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Abstract

We demonstrate a probabilistic construction of binary linear codes meeting the Gilbert-
Varshamov bound (with overwhelming probability) for rates up to about 10~*, together with
polynomial time algorithms to perform encoding and decoding up to half the distance. This is
the first such result (for some positive rate) with polynomial decoding complexity; previously a
similar result (up to rate about 0.02) was known with sub-exponential time decoding (Zyablov
and Pinsker, 1981).

1 Introduction

One of the central challenges in coding theory is to construct codes with optimal rate vs. distance
trade-off together with efficient encoding and decoding algorithms. Despite decades of research,
however, even the best trade-off between rate and distance is unknown for binary codes. A random
binary linear code, although not known to achieve optimal rate vs. distance tradeoff, provides very
good bounds with overwhelming probability. In fact, they achieve the best known rate vs. distance
trade-off called the Gilbert-Varshamov (GV) bound. At the same time, since there is no general
way to certify that a random code is good or to actually decode a good code, the random code
construction is only of theoretical interest.

While a random linear code has little structure, Thommesen [7] proved that one can meet the
GV bound by picking a random code from a more structured ensemble of binary linear codes.
Specifically, he proved that a concatenated code, with an outer Reed-Solomon code and binary



linear inner codes of suitable parameters picked independently at random for the various outer
codeword positions, meets the GV bound with high probability. Still, unique decoding the resulting
codes up to the optimal radius (i.e., up to half the GV bound) was posed as an open problem by
Thommesen, and it has remained unresolved for over 20 years now.

In this paper, we solve this question for low rates (or large distance). Specifically, for rates
up to about 10—, we present a decoding algorithm that can decode a randomly chosen code from
Thommesen’s ensemble up to half the distance with overwhelming probability. A similar result
was shown by Zyablov and Pinsker [8] for rates up to 0.02, but their decoding algorithm ran in
time 20(VN) where N is the block length, where as we achieve polynomial decoding complexity.
Ours is the first result to achieve polynomial decoding complexity up to half the GV bound for
some positive rate. The question of extending Zyablov and Pinsker’s result to higher rates was
mentioned as Open Problem 6.13 in [1], and the question of doing so with polynomial decoding
complexity is an important question left open by our work.

We remark that though we do not know how to certify that the distance of the overall code
will meet the GV bound (but we do know it will do so with high probability), we can certify the
decoding property deterministically in the following sense: the decoding algorithm is guaranteed
to (list) decode the code up to a fraction 1/4 of errors, regardless of whether the distance of the
code meets the GV bound or not. This certification property gives us the desirable feature that
a failure of the algorithm to uniquely decode the closest codeword from the received word (due
to there being multiple close-by codewords) is in fact a “proof” that the distance fell short of the
GV bound, and till we detect this failure, all decodings produced by the algorithm are indeed the
correct closest codewords.?

We note that the classical GMD approach to decoding concatenated codes can correct only up
to half the product of the outer and inner distances, or half the so-called Zyablov bound, which is in
general much smaller than half the GV bound. Instead, we use the list decoding algorithms known
for Reed-Solomon codes to accomplish this task. To get the best bound on rate up to which we
can decode up to half the GV bound, we use a recent algorithm from [5] that uses soft information
passed from the inner decodings to the Reed-Solomon list decoder, though we also discuss “more
straightforward” ways of using list decoding to decode the concatenated code.

It should be said that our result is technically simple to achieve given Thommesen’s result [7]
and the recent progress on list decoding concatenated codes [5]. But we hope that the statement
of the result is inspiring and that it motivates further investigation of structured sample spaces of
codes that meet the GV bound as well as improved ways to exploit the list decoding algorithms in
decoding concatenated codes. Given that we currently seem quite far from the target of explicit
constructions of codes meeting the GV bound, augmenting existing probabilistic constructions
with efficient decoding algorithms is a worthwhile pursuit. In this regard, improving the rate up to
which we can decode is a central open question arising out of our work, and we end the paper with
a discussion of why doing this using the current technology for list decoding concatenated codes
is likely to be quite challenging.

1If the algorithm fails to output any codeword, then that is “proof” that more than afraction 1/4 of errors occurred,
and in such a case we are not required to be able to decode anyway.



2 Background on the Thommesen Construction

A random code in the ensemble of codes considered by Thommesen is sampled as follows. There is
a fixed Reed-Solomon code of block length N (say) over GF(2) that is used as the outer code, and
it is concatenated with N binary linear inner codes of block length b (say) picked independently
at random. The argument that this process leads to a linear code that meets the GV bound with
high probability proceeds roughly as follows. The weight distribution of the Reed-Solomon code,
which is known explicitly, tells us the number of outer codewords of a specific weight. Now,
an outer codeword of weight, say «, is mapped into a specific bit vector which is 0’s outside the
u blocks corresponding to the u non-zero symbols, with probability exactly 2= (note that this
probability depends only on the weight of the outer codeword). By performing a union bound
over all low-weight vectors and all outer codewords (whose weight distribution is known), gives
an upper bound on the probability that the resulting code fails to have a certain minimum distance.
A careful choice of parameters and calculations then shows that the bound on minimum distance
achieved indeed matches the GV bound.

To give some intuition as to why the GV bound is met, we now describe a quick back-of-the-
envelope calculation for the case of relative distance very close to 1/2.

Proposition 1 Let C, be a linear code of dimension k over GF(2!) that has relative distance
(1 — ¢) and rate r,, for some very small ¢ > 0. Consider the ensemble of codes similar to the
Thommesen scheme where independently picked binary linear inner codes of rate ¢ and dimension
t are used as inner codes with C as outer code. A random code from this ensemble fails to have
relative distance at least (1/2 — O(e)) with exponentially small probability.

Proof: Consider a non-zero codeword of the resulting concatenated code. There are (1 — )k /7
outer symbols that are non-zero, and for each such symbol, the probability that any single bit of
its encoding by the associated inner code equals 0 is exactly 1/2. Overall, the weight of the code-
word is a Bernoulli random variable with success probability 1/2and M = (1 —¢) - (k/r¢)-b/e =
(1 —5)% trials. The probability that we exceed the expectation by ¢ is at most exp(—O(1)e?>M) =
exp(—O(kbe /1)) = exp(—O(kb)), where the last step follows since r, < ¢ by the Singleton
bound. Since the total number of codewords is 2*°, a union bound shows that except with expo-
nentially small probability, the code has relative distance at least (1 —€)(1/2 —¢) > 1/2 — 2e.
O

Applying the above with a code like the Reed-Solomon code which achieves the Singleton
bound (so ry = €), we get codes of relative distance 1/2 — O(e) and rate 2. Up to constant factors,
this matches the GV bound, since for small €, H(1/2 —¢) = 1 — O(£?). The computation in
Thommesen’s paper [7] is more complicated than the above calculation as it shows that the GV
bound can be met exactly.

We refer to the paper by Thommesen [7] for further details of the construction and proof, and
below state the main result from that paper in a form which will be useful to us. For 0 < z < 1,
define the function a(z) = 1 — H(1 — 2~!) (where as usual H(y) denotes the binary entropy
function of ).

Theorem 1 [7] Letryand R, be givensuchthat0 < 7o < 1and 0 < Ry < «a(rg)/ro. For alarge
enough integer ¢, let RS,(Ry) be the Reed-Solomon code over GF(2) of block length N = 27 and



rate R,. Consider an ensemble of concatenated codes with RS;(R,) as outer code with varying
inner codes, that is codes where the codewords are of the form

uG = [u1G1,usGy, ..., unGn], u = (ui,ug,...,uy) € RS;(Ro)

where G;, 1 < i < N, are binary t x t/rq matrices, each picked at random and independently
of the others. Then, for every £ > 0, the probability that a random concatenated code from this
ensemble (defined by a random choice of the G;’s) has relative distance at most H=!(1 —rqRy) —¢
is exponentially small in the block length. This also implies that such a code has rate ro R, with
high probability.? In other words, a random code from this ensemble meets the Gilbert-Varshamov
bound with high probability.

3 Background on Decoding Concatenated Codes

We now review some approaches to decode concatenated codes that exploit the power of list de-
coding algorithms when the outer code is an algebraic code like the Reed-Solomon code. The basic
idea is to first decode the inner codes, and then use information from this stage to (list) decode the
outer code. However, there are several choices available in implementation of this idea when it
comes to how much and what kind of information is passed to the outer decoder.

One natural approach is the following. Given a received word r = ryr5 ... 7y Where r; corre-
sponds to the encoding of the i’th outer codeword symbol, decode each r; up to a certain radius
producing a list £; of up to L inner codewords, or equivalently up to L candidate symbols for the
1’th location of the outer codeword. (One way to bound the radius up to which such decoding can
be done while producing list size at most L is via the Johnson bound, cf. [6].) If the total fraction of
errors is bounded (say by 1/4 which will be the target in our work here), then a good fraction of the
lists £; must contain the correct symbol. The list decoding algorithm for the outer Reed-Solomon
code, on input the lists £;, can then determine all such codewords, and we can check to see whether
there is a unique codeword within half-the-GV bound from r, and if so output it. If there is no such
codeword, then too many errors have occurred; if there is more than one such codeword, then that
serves as proof that the minimum distance of the code fell short of the GV bound. Either way, the
algorithm’s failure gives useful “proven” information.

When concatenating an outer Reed-Solomon code of rate R, with (binary) inner codes of rela-
tive distance 4, it is an easy computation using the Johnson bound and Reed-Solomon list decoding
algorithm of [4] to show that the above strategy can decode up to a fraction

%(1 —/1—=26+26/L)(1 — \/LRy) (1)

of errors. The above will suffice to give a qualitative result similar to the one we are after, but
the rate up to which we can meet the GV bound and decode up to half-the-distance leaves room
for improvement (even in the order of magnitude; more on this in the discussion at the end of this

paper).
2Note that the rate is not argued by showing that each of the G;’swill have full rank with high probability. In fact,

such aclaim is not true. However, if the minimum distance of the overall code is greater than 0, then there must be
2tN o distinct codewords.




Therefore, we use a slightly more sophisticated decoding strategy which gives bounds as stated
in Theorem 2 below, which is the result of Theorem 3 of [5]. (There is a slight difference in that the
result below is stated with possibly different inner codes at the various positions, and also allows
a small fraction of the inner codes to not have any guarantee on relative distance. However, these
differences are minor and the proof from [5] can be trivially adapted to this setting.) We refer the
reader to [5] for actual details of the proof, but just mention the basic idea here. The approach is
similar to the above-mentioned one, except that when a list £; of possible symbols are returned for
the 7’th position, the inner decoder also passes for each symbol in the list an associated “weight”
or “confidence information” that represents, qualitatively, the likelihood of that symbol being the
actual one. The list decoding algorithm for Reed-Solomon codes can handle such weights on
the inputs (such weights are usually referred to as “soft information” in coding theory, and the
associated decoders that can take advantage of such information are referred to as soft decoding
algorithms). The specific weights used in [5] are linear functions that decrease with the distance of
the symbol’s encoding from the received block r;. This seems like a reasonable choice but by no
means the only conceivable one. Whether there are better ways to set weights that can be exploited
to improve the decoding algorithms for concatenated codes is a central question in this area, whose
importance is further underscored by the application presented here.

Theorem 2 [5] Consider a family of binary linear codes where each member of the family is a
concatenated code with the outer code a Reed-Solomon code of rate R, with block length equal
to the size of the underlying field, say @,% and each inner code a (possibly different) binary linear
code of dimension Ig @ such that a (1 — ~) fraction of the inner codes have relative distance at
least 0. Then, codes from such a family can be encoded in polynomial time, as well as list decoded
in deterministic polynomial time up to a fractional radius of

(1—@)—\/@—7. )
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4 Our Main Result

In this section, we describe how we obtain probabilistic constructions of codes that lie on the GV
bound and which can be decoded up to half-the-distance in polynomial time. Our approach is to
pick a concatenated code with outer Reed-Solomon code and varying inner codes picked at random.
Such a code will lie on the Gilbert-Varshamov bound with high probability as per Theorem 1. We
will also pick the outer and inner distances A and ¢ so that the error fraction that can be corrected as
per Equation (2) will equal 1/4 (which is the largest fraction of errors that can be unique decoded
for binary codes). Our overall rate will be very close to (1 — A)(1 — H(¢)). Optimizing over
the choice of 4, A to maximize the rate will give us our final bound. Note that our result actually
guarantees list decoding up to a fraction 1/4 of errors, while we only need to guarantee unique
decoding up to half the distance for our claim. However, since our final codes will be in the low-
rate or large-distance regime, 1/4 is a very good approximation to half the relative distance, and
so we don’t expect to improve the rate significantly by being careful about this part. Therefore,

SThisrestriction on the block length is not necessary and the claim holds for any fi eld size which is a polynomially
growing function of the block Iength.



we simply set the desired decoding radius to be a fraction 1/4 of errors. We now state the formal
result that follows by combining the statements of Theorems 1 and 2.

Theorem 3 Foreverye > 0and 0 < § < 1/2, letro = 1 — H(d) — € and let R, satisfy
0 < Ry < a(rg)/ro. For a large enough integer ¢, let RS,(R,) be the Reed-Solomon code over
GF(2") of block length N = 2%, rate Ry, and relative distance (1 — Ry). Consider an ensemble of
concatenated codes with RS;(R,) as outer code with varying inner codes of dimension ¢ and block
length ¢ /r, picked as in Theorem 1. Then:

1. A random concatenated code from this ensemble has rate ro R, and relative distance at least
H~1(1—-roRy)—e, and thus meets the GV bound, except with probability that is exponentially
small in V.

2. There is a deterministic polynomial time decoding algorithm that can, except with expo-
nentially small probability, decode a randomly drawn code from such an ensemble up to a
fraction of errors equal to

1
5.(1—\/1—25)—\/530—8. 3)
Moreover, given a particular choice of the concatenated code, it can be certified in deter-

ministic polynomial time whether or not the above decoding guarantee will be met.

Proof Sketch: Follows from Theorems 1 and 2 using the fact that a binary linear code defined by
picking a random ¢ x t/r, matrix as its generator matrix where ro = 1 — H(d) — ¢ has relative
distance at least ¢ with overwhelming probability. In particular, except with exponentially small
probability (in V), more than a fraction (1 —¢) of the inner codes will have relative distance at least
0. The claim on the decoding radius (3) follows from Theorem 2, and the “certification” property
follows since we can check in poly (V) time exactly how many inner codes have relative distance
at least 6. O

Plugging in specific choice of the parameters, specifically J, 1, we conclude our main result:

Theorem 4 (Main) There is a probabilistic polynomial time procedure to construct codes whose
rate vs. distance trade-off meets the Gilbert-Varshamov bound with high probability for all rates
less than 10~. Furthermore, these codes can be decoded in polynomial time up to half the rel-
ative distance, and in fact this latter decoding property can be *“certified”, i.e., one can verify in
deterministic polynomial time that such decoding will indeed be possible for the constructed code.

Proof: This follows by plugging into Theorem 3 the following choice of parameters (found by
search using a simple program): § = 0.421, r, = 0.01808, and R, < 0.00623 (the exact value
of R, will depend on the desired overall rate which is rqRy). The choice of  and R, can be seen
to ensure that the decoding radius from Equation (3) is at least 1/4, so that we are guaranteed to
decode up to radius 1/4 and in particular up to half the relative distance. It can also be checked
that the choice of r, R, satisfy ro Ry < «(ro), S0 that the condition for Thommesen’s result is met
and the codes will meet the GV bound w.h.p. Thus, we have efficiently decodable codes meeting
the GV bound for rates up to 0.01808 x 0.00623 ~ 1.126 x 1074, O

We should mention that we did not attempt to optimize the rate up to which our construction
works beyond the order of magnitude (i.e., 10~%). We just remark that optimization similar to



Theorem 4, when performed for the decoding guarantee of Equation (1), yielded an overall rate of
about 1.4 x 10~° (achieved by setting inner rate r, = 0.008179, the list size for inner decodings
L = 18, and outer rate Ry, = 0.001673). A different approach to improving the rate would be
to use a similar algorithm to the one that leads to the bound of Equation (1), but instead of using
the Johnson bound to relate the list-decodability of the inner codes to their minimum distance,
directly use the trade-off between rate and list-decodability of binary linear codes. Unfortunately,
this trade-off is not well-understood, and the bounds for random linear codes (that hold with high
probability for most linear codes) are much weaker than those for general random codes (see [2, 3]
for a detailed discussion about this and the exact trade-offs). For general random codes, the trade-
off that holds with high probability is ro = 1 — H(p)(1 + 1/L) where r is the rate, L is the list
size, and p is the fraction of errors. However, even assuming such a trade-off can be shown to hold
for most linear codes, a similar optimization to that of Theorem 4 still yields an overall rate that is
of order of magnitude only 10~%. Therefore, it seems that to improve the rate substantially, say to
about 102, will need a somewhat sophisticated improvement to our approach.
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