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ABSTRACT

Due to their simplicity and effectiveness, gossip-based mem-
bership protocols have become the method of choice for
maintaining partial membership in large P2P systems. A va-
riety of gossip-based membership protocols were proposed.
Some were shown to be effective empirically, lacking analytic
understanding of their properties. Others were analyzed un-
der simplifying assumptions, such as lossless and delay-less
network. It is not clear whether the analysis results hold in
dynamic networks where both nodes and network links can
fail.

In this paper we try to bridge this gap. We first enumer-
ate the desirable properties of a gossip-based membership
protocol, such as view uniformity, independence, and load
balance. We then propose a simple Send & Forget proto-
col, and show that even in the presence of message loss, it
achieves the desirable properties.

Categories and Subject Descriptors: H.3.4: Distributed
systems.

General Terms: Algorithms, Reliability, Theory.

Keywords: Peer-to-peer, membership, gossip, random sam-
pling.

1. INTRODUCTION

Large-scale dynamic systems are nowadays being deployed
in many places, including peer-to-peer networks over the In-
ternet, in data centers, and computation grids. Such sys-
tems are subject to churn, i.e., their membership constantly
changes, as nodes dynamically join and leave. Moreover,
such systems are often comprised of unreliable components,
where node failures and message losses are frequent.

In order to allow nodes to communicate with each other,
each node must know the ids (for example, IP addresses
and ports), of some other nodes. Such ids are stored at each
node in a local view (sometimes called membership), or view
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for short. In large systems, it is uncommon to store full
views including all nodes in the system, not only because
of the amount of memory this would require, but also be-
cause of the high maintenance overhead that churn would
induce. Instead, one typically stores small views, e.g., loga-
rithmic in system size [8, 2]. Local views are maintained by
a distributed group membership protocol.

The views of all nodes induce a membership graph (over-
lay network), over which communication takes place. Two
nodes are neighbors if one of their views includes the id of
the other. The properties of local views have significant con-
sequences for the respective graph’s diameter, connectivity,
load-balance, and robustness. Our goal in this paper is to
mathematically analyze the proprieties of such views, and in
particular, to understand the impact that message loss has
on these properties.

We begin, in Section 2, by identifying the goals that a
membership service strives to achieve: First, to bound the
load on each node, each node has to maintain a small view
and have a bounded degree (number of neighbors). Addition-
ally, the “holy grail” for a membership service is to choose
view entries independently of each other (we call this spa-
tial independence) and uniformly at random [8, 21, 7]. In-
deed, such choices result in an expander graph, with good
connectivity and robustness, and low diameter [9], ensuring
fast and reliable communication. Note that in a dynamic
system subject to churn, local views must evolve to reflect
joining nodes and exclude ones that left or failed, and the
system should converge to independent uniform views from
any initial topology.

Beyond maintaining the membership graph for commu-
nication, independent random node id samples are useful
for a variety of additional applications, such as gathering
statistics, gossip-based aggregation, and choosing locations
for data caching [17, 12, 5]. Such applications constantly
require fresh random node ids, independent of past views,
which requires views to evolve even in the absence of churn
or failures. We thus identify an additional goal for a mem-
bership service: temporal independence— evolving into new
graphs whose dependence on the past decays rapidly.

The most common approach to maintaining small local
views is using gossip-based membership protocols [11, 8, 2,
23, 16]. In such protocols, nodes exchange (“gossip about”)
ids from their views with their neighbors, and use this infor-
mation to update their views (see Section 3). Such proto-
cols make random choices, and their evolution is therefore a
random process. Gossip-based membership has been empir-
ically shown to lead to good load balance of node degrees [8,



16], and certain variants of gossip were proven to ensure
low probability for partitions [2]. On the other hand, most
gossip-based protocols do, in fact, induce spatial dependen-
cies among neighboring nodes. This is because an id that
is gossiped to a neighbor typically remains in the sender’s
view.

Spatial dependencies can be eliminated by deleting ids
sent to a neighbor. In order to avoid having unused entries
in views, this is usually done in actions involving bidirec-
tional communication, where the id received in a reply re-
places the sent id [2, 18, 19]. However, such actions were
previously analyzed under the assumption that they occur
atomically, without overlapping in time with any other ac-
tion, even though they involve multiple nodes. In practice,
it is unclear how overlap can be avoided, as protocol actions
are initiated from different nodes asynchronously, and a node
might receive a message initiating a new action while it is
already engaged in another. Moreover, implementing such
atomic actions requires bookkeeping at each node, and is
of course impossible in the presence of message loss [14] or
node failures.

In Section 4, we present a model for studying gossip-based
membership without atomicity assumptions. We follow [18,
19], and model protocol actions as random graph transfor-
mations. In order to apply this methodology to real systems,
we break up protocol actions into steps that can be executed
atomically at a single node, allowing the analysis to account
for message loss.

In Section 5, we present Send € Forget (SEF), a simple
and practical protocol that eliminates bidirectional commu-
nication, at the cost of allowing for unused (empty) entries
in views. Message loss increases the number of unused en-
tries. The protocol compensates for loss by creating new,
dependent view entries. The goal is to create as little de-
pendencies as possible.

In Section 6, we analyze node degree distributions induced
by S&F. Our analysis shows that S&F can operate with
small views— constant (e.g., with 40 entries), or logarithmic
in system size. It further shows that the distribution of
node degrees is very well balanced— close to the binomial
distribution.

In Section 7 we study the distribution of membership graphs

the protocol evolves to (i.e., the protocol’s properties in the
steady state). We define a Markov Chain (MC) on the global
states (membership graphs) reachable by S&F starting from
any weakly connected membership graph. We show that
without loss, S&F achieves the desired properties of unifor-
mity and independence. With positive loss, uniformity still
holds but there exist spatial dependencies among entries in
the same view as well as among views of neighboring nodes.
These dependencies increase very moderately with the loss
rate: The fraction of dependent entries in views is bounded,
and grows like twice the loss rate. As the loss is typically
in the order of 1% [22, 4], the vast majority of view entries
are expected to be independent. From this bounded spa-
tial dependence, we prove that the temporal independence
is preserved. We show that in a system of size n, start-
ing from a random state (membership graph) G in the MC,
once each node initiates O(slog n) actions, where s is a view
size and n is the number of nodes in the system, the sys-
tem evolves to a state whose dependence on GG can be made
arbitrarily small. For space limitations, some formal proofs
are deferred to the full paper [15].

In summary, we make the following contributions:

e We spell out the desired properties of membership pro-
tocols that maintain small views.

e We provide a model for studying membership graph
evolution with non-atomic protocol actions.

e We present a practical membership protocol, SéF,
which is amenable to formal analysis.

e In the absence of message loss, S&F provides all the
desired properties of a membership service.

e We present the first formal analysis of a membership
protocol in the presence of message loss. The salient
properties of SE/F are preserved even under reasonable
loss rates.

2. GOALS FOR A DISTRIBUTED MEMBER-
SHIP SERVICE

We consider a dynamic distributed system with up to n
nodes active at any given time. When using a distributed
membership service, no single participant has the complete
membership information. Instead, each node u maintains
a local view — a multiset, u. Iv, of s node ids, also denoted
u.lv[1..s]. We say that u is an in-neighbor of v, and that
v is an out-neighbor of u, if v € u.lv. We denote such a
view entry by (u,v). We say that two nodes are neighbors
if one of them is either an in- or out-neighbor of another.
The outdegree of u, denoted d(u), is the number of out-
neighbors u has. Since some view entries might be empty,
this number may be smaller than s. Similarly, u’s indegree,
denoted din(u), is the number of in-neighbors u has.

We now formalize the desirable properties of a distributed
membership service. First, in large systems it is infeasible
(in terms of memory, bandwidth, and processing time) for
each node to maintain the full membership information. We
thus require:

Property (M1 - Small Views). The view size s < n.

Typically, logarithmic size views are used in order to ensure
fast dissemination of gossiped information [8]. Other appli-
cations work with constant-size views [21]. Property M1 has
to hold at all times.

We next define the load-balance, uniformity, and inde-
pendence properties of the membership graph. Note that
nodes can be expected to be uniformly and independently
represented in views only after they have been in the system
“long enough” for their representation to spread in the sys-
tem; these properties cannot be expected to hold for newly
joined or recently departed nodes whose ids are still included
in views. Therefore, similarly to previous studies [6], we re-
quire the following properties to hold only if churn ceases
from some point onward. For simplicity, we model this by
considering a static system of n nodes w1, us2,...,u,. Note
that our load-balance, uniformity, and spatial independence
properties are required to eventually hold, starting from any
initial state, and thus we effectively deal with churn that af-
fects the initial topology.

The number of messages received by a node (sent by the
membership protocol or by an application) is proportional
to the number of its in-neighbors. We therefore require load
balancing of indegrees:



Property (M2 - Load Balance). Starting from any initial v is expected to return some id, which u adds to its view.
state, eventually, the variance of node indegrees is bounded. In some protocols, push and pull are combined into a single

. . R . protocol action [2, 18, 19].
The main quality measure of a local view is how well it ap-

proximates an independent and identically distributed (IID) The ids sent. Allavena et al. [2] identified two crucial com-
uniform sample of the nodes The next two properties stip- ponents for a good membership protocol: In a reinforcement
ulate that views should converge to IID uniform ones, from component, a node adds its own id to an other node’s view.
any state. Reinforcement leads to a uniform representation of nodes in

other nodes’ views, and fixes any non-uniformity that might
have been caused by a bad initial views or churn. In a maix-
ing component, a node adds to its view an id from an other
Pr(v cu.lv) = Pr(w € u. IV). node’s view. This component spreads membership informa-
tion among nodes, thus providing independence.

Note that each of the components can be implemented
by either push or pull. While many protocols implement
reinforcement by push and mixing by pull, e.g., [2, 19], Lpb-
cast [8] uses push for both. We do the same in this paper. A
practical optimization, made in many protocols, e.g., [8, 2],
is performing several actions at once, thus reducing message
overhead. Such protocols, however, are difficult to analyze,
so most analyses assume that actions are executed serially [2,
18, 19], as we do in this paper.

Protocols also differ in whether the sender deletes the ids
it sent from its local view or keeps them. Most protocols,
e.g., [8, 2] keep the sent ids, thus inducing dependence be-
tween neighbor views. Those that delete the sent ids, e.g.,

Property (M3 - Uniform Sample). Starting from any initial
state, eventually, for each u,v,w,

Note the difference between M2 and M3: M2 means that
eventually, in each membership graph each node is repre-
sented near-uniformly in other nodes’ views. M3, on the
other hand, implies that after the system runs for a long
time, every id eventually has the same likelihood of appear-
ing in any given view entry.

Uniformity, by itself, does not imply independence among
view entries of the same node or of different nodes at the
same time. Since typical membership protocols exchange
data between neighbors, the most likely dependencies are
within the same view, or among the views of neighboring
nodes. We say that two nonempty view entries w. Iv[i] and
v. Iv]j] are independent of each other if

Pr(u. v[i] = wlv. v[j] = w) = Pr(u. Iv[i] = w). shuffle [1, 19], and flipper [18], are unable to withstand mes-

sage loss or node failures since the system gradually loses

By slight abuse of terminology, we simply label edges in more and more ids. Jelasity et al. [16] combine shuffle, which

a membership graph as dependent without specifying what does not create dependencies but may lose ids, with regu-

edges they depend on, as follows: (1) All self-edges (u. Iv[i] = lar push-pull, which creates dependencies but is immune to

u) are dependent; (2) For v = u or v € u. lv, if u. Iv[i] is not loss. In their approach, shuffle operations constitute a pre-

independent of v. Iv[j] for some j then we say that one of determined fraction of all operations, regardless of actual

u. Iv[i] or v. Iv[j] is dependent. In case of dependencies among loss or churn. In contrast, in S&F, dependencies are cre-

several edges, all but one of these edges are considered de- ated only to compensate for actually lost ids, and can be
pendent. Every edge that is not dependent is independent. kept arbitrarily low with no loss.

We are now ready to define spatial independence.

Other sampling approaches. An important advantage
Property (M4 - Spatial Independence). Starting from any of gossip-based membership is the use of local operations,
initial state, eventually, for each u and 1 <1 < s such that where each node communicates only with its immediate neigh-
u.Iv[i] is nonempty, we wish to bound the probability that bors. An alternative (non-local) approach is to use random
u. Iv[i] is independent. walks (RWs) (on the membership graph) to obtain new ids
for local views [13, 5, 20]. However, a RW requires many
steps, and its correctness depends on the graph topology; if
the actual topology is different from the assumed one, then
the sample may be far from uniform [13]. Moreover, the
analysis of RW convergence ignores the dynamic nature of

Typical membership protocols update only a part of the
view in each step. Thus, there is a temporal dependence
between the views before and after the update. We are in-
terested in protocols that lead to fast dependence decay:

Property (M5 - Temporal Independence). Starting from an the graph; recent work suggests that RWs may be much less
expected initial state (formally defined in Section 4), we wish effective on dynamic graphs [3]. In this paper, we consider
to bound the number of actions the protocol needs to take in local operations only.

order to reach a state that is independent of the initial state. Another characteristic of gossip-based membership proto-

cols is that they use the local view for two purposes: (1) to
provide node id samples to the application, and (2) to define
the communication graph over which messages of the gossip
protocol itself are transmitted. It is possible to separate the
two. For example, Brahms [6] uses fast evolving local views,
3. BACKGROUND: MEMBERSHIP PROTO- which might be non-uniform, and complements them with

COLS membership samples, which converge to uniform ones over
time. However, the latter do not provide temporal indepen-
dence, as they are designed to persist rather than evolve. We
note that Brahms was designed for Byzantine settings, where
Action initiator. A node u can contact one of its out- maintaining uniform views is challenging. In this paper, we
neighbors v to either push some node id to it, or to pull an consider benign settings, and are interested in evolving yet
id from it. The pushed id is added to v’s view. In a pull, uniform local views.

Note that the above bound is weaker than a bound on
mixing time, which considers convergence time from an ar-
bitrary state, rather than a random one.

We provide a brief taxonomy of the basic actions of gossip-
based membership protocols.



4. MODELING MEMBERSHIP PROTOCOLS

BY GRAPH TRANSFORMATIONS

We model membership as a directed multigraph G =
(V,E) where vertices represent nodes and edges represent
membership information: E is a multiset containing an edge
(u,v) for each u and v such that v € w. Iv, with the multiplic-
ity equal to the multiplicity of v in w. Iv. Unless specified oth-
erwise, we assume the graph to be weakly connected. That
is, there is an undirected path between every two nodes.

Protocol actions can be described as transformations on
graph G. For example, a push action of w’s id from u to v
adds an edge (v,w), and pulling id w by u from v adds an
edge (u,w).

We consider only memoryless random transformations.
That is, each transformation allowed by a particular pro-
tocol occurs with a probability that depends only on the
current membership graph. Every protocol thus defines a
Markov Chain (MC) G(0), G(1),..., where G(i) represents
the distribution of the membership graphs after the i-th ac-
tion of the protocol. We analyze a protocol’s MC graph,
where vertices are all possible membership graphs, and edge
weights are transition probabilities of the protocol. A sta-
tionary distribution 7 of such an MC (assuming it exists)
describes the steady state of the system. We thus can an-
alyze the properties of an expected (according to 7) mem-
bership graph and and the extent to which it satisfies the
desired properties defined in Section 2.

4.1 Distributed Operations

Because each node’s knowledge of the system is partial,
only a limited set of transformations can occur as a result of
a distributed protocol in any given state. Protocol actions
are composed of steps, as defined below:

Protocol steps. A step is a transformation that can be
implemented at a single node and consists of the following
three elements: (1) receiving of 0 or 1 messages, (2) modi-
fying the local view by adding ids received in the message
(including the sender’s id) and deleting and duplicating ar-
bitrary ids, and (3) sending 0 or more messages that can
include ids received in the message in (1), ids from the cur-
rent view or from the previous view before performing (2). A
key property of a step is that it can be executed atomically,
even in an environment with message loss.

Protocol actions. A number of steps can be combined
into a protocol action, starting with a step of an initiating
node u, followed by a sequence of steps that receive messages
sent in the previous steps. For example, in a push action
from u to its out-neighbor v, u’s send to v is a step and v’s
receive and view modification is another step.

Previous analyses, e.g., [2, 18, 19], assumed atomic ac-
tions, with no overlap in time. However, guaranteeing atom-
icity of multi-step actions in a real system may be complex,
and is in some cases impossible, e.g., in the presence of mes-
sage loss or of unreliable nodes and asynchronous communi-
cation [14, 10].

Modeling Loss with Non-atomic Actions. We assume
there is some probability ¢ that a sent message is not deliv-
ered at its destination. We further assume this probability
to be unknown to the protocol, identical for all messages,
and independent of other messages. We assume that the
sender cannot detect that the message it sent was lost, so it

cannot retransmit the message. This means that in a multi-
step action, each step is executed with probability 1 — ¢,
given that the previous step was executed (except for the
first step, which is executed with probability 1).

5. SEND & FORGET PROTOCOL

We present S&F', a simple and practical protocol that
overcomes loss. SE&F avoids bidirectional communication
within the same action; after it sends a message, it “for-
gets” about it. Thus, actions at each node are trivially non-
overlapping. The protocol running at each node is shown
in Figure 1 (u.a.r. stands for uniformly at random). Each
node u maintains a view u.Iv — an array of size s, where s
is even. In order to overcome loss (non-atomic actions), the
protocol is parametrized by a threshold dr, that sets a lower
bound on node outdegree.

The protocol at node u works as follows: the node se-
lects two different entries ¢ and j in its view uniformly at
random. If any of them is empty, nothing happens and the
views of all the nodes remain unchanged. If both v = w. Iv[i]
and w = w.lv[j] are nonempty, then u performs the fol-
lowing steps: (1) sends to v a message including its own
id and w; and (2) clears both entries ¢ and j in its view,
unless d(u) < di, in which case we say the entries are du-
plicated. On receiving a message, a node adds both received
ids to empty entries in its view, unless d(u) = s, in which
case we say the received ids are deleted. Figure 2 (a)-(b)
shows the graph transformation performed by the protocol
when sender’s and receiver’s outdegrees are between dr, and
s, (which happens most of the times). Figure 2 (¢) shows
the effect of duplication at the sender; and Figure 2 (d) il-
lustrates message loss or deletion at the receiver.

1: function S&F-InitiateAction,,()
2: select 1 <i# j < su.ar.

3: v — u. Iv[i]

4: w — . Iv]j]

5: if v # L AND w # 1 then

6:  send [u,w] to v

7:  if d(u) > di then

8: w. lv[i] — L

9: w. Iv[j] «— L

1: function S&F-Receive, (v1,v2)

2: if d(u) < s then

3:  select ¢ u.a.r. so that w. Iv[i] = L
4:  select j u.a.r. so that u.Iv[j] = L
5. w. Iv[i] «— vy

6:  w.lv[j] — v2

Figure 1: The Send & Forget protocol at node u.

The purpose of the duplications, controlled by the thresh-
old dr, is to compensate for loss. In the absence of loss, dr,
can be set to zero, disabling duplications. Under positive
loss and without duplications, node outdegrees would grad-
ually decrease, until eventually all nodes become isolated.
To prevent such a scenario, the protocol performs duplica-
tions and creates new edges in the membership graph instead
of lost ones. One might wonder why not fill up empty view
entries by replicating ids in the view. We avoid such replica-
tions since it increases dependencies among ids in the same
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Figure 2: Possible outcomes of a transformation of S&F, initiated by u sending message [u,w] to v.
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u v u v
(c) after duplication (d) after deletion
or loss

(a) Before

the transformation. Possible states after the transformation where: (b) d(u) > di,d(v) < s, message delivered; (c)
d(u) = dy,,d(v) < s, message delivered; (d) d(u) > di,, and d(v) = s or message lost.

view. Instead, we allow the sent ids to remain in the sender’s
view. Although such duplication still creates dependencies
among neighbors’ views, it does not directly create redun-
dant parallel edges. As the protocol occasionally creates too
many edges, it may need to delete some, when there are no
empty view entries to store the received ids. In Section 6,
we analyze the impact of dr, and s (recall that the view size
is bounded by s), which in turn provides a “rule-of-thumb”
for selecting their values.

In our analysis, we assume that a central entity repeatedly
selects a random node, invokes its SéF-InitiateAction, ()
method, and waits for the completion of S&F-Receive, (v1, v2)
by the receiving node (in case a message was sent). In prac-
tice, a similar behavior can be implemented by each node pe-
riodically invoking its Sé&F-InitiateAction, () method when
the invocation rate is the same for all nodes. The next
proposition follows immediately.

Proposition 5.1. The probability for every node u, and
every two entries in u’s view to be chosen in an action is
the same.

6. NODE DEGREE ANALYSIS AND SETTING

DEGREE THRESHOLDS

In this section we show that S€F satisfies the properties
M1 - Small Views (i.e., s < n) and M2 - Load Balance,
defined in Section 2.

We start, in Section 6.1, with assuming that the protocol
actions are atomic (no loss), that the views are initialized so
that for all u, d(u) 4+ 2 din(u) is constant, and that no edge
duplications or deletions are taking place (e.g., by setting
dr, = 0). We analytically derive approximate node degree
distributions.

In Section 6.2 we model the evolution of node indegree
and outdegree as a Degree Markov Chain (Degree MC). This
model is more accurate than the analytical one since it as-
sumes positive loss and makes no assumptions on initial-
ization. We show that when using parameters correspond-
ing to the assumptions in Section 6.1 (dr, = 0, constant
d(u) + 2 din(u) for all u), the resulting degree distributions
are close to the ones obtained analytically.

In Section 6.3 we propose guidelines for selecting protocol
parameters s and di,. We show that SE&F can operate with
small views— constant or logarithmic in system size.

Finally, in Section 6.4 we compute the stationary distribu-

tion of the Degree MC and show that the protocol preserves
M2 - Load Balance.

6.1 Analytically Approximating Degree Distri-
butions without Loss

We start from defining a node sum degree:

Definition 6.1 (Sum Degree). Define ds(u) = d(u)+2 din(u)
to be a sum degree of u.

In this analysis we assume that protocol actions are atomic
(no loss), that all views are initialized so that for each w,
ds(u) = dm for some even dp < s, and that no edge duplica-
tions or deletions are taking place (e.g., by setting dr, = 0).

The following proposition shows that sum degrees are pre-
served by the protocol under the above assumptions.

Lemma 6.2. If there is no loss, the initial state is chosen
so that for some u and some even dm < s, ds(u) = dm and
for all v, ds(v) <'s, and di, = 0, then ds(u) = dm is an
invariant.

Proor. From the initialization, and by the protocol prop-
erties, 0 < d(v) < s for each v. Thus, since di, = 0, protocol
actions do not perform duplication or deletions. From the
protocol, actions that do not involve duplications or dele-
tions do not alter sum degrees. O

Lemma 6.3. If there is no loss, the initial state is chosen
so that for each u, ds(u) = dm for some even dm < s, and
di, = 0, the expected node indegree and outdegree is dm /3.

PRrROOF. By basic graph properties, E(d(u)) = E(din(u)).
By initialization and by Lemma 6.2, E(d(u))+2E(din(u)) =
ds(u) = dm. Clearly, only E(din(u)) = E(d(u)) = % satis-
fies the above equations. O

To analyze node degree distributions under the assump-
tions of no loss and no duplications or deletions, we start
from selecting a node v and d,, nodes v1,...,v4,. We now
decide, for each v;, whether it become an in-neighbor, out-
neighbor, or not-a-neighbor of u, while making sure that
ds(u) = dm. For a given even outdegree d* (and the corre-
sponding indegree of = gd* ), the number of different assign-
ments of v1,...,vq, to in-neighbor, out-neighbor, or not-a-

neighbor of u that achieve this outdegree is at most:

a(d) 2 (fl) (ddi’: if)




Given u, v1,...,vq,, and some assignment A, denote the
number of different membership graphs containing the as-
signed subgraph by b(u,v1,...,v4,,A). Although the val-
ues of b(u,v1,...,v4,,A) are similar for different choices of
U, V1, ..., Vq,, and A, they is not equal, since different as-
signments leave slightly different degrees of freedom in the
assignments of other nodes. In Section 7.2 (Lemma 7.3) we
show that under the assumptions of this section, the protocol
is equally likely to reach each membership graph satisfying
sum degree invariant (ds(u) = dm for each u). Thus,

dpy —d*
Pr (din(u) = B )
a(d")
Zd/:o 2.4,...,dm a(d') ‘

3Ly .

")
=)
—~
A
<
Nl
Il
ISH
*
—
|

(6.1)

Q

The only source of imprecision is the slight variation of the
remaining degrees of freedom described above. Figure 3
compares these analytical results with a more precise nu-
merical study (Section 6.2). It shows that that the actual
outdegree distribution has similar form and variance. More-
over, it can be seen that the degree distributions of SE&F
have lower variance than the binomial distributions with
same expectations.
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Figure 3: S&F node degree distributions (analytical ap-
proximation and exact, from Degree MC) and binomial
distributions with same expectation. s =90, d;, =0, £ =0,
ds(u) = 90 for each w.

6.2 Degree Markov Chain

Allavena [1] analyzed the indegree distribution of a differ-
ent protocol, with a constant outdegree, assuming no mes-
sage loss, using a one-dimensional MC. Since in S&F both
node indegree and outdegree can vary, we construct a two-
dimensional Degree Markov Chain, where one dimension is

indegree and the other is outdegree, reflecting their joint
evolution at a single node. We assume that the initial mem-
bership graph is weakly connected and that node outdegrees
are between di, and s and are even (S&F preserves the lat-
ter).

A schematic diagram of the Degree Markov Chain is shown
in Figure 4. Note that the state corresponding to an isolated
node (zero indegree and outdegree) is disconnected from the
rest of the states. In the settings we consider, when the loss
is nonzero, di, > 0, so the outdegree cannot decrease to 0.
With no loss, we allow dr, = 0 but since the initial member-
ship graph is weakly connected, by Lemma 6.2 no node can
become isolated.

outdegree

indegree

Figure 4: Degree Markov Chain. Dark circles are
reachable states and the light circle is an unreachable
state. Solid lines correspond to transformations occur-
ring with atomic actions (no loss, duplications, or dele-
tions). Dashed lines correspond to transformations oc-
curring due to loss, duplications, or deletions.

Unfortunately, there is a cycle here: the degree distribu-
tions can be learned from the stationary distribution of the
MC, but the transition probabilities, in turn, depend on the
degree distributions. For example, the probability of a node
to receive a message depends on that node’s indegree. We
therefore search the correct degree distributions iteratively,
starting from an arbitrary one, computing the corresponding
MC’s stationary distribution, and deriving from it the de-
gree distributions, with which we start the next iteration. In
each iteration, we compute the MC’s stationary distribution
numerically, by multiplying the transition matrix by itself
until it converges. We stop the computation when the pro-
cess converges to a MC with matching degree distributions
and transition probabilities.

Note that since the sum degree invariant (Lemma 6.2)
does not hold with non-atomic actions, sum degrees are
not bounded. Considering all possible sum degrees is com-
putationally infeasible. We observed that states with sum
degrees close to 3s had negligible probabilities under the
stationary distribution, so there is not point in computing
probabilities for states with higher sum degrees. Therefore,
we considered sum degrees to be bounded by 3 s, removing
states with higher sum degrees from the MC and replacing
edges leading to these states with self-loops.

The resulting degree distributions, for s = 90, di, = 0,
¢ =0, and ds(u) = 90 for each u, shown in Figure 3, have
lower variance than that of the binomial distribution. It
validates our analysis in Section 6.1, which we use next to
set protocol degree thresholds.



6.3 Setting the Thresholds

We first select cif the expected outdegree we are interested
in without loss. d should be chosen based on the application
needs (typically d = O(logn) [8]), and, as we see later, on
the expected loss rate. Given CZ, we now show how to set
di, and s so that without loss, the probability of edge du-
plications and deletions is arbitrarily low, while keeping the
expected outdegree close to d. Suppose we are interested in
duplication and deletion probabilities of at most §, we then
look for dr, and s satisfying, under no loss, the following con-
ditions: (1) E(d(u)) = d, (2) Pr(d(u) < di) < 6, and (3)
Pr(d(u) > s) < 6. By Lemma 6.3, we set d,, = 3d. For a
given 6 < 1/2 we use Equation 6.1 to set

d, = max
d'=0,2,4,...,d : Pr(d(u)<d’)<s
5 = o min d'.
d'=d,d+2,d+4,...,dy : Pr(d(u)>d)<s
Since the values of dr, and s are discrete, Pr(d(u) < dr,) and
Pr(d(u) > s) are close but not necessarily equal. Conse-
quently, the resulting expected outdegree may differ from d
slightly. For example, for d = 30 and 6 = 0.01, di, should
be set to 18 and s to 40, resulting in expected outdegree
of 30.167. Note that while high ¢ increases dependencies
between nodes’ views, setting § too low decreases the abil-
ity of the protocol to fix degree imbalances caused by loss.
Typically, 6 = 0.01 provides a good balance of keeping low
duplication and deletion probabilities with no loss, and fix-
ing degree imbalances under moderate loss.

We conclude that SEF satisfies M1 - Small Views prop-
erty, as even a constant size (in the system size n) views are
sufficient for the protocol to function properly.

6.4 Node Degrees with Loss

Figure 5 shows the indegree and the outdegree distribu-
tions for several different loss rates and the values di, = 18
and s = 40 from the example in Section 6.3.

It can be seen that while the average degree decreases with
loss, the indegree distribution remains concentrated around
the expected degree. Thus, most nodes have similar inde-
grees and we conclude that the protocol satisfies property
M2 - Load Balance.

The next lemma proves what is evident from Figure 5 —
that the expected outdegree decreases with increasing loss.

Lemma 6.4. The expected node outdegree decreases with
increasing £.

PRrROOF. Assume loss rate £1 and the corresponding aver-
age outdegree d; and duplication probability dup;. Suppose
now the loss rate increases to > > ¢;. To accommodate
higher loss rate, the duplication probability have to increase
to dupz > dupi, while the deletion probability should not
grow. For duplication probability to increase, node outde-
grees should reach its lower threshold di, more frequently,
and its its upper threshold s at most as frequently as with
¢1. This, in turn, implies that expected outdegree decreases.
We conclude that in the under loss rate £2, the expected out-
degree d2 < dj. O

By Lemma 6.4, with increasing loss rate, the expected
outdegree approaches its lower bound of di,, the variance of
node outdegree decreases (can be observed in Figure 5(b)),
and the following observation follows.

0.25 -
— | =0
02 1 -==1=0.01
0.15 - - = |=0.05
eseene |=0.1
0.1
0.05 -
0 —
0 10 20 30 40
Node indegree
(a)
0.25 -
— =0
02 1 ===1=0.01
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Figure 5: S&F node degree distributions (exact, from
Degree MC) for different loss rates ¢ = 0,0.01,0.05,0.1
(dy, = 18, s = 40).

Observation 6.5. The deletion probability decreases with
increasing £.

This is illustrated in Figure 5(b), where the deletion prob-
ability is the probability density at the right edge of the
curve, as deletions occur only when the outdegree reaches s.

7. UNIFORMITY AND INDEPENDENCE

In this section we analyze the remaining protocol proper-
ties of uniformity and independence (M3 — M5). We assume
initial graph is weakly connected and the node outdegrees
are between dr, and s and are even. In Section 7.1 we define
a global Markov Chain graph that we use to model protocol
actions. In Section 7.2 we prove that with no loss and no
duplications or deletions, all membership graphs reachable
from the initial graph are equally likely to be reached by
the protocol. In Section 7.3 we show that eventually each
node id is equally likely to appear in each other node’s view.
In Section 7.4 we show that the expected fraction of inde-
pendent entries in views is at least 1 — 2(¢+4). Finally, in
Section 7.5 we show that the number of actions each node
needs to initiate in order to reach a state that is independent
of the initial state is bounded by O(log n) for constant size
views and by O(log® n) for logarithmic views.

7.1 The Global Markov Chain Graph

We define G(s, dv., £) to be the Global Markov Chain Graph
induced by S&F with given s, dr,, and ¢. For simplicity, we
omit the parameters and refer to this graph as G. The set
of vertices of G, V, contains all the membership graphs that
can be reached by S&F from any initial weakly-connected



membership graph G(0), where all initial node outdegrees
are between dr, and s and are even (S&F preserves the lat-
ter). We call vertices in G states, as each vertex represents a
global state of the views of all nodes. States G; and Gs are
connected by a directed edge (G1, Gz2) if there exists at least
one transformation from Gi to G2. The weight of the edge,
p(G1, G2) is the sum of probabilities of all transformations
from G1 to Gs.

Note that some states in G might be partitioned member-
ship graphs, e.g., when some node has no incoming edges
and all its outgoing edges are self-edges. We remove parti-
tioned states from G and replace the edges leading to them
by self-loops. In Section 7.4 we show sufficient conditions for
making the probability of reaching such partitioned mem-
bership graphs arbitrarily small. When these conditions do
not hold, e.g., when the loss rate is 100%, the analysis in
this section is not applicable. There are also states that are
unreachable from other states: the states where all views are
full (d(u) = s for each u). We assume that the initial state
is not among these states and thus remove them from G.

After removing partitioned and unreachable states, we
get that the vertices of G are exactly the weakly-connected
membership graphs where node outdegrees are between di,
and s (but not all equal s) and are even. Note that each state
in G has a self-loop edge corresponding to self-loop transfor-
mations, that occur as a result of actions where one of the
selected view entries is empty so the action has no effect on
the views.

The proof of the following lemma appears in [15].

Lemma 7.1. When 0 < { <1, G is strongly connected.

Lemma 7.1 implies that from any initial state, any state in
G can be reached by a sequence of S&F transformations.

Lemma 7.2. The Markov Chain on G has a unique station-
ary distribution .

Proor. Clearly, G is finite. By Lemma 7.1 it is irre-
ducible. It is aperiodic (meaning that the greatest common
denominator of the lengths of directed paths connecting any
two nodes in G is 1) since each state in G has a self-loop edge.
From the above, the Markov Chain is ergodic, and, by the
fundamental theorem of the theory of Markov Chains, has
a unique stationary distribution. O

Definitions.
Steady state is a random state distributed according to 7.

Expected outdegree di is the expected node outdegree
in the steady state. It is immediate that dg > dL.

Expected independence « is the expected fraction of in-
dependent entries in views in the steady state.

7.2 Stationary Distribution with No Loss

We now complete the analysis of Section 6.1, by proving
that with no loss and when for each u, ds(u) < s and is even,
the stationary distribution over all reachable states in G is
uniform. As we assume no loss, there is no need to compen-
sate for it using duplications, so we set dr, = 0. It is easy
to see that in the above setting, no duplications or deletions
take place. Observe that by Lemma 6.2, SE9F preserves the
sum degree of each node. Let ds = (ds(u),ds(v),...) be

the vector of initial node sum degrees. For the sake of the
analyses in this section, we define G4, to be the subgraph
of G where all states satisfy a given degree sum vector ds.
Then, Gg; is the MC graph induced by S&F under the above
assumptions, where nodes have sum degrees according to ds.

In [15], we prove the following lemma, which asserts that
the stationary distribution of the MC on G4 is uniform. The
proof is basically an adaptation of the proof in [19] to SE&F.

Lemma 7.3. The stationary distribution of the MC on Gg,
is a uniform distribution over all states in Gg,.

7.3 Proving Uniformity (M3)

We now return to the general case, where loss may occur.
We show that property M3 - Uniform Sample holds, with the
exception that the probability that u’s view contains its own
id may be different (higher) than the uniform probability to
contain any other id v # u.

Lemma 7.4. In the steady state, for each u, u’s view con-
tains each v # u with equal probability.

Proor. Consider two arbitrary nodes u and v. Denote
by G(u,») the set of states in G that contain edge (u,v). As
G includes all weakly-connected membership graphs where
di, < d(u') < s for each v/, and since all nodes behave
exactly the same way, by symmetry, for all u,v,w, 2z, such
that u # v and w # z, the subgraph spanned by G, ) is
isomorphic to the subgraph spanned by G, .). Thus, in G’s
stationary distribution 7, the probability of being in one of
the states in G, ) equals the probability of being in one of
the states in Gy, ). From here, every node v # u has the
same positive probability to appear in u’s view. O

7.4 Proving Spatial Independence (M4)

We next analyze property M4 - Spatial Independence and
show that in the steady state, the expected fraction of inde-
pendent entries in all views, «, can be bounded from below
by some positive constant.

In this section, we restrict the initial state, and assume
that initially, the fraction of independent entries in views is
at least 2/3. We show that under moderate loss, this fraction
converges to a much higher value. Thus, a remains greater
than 2/3.

Assumption 7.5. o > 2/3.

Note that due to Assumption 7.5 our analysis is not ap-
plicable for high loss rates, where o might become too low.
Nevertheless, since our analysis is not tight, we speculate
that the protocol may work well also with a below 2/3. The
exact dependence of a on the loss rate will become evident
in the analysis below.

Observe that spatial independence decreases only when
the protocol performs duplication, creating dependent en-
tries in views of immediate neighbors. Recall that § is the
duplication probability of the protocol with no loss. We get
the following bound on duplications:

Lemma 7.6. The duplication probability during non-self-
loop transformations is at most £ +4.

PRrROOF. In the steady state, the probability of duplication
equals £ plus the probability of deletion. By Observation 6.5,
for ¢ > 0, the probability of deletion decreases below §. The
lemma follows. O



The following analysis shows that the expected fraction
of independent entries in views is bounded from below by
1—2(£+0). Note that typically, both ¢ (see [22, 4]) and § (see
Section 6) are in the order of 1%, hence the vast majority of
view entries are expected to be independent.

The following lemma is proven in [15]. It coarsely bounds
the probability for a dependent view entry that u sends to
return to u in the future. By slight abuse of terminology, we
use the term dependent entry to refer to a particular instance
of an id that was created by duplication. The dependent
entry is created in some view entry of u, and later may be
sent to other nodes and reside in their views. In this lemma
we ignore the possibility that a dependent entry is duplicated
again, and account for this in a later lemma.

Lemma 7.7. Suppose u sends a dependent entry to one of
its neighbors. In the steady state, the probability for this
entry to be sent back to u in the future is at most 1/2.

Intuitively, the lemma follows from the fact that u’s neigh-
bors have many additional neighbors, and thus the id is more
likely to travel away from w than to return.

Lemma 7.8. In the steady state, the expected fraction of in-
dependent entries in views is bounded from below: o« > 1—
2(0+96).

PrOOF. We analyze the expected time a nonempty entry
in a view is independent. Since the protocol is memory-
less, we use a simple Dependence Markov Chain to model
the state of the entry, which can be either “dependent” or
“independent”.

Sent with duplication or
received previously duplicated

Independent
Dependent

Sent without duplication
Figure 6: Dependence Markov Chain.

We consider non-self-loop transformations corresponding
to actions initiated by a random node v and bound the tran-
sition probabilities between these states. We then compute
the stationary distribution of the Dependence MC, shown
in Figure 6, and derive from it the bound on the expected
time a nonempty entry in a view is independent. We ignore
self-loop transformations since they do not cause any change
in views and thus do not alter the dependence state of any
entry.

We start with computing probability of going from the in-
dependent to the dependent state. By Proposition 5.1 each
entry has the same probability to be involved in a trans-
formation. Thus, by Lemma 7.6, the probability of a entry
to become dependent during a non-self-loop transformation
is at most £+9. By Lemma 7.7, the probability of receiv-
ing previously duplicated entry in the future is at most 1/2.
Thus, in the steady state, the arrival rate of the returning
dependent entries is at most half of the rate of creation of
the new dependent entries. Summing up, the probability
of going from the independent to the dependent state is at
most (1+ 3)(£+8) = 2(€+96).

We now bound the probability of going from the depen-
dent to the independent state. An action removes a depen-
dent entry from a view if (1) the target node is different
from the action initiator, and (2) the entry is not duplicated
again. By Lemma 7.6, the probability of (2) is bounded by
1 — (£+0). We next bound the probability of (1).

Let 3 be the probability of an entry to be a self-edge, i.e.,
u.lv[i] = w. The most likely scenario for creating a self-
edge in u’s view is: (1) u creates two parallel edges (v, u) by
initiating two actions involving one of its out-neighbor v (in
both w sends a message to v which is not lost or deleted),
where the first action performs duplication so that »’s id
remains in u’s view; then, (2) v initiates an action involving
both of these parallel edges (v,u), send message [v,u] to u
and the message is not lost or deleted. Since the probability
of (2) is at most 1/2 by Lemma 7.7, we conclude that at
most half of the dependent entries are self-edges. Since we
assumed a > 2/3 (Assumption 7.5), the probability 3 of a
random view entry to be a self-edge is at most % . % = é.
Summing up, the probability of going from the dependent
to the independent state is at least (1 — 8)(1 — (£+4)) =
5(1 = (£49)).

Thus, an entry is expected to spend at most m

1 1 . .
out of Ty + TA=(e+9)) transformations in the dependent
state.
2(1—(£+9)) (=t +9%)
L 1 T Ba-(+a+E ¢+
e T3 Smmasain
S+ (40
= 77 (8 ) = 3 4+ < 2(£+9).
3+ = (L+0) 3+ 5U+9)
The lemma, follows. O

Connectivity conditions. A sufficient condition for a
membership graph to be weakly connected is that each node
has at least three independent out-neighbors [9]. Although
we do not know the exact distribution of the number of
independent ids in views, since the loss (and hence the du-
plications) are uniform and independent, we speculate that
the number of independent ids in node views is distributed
similarly to node outdegree but with lower expectation (« dg
instead of dg). That is, the number of independent ids in
a view is distributed close to a binomial distribution with
expectation of at least av dr,. Thus, for any given probability
€ and loss rate ¢, we can find the minimal dj, guaranteeing
that the probability of a node to have less than 3 indepen-
dent neighbors is at most e. E.g, for £ = § = 1%, and
€= 10730, dr, should be set to at least 26.

7.5 Proving Temporal Independence (MS)

We next analyze M5 - Temporal Independence. Consider
a random initial state G(0) = G chosen from 7. Clearly, the
state G(1) after one transformation is highly dependent on
G(0). However, as more transformations are performed, the
dependence between G(i) and G(0) decreases. For a given
€, we would like to find the minimum time 7¢(G) such that
for all subsets of states S,

| Pr[G(7(G)) € S| G(0) = G] — 7(S)| < e.

That is, after 7.(G) transformations, the membership graph
is e-independent of the initial graph. Note that this does not



bound the MC’s mixing time, since we start from a random
G, distributed according to w. We do this in order to avoid
starting from rare pathological states where view entries are
much more dependent than expected. Fortunately, as we
showed in Section 7.4, in an expected state the fraction of
dependent entries is bounded by a small constant. Thus, the
total weight of such pathological states under 7 is negligible.
For the sake of this analysis, we assume that there are
exactly n nodes in all states in G and that s < /n. We de-
rive (in [15]) the expected conductance — a generalization of
graph expansion around the expected state — of G from three
properties: (1) each transition from each state is induced by
two entries selected uniformly at random in a view of a ran-
dom node; (2) both of these transitions are not self-loops
(due to empty view entries) with probability %, and
(3) the expected fraction of independent entries in views is
bounded from below by «, hence different transitions involv-
ing independent view entries lead to different states, inde-
pendently of other transitions, with probability of at least «.
We then use standard techniques typically used to deduce
the mixing time from conductance to show (also in [15]):

Lemma 7.9. Assuming s < \/n,

165%(s—1)2 ( 4
e ————— | ns-log(n) +log— | .
7e(9) de?(dg —1)2 a2 g(n) g c
Note that for zero loss, @« = 1, and temporal indepen-

dence is achieved in O(nslogn) transformations. That is,
after each node initiates O(slogn) actions in expectation,
the views of all nodes are independent of the initial state.
For logarithmic view sizes this translates to O(log® n) time
until the dependence on the initial state becomes arbitrarily
low. For a positive but moderate loss, a remains a con-
stant bounded away from 0, and the time it takes to achieve
temporal independence increases by a constant factor.

8. CONCLUSIONS

We formalized the desired properties of distributed mem-
bership service: small local views, bounded number of node
neighbors, uniformity of views, and their low correlation
with past and neighbors’ views. We proposed a formal model
for studying membership graph evolutions with non-atomic
protocol actions. We presented a simple and practical mem-
bership protocol, S&/F and showed that it provides all the
desired properties of a membership service. This is the first
analysis of a membership protocol in the presence of message
loss that we are aware of. It might be interesting to apply
our methodology in order to analyze additional gossip-based
protocols under message loss.
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