ?



Helsinki, May 2007

MNIST data set “2”



Helsinki, May 2007

Nearest Neighbor: Motivation

• Learning: nearest 
neighbor rule

• Database retrieval
• Vector quantization,   

compression/clustering

?



Helsinki, May 2007

Brief History of NN



Helsinki, May 2007

The case of d=2  
• Compute Voronoi diagram
• Given q, perform point 

location
• Performance:

– Space: O(n)
– Query time: O(log n)



Helsinki, May 2007

The case of d>2

• Voronoi diagram has size nO(d)

• We can also perform a linear scan: O(dn)
time

• That is pretty much all what known for 
exact algorithms with theoretical 
guarantees

• In practice:
– kd-trees work “well” in “low-medium”

dimensions



Helsinki, May 2007

Approximate Near Neighbor
• c-Approximate Nearest 

Neighbor: build data structure 
which, for any query q
– returns  p’∈P,  ||p-q|| ≤ cr, 
– where r is the distance to the 

nearest neighbor of  q 
q

r

cr



Helsinki, May 2007

Plan

• Intro
• (Main memory) data structures:

– Today: Kd-trees
• Low-medium dimensions
• A proud member of a (huge) family of tree-based 

data structures

– Tomorrow: Locality Sensitive Hashing (LSH)
• Dimensionality does not really matter

(but other things do)



Helsinki, May 2007

Kd-tree



Helsinki, May 2007

Kd-trees [Bentley’75]

• Not the most efficient solution in theory
• Everyone uses it in practice
• Algorithm:

– Choose x or y coordinate (alternate)
– Choose the median of the coordinate; this defines a horizontal or 

vertical line
– Recurse on both sides

• We get a binary tree:
– Size: O(N)
– Depth: O(log N)
– Construction time: O(N log N)



Helsinki, May 2007

Kd-tree: Example

Each tree node v corresponds to a region Reg(v).



Helsinki, May 2007

Searching in kd-trees

• Range Searching in 2D
–Given a set of n points,  

build a data structure that 
for any query rectangle R, 
reports all points in R



Helsinki, May 2007

Kd-tree: Range Queries

1. Recursive procedure, starting from v=root
2. Search (v,R):

a) If v is a leaf, then report the point stored in v if it lies 
in R

b) Otherwise, if Reg(v) is contained in R, report all 
points in the subtree of v

c) Otherwise:
• If Reg(left(v)) intersects R, then Search(left(v),R)
• If Reg(right(v)) intersects R, then Search(right(v),R)



Helsinki, May 2007

Query demo



Helsinki, May 2007

Query Time Analysis
• We will show that Search takes at most 

O(n1/2+P) time, where P is the number 
of reported points
– The total time needed to report all points in 

all sub-trees  (i.e., taken by step b) is O(P)
– We just need to bound the number of nodes 

v such that Reg(v) intersects R but is not 
contained in R. In other words, the boundary 
of R intersects the boundary of Reg(v)

– Will make a gross overestimation: will bound 
the number of Reg(v) which are crossed by 
any of the 4 horizontal/vertical lines



Helsinki, May 2007

Query Time Continued

• What is the max number Q(n)
of regions in an n-point kd-tree 
intersecting (say, vertical) line ?
–If we split on x, Q(n)=1+Q(n/2)
–If we split on y, Q(n)=2*Q(n/2)+2
–Since we alternate, we can write 

Q(n)=3+2Q(n/4)
• This solves to O(n1/2)



Helsinki, May 2007

Analysis demo



Helsinki, May 2007

Exercises

• Construct a set of n points, and a range 
query R such that:
– R does not contain any of the points
– The search procedure takes Ω(n1/2) time

• What happens if the query range is a 
circle, not a square?



Helsinki, May 2007

Back to (1+ε)-Nearest Neighbor

• We will solve the problem using kd-trees
• “Analysis”…under the assumption that all 

leaf cells of the kd-tree for P have 
bounded aspect ratio

• Assumption somewhat strict, but satisfied 
in practice for most of the leaf cells

• We will show
– O( log n * O(1/ε)d ) query time
– O(n) space (inherited from kd-tree)



Helsinki, May 2007

ANN Query Procedure
• Locate the leaf cell 

containing q
• Enumerate all leaf cells C

in the increasing order of 
distance from q
(denote it by r)

• Keep updating p’ so that it 
is the closest point seen so 
far 
– Note: r increases, dist(q,p’)

decreases 
• Stop if dist(q,p’)<(1+ε)*r

q



Helsinki, May 2007

Analysis
• Let R be the value of r before the last cell was examined  
• Each cell C seen (except maybe for the last one) has 

diameter > εR
• …Because if not, then the point p in C would have been a 

(1+ε)-approximate nearest neighbor (by now), so  we 
would have stopped earlier

dist(q,p) ≤ dist(q,C) + diameter(C) ≤ R + εR = (1+ ε)R
• The number of cells with diameter εR, bounded aspect 

ratio, and touching a ball of radius R is at most O(1/ε)d

– Ball of radius R has volume O(R)d

– Each cell has volume Ω(εR/sqrt{d})d



Helsinki, May 2007

Refs

• JL Bentley, Binary Search Trees Used for 
Associative Searching, Communications of 
the ACM, 1975.

• S Arya, DM Mount, NS Netanyahu, R 
Silverman, AY Wu , An optimal algorithm 
for approximate nearest neighbor 
searching fixed dimensions, Journal of the 
ACM (JACM), 1998.

• D Lowe, 1992.


