
Thinner Clouds with Preallocation∗

Ittay Eyal1, Flavio Junqueira2, and Idit Keidar1

1Department of Electrical Engineering, Technion, Haifa, Israel
2Microsoft Research, Cambridge, UK

Abstract
Different companies sharing the same cloud infrastruc-
ture often prefer to run their virtual machines (VMs) in
isolation, i.e., one VM per physical machine (PM) core,
due to security and efficiency concerns. To accommo-
date load spikes, e.g., those caused by flash-crowds, each
service is allocated more machines than necessary for its
instantaneous load. However, flash-crowds of different
hosted services are not correlated, so at any given time,
only a subset of the machines are used.

We present here the concept of preallocation — hav-
ing a single physical machine ready to quickly run one of
a few possible VMs, without ever running more than one
at a given time. The preallocated VMs are initialized and
then paused by the hypervisor. We suggest a greedy pre-
allocation strategy, and evaluate it by simulation, using
workloads based on previous analyses of flash-crowds.
We observe a reduction of 35-50% in number of PMs
used compared with classical dynamic allocation. This
means that a datacenter can provide per-service isolation
with 35%-50% fewer PMs.

1 Introduction
Online applications increasingly use cloud providers

to host production services. Such applications, from
small start-ups to large web sites, delegate the physi-
cal management of computer resources, and host their
services with an external cloud provider. When using
cloud infrastructure, companies typically follow the pay-
as-you-go model, paying only for the resources they use
at a given time. They run a small number of machines
most of the time, and increase this number when they
wish to accommodate a larger workload.

∗Work conducted during an internship at Yahoo! Research. This
work was partially supported by the Hasso-Plattner Institute, the In-
tel Collaborative Research Institute for Computational Intelligence
(ICRI-CI), the Technion Autonomous Systems Program (TASP) and
the Israeli Science Foundation (ISF). The authors thank Edward Bort-
nikov for his good advice.

Applications are typically comprised of a number of
components, such as front-end servers, business logic,
and storage. Every service in a cloud is provided by a
number of virtual machines, or VMs for short, at any
given time. Each VM runs on a physical machine, or
PM, which is a cloud server running a hypervisor. A load
balancer routes incoming workload to the services, dis-
tributing it homogeneously among each service’s VMs.

Due to the cost of ownership of a PM, which might be
as high as double the price tag of the server itself, it is
desirable to provide a given set of services using as few
PMs as possible. This is precisely the goal of this work.
Note that we do not deal with the orthogonal problem of
saving energy by putting PMs to sleep, but rather with
reducing the number of PMs in the data center.

We consider elastic cloud-hosted services that should
quickly scale when required, e.g., due to flash-crowds.
These include front-end or business logic tiers that do not
store long term session state on behalf of clients. Such
services are elastic in nature, as machines can be added
or remove according to load machines. However, to run
a VM on a PM, the image of the VM has to be loaded
onto the PM and bootstrapped. As this process is time
consuming [4, 20], it has to be done in advance to ac-
commodate load spikes.

In principle, it is possible to consolidate, and run mul-
tiple VMs on the same PM. This would allow a single
PM to serve varying loads with its running VMs. How-
ever, despite progress in performance isolation, current
techniques still present drawbacks [12, 17, 7], and cloud
users are generally hesitant to have multiple production
VMs share a core. Additionally, for multi-tenancy, in
which case a VM of one user may be co-located with that
of another, the danger of side-channel attacks [18, 19] is
another significant reason to avoid VM core sharing. Our
working hypothesis is therefore that multiple VMs do not
concurrently run on the same PM.

This paper addresses the challenge of decreasing the
number of PMs without violating service isolation. We



present a novel approach for managing VMs in a cloud
provider that consists of preallocating multiple VMs on
each PM (Section 3) and show that it leads to a substan-
tial reduction on the number of PMs a cloud provider
needs to host. With our approach, all preallocated VMs
are loaded and bootstrapped, and then put to standby.
Note that preallocated VMs consume neither CPU time
nor network bandwidth, though they do occupy disk and
memory space. A PM can run any single one of its pre-
allocated VMs at any given time. This way, no security
or performance isolation concerns arise.1

Our approach raises the question of choosing a pre-
allocation strategy, i.e., which VMs to preallocate in
each PM; we tackle this question using a simple greedy
heuristic.

We evaluate the effectiveness of preallocation in Sec-
tion 4. Our workloads are based on analysis of flash-
crowd behavior in the Internet [3, 21, 8]. Even with our
simple heuristic, we observe a reduction of over 35% and
50% with preallocation of 2 and 3 VMs per PM, respec-
tively. This means that with preallocation of as little as 2
VMs per PM, we need a datacenter 35% smaller, running
an average of 35% fewer machines at any given time.

We note that despite its resemblance to bin-packing,
optimal routing, and variants thereof, we have not found
previous work that directly applies to the problem of
choosing a preallocation in the literature. Related work
is discussed in Section 6.

Our work is only a first step towards exploiting preal-
location in datacenters. We present here only our simple
preallocation strategy, and more elaborate schemes may
improve the benefits achieved with preallocation even
further. Using machine-learning tools that estimate the
workload can allow more fine-tuned preallocation deci-
sions. Finally, experimenting with real workloads in a
real production system is necessary to prove the feasibil-
ity of our approach. Section 7 concludes the paper with
a discussion of future directions.

2 Datacenter Architecture
A data center contains a set of physical machines,

each running a hypervisor. Multicore physical machines,
commonly found in data centers, use one core for the hy-
pervisor, and the others are available for running one VM
each. To simplify presentation, we assume that each PM
has one core available for running a single VM.

The data center hosts a set of services. Each service
is implemented with a set of stateless VMs running iden-
tical images. Clients use a service by issuing requests
against it. An example of a request is a search query.
A request is self contained, and any VM of the service

1Preventing malicious VMs from gaining control over their hosting
hypervisor is outside the scope of this work. Preventing such attacks is
essential for cloud computing with or without preallocation.

can process it. The workload of a service is evenly dis-
tributed across the service VMs using a load-balancer.

We measure workload in units of VMs required to run
them. For example, a workload of 3.5 requires 4 VMs
running on 4 PMs. If the workload of a service exceeds
the number of running service VMs, we say that there
is an overflow that is given by the number of missing
machines. For example, a workload of 3.5 of a service
running 2 VMs at a given time has an overflow of 1.5. An
overflow implies that the available machines are loaded
above their preferred work point, and may not behave as
they should.

The system is managed by an entity called the orches-
trator, which is in charge of loading the VMs on the PMs,
instructing the hypervisors to run the preloaded VMs, re-
ceiving statistics from the load balancer, and updating it
on which VMs are available for each service.

The orchestrator typically allocates one VM per PM,
and this PM is then able to run the allocated VM. To ac-
commodate workload spikes, each service has more VMs
allocated than necessary for the average workload. The
service is then ready to handle occasional spikes without
impacting the quality of the service offered. As the work-
load changes, the orchestrator can deallocate a VM, and
allocate another one in its slot. Allocation includes load-
ing the VM’s image and bootstrapping it — a lengthy
process taking often several minutes [4, 20].

Slack-factor allocation
With slack-factor preallocation, we assume that the

load of the different services is independent and simi-
larly distributed. First, we choose a slack-factor, α . The
slack factor is one plus the fraction of spare resources we
make available to the service. Then, for each service i at
time t with load wt

i , the orchestrator tries to allocate the
service’s VM in α×w physical machines. For example,
if α = 1.2, then we allocate 20% more physical machines
than currently used. If not enough VMs are allocated at
t, it starts allocating on new machines as necessary. A
larger slack factor therefore increases the number of PMs
used, and decreases the probability of overflow.

3 Preallocation
We now describe our technique for reducing the num-

ber of PMs required for a system by allocating multiple
VM images on each PM, and switching between them
dynamically. Preallocation is an extension of allocation.
With preallocation, a PM is able to run more than one
service in less time than that of a full allocation.

In this work, we take the following simple approach.
A preallocation includes loading the VM’s image, boot-
strapping it, and pausing it using the pause (also known
as suspend) mechanism of the hypervisor [1, 2]. A preal-
located VM occupies both the disk and RAM of the PM,

2



but it is swapped out, and does not receive CPU cycles or
network bandwidth. To preserve RAM space, much of a
suspended VM’s memory could be swapped out, requir-
ing a short warm-up period when it is swapped back in;
we ignore this latency, which is small compared to the
other time constants.

This scheme prevents all the concerns raised due to
the fact that VMs run on the same PM, since context
switches are infrequent, and effectively a PM runs only
one VM at a time. However, it is possible to switch the
running VM almost instantly, so when the workload of
a certain service spikes, it is possible to quickly run the
appropriate VMs, if they were preallocated on PMs that
are not needed for other workloads at the same time.

3.1 Operation
Like classical dynamic allocation, the orchestrator al-

locates VMs on PMs according to need. This includes
loading the VM image to the PM, bootstrapping it and
running the VM. Unlike standard dynamic allocation,
however, the orchestrator may suspend the running VM,
and allocate an additional VM on the same PM. The
number of VMs on each PM is bounded by disk and
memory capacity. The maximal possible number of VMs
that may be preallocated on a PM is called the preallo-
cation factor. For a preallocation factor of x, we call it
x-preallocation. Upon a command from the orchestrator,
a PM can swiftly switch between the different VMs allo-
cated on it. If necessary, the orchestrator may deallocate
a preallocated VM, clearing its slot for a different VM
to be allocated. Classical dynamic allocation is therefore
preallocation with a factor of one.

As the workload changes, the orchestrator preallocates
VMs and chooses which VM to run on each PM. It up-
dates the load balancer accordingly. The exact strategy a
load balancer should use is out of scope.

In summary, the orchestrator performs the following
operations:

• Allocate a VM on a PM if there are less VMs than
the preallocation factor allocated on the PM.

• Deallocate a VM from a PM to free a slot.

• Shut down a PM (equivalent to deallocating all its
allocated VMs).

• Start a new PM, and start allocating a VM on it.

• Start running a VM that is preallocated on a PM,
and notify the load-balancer that the VM is ready to
receive traffic.

• Stop running a VM that is running on a PM, and
notify the load-balancer that the VM does not take
traffic anymore. The VM stays allocated on the PM.

The system structure is illustrated in Figure 1. In this
example, we see a system with 2-preallocation and four

Figure 1: System architecture. Queries are directed by a load balancer
to the relevant PMs. Each PM has up to 2 preallocated VMs, with
one running (circled). VM images are loaded from an image storage.
Preallocation and load balancing are managed by the orchestrator.

PMs. Each PM has one running VM, circled. Three of
the VMs have an additional VM preallocated, and one is
currently allocating a VM – loading it from network stor-
age, marked with an arrow. Client queries are routed by
the load balancer to the PMs running the relevant VMs.

Note that when we allocate two VMs on each PM,
we reduce the number of used PMs by half compared to
classical allocation. However, it is possible that this pre-
allocation is not be able to accommodate the incoming
workload, should two services need the same PM con-
currently.

3.2 Greedy Slack-Factor Preallocation
In this preliminary work, we use a simple greedy ap-

proach, allocating services in arbitrary order and with no
explicit consideration of other services. We overview this
preallocation strategy, and in the next section we show
that even this simple heuristic leads to significant savings
with our workloads.

Slack-factor preallocation works similarly to classical
slack-factor allocation – each service is allocated a con-
stant factor of α of its instantaneous load. However, here
we count VMs that are collocated with others, possibly
residing in PMs that currently run another VM.

The greedy slack-factor preallocation algorithm works
as follows. In each step, the orchestrator checks for each
service whether it has more VMs running than currently
necessary, and stops redundant VMs, chosen uniformly
at random. Next, for each service, it tries to run as many
VMs as it currently needs, choosing greedily among idle
PMs where the service is currently preallocated. Finally,
for each service, it calculates the required number of ma-
chines to preallocate (wt

i×α), marks redundant preallo-
cations as such, and starts new preallocations as neces-
sary. To preallocate, the orchestrator can either (1) use
an idle machine with an empty slot, i.e., with fewer pre-
allocated VMs than the preallocation factor, (2) deallo-
cate a redundant VM (as marked by its service), and al-
locate the new VM in its place, or (3) start a new PM and
initiate preallocation on it. The pseudo-code is given in
Algorithm 1.

3



Algorithm 1: Greedy preallocation algorithm
1 repeat (run/stop)
2 done← TRUE
3 foreach service i do
4 missing← wt

i − currently running i-VMs
5 if missing < 0 then
6 Stop (−missing) i-VMs
7 done← FALSE

8 else if missing > 0 then
9 available← idle PMs with i allocated

10 if available > 0 then done← FALSE
11 Start min(available,missing) i-VMs in allocated

idle PMs
12 until done = TRUE
13 repeat (allocate/deallocate)
14 done← TRUE
15 foreach service i do
16 missing← α×wt

i − currently allocated i VMs
17 if missing < 0 then
18 tag redundant VMs
19 done← FALSE

20 while missing > 0 do
21 if found idle machine with free slot then
22 allocate VM i on it
23 missing← missing−1
24 done← FALSE

25 else if found idle machine with tagged VM then
26 deallocate tagged VM from it
27 allocate VM i on it
28 missing← missing−1
29 done← FALSE

30 until done = TRUE
31 foreach service i do
32 missing← α×wt

i − currently allocated i VMs
33 if missing > 0 then
34 start missing PMs
35 allocate VM i on new PMs

4 Evaluation

4.1 Workload
In this section we evaluate greedy slack-factor preal-

location in flash-crowd workloads of multiple services.
Our model is based on studies of flash-crowds in small

services and sites [3, 21, 8]. These analyses show that
load regularly fluctuates with a peak to average ratio
(PAR) of 1.5. In a flash-crowd event, load suddenly
spikes, with a PARs of 10–200. The load increase from
regular load to peak is roughly linear, taking a total
of 10–30 minutes. After the load remains high for a
while, it drops exponentially back to normal.

We construct our benchmarks based on this model.
We use 50 services. Each is assigned regular workload,
which is normally distributed with an average of 4 and
a standard deviation of 1. When the service experiences
a load spike, its load rises to a maximum of about 80
(PAR=20) in 30 minutes, maintains this load for an-
other 30 minutes, and then exponentially drops back to
the baseline. Load spikes occur with an average fre-

Figure 2: Workloads of three services with an average regular workload
of 4 experiencing uncorrelated load spikes due to flash-crowd events
with peak to average ratio of 20. Load increase is linear, over 30 min-
utes, maximum is maintained for 30 minutes, and then the load de-
creases exponentially.

quency of one per day per service. Figure 2 shows three
out of the fifty load traces.

4.2 Results

We now demonstrate the effectiveness of preallocation
with the greedy slack-factor preallocation algorithm, us-
ing a homebrewed event-driven simulator. In each run,
the orchestrator checks the per-machine load every 5
minutes, and makes necessary changes according to the
greedy algorithm described above. Allocation takes 10
minutes [4, 20]. Deallocation and switching between
machines is instantaneous, as we assume the time re-
quired to change routing and re-establish network con-
nections is negligible.

We measure the number of PMs required to run mul-
tiple services in the cloud with different preallocation
factors compared to classical allocation. These services
must accommodate (almost) all incoming load. This is
especially important for flash-crowd events, in which the
service gets a sharp increase of attention, and must per-
form well. We therefore define a target overflow of 1%,
and try to preallocate such that no service has an over-
flow larger than this target at any time.

For each preallocation factor, we run multiple simu-
lation experiments with different slack factors, search-
ing for the minimal slack factor for which the target is
reached. We run simulations for 1, 2 and 3-preallocation,
and count the number of PMs used with the optimal slack
factor.

The results are depicted in Figure 3. Using a preal-
location factor of 2 results in a savings of over 35% in
both the average and the maximal number of running
PMs. This means that with 2-preallocation, we need a
data center 35% smaller, running an average of 35% less
machines at any given time, compared to classical allo-
cation. With 3-preallocation, the saving rises above 50%,
i.e., requiring half the number of PMs.

4



Figure 3: Number of PMs used as a function of time. The simulated
data center hosts 50 services. The system provides per-service isola-
tion, and up to 1% workload overflow at any time. Using prealloca-
tion factors of two and three results in a savings of over 35% and over
50% (respectively, both with respect to no preallocation) in the maxi-
mal number of PMs used, and in the average number of PMs used.

5 Practical Considerations
5.1 Slack-Factor Choice

In our simulation we measured the optimal slack-
factor each client required by comparing the results
achieved with different slack-factors for the same work-
load. While this methodology provides evidence that
preallocation is effective, it is not practical, since the sys-
tem has to choose the slack-factor in advance.

In practice, the slack-factor needs to be chosen based
on an estimation of the incoming workload. This can
be done using the same techniques currently used for
performing allocation decisions (without preallocation),
e.g., based on analyses of historical workloads.

Note that the slack factor depends not only on the
client requirements, but also on the requirements of other
clients, and the preallocation factor of the system. The
reason is that the machines on which a client preallocates
VMs have to be available when its load spikes, and not
be used by collocated VMs.

5.2 Billing
The question of billing for preallocated machine is an

important one, since a preallocated VM consumes re-
sources such as storage even if the VM is not running.
One possible model is to charge for preallocating ma-
chines based on the probability that the VM becomes ac-
tive. Preallocating more machines with a higher proba-
bility of becoming active, consequently, leads to a higher
cost. This cost, however, is in principle smaller com-
pared to fully allocating a PM to a VM. Another simple
model is to charge only in the case the VM becomes ac-
tive and charge for the period during which it is active.

Billing is an important topic for public clouds. For

private clouds, it depends on the deployment model
adopted. Companies offering cloud services often charge
groups or organizations using the service. Such groups
have their own budget and pay for cloud resources just as
a client of a public cloud.

Independent of the type of cloud, given that techniques
like preallocation save on the overall cost of ownership,
it makes sense to charge less for preallocation compared
to the a VM that fully utilizes a PM. In the case the VM
image uses a small fraction of the PM storage, it might
not even make sense to charge unless the VM becomes
active.

6 Related Work
Kusic et al. [15] and Lin and Dinda [16] explore ser-

vice allocation with multiple VMs running concurrently
on the same PM. In [15], sleep modes are used, and the
scheduler splits the resources of the running PMs among
the VMs. In [16], the authors schedule a combination of
interactive services and batch services. Apart from run-
ning multiple VMs concurrently on each PM, neither pa-
per is concerned with the preallocation problem. Ghosh
et al. [11] analyze power consumption in a cloud archi-
tecture with PMs in different sleep modes, each taking
a different time to start a VM. They do not address the
problem of how to perform preallocation.

Ganesh et al. [9] use frequency domain analysis
to pack together services with workloads in different
phases, so the overall peak of a rack is smaller than the
sum of peaks. In our work we assume the workloads of
the different services are independent and random.

The challenge of allocating workload without preallo-
cation has been investigated thoroughly, see for exam-
ple [10, 13]. As noted, sleep modes are complementary
to our approach, as they reduce the number of running
PMs, rather than their total number (for example [14],
and see [6] for a comprehensive survey).

Note that the preallocation problem is not bin-packing,
as the sizes of the objects (VMs) are identical and one has
to decide how many copies of each VM should be allo-
cated, and with which other VMs. We are unaware of a
bin-packing variant that is analogous to the preallocation
problem.

Optimizing preallocation is related to the problem of
forming an expert team. There, we are given a team of
experts, each with certain skills, and a problem that re-
quires a certain set of skills. We have to find a set of ex-
perts that can solve the given problem, optimizing some
parameter [5]. The setup of the problems is similar, as
PMs are analogous to experts, the preallocated VMs to
skills, and the workloads in each step to the problem
to be solved by the experts. However, the expert team
formation problem is that of choosing experts to solve
a problem (allocating a workload to machines), whereas

5



the preallocation problem is that of allocating VMs to
PMs (choosing the skills experts should learn).

Optimizing preallocation is also different from net-
work routing and QoS optimization problems, where
links have to be shared by different clients. In that case
bandwidth can be continuously divided across clients,
and flow can be instantaneously switched between links,
requiring no preparation, as in the preallocation case.

7 Conclusion and Future Work
We introduced the concept of preallocation of virtual

machines, allowing physical machines to serve as reserve
for accommodating flash-crowds.

We have explored a simple greedy preallocation strat-
egy and have shown that it potentially leads to impor-
tant savings. Our results show a reduction of 35-50%
of the physical machines compared to a data center in
which each physical machine hosts one virtual machine
(with 2- and 3-preallocation, respectively). More elabo-
rate heuristics and machine learning techniques may in-
crease the efficiency even further. To employ prealloca-
tion, PMs may need additional RAM and disk storage,
however the vast reduction in PM count will surely lead
to a significant reduction of the total cost of ownership.

The concept of preallocation can be vastly expanded.
One direction to explore is utilizing multiple prealloca-
tion modes, where a VM image is loaded but not boot-
strapped, bootstrapped and suspended to disk, or boot-
strapped and suspended to memory as we do here. The
different modes embody a tradeoff between the resources
taken by the VM and the time needed to bring it to a run-
ning state.

Scaling stateful services, including storage tiers and
replicated state machines is another challenge. Scaling
such services requires careful planning to retain consis-
tency, adding a cost to the action of scaling. This renders
preallocation decisions even more complicated.

Combining preallocation with sleep modes adds yet
another dimension to the problem. The challenge is to
perform preallocation so that, when putting physical ma-
chines to sleep, the other machines have a good enough
mixture of VMs to handle as much workload as possible.
Sierra [22] is an example of a system that keeps all state
available despite PMs being put in sleep mode.

Overall we have provided evidence that simple tech-
niques used with resource allocation in cloud providers
might lead to important benefits for both the providers
and their clients by describing and evaluating prealloca-
tion. Our results, however, are not conclusive and some
practical experience is necessary to demonstrate that the
approach is really practical. In fact, the requirements of
different provides might ask for variants of the prealloca-
tion strategy and as part of validation it is also important
to contrast the results of different environments.

References
[1] virsh(1) — linux man page. http://linux.die.net/man/1/

virsh, retrieved Mar. 4, 2012.
[2] xm(1) — linux man page. http://linux.die.net/man/1/

xm, retrieved Mar. 4, 2012.
[3] ADLER, S. The slashdot effect, an analysis of three in-

ternet publications. http://www.astro.princeton.edu/

~mjuric/universe/slashdotting/, retrieved Jan. 04.
[4] AMAZON. Amazon ec2 faqs – what can i do with amazon

ec2? http://aws.amazon.com/ec2/faqs/#What_can_I_

do_with_Amazon_EC2, retrieved Mar. 4, 2013.
[5] ANAGNOSTOPOULOS, A., BECCHETTI, L., CASTILLO, C.,

GIONIS, A., AND LEONARDI, S. Power in unity: forming teams
in large-scale community systems. In CIKM (2010).

[6] BELOGLAZOV, A., BUYYA, R., LEE, Y., ZOMAYA, A., ET AL.
A taxonomy and survey of energy-efficient data centers and cloud
computing systems. Advances in Computers 82 (2011), 47–111.

[7] DESHANE, T., SHEPHERD, Z., MATTHEWS, J., BEN-YEHUDA,
M., SHAH, A., AND RAO, B. Quantitative comparison of xen
and kvm. Xen Summit, Boston, MA, USA (2008), 1–2.

[8] ELSON, J., AND HOWELL, J. Handling flash crowds from your
garage. In USENIX 2008 Annual Technical Conference (2008).

[9] GANESH, L., LIU, J., NATH, S., AND ZHAO, F. Unleash
stranded power in data centers with rackpacker. In WEED (2009).

[10] GHODSI, A., ZAHARIA, M., HINDMAN, B., KONWINSKI, A.,
SHENKER, S., AND STOICA, I. Dominant resource fairness: fair
allocation of multiple resource types. In NSDI (2011).

[11] GHOSH, R., NAIK, V. K., AND TRIVEDI, K. S. Power-
performance trade-offs in iaas cloud: A scalable analytic ap-
proach. In DSNW (2011).

[12] GUPTA, D., CHERKASOVA, L., GARDNER, R., AND VAHDAT,
A. Enforcing performance isolation across virtual machines in
xen. In MIDDLEWARE (2006), Springer-Verlag New York, Inc.

[13] HARPER, R. E., TOMEK, L., BIRAN, O., AND HADAD, E. A
virtual resource placement service. In DCDV 2011 (2011).

[14] KRIOUKOV, A., MOHAN, P., ALSPAUGH, S., KEYS, L.,
CULLER, D., AND KATZ, R. Napsac: design and implementa-
tion of a power-proportional web cluster. ACM SIGCOMM Com-
puter Communication Review 41, 1 (2011), 102–108.

[15] KUSIC, D., KEPHART, J., HANSON, J., KANDASAMY, N., AND
JIANG, G. Power and performance management of virtualized
computing environments via lookahead control. Cluster Comput-
ing 12, 1 (2009), 1–15.

[16] LIN, B., AND DINDA, P. Vsched: Mixing batch and inter-
active virtual machines using periodic real-time scheduling. In
ACM/IEEE SC (2005), p. 8.

[17] ONGARO, D., COX, A., AND RIXNER, S. Scheduling i/o in
virtual machine monitors. In VEE (2008), ACM, pp. 1–10.

[18] OSVIK, D., SHAMIR, A., AND TROMER, E. Cache attacks and
countermeasures: The case of AES. Topics in Cryptology–CT-
RSA (2006).

[19] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE,
S. Hey, you, get off of my cloud: exploring information leakage
in third-party compute clouds. In CCS (2009), ACM.

[20] STACK OVERFLOW. Is there a way to reduce time be-
tween azure deployment start and role onstart? http:

//stackoverflow.com/questions/10546624/is-there-

a-way-to-reduce-time-between-azure-deployment-

start-and-role-onstart, retrieved Mar. 4, 2013.
[21] TAK, B. C., URGAONKAR, B., AND SIVASUBRAMANIAM, A.

To move or not to move: The economics of cloud computing. In
HotCloud’11 (2011), USENIX Association.

[22] THERESKA, E., DONNELLY, A., AND NARAYANAN, D. Sierra:
practical power-proportionality for data center storage. In Eu-
roSys (2011).

6

http://linux.die.net/man/1/virsh
http://linux.die.net/man/1/virsh
http://linux.die.net/man/1/xm
http://linux.die.net/man/1/xm
http://www.astro.princeton.edu/~mjuric/universe/slashdotting/
http://www.astro.princeton.edu/~mjuric/universe/slashdotting/
http://aws.amazon.com/ec2/faqs/#What_can_I_do_with_Amazon_EC2
http://aws.amazon.com/ec2/faqs/#What_can_I_do_with_Amazon_EC2
http://stackoverflow.com/questions/10546624/is-there-a-way-to-reduce-time-between-azure-deployment-start-and-role-onstart
http://stackoverflow.com/questions/10546624/is-there-a-way-to-reduce-time-between-azure-deployment-start-and-role-onstart
http://stackoverflow.com/questions/10546624/is-there-a-way-to-reduce-time-between-azure-deployment-start-and-role-onstart
http://stackoverflow.com/questions/10546624/is-there-a-way-to-reduce-time-between-azure-deployment-start-and-role-onstart

	Introduction
	Datacenter Architecture
	Preallocation
	Operation
	Greedy Slack-Factor Preallocation

	Evaluation
	Workload
	Results

	Practical Considerations
	Slack-Factor Choice
	Billing

	Related Work
	Conclusion and Future Work

