
6.838: Geometric Computing

Spring 2005

Problem Set 3
Due: Thursday, April 21

Mandatory Part (note: this problem set does not have the optional parts)

Hint: The solution to the first two problems involves very similar techniques. You might want to
think about them in parallel.

Problem 1. Fast Approximate Near Neighbor in l1
Construct a new data structure for the Approximate Near Neighbor problem in <d under l1

norm. Your data structure should have the following parameters:

• Approximation factor: O(d)

• Space: O(dn)

• Query time: O(d)

Your data structure can be randomized.

Problem 2. LSH in <d under l1
In the class, we have seen how to embed {0 . . . M}d equipped with l1 norm, into the Hamming

space {0, 1}Md. This automatically yields a randomized data structure solving a c-approximate
Near Neighbor with query time O(dMn1/c), for c = 1 + ε > 1.

Show how to extend the latter data structure so that it works for points in <d (again, the distance
is defined by the l1 norm). Your data structure should support queries in time O((d log n/ε)O(1)n1/c).

Problem 3. (1, 2) − B metrics

In the class, we have seen how to construct an exact embedding of a given metric M = (X,D),
|X| = n, into ln

∞
. In this problem we consider embeddings of a special subclass of metrics called

(1, 2) − B metrics. A metric is a (1, 2) − B metric if it satisfies the following two very particular
conditions:

1. All non-zero distances are either 1 or 2

2. For any point p ∈ X, the number of points q ∈ X such that D(p, q) = 1 is at most B.

1

Show that there is a constant C such that any metric M satisfying the above conditions can be
embedded exactly into ld

∞
where d = CB log n.

Hint: Use probabilistic method, similar to the proof of Matousek’s theorem.

Note: You might wonder: why anyone would be interested in (1, 2)−B metrics ? It turns out that it is possible
to show that, for a certain constant A > 1, it is NP-hard to find an A-approximate solution the Traveling Salesman
Problem for such metrics (this is a much stronger fact than the NP-hardness of the exact TSP showed in the Intro
to Algorithms class). This remains true even if B is constant.

The embedding implies that the problem is equally hard even if the metric is induced by n points living in l∞
with dimension d = O(log n). So, any A-approximation algorithm for this problem is unlikely to run in time 22o(d).

Otherwise, we would have an algorithm solving an NP-hard problem in time 22o(d)

= 22o(log n)

= 2n
o(1)

, i.e., in
sub-exponential time, which is conjectured to be impossible.

So, the problem of approximately solving TSP in d-dimensional l∞ norm suffers from doubly exponential depen-
dence on d. This is a ”super-curse of dimensionality” !

2

