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Abstract

This paper presents a new atomic commitment protocol,
Enhanced Three Phase Commit (E3PC), that always allows
a quorum in the system to make progress. Previously
suggested quorum-based protocols (e.g. the quorum-based
Three Phase Commit (3PC) [Ske82]) allow a quorum to
make progress in case of one failure. If failures cascade,
however, and the quorum in the system is “lost” (i.e. at
a given time no quorum component exists, e.g. because
of a total crash), a quorum can later become connected
and still remain blocked. With our protocol, a connected
quorum never blocks. E3PC is based on the quorum-
based 3PC [Ske82], and it does not require more time or
communication than 3PC. The principles demonstrated in
this paper can be used to increase the resilience of a variety
of distributed services, e.g. replicated database systems, by
ensuring that a quorum will always be able to make progress.

1 Introduction

Reliability and availability of loosely coupled distributed
database systems is becoming a requirement for many
installations, and fault-tolerance is becoming an impor-
tant aspect of distributed systems design. When sites
crash, or when communication failures occur, it is desir-
able to allow as many sites as possible to make progress.
In this paper we present a novel atomic commitment
protocol (ACP) that always allows a majority (or quo-
rum) to make progress.

In distributed databases when a transaction spans
several sites the database servers at all sites have
to reach a common decision whether the transaction
should be committed or not. A mixed decision results
in an inconsistent database, a unanimous decision
guarantees the atomicity of the transaction (provided
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that the local server at each site can guarantee local
atomicity of transactions). To this end an atomic
commitment protocol (ACP), such as two phase commit
(2PC) [Gra78] is invoked. The atomic commit problem
and the two phase commit protocol are described in
Section 3. Two phase commit is a blocking protocol: if
the coordinator fails, all the sites may remain blocked
indefinitely, unable to resolve the transaction.

To reduce the extent of blocking, Skeen suggested
the quorum-based three phase commit (3PC) protocol,
that maintains consistency in spite of network parti-
tions [Ske82]. In case of failures, the algorithm uses a
quorum (or majority) based recovery procedure, that al-
lows a quorum to resolve the transaction. If failures cas-
cade, however, and the quorum in the system is “lost”
(i.e. at a certain time no quorum component exists, e.g.
because of a total crash), a quorum of sites can become
connected and still remain blocked. Other previously
suggested quorum-based protocols (e.g. [CR83, CK85])
also allow a quorum to make progress in case of one fail-
ure, while if failures cascade, a quorum can later become
connected and still remain blocked. To our knowledge,
the only previously suggested ACP that always allows a
quorum to make progress is the ACP that we construct
in [Kei94]. The protocol in [Kei94] is not straightfor-
ward; it uses a replication service as a building block,
while the protocol presented in this paper is easy to
follow and self-contained.

In [Kei94] we studied the problem of allowing an
asynchronous system to make progress every time a
quorum becomes connected, and we have developed a
solution for it. In this paper we apply the principles
of the solution suggested in [Kei94] to the quorum-
based 3PC. The solution imposes a linear order on
the quorums formed in the system, and sequentially
numbers them using two counters maintained in two
phases.

In this paper we present the Enhanced Three Phase
Commit (E3PC) protocol, which is an enhancement of
the quorum-based 3PC [Ske82]. E3PC always allows
a quorum to make progress. It achieves higher avail-
ability than 3PC, simply by maintaining two additional



counters, and with no additional communication. The
principles demonstrated in this paper can be used to
increase the resilience of a variety of distributed ser-
vices, e.g. replicated database systems, by ensuring that
a quorum will always be able to make progress.

A common way to increase the availability of data
and services is replication. If data is replicated in
several sites, it can still be available despite site
and communication-link failures. Numerous replica-
tion schemes that are based on quorums were sug-
gested [Gif79, Her86, Her87, EASC85, EAT89]. These
algorithms use gquorum systems to determine when data
objects are accessible. In order to guarantee the atom-
icity of transactions, these algorithms use an ACP, and
therefore are bound to block when the ACP they use
blocks. Thus, with previously suggested ACPs, these
approaches do not always allow a connected majority
to update the database. Using E3PC these protocols
can be made more resilient.

E3PC maintains consistency in the face of site failures
and network partitions: sites may crash and recover,
the network may partition into several components®,
and remerge. Whenever a failure is detected, a special
recovery procedure is invoked. The protocol does not
require that failures be correctly identified in order to
work correctly. Undetected failures and false reports of
failures may cause degradation in performance. In the
absence of false failure reports, a quorum of connected
sites may always reach a decision: At any point in
the execution of the protocol, if a group G of sites
becomes connected, and this group contains a quorum
and no subsequent failures occur for sufficiently long,
then all the members of G eventually reach a decision.
Furthermore, every site that can communicate with a
site that already reached a decision, will also, eventually,
reach a decision. An operational site that is not a
member of a connected quorum may be blocked, i.e. may
have to wait until a failure is repaired in order to resolve
the transaction. This is undesirable but cannot be
avoided; Skeen proved that every protocol that tolerates
network partitions is bound to be blocking in certain
scenarios [SS83].

The rest of this paper is organized as follows:
Section 2 presents the computation model. Section 3
provides general background on the atomic commitment
problem. The quorum-based three phase commit (3PC)
protocol [Ske82] is described in Section 4, and enhanced
three phase commit (E3PC), in Section 5. Section 6
concludes the paper.

2 The Model

We assume that the set of sites running the protocol
is fixed, and is known to all the sites. We assume that

1A component is sometimes called a partition. In our ter-
minology, a partition splits the network into several components.

the sites are connected by an underlying communication
network, that provides reliable FIFO communication
between any pair of connected sites. We consider the
following types of failures: failures may partition the
network, and previously disjoint network components
may re-merge. Sites may crash and recover; recovered
sites come up with their stable storage intact. We
assume that failures are detected using a (possibly
unreliable) fault detector, e.g. a timeout mechanism.
We do not deal with message losses, we assume that the
underlying communication layer discovers the loss and
either recovers it, or reports of a failure.

2.1 Quorums

We use a quorum system to decide when a group of
connected sites may resolve the transaction. To enable
maximum flexibility we allow the quorum system to be
elected in a variety of ways (e.g. weighted voting). For
further flexibility, it is possible to set different quorums
for commit and abort. In this case, a Commit Quorum
of connected sites is required in order to commit a
transaction, and an Abort Quorum — to abort.

We assume two predicates: Q)¢ (G) is TRUE for a given
group of sites G iff G is a Commit Quorum; and Q4(G)
is TRUE iff G is an Abort Quorum. The requirement
from these predicates is that for any two groups of sites
G and G’ such that GN G’ = 0, at most one of Q¢(G)
and Qa(G") holds, i.e. every Commit Quorum intersects
every Abort Quorum.

3 Background — Distributed
Transaction Management

This section provides general background on the atomic
commit problem, and protocols.

3.1 Problem Definition

A distributed transaction is composed of several sub-
transactions, each running on a different site. The
database manager at each site can unilaterally decide to
ABORT the local sub-transaction, in which case the en-
tire transaction must be aborted. If all the participating
sites agree to COMMIT their sub-transaction (vote Yes
on the transaction) and no failures occur, the transac-
tion should be committed. We assume that the local
database server at each site can atomically execute the
sub-transaction, once it has agreed to COMMIT it.

In order to ensure that all the sub-transactions
are consistently committed or aborted, the sites run
an atomic commitment protocol (ACP) such as two
phase commit (2PC). The requirements of atomic
commitment (as defined in Chapter 7 of [BHG87]) are:

e All the sites that reach a decision reach the same
one.



A site cannot reverse 1ts decision after it has reached

one.

e The coMMIT decision can only be reached if all sites
voted Yes.

e If there are no failures and all sites voted Yes, then
the decision will be to coMmMIT.

e At any point in the execution of the protocol,
if all existing failures are repaired and no new
failures occur for sufficiently long, then all sites will
eventually reach a decision.

3.2 Two Phase Commit

The simplest and most renowned ACP is two phase
commit (2PC) [GraT78]. Several variations of 2PC were
suggested, the simplest version is centralized — one of the
sites is designated as the coordinator. The coordinator
sends a transaction (or request to prepare to commit) to
all the participants. Each site answers by a Yes (“ready
to commit”) or by a No (“abort”) message. If any site
votes No, all the sites abort. The coordinator collects all
the responses and informs all the sites of the decision.
In absence of failures, this protocol preserves atomicity.
Between the two phases, each site blocks, i.e. keeps the
local database locked, waiting for the final word from
the coordinator. If a site fails before its vote reaches
the coordinator, it is usually assumed that it had voted
No. If the coordinator fails, all the sites remain blocked
indefinitely, unable to resolve the last transaction. The
centralized version of 2PC is depicted in Figure 1.

Coordinator Slave

Transaction is received:
Send sub-transactions.

Sub-transaction is received:
Send reply — Yes or No.

If all sites respond Yes:
Send COMMIT.

If some site voted No:
Send ABORT.

COMMIT or ABORT is received:
Process accordingly.

Figure 1: The Centralized Two Phase Commit Protocol

Commit protocols may also be described using state
diagrams [SS83]. The state diagram for 2PC is shown
in Figure 2. The circles denote states; final states are
double-circled.
and the action taken (e.g. message sent) by the site
is indicated next to each arc. In this protocol, each
site (either coordinator or slave) can be in one of four
possible states:

The arcs represent state transitions,

q : INITIAL state — A site is in the initial state until it
decides whether to unilaterally abort or to agree to
commit the transaction.

vote \7 we "NO"

Figure 2: State Diagram for Two Phase Commit

w : WAIT state — In this state the coordinator waits
for votes from all of the slaves, and each slave waits
for the final word from the coordinator. This is the
“uncertainty period” for each site, when it doesn’t
know whether the transaction will be committed or
not.

¢ : COMMIT state — The site knows that a decision to
commit was made.

a : ABORT state — The site knows that a decision to
abort was made.

The states of a commit protocol may be classified
along two orthogonal lines. In the first dimension,
the states are divided into two disjoint subsets: The
committable states and the non-committable states. A
site i1s in a committable state only if it knows that all
the sites have agreed to proceed with the transaction.
The rest of the states are non-committable. The only
committable state in 2PC is the comMIT state. The
second dimension, distinguishes between final and non-
final states. The final states are the ones in which a
decision has been made, and no more state transitions
are possible. The final states in 2PC are coMMIT and
ABORT.

3.3 The Extent of Blocking in Commit
Protocols

The 2PC protocol is an example of a blocking protocol:
operational sites sometimes wait on the recovery of
failed sites. Locks must be held in the database
while the transaction is blocked. Even though blocking
preserves consistency, it is highly undesirable because
the locks acquired by the blocked transaction cannot be
relinquished, rendering the data inaccessible by other
requests. Consequently, the availability of data stored
in reliable sites can be limited by the availability of the
weakest component in the distributed system.

Skeen et al. proved [SS83] that there exists no
non-blocking protocol resilient to network partitioning.



When a partition occurs, the best protocols allow no
more than one group of sites to continue while the
remaining groups block. Skeen suggested the quorum-
based three phase commit protocol, that maintains
consistency in spite of network partitions [Ske82]. This
protocol is blocking; it is possible for an operational
site to be blocked until a failure is mended. In case
of failures, the algorithm uses a quorum (or majority)
based recovery procedure, that allows a quorum to
resolve the transaction. If failures cascade, however, a
quorum of sites can become connected and still remain
blocked.  Skeen’s quorum-based commit protocol is
described in Section 4.

Since completely non-blocking recovery is impossible
to achieve, further research in this area concentrated on
minimizing the number of blocked sites when partitions
occur. Chin et al. [CR83] define optimal termination
protocols (recovery procedures) in terms of the average
number of sites that are blocked when a partition
occurs. The average is over all the possible partitions,
and all the possible states in the protocol in which the
partitions occurs. The analysis deals only with states in
the basic commit protocol, and ignores the possibility
for cascading failures (failures that occur during the
recovery procedure). It is proved that any ACP with
optimal recovery procedures takes at least three phases,
and that the quorum-based recovery procedures are
optimal.

In [Kei94] we construct an ACP that always allows
a connected majority to proceed, regardless of past
failures. To our knowledge, no other ACP with this
feature was suggested. The ACP suggested in [Kei94]
uses a reliable replication service as a building block,
and is mainly suitable for replicated database systems.
In this paper, we present a novel commitment protocol,
Enhanced Three Phase Commit (E3PC), that always
allows a connected majority to resolve the transaction
(if it remains connected for sufficiently long). E3PC
does not require complex building blocks such as the one
in [Kei94], and is more adequate for partially replicated,
or non-replicated distributed database systems; it is
based on the quorum-based three phase commit [Ske82].

4 Quorum-Based Three Phase Commit

In this section we describe Skeen’s quorum-based com-
mit protocol [Ske82]. E3PC is a refinement of 3PC,
and therefore we elaborate on 3PC before presenting
E3PC. The basic three phase commit (3PC') is described
in Section 4.1, and the recovery procedure is described
in Section 4.2. In Section 4.3 we show that with 3PC a
connected majority of the sites can be blocked.

4.1 Basic Three Phase Commit

The 3PC protocol is similar to two phase commit, but
in order to achieve resilience, another non-final “buffer

vote 7 wze "NO"
Abort @
Pre

Commit

Commit

Figure 3: The Basic Three Phase Commit

state” is added in 3PC, between the WAIT and the
COMMIT states:

pPc : PRE-COMMIT state — this is an intermediate state
before the commit state, and is needed to allow
for recovery. In this state the site is still in its
“uncertainty period”.

The quorum-based 3PC is described in Figure 4, and
a corresponding state diagram is depicted in Figure 3.
The coMMIT and PRE-COMMIT states of 3PC are
committable states; a site may be in one of these states
only if it knows that all the sites have agreed to proceed
with the transaction. The rest of the states are non-
committable. In each step of the protocol, when the
sites change their state, they must write the new state
to stable storage, before replying to the message that
caused the state change.

4.2 Recovery Procedure for Three Phase
Commit

When a group of sites detect a failure (a site crash or
a network partition), or a failure repair (site recovery or
merge of previously disconnected network components),
they run the recovery procedure in order to try to
resolve the transaction (i.e. commit or abort it). The
recovery procedure consists of two phases: first elect a
new coordinator, and next attempt to form a quorum
that can resolve the transaction.

A new coordinator may be elected in different ways
(e.g. [GM82]). In the course of the election, the
coordinator hears from all the other participating sites.
If there are failures (or recoveries) in the course of the
election, the election can be restarted?.

2Election is a weaker problem than atomic commitment, only



Coordinator

Slave

Transaction is received:
Send sub-transactions to slaves.

Sub-transaction is received:
Send reply — Yes or No.

If all sites respond Yes: Send PRE-COMMIT.
If any site voted No: Send ABORT.

PRE-COMMIT received:
Send ACK to coordinator.

Send COMMIT.
Otherwise:

Upon receiving a Commit Quorum of ACKs:

Block (wait for more votes or until recovery)

COMMIT or ABORT is received:
Process the transaction accordingly.

Figure 4: The Quorum-Based Three Phase Commit Protocol

1. Elect a new coordinator, 7.

2. The coordinator, r, collects the states from all the connected sites.

3. The coordinator tries to reach a decision, as described in Figure 7. The decision is computed using the states
collected so far. The coordinator multicasts a message reflecting the decision.

4. Upon receiving a PRE-COMMIT or PRE-ABORT each slave sends an ACK to r.

Ot

Upon receiving ACKs for PRE-COMMIT from a Commit Quorum or ACKs for PRE-ABORT from an Abort Quorum,

r multicasts the corresponding decision: COMMIT or ABORT.

6. Upon receiving a COMMIT (ABORT) message: Process the transaction accordingly.

Figure 5: The Quorum-Based Recovery Procedure for Three Phase Commit

Figure 6: The Recovery Procedure for 3PC

The new coordinator tries to reach a decision whether
the transaction should be committed or not, and tries
to form a quorum for its decision. The protocol
must take the possibility of failures and failure repairs

the coordinator needs to know that it was elected, while the other
sites may crash or detach without ever finding out which site was
elected.

into account, and furthermore, must take into account
the possibility of two (or more) different coordinators
existing concurrently in disjoint network components.
In order to ensure that the decision will be consistent, a
coordinator must explicitly establish a Commit Quorum
for comMmIT, or an Abort Quorum for ABORT. To this
end, in the recovery procedure, another state is added:

pa : PRE-ABORT state. Dual state to PRE-COMMIT.

The recovery procedure is described in Figure 5. The
state diagram for the recovery procedure is shown in
Figure 6. The dashed lines represent transitions in
which this site’s state was not used in the decision made
by the coordinator. Consider for example the following
scenario: site p; reaches the PRE-ABORT state, during
an unsuccessful attempt to abort. The network then
partitions, and p; remains blocked in the PRE-ABORT
state. Later, a quorum (that doesn’t include p;) is
formed, and another site, ps decides to coMmIT the
transaction (this does not violate consistency, since the
attempt to abort has failed). If now p; and ps become
connected, the coordinator must decide to coMMmIT
the transaction, because p; is COMMITTED already.




Therefore, p; makes a transition from PRE-ABORT to
COMMIT.

Collected States Decision
3 ABORTED ABORT
3 COMMITTED COMMIT

3 PRE-COMMITTED A
Qc (sites in WAIT and
PRE-COMMIT states)
QA(sites in WAIT and
PRE-ABORT states)

PRE-COMMIT

PRE-ABORT
BLOCK

Otherwise

Figure 7: The Decision Rule for The Quorum-Based
Recovery Procedure

After collecting the states from all the sites, the co-
ordinator tries to decide how to resolve the transaction.
If any site has previously committed or aborted, then
the transaction is immediately committed or aborted
accordingly. Otherwise, the coordinator attempts to es-
tablish a quorum. A coMMIT is possible if at least one
site is in the PRE-COMMIT state and the group of sites
in the WAIT state together with the sites in the PRE-
COMMIT state form a Commit Quorum. An ABORT is
possible if the group of sites in the WAIT state together
with the sites in the PRE-ABORT state form an Abort
Quorum. The decision rule is summarized in Figure 7.

4.3 Three Phase Commit Blocks a Quorum

In this section we show that in the algorithm described
above, it is possible for a quorum to become connected
and still remain blocked. In our example, there are
three sites executing the transaction — pi, py and ps.
The quorum system we use is a simple majority: every
two sites form a quorum, and the same quorums are
designated for both commit and abort. Consider the
following scenario:

p1 is the coordinator. All the sites vote Yes on the
transaction. pj receives and processes the votes, but ps
and ps3 detach from p; before receiving the PRE-COMMIT
message sent by p;.

po 1s elected as the new coordinator. It sees that both
p2 and p3 are in the WAIT state, and therefore sends a
PRE-ABORT message, according to the decision rule. ps
receives the PRE-ABORT message, acknowledges it, and
then detaches from ps,.

Now, ps is in the PRE-ABORT state, while p; is in
the PRE-coMMIT state. If now, p; and pz become
connected, then according to the decision rule, they
remain BLOCKED, even though they form a quorum.

Analysis

In this example, it is actually safe for p; and ps to
decide PRE-ABORT, because none of the sites could have
committed, but it is not safe for them to decide PRE-

COMMIT, because ps cannot know if p, has aborted or
not.

We observe that ps decided PRE-ABORT “after” p;
decided PRE-coMMIT, and therefore we can conclude
that the PRE-coOMMIT decision made by p; is “stale”,
and no site has actually reached a commiIT decision
following it. Because otherwise, it would have been
impossible for ps to reach a PRE-ABORT decision.

The 3PC protocol does not allow a decision in this
case, because the sites have no way of knowing which
decision was made “later”. Had the sites known that
the a PRE-ABORT decision was made “later”, they
could have decided PRE-ABORT again, and would have
eventually ABORTED the transaction. In E3PC, we
provide the mechanism for doing exactly that.

5 The E3PC Protocol

We suggest a three phase atomic commitment protocol,
Enhanced Three Phase Commit (E3PC), with a novel
quorum-based recovery procedure that always allows a
quorum of sites to resolve the transaction, even in the
face of cascading failures. The protocol is based on
the quorum-based three phase commit protocol [Ske82].
E3PC does not require more communication or time
than 3PC; the improved resilience is achieved simply by
maintaining two additional counters.

In Section 5.1 we describe how E3PC enhances
3PC. The recovery procedure for E3PC is described in
Section 5.2. In Section 5.3 we show that E3PC does
not block a quorum in the example of Section 4.3. In
Section 5.4 we outline the correctness proof for E3PC.

5.1 E3PC: Enhancing Three Phase Commit

The basic E3PC is similar to the basic 3PC, the
only difference is that E3PC maintains two additional
counters. We now describe these counters. In each
invocation of the recovery procedure, the sites try to
elect a new coordinator. The coordinators elected in the
course of an execution of the protocol are sequentially
numbered: A new “election number” is assigned in each
invocation of the recovery procedure. Note: there is no
need to elect a new coordinator in each invocation of
the basic 3PC, or E3PC, the re-election is only needed
in case failures occur. The coordinator of the basic
E3PC is assigned “election number” one, even though
no elections actually take place. The following two
counters are maintained by the basic E3PC, and by the
recovery procedure:

Last_Elected - the number of the last election that
this site took part in. This variable is updated when
a new coordinator is elected. This value is initialized
to one when the basic E3PC is invoked.

Last_Attempt - the election number in the last at-
tempt this site made to commit or abort. The



. Elect a new coordinator r. The election is non-blocking, it is restarted in case of failure. In the course of

the election, r hears from all the other sites their value of Last_FElected and determines Maz_Flected. r sets
Last_Elected to Maz_FElected+1 and notifies the sites in P of its election, and of the value of Maz_FElected.

. Upon hearing Maz_FElected from r, set Last_Elected to Maz_Flected+1 and send local state and Last_Attempt to

the coordinator r.

The coordinator, r collects states from the other sites in P, and tries to reach a decision as described in Figure 9.
The decision is computed using the states collected so far, we denote by & the subset of sites from which r
received the state so far.  Upon reaching a decision other than BLOCK, r sets Last_Attempt to Last_Elected,
and multicasts the decision to all the sites in P.

. Upon receiving a PRE-COMMIT or PRE-ABORT each slave sets its Last_Attempt to Last_FElected and sends an

ACK to r.

Upon receiving ACKs for PRE-COMMIT (PRE-ABORT) from a Commit Quorum (Abort Quorum), r multicasts

the decision: COMMIT (ABORT).

6. Upon receiving a COMMIT (ABORT) message from r: process the transaction accordingly.

Figure 8: The Recovery Procedure for E3PC

coordinator changes this variable’s value to the
value of Last_Elected whenever it makes a deci-
sion. Every other participant sets its Last_Attempt
to Last_Elected when it moves to the PRE-COMMIT
or to the PRE-ABORT state, following a PRE-COMMIT
or a PRE-ABORT message from the coordinator. This
value is initialized to zero when the basic E3PC is
invoked.

These variables are logged on stable storage. The
second counter, Last_Attempt, provides a linear order
on PRE-COMMIT and PRE-ABORT decisions, e.g. if some
site is in the PRE-COMMIT state with its Last_Attempt
= 7, and another site is in the PRE-ABORT state with
its Last_Attempt = 8, then the PRE-COMMIT decision
is “earlier” and therefore “stale”, and the PRE-ABORT
decision is safe. The first counter, Last_Flected, is
needed to guarantee that two contradicting attempts
(i.e. PRE-COMMIT and PRE-ABORT), will not be made
with the same value of Last_Attempt.

We use the following notation:

e P is the group of sites that are live and connected,
and take part in the election of the new coordinator.

o Maz_Elected is maxpep(Last_Elected of p).

Maz_Attempt is max,ep(Last_Attempt of p).

Is_Maz_Attempt_Commuttable is a predicate that
is TRUE iff all the members that are in non-
final states and their Last_Attempt is equal to
Maz_Attempt are in a committable state. Formally,
Is_Maz_Attempt_Commuttable is TRUE iff:

Vper(Last_Attempt of p = Maz_Attempt and p is in
a non-final state — p is in a committable state)

5.2 Quorum Based Recovery Procedure

As in 3PC, the recovery procedure is invoked when
failures are detected and when failures are repaired.
Sites cannot “join” the recovery procedure in the
middle, instead, the recovery procedure must be re-
invoked to let them take part. A site that hears
from a new coordinator ceases to take part in the
previous invocation that it took part in, and no longer
responds to its previous coordinator. Thus, a site
cannot concurrently take part in two invocations of the
recovery procedure. Furthermore, if a site responds to
messages from the coordinator in some invocation, it
necessarily took part in the election of that coordinator.

The recovery procedure for E3PC is similar to
the quorum-based recovery procedure described in
Section 4.2. As in 3PC, in each step of the recovery
procedure, when the sites change their state, they must
write the new state to stable storage, before replying to
the message that caused the state change. The recovery
procedure is described in Figure 8. The possible state
transitions in E3PC and its recovery procedure are the
same as those of 3PC, depicted in Figures 3 and 6;
the improved performance in E3PC results from the
decision rule, which allows state transitions in more
cases.

In Step 3 of the recovery procedure, r collects the
states from the other sites in P and tries to reach
a decision. It is possible to reach a decision before
collecting the states from all the sites in P. The sites
are blocked until r receives enough states to allow a
decision. We denote by & the subset of P from which r
received the state so far; r constantly tries to compute
the decision using the states in &, whenever new states
arrive, and until a decision is reached. The decision




rule is described below. If the decision is not BLOCK,
r changes Last_Attempt to Last_Elected, and multicasts
the decision to all the sites in P.

Decision Rule

Collected States Decision

3 ABORTED ABORT

3 COMMITTED COMMIT
Is_Maz_Attempt_Committable AQc(S) PRE-COMMIT
—Is_Maz_Attempt_Committable AQa(S) | PRE-ABORT
Otherwise BLOCK

Figure 9: The Decision Rule for E3PC

The coordinator collects the states and the values of
Last_Attempt from the live members of P, and applies
the following decision rule to the subset S of sites from
which it received the state.

o If there exists a site (in &) that is in the ABORTED
state — ABORT.

e If there exists a site in the COMMITTED state —
COMMIT.

o If Is_Maz_Attempt_Committable is TRUE, and § is a
Commit Quorum — PRE-COMMIT.

o If Is_Maz_Attempi_Committable is FALSE and § is an
Abort Quorum — PRE-ABORT.

e Otherwise — BLOCK.

The decision rule is summarized in Figure 9. It is
easy to see that with the new decision rule, if a group of
sites is both a Commit Quorum and an Abort Quorum,
it will never be blocked.

5.3 E3PC does not Block a Quorum

In E3PC, if a group of sites forms both a Com-
mit Quorum and an Abort Quorum, it will never be
blocked. This is obvious from the decision rule: if
some site has previously committed (aborted), then
the decision is coMMIT (ABORT). Otherwise, a de-
cision can always be made according to the value of
Is_Maz_Attempt_Committable.

We now demonstrate that E3PC does not block with
the scenario of Section 4.3 (in which Skeen’s quorum-
based 3PC does block). In this example, there are three
sites executing the transaction — py, p2 and p3, and the
quorum system is a simple majority: every two sites
form a quorum, and the same quorums are designated
for both commit and abort. We considered the following
scenario:

e Initially, p; is the coordinator. All the sites vote
Yes on the transaction. p; receives and processes
the votes, but p, and p3z detach from p; before

receiving the PRE-COMMIT message sent by pj.
Now Last_Attempt,, is 1 while Last_Attempt,, =
Last_Attempt,, = 0, and the value of Last_Elected
is one for all the sites.

® psy is elected as the new coordinator, and the new
Last_Flected is two. It sees that both ps and p3
are in the wWAIT state, and therefore sends a PRE-
ABORT message, according to the decision rule, and
moves to the PRE-ABORT state while changing its
Last_Attempt to two. ps receives the PRE-ABORT
message, sets its Last_Attemp? to two, sends an
acknowledgment, and detaches from p,.

e Now, p3 is in the PRE-ABORT state with its value of
Last_Attempt = 2, while p; is in the PRE-COMMIT
state with its Last_Attempt = 1. If now, p; and p3
become connected, then, according to the decision
rule, they decide to PRE-ABORT the transaction, and
they do not remain blocked.

5.4 Correctness of E3PC

In [KD94] we formally prove that E3PC fulfills the
requirements of atomic commitment described in Sec-
tion 3.1. In this section we describe the proof’s outline.

We first prove that two contradicting attempts (i.e.
PRE-COMMIT and PRE-ABORT), cannot be made with
the same value of Last_Attempt. This is true due to the
fact that every Commit Quorum intersects every Abort
Quorum, and that a Commit Quorum of sites must
increase Last_FElected before a PRE-COMMIT decision,
and an Abort Quorum, before PRE-ABORT. Moreover,
Last_Attempt is set to the value of Last_Flected, which is
higher than the previous value of Last_Elected of all the
participants of the recovery procedure. Next, we prove
that the value of Lasi_Attempt at each site increases
every time the site changes state from a committable
state to a non-final non-committable state, and vice
versa.

Using the statements above we prove that if the co-
ordinator reaches a COMMIT (ABORT) decision upon re-
ceiving a Commit Quorum (Abort Quorum) of ACKs for
PRE-COMMIT (PRE-ABORT) when setting its Last_Attempt
to 2, then for every j > i no coordinator will decide PRE-
ABORT (PRE-COMMIT) when setting its Last_Attempt to
j- We prove this by induction on j > i; we show,
by induction on j, that if some coordinator r sets its
Last_Attempt to j in Step 3 of the recovery procedure,
then Is_Maz_Attempi_Commitiable is TRUE (FALSE) in
this invocation of the recovery procedure, and therefore,
the decision is PRE-COMMIT (PRE-ABORT).

We conclude that if some site running the protocol
coMMITS the transaction, then no other site ABORTS
the transaction.



6 Conclusions

In this paper we demonstrated how the three phase
commit (3PC) [Ske82] protocol can be made more
resilient simply by maintaining two additional counters,
and by changing the decision rule. The new protocol,
E3PC, always allows a quorum of connected sites to
resolve a transaction: At any point in the execution of
the protocol, if a group G of sites becomes connected,
and this group contains a quorum® of the sites, and
no subsequent failures occur for sufficiently long, then
all the members of G eventually reach a decision.
Furthermore, every site that can communicate with a
site that already reached a decision, will also, eventually,
reach a decision. We have shown that 3PC does not
posses this feature: if the quorum in the system is “lost”
(i.e. at a certain time no quorum component exists), a
quorum can later become connected and still remain
blocked.

E3PC does not require more communication or time
than 3PC; the improved resilience is achieved simply by
maintaining two additional counters. The information
needed to maintain the counters is piggybacked on
messages which are sent in 3PC as well as in E3PC:
the value of Last_FElected is attached to messages used
to elect a new coordinator, and Last_Attempt is sent to
the new coordinator along with the site’s state.

The importance of this paper is in demonstrating,
using a very simple protocol, a general technique for
making distributed systems more resilient, specifically,
always allowing a connected quorum in the system to
make progress. The technique uses two counters to
impose a linear order on the quorums formed in the
system, and guarantees that the decisions made by each
quorum will be consistent with the decisions of the
previous ones.

E3PC may be used in conjunction with quorum-
based replication protocols, such as [Gif79, Her86,
Her87, EASC85, EAT89], in order to make the database
always available to a quorum. The same Quorum
System should be used to determine when the data
is accessible to a group of sites as for the atomic
commitment protocol. Thus, in order to complete a
transaction, a group of sites needs to be a quorum of
the total number of sites, and not just of the sites that
invoked E3PC for the specific transaction. If the data
is partially replicated, then for each item accessed by
this transaction, a quorum of the sites it resides on is
required.

There is a subtle point to consider with this solution:
sites that did not take part in the basic E3PC for this
transaction may take part in the recovery procedure.
The local databases at such sites are not up-to-

3If different quorums are used for commit and abort, then we
say the group contains a guorum if it contains both a Commit
Quorum and an Abort Quorum.

date, since they do not necessarily reflect the updates
performed by the current transaction. Therefore, these
sites need to recover the database state from other sites
during the merge, and before taking part in the recovery
procedure. In the Virtual Partitions protocol [EASCS85,
EAT89], this is done every time the view changes. In
this case, we suggest to use the view change as a “fault
detector” for E3PC; thus, the recovery procedure is
always invoked following a view change, after all the
participating sites have reached an up-to-date state.

The technique demonstrated here may be used to
make other algorithms more resilient, e.g. an algorithm
for maintaining a primary component in the network, to
support processing of sequences of distributed transac-
tions, as well as for replication [Kei94]. The same prin-
ciple may be combined with a dynamic voting scheme
for replication (cf. Section 7 in [Kei94]).
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