Efficient Message Ordering in Dynamic Networks

Idit Keidar

Computer Science Institute
The Hebrew University of Jerusalem

idish@cs.huji.ac.il

Abstract

We present an algorithm for totally ordering messages
in the face of network partitions and site failures. The
algorithm always allows a majority of connected processors
in the network to make progress (i.e. to order messages),
if they remain connected for sufficiently long, regardless of
past failures. Furthermore, our algorithm always allows
processors to initiate messages, even when they are not
members of a connected majority component in the network.
Thus, messages can eventually become totally ordered even
if their initiator is never a member of a majority component.
The algorithm guarantees that when a majority is connected,
each message is ordered within two communication rounds,
if no failures occur during these rounds.

1 Introduction

Consistent order is a powerful paradigm for the design
of fault tolerant applications, e.g. consistent replica-
tion [Sch90, Kei94]. We present an efficient algorithm
for consistent message ordering in the face of network
partitions and site failures. The network may partition
into several components', and remerge. The algorithm
is most adequate for dynamic networks where failures
are transient. The algorithm uses an underlaying group
communication service as a building block.

Problem Definition

Atomic broadcast deals with consistent message order-
ing. Informally, atomic broadcast requires that all the
correct processors will deliver all the messages to the
application in the same order and that they eventually
deliver all messages sent by correct processors. In our

*This work supported by the United States - Israel Binational
Science Foundation, Grant No. 92-00189

1A component is sometimes called a partition. In our ter-
minology, a partition splits the network into several components.

Danny Dolev*
Computer Science Institute
The Hebrew University of Jerusalem

dolev@cs.huji.ac.il

model two processors may be detached, and yet both
are considered correct. In this case, obviously, atomic
broadcast as defined above is impossible. We solve an
equivalent of atomic broadcast for partitionable net-
works: We require that if a majority of the processors
are alive and connected then these processors eventually
deliver all messages sent by any of them, in the same
order.

The term delivery is usually used for delivery of
totally ordered messages by the atomic broadcast
algorithm to its application, but also for delivery of
messages by the group communication service to its
application (which in our case is the atomic broadcast
algorithm). To avoid confusion, in the rest of this paper
we will use the term delivery only for messages delivered
by the group communication service to our algorithm.
When discssing the atomic broadcast algorithm, we say
that the algorithm totally orders a message when the
algorithm decides that this message is the next message
in the total order, instead of saying that the algorithm
“delivers” the message to its application.

Failure Detection

It is well known that reaching agreement in general, and
total message ordering in particular, in asynchronous
environments with a possibility of even one failure
is impossible [FLP85]. To overcome this difficulty,
Chandra and Toueg [CT] suggest to augment the model
with failure detectors, and prove that in this case,
agreement is possible. The failure detectors suggested
in [CT] notify the “correct” processors which processors
are “faulty”. The definition does not capture network
partitions. In [FKM*95] these definitions are extended
for the partitionable case. The algorithm we present
uses an underlying transport layer with a membership
protocol that serves as the failure detector. Our
algorithm guarantees that whenever the membership
protocol indicates that a majority of the processors is
connected, the members of this majority succeed in
ordering messages. The algorithm is correct regardless
of whether the failure detector is accurate or not, the
liveness of the algorithm (its ability to make progress),

depends on the accuracy of this failure detector.

Algorithm Guarantees and Related Work

Our algorithm always allows processors to initiate
messages, even when they are not members of a majority
component. By carefully combining message ordering
within a primary component and messages exchanged in
minority components, messages can eventually become
totally ordered even if their initiator is never a member
of a majority component. The algorithm guarantees
that when a majority is connected, each message is
ordered within two communication rounds, if no failures
occur during these rounds?. The algorithm incurs low
overhead, no “special” messages are needed, all the
information required by the protocol is piggybacked on
regular messages.

Our protocol uses an underlying group communica-
tion service. Group communication mechanisms that
use hardware broadcast lead to simpler and more effi-
cient solutions for replication than the traditional point-
to-point mechanisms. Some of the leading systems
for group communication today are: ISIS [BCGY1,
BSS91] and its new generation HORUS [VRCGS92],
Transis [ADKM92b, MADK94], Totem [AMMS*t93],
Psync [PBS89], Newtop [EMS95] and the distributed
operating system AMOEBA [KTHB89]. To increase
availability, most of the group multicast algorithms
mentioned above detect failures and extract faulty mem-
bers from the membership. When processors reconnect,
these algorithms do not recover the states of reconnected
processors. This is where our algorithm comes in: it ex-
tends the order achieved by such algorithms to a global
total order.

Chandra and Toueg [CT] suggest a consensus protocol
that uses a failure detector, and tolerates crash failures,
but does not tolerate network partitions. They suggest
an atomic broadcast algorithm based on this consensus
protocol. Their protocol could be extended to work in
a partitionable environment [FKM*95]. However, their
algorithm is optimized for the crash-only model and is
less efficient if partitions occur. The algorithm uses a
rotating coordinator scheme among all the processors,
and does not focus only on members of the current
membership. When a majority is connected, the worst-
case latency until ordering a single message can be O(n)
communication rounds.

The total ordering protocols in [MMSA93, MHS89,
ADMSM94] also overcome network partitions. To-
tal [MMSA93] incurs a high overhead: the maxi-
mum number of communication rounds required is not
bounded, while our algorithm requires two communica-
tion rounds to order a message if no failures occur dur-
ing these rounds. The replication algorithm suggested

2By “no failures occur” we implicitly mean that the underlying
membership service does not report of failures.

in [MHS89] is centralized, and thus highly increases
the load on one server, while our protocol is decen-
tralized and symmetric. The protocol in [ADMSM94]
uses a majority-based scheme for message ordering, it
decreases the requirement for end-to-end acknowledg-
ments, but does not always allow a majority to make
progress.

2 The Model

COReL (the Consistent Object Replication Layer) is an
algorithm for consistent order of messages, designed to
implement a high-level replication service in the Transis
environment. Transis is a sophisticated transport layer
(or group communication service layer) [ADKM92b,
ADKM92a, DMS94, MADK94] that supplies omission
fault free group multicast and membership services in
an asynchronous environment. COReL uses Transis as
a failure detector and as a building block for reliable
communication within connected network components?.
COReL may be implemented using any transport layer
that supplies similar services. The layer structure of
CORelL is depicted in Figure 1.

totally ordered messages multicast messages

‘ COReL ‘
! deliver (receive) with TS
i locally ordered messages send messages
configuration changes
‘ Transis ‘

.

Figure 1: The Layer Structure of COReL

2.1 Group Multicast and Membership

Each copy of COReL uses the group communication
service to send messages to the members of its group;
all the members of the group deliver (or receive) the
message.

After a group is created, the group undergoes configu-
ration (membership) changes when processors are added

3A component is sometimes called a partition. In our
terminology, a partition separates the network into several
components.

or are taken out of the group. The membership service
reports these changes to COReL through special config-
uration change (membership change) messages. Config-
uration change messages are delivered among the stream
of regular messages. Thus, during its execution, COReL
delivers a sequence of regular messages interposed by
configuration change messages. Let m be a message,
such that the last configuration-change message preced-
ing m is C. Then we say that m is delivered in the
context of C'. Or shorter, m is delivered in C.

2.2 Transport Layer’s Total Order Properties

This paper deals with the ordering of messages and
events. The causal partial order [Lam78] is defined as
the transitive closure of: m === m’ if deliver,(m) —
sendy(m’) or if send,(m) — send,(m').

COReL may be implemented using any transport
layer that supplies reliable locally ordered group mul-
ticast and membership services that maintain the fol-
lowing properties:

Property 2.1 The transport layer totally orders the
messages within each component. A logical timestamp
(TS) or serial number is attached to every message when
1t is delivered. The same TS is attached to the message
at all the processors that deliver it. Fvery message has
a different TS. The TS total order preserves the causal
partial order. The transport layer delivers messages at
each site in TS order.

Property 2.2 Let p and q be processors, and assume
that both p and q deliver the same two consecutive
configuration changes C1, Cy. Then for every message
m that p delivers between C1 and Cq, processor q also
delivers m between Cy and Cs.

Among processors that do not remain connected, we
would also like to guarantee agreement to some extent.
If two processors become disconnected, we do not expect
to achieve full agreement on the set of messages they
delivered in the context of C'y before detaching. Instead,
we require that they agree on a subset of the messages
that they deliver in C1, as described below.

Let processors p and ¢ be members of C;. Assume
that p delivers a message m before m’ in C1, and that ¢
delivers m’, but without delivering m. This can happen
only if p and ¢ became disconnected (from Properties 2.1
and 2.2, they will not both be members of the same
next configuration). In Property 2.3 we require that if
q delivers m’ without m, then no message m’’ sent by q,
after delivering m’, can be delivered by p in the context

of Cl.

Property 2.3 Let p and g be members of configuration
C. If p delivers a message m before m’ in C, and if q
delivers m' and later sends a message m', such that p
delivers m’" in C, then q delivers m before m'.

A framework for a partitionable membership service
that fulfills these properties is described in [DMS95].
These properties are also fulfilled in the Agreed Com-
munication service of the Ezxtended Virtual Synchrony
(EVS) model [MAMSA94]. The Transis [ADKM92b,
MADKY94] and Totem [AMMS*93] systems implement
partitionable membership and ordering services of this
framework, and also support EVS.

3 The COReL Algorithm

We present the COReL (Consistent Object Replication
Layer) algorithm for reliable multicast and total order-
ing of messages. The COReL algorithm is used to im-
plement long-term replication services using a transport
layer that supplies total order of messages within each
connected network component. COReL guarantees that
all messages will reach all sites in the same order. It
always allows members of a connected primary compo-
nent to order messages. The algorithm is resilient to
both processor failures and network partitions.

3.1 Reliable Multicast

When processors fail or when the network partitions,
messages are disseminated in the restricted context of
a smaller configuration, and are not received at sites
which are members of other components. The partici-
pating processors keep these messages for as long as they
might be needed for retransmission. Each processor logs
(on stable storage) every message that it receives from
the transport layer. A processor acknowledges a mes-
sage after it is written to stable storage. The acknowl-
edgments (ACKs) may be piggybacked on regular mes-
sages. Note that it is important to use application level
ACKs in order to guarantee that the message is logged
on stable storage. If the message is only ACKed at
the transport layer level, it may be lost if the process
crashes.

When network failures are mended and previously
disconnected network components remerge, a Recovery
Procedure is invoked; the members of the new configu-
ration exchange messages containing information about
messages in previous components and their order. They
determine which messages should be retransmitted and
by whom.

3.2 Message Ordering

Within each component messages are ordered by the
transport layer. The transport layer supplies a unique
timestamp (7'S) for each message when it delivers the
message to COReL. When COReL receives the message,
it writes the message on stable storage along with
its TS. Within a majority component COReL orders
messages according to their TS. The TS is globally
unique, even in the face of partitions, and yet COReL
sometimes orders messages in a different total order:

it orders messages from majority component before
(causally concurrent) messages with a possibly higher
TS from minority components (otherwise it wouldn’t
always allow a majority to make progress). Note that
both the TS order and the order provided by COReL
preserve the causal partial order.

When a message is retransmitted, the TS that was
given when the original transmission of the message was
received is attached to the retransmitted message, and
is the only timestamp used for this message (the new TS
generated by the transport layer during retransmission
is ignored).

We use the notion of a primary component to
allow members of one network component to continue
ordering messages when a partition occurs. For
each processor, the primary component bit is set iff
this processor is currently a member of a primary
component. In Section 3.5.1 we describe how a majority
of the processors may become a primary component.
Messages that are received in the context of a primary
component (i.e. when the primary component bit is set)
may become totally ordered according to the following
rule:

Order Rule 1 Members of the current primary com-
ponent PM are allowed to totally order a message (in
the global order) once the message was acknowledged by
all the members of PM .

If a message is totally ordered at some processor
p according to this rule, then p knows that all the
other members of the primary component received
the message, and have written it on stable storage.
Furthermore, the algorithm guarantees that all the
other members already have an obligation to enforce
this decision in any future component, using the yellow
message mechanism explained below.

3.2.1 The Colors Model

COReL maintains a local message queue M@, that is
an ordered list of all the messages that this processor
received from the transport layer. After message m was
received by COReL at site p, and p wrote it on stable
storage (in its MQ) we say that p has the message
m. Messages are uniquely identified through a pair
< sender, counter >. This pair is the message ud.

Incoming messages within each component are in-
serted at the end of the local M Q, thus M Q reflects the
order of the messages local to this component. When
components merge, retransmitted messages from other
components are inserted into the queue in an order that
may interleave with local messages (but never preceding
messages that were ordered already).

COReL builds its knowledge about the order of
messages at other processors. We use the colors model
defined in [AAD93] to indicate the knowledge level

associated with each message, as follows:

green: Knowledge about the message’s global total
order. A processor marks a message as green when
it knows that all the other members of the primary
component know that the message is yellow. Note
that this is when the message is totally ordered
according to Order Rule 1. The set of green messages
at each site at a given time is a prefix of M Q. The
last green message in M Q marks the green line.

yellow: Each processor marks as yellow messages that
it received and acknowledged in the context of a
primary component, and as a result, might have
become green at other members of the primary
component. The yellow messages are the next
candidates to become green. The last yellow
message in MQ marks the yellow line.

red: No knowledge about the message’s global total
order. A message in MQ is red if there is no
knowledge that it has a different color. Yellow
messages precede all the red messages in M Q. Thus,
M@ is divided into three zones: a green prefix, then
a yellow zone and a red suffix.

When a message is marked as green it is totally
ordered.

If a member of a primary component PM marks a
message m as green according to Order Rule 1 then
for all the other members of PM | m is yellow or green.
Since two majorities always intersect, and every primary
component contains a majority, in the next primary
component that will be formed at least one member will
have m as yellow or green. When components merge,
members of the last primary component enforce all the
green and the yellow messages that they have before
any concurrent red messages. Concurrent red messages
from distinct components are interleaved according to

the TS order.

3.3 Notation

We use the following notation:

o MQP is the MQ of processor p.
o Prefix(MQF m) is the prefix of MQF ending at

message m.
o Green(MQPF) is the green prefix of MQF.

e We define processor p knows of a primary component
P M recursively as follows:

1. If a processor p was a member of P M then p knows

of PM.

2. If a processor ¢ knows of PM, and p recovers the
state of ¢*, then p knows of PM.

4p recovers the state of ¢ when p completes running the

Recovery Procedure for a configuration that contains g.

3.4 Invariants of the Algorithm

The order of messages in M Q of each processor always
preserves the causal partial order. Messages that are
totally ordered are marked as green. Once a message is
marked as green, its place in the total order may not
change, and no new message may be ordered before
it. Therefore, at each processor, the order of green
messages in M@ is never altered. Furthermore, the
algorithm totally orders messages in the same order at
all sites, therefore the different processors must agree
on their green prefixes.

The following properties are invariants maintained by
each step of the algorithm:

Causal e If a processor p has in its MQ a message
m that was originally sent by processor ¢, then
for every message m’ that q sent before m, MQP
contains m’ before m.

e If a processor p has in its MQ a message m that
was originally sent by processor ¢, then for every
message m’ that ¢ had in its MQ before sending
m, MQP contains m’ before m.

No Changes in Green New green messages are ap-
pended to the end of Green(MQF), and this is the
only way that Green(MQF) may change.

Agreed Green The processors have compatible green
prefixes: for every pair of processors p and g
running the algorithm, and for every Green(MQP),
(at every point in the course of the algorithm),
and every Green(MQ@Q?), one of Green(MQP) and
Green(MQ?) is a prefix of the other.

Yellow If a processor p marked a message m as green
in the context of a primary component PM, and if
a processor ¢ knows of PM , then:

1. Processor ¢ has m marked as yellow or green.

2. Prefiz(MQ?, m) = Prefiz(MQP, m).

In [Kei94] we formally prove that these invariants hold
in COReL, and thus prove the correctness of COReL.

3.5 Handling Configuration Changes

The main subtleties of the algorithm are in handling
configuration changes. Faults can occur at any point
in the course of the protocol, and the algorithm
ensures that even in the face of cascading faults, no
inconsistencies are introduced. To this end, every step
taken by the handler for configuration changes must
maintain the invariants described in Section 3.4.

When merging components, messages that were
passed in the more restricted context of previous
components need to be disseminated to all members of
the new configuration. Green and yellow messages from
a primary component should precede messages that

Configuration Change Handler for Configuration C:
e Unset the primary component bit.

e Stop handling regular messages, and stop sending regular
messages.

e If C contains new members, run the Recovery Procedure
described in Section 3.5.2.

e If C is a majority, run the algorithm for establishing a
new primary component, described in Section 3.5.1.

e Continue handling and sending regular messages.

Figure 2: Configuration Change Handler

were concurrently passed in other components. All the
members of the new configuration must agree upon the
order of all past messages. To this end, the processors
run the Recovery Procedure.

If the new configuration C' introduces new members,
the Recovery Procedure is invoked in order to bring
all the members of the new configuration to a common
state. New messages that are delivered in the context
of C' are not inserted into M@ before the Recovery
Procedure ends, and thus the Causal invariant is not
violated. The members of C' exchange state messages,
containing information about messages in previous
components and their order. In addition, each processor
reports of the last primary component that it knows
of, and of its green and yellow lines. Every processor
that receives all the state messages knows exactly which
messages every other member has, and the messages
that not all the members have are retransmitted.

In the course of the Recovery Procedure, the members
agree on the green and yellow lines. The new green
line is the mazimum of the green lines of all the
members: Every message that one of the members
of C' had marked as green, becomes green for all the
members. The members that know of the latest primary
component, PM, determine the new yellow line. The
new yellow line is the minimum of the yellow lines of the
members that know of PM. If some message m is red
for a member that knows of PM, then by the Yellow
invariant, it was not marked as green by any member
of PM. In this case if any member had marked m as
yellow, it changes m back to red. A detailed description
of the Recovery Procedure is presented in Section 3.5.2.

After reaching an agreed state, the members of a
majority component in the network may practice their
right to totally order new messages. They must order
all the yellow messages first, before new messages, and
before red messages form other components, in order to
be consistent with decisions made in previous primary
components.

If the new configuration is a majority, the members of
C will try to establish a new primary component. The
algorithm for establishing a new primary component

is described in Section 3.5.1. All committed primary
components are sequentially numbered. We refer to the
primary component with sequential number i as PM;.

When a configuration change is delivered, the handler
described in Figure 2 is invoked. In the course of
the run of the handler, the primary component bit is
unset, regular messages are blocked, and no new regular
messages are initiated.

3.5.1 Establishing a Primary Component

A new configuration, C, is established as the new
primary component, if C' is a majority, after the
retransmission phase described in Section 3.5.2. The
primary component is established in a three-phase
agreement protocol, similar to Three Phase Commit
protocols [Ske81, KD95]. The three phases are required
in order to allow for recovery in case failures occur in
the course of the establishing process. The three phases
correlate to the three levels of colors in M Q.

In the first phase all the processors multicast a
message to notify the other members that they attempt
to establish the new primary component. In the
second phase, the members commit to establish the
new primary component, and mark all the messages
in their MQ as yellow. In the establish phase, all
the processors mark all the messages in their MQ as
green and set the primary component bit to TRUE. A
processor marks the messages in its MQ as green only
when it knows that all the other members marked them
as yellow. Thus, if a failure occurs in the course of the
protocol, the Yellow invariant is not violated. If the
transport layer reports of a configuration change before
the process is over — the establishing is aborted, but
none of its effects need to be undone. The primary
component bit remains unset until the next successful
establish process.

Each processor maintains the following variables:

Last_Committed Primary is the number of the last
primary component that this processor has commit-
ted to establish.

Last_Attempted Primary is the number of the last
primary component that this processor has at-
tempted to establish. This number may be higher
than the number of the last component actually com-
mitted to, in the case of failures.

The algorithm for establishing a new primary compo-
nent is described in Figure 3.

3.5.2 Recovery Procedure

If the new configuration, C, introduces new members,
then each processor that delivers the configuration
change runs the following protocol:

Establishing a New Primary Component

If C contains new members, the Recovery Procedure is run
first. If C' is a majority, all members of a configuration C
try to establish it as the new primary component:

e Compute: New_Primary =
max;cc(Last_Attempted_Primary;) + 1.
The members of C now try to establish it as
PAJNew_Primary~

Attempt to establish PMyew_Primary:

Set Last_Attempted_Primary to New_Primary on sta-
ble storage, and send an attempt message, to notify the
other members of the attempt.

Wait for attempt messages from all members of C. When
these messages arrive, do the following in one atomic
step:

1. Commit to the configuration by setting
Last_Commaitted_Primary to New_Primary on sta-
ble storage.

2. Mark all the messages in the M Q that are not green
as yellow.

Send a commit message, to notify the other members of
the commitment.

e Wait for commit messages from all members of C,
and then establish C, by setting to TRUE the primary
component bit. Mark as green all the messages in M Q.

If the transport layer reports of a configuration change
before the process is over — the establishing is aborted,
but its effects are not undone.

Figure 3: Establishing a new primary component

Recovery Procedure for processor p

1. Send state message including the following informa-
tion:
e Last_Committed_Primary.
e Last_Attempted_Primary.

e The id of the last message that p received from
every processor ¢°.

e The id of the latest green message (green line).
e The id of the latest yellow message (yellow line).

2. Wait for state messages from all the other processors
in the new configuration.

3. Compute: Maz_Committed =
max,cc Last_Committed_Primary,.

Let Representatives be the members that have:
Last_Commatted_Primary = Maxz_Commaitted.

5Note that this is sufficient to represent the set of messages that
p has, because the order of messagesin M QP always preserves the
causal order.

Retransmission Rule If processor p has messages m
and m' such that m’ is ordered after m in p’s messages
queue, then during Step 7 of the Recovery Procedure:

o If p has to retransmit both messages then it will
retransmit m before m'.

o If p has to retransmit m’ and another processor q
has to retransmit m then p does not retransmit m'
before receiving the retransmission of m.

Figure 4: Retransmission Rule

The Representatives advance their green lines to
include all messages that any member of C' had
marked as green, and retreat their yellow lines
to include only messages that all of them had
marked as yellow, and in the same order, e.g. if
processor p has a message m marked as yellow, while
another member with Last_Committed_Primary =
Maz_Committed has m marked as red, or does not
have m at all, then p changes to red m along with
any messages that follow it in M QPF.

4. If all the members have the same last committed
primary component, (i.e. all are Representatives),
go directly to Step 7.

A unique representative from the group of Represen-
tatives is chosen deterministically.

Determine (from the state messages) the following
sets of messages:

component stable is the set of messages that all
the members of C' have.

component ordered is the set of messages that
are green for all the members of C'.

priority are yellow and green messages that the
representative has.

5. Retransmission of priority messages:

The chosen representative computes the maximal
prefix of its M@ that contains component_ordered
messages only. It sends the set of priority mes-
sages in its M@ that follow this prefix. For compo-
nent_stable messages, it sends only the header (in-
cluding the original ACKs), and the other messages
are sent with their data and original piggybacked
ACKs.

Members from other configurations insert these
messages into their M@Qs, in the order of the
retransmission, following the green prefix, and ahead
of any non_priority messages®.

6Note that it is possible for members to already have some
of these messages, and even in a contradicting order (but in this

6. If Last_Committed_Primary, < Max_Committed,
do the following in one atomic step:

e If p has yellow messages that were not retransmit-
ted by the representative, change these messages
to red, and reorder them in the red part of MQ
according to the TS order.

e Set Last_Committed_Primary to Maxz_Committed
(on stable storage).

e Set the green and yellow lines according to
the representative; the yellow line is the last
retransmitted message.

7. Retransmission of red messages:

Messages that not all the members have, are re-
transmitted. Each message is retransmitted by at
most one processor. The processors that need to
retransmit messages send them, with their original
ACKs, in an order maintaining the Retransmission
Rule (described in Figure 4).

Concurrent retransmitted messages from different
processors are interleaved in M@ according to the
TS order of their original transmissions.

Note: If the transport layer reports of a configuration
change before the protocol is over, the protocol is
immediately restarted for the new configuration. The
effects of the non-completed run of the protocol do not
need to be undone.

After receiving all of the retransmitted messages: if
C is a majority then the members try to establish
a new configuration. (The algorithm is described
Section 3.5.1).

If the configuration change reports only of processor
faults, and no new members are introduced, the
processors need only establish the new configuration and
no retransmissions are needed. This is due to the fact
that, from Property 2.2 of the transport layer, all the
members received the same set of messages until the
configuration change.

4 Discussion

We presented an efficient algorithm for totally ordered
multicast in an asynchronous environment, that is
resilient to network partitions and communication link
failures. The algorithm always allows a majority of
connected members to totally order messages within two
communication rounds. The algorithm is constructed
over a transport layer that supplies group multicast and
membership services among members of a connected
network component.

The algorithm allows members of minority compo-
nents to initiate messages. These messages may diffuse

case, not as green messages). In this case they adopt the order
enforced by the representative.

through the system and become totally ordered even if
their initiator is never a member of a majority compo-
nent: The message is initially multicast in the context
of the minority component, if some member of the mi-
nority component (not necessarily the message initia-
tor) later becomes a member of a majority component,
the message is retransmitted in the majority component
and becomes totally ordered.

Some of the principles presented in this protocol may
be applied to make a variety of distributed algorithms
more available, e.g. network management services and
distributed database systems. In [KD95] we present an
atomic commitment protocol for distributed database
management based on such principles.

In [Kei94] we suggest two extensions of the algorithm,
optimizing it for highly unreliable networks, where a
majority of the processors are rarely connected at once.
The first extension deals with the case that a majority
component is not formed for a long period although
all the processors are alive, and messages from all of
them eventually reach all the destinations. In this
case, we enable the processors to totally order messages
according to an alternative mechanism, that does not
require a primary component to be established. This
extension will be further developed in future work.

The second extension deals with dynamic voting. The
algorithm presented in Section 3 uses a majority to
decide if a group of processors may become a primary
component. The concept of majority can be generalized
to quorums, and can be further generalized, to allow
more flexibility yet: The dynamic voting paradigm
for electing a primary component defines quorums
adaptively. When a partition occurs, a majority of
the previous quorum may chosen as the new primary
component. Thus, a primary component must not
necessarily a majority of the processors. Dynamic
voting may introduce inconsistencies, and therefore
should be handled carefully. In [DKYL] we suggest
an algorithm for consistently maintaining a primary
component using dynamic voting. This algorithm may
be easily incorporated into COReL.

Finally, in [Kei94] we prove the correctness of the

COReL algorithm.

Acknowledgments

Yair Amir greatly contributed to this work with his
original ideas and insight. Special thanks to Dalia Malki
and Catriel Beeri who suggested simplifications to the
algorithm and presentation.

References
[AAD93] O. Amir, Y. Amir, and D. Dolev. A Highly

Available Application in the Transis Environ-
ment. In Proceedings of the Hardware and Soft-
ware Architectures for Fault Tolerance Work-

[ADKM92a]

[ADKM92b]

[ADMSM94]

[AMMSt 93]

[BCGI1]

[BSS91]

[DKYL]

[DMS94]

[DMS95]

[EMS95]

shop, at Le Mont Saint-Michel, France, June
1993. LNCS 774.

Y. Amir, D. Dolev, S. Kramer, and D. Malki.
Membership Algorithms for Multicast Com-
munication Groups. In Intl. Workshop on
Distributed Algorithms proceedings (WDAG-
6), (LNCS, 647), number 6th, pages 292-312,
November 1992.

Y. Amir, D. Dolev, S. Kramer, and D. Malki.
Transis: A Communication Sub-System for
High Availability. In FTCS conference, num-
ber 22, July 1992.

Y. Amir, D. Dolev, P. M. Melliar-Smith, and
L. E. Moser. Robust and Efficient Replica-
tion using Group Communication. Technical
Report CS94-20, Institute of Computer Sci-
ence, The Hebrew University of Jerusalem,
Jerusalem, Israel, 1994.

Y. Amir, L. E. Moser, P. M. Melliar-Smith,
D. A. Agarwal, and P. Ciarfella. Fast Mes-
sage Ordering and Membership using a Logical
Token-Passing Ring. In International Confer-

ence on Distributed Computing Systems, num-
ber 13th, pages 551-560, May 1993.

K. Birman, R. Cooper, and B. Gleeson. Pro-
gramming with Process Groups: Group and
Multicast Semantics. TR 91-1185, dept. of
Computer Science, Cornell University, Jan
1991.

K. Birman, A. Schiper, and P. Stephenson.
Lightweight Causal and Atomic Group Multi-
cast. ACM Trans. Comp. Syst., 9(3):272-314,
1991.

T. D. Chandra and S. Toueg. Unreliable
Failure Detectors for Asynchronous Systems.
Journal of ACM. To appear. Previous version:
PODC 1991 pp. 325-340.

Danny Dolev, Idit Keidar, and Esti Yeger-
Lotem. Dynamic Voting for Consistent Pri-
mary Components. In preparation.

D. Dolev, D. Malki, and H. R. Strong. An
Asynchronous Membership Protocol that Tol-
erates Partitions. Technical Report CS94-6, In-
stitute of Computer Science, The Hebrew Uni-
versity of Jerusalem, Jerusalem, Israel, 1994.

D. Dolev, D. Malki, and H. R. Strong. A
Framework for Partitionable Membership Ser-
vice. TR 95-4, Institute of Computer Science,
The Hebrew University of Jerusalem, March
1995.

P. D. Ezhilchelvan, A. Macedo, and S. K. Shri-
vastava. Newtop: a fault tolerant group com-
munication protocol. In International Confer-
ence on Distributed Computing Systems, num-
ber 15th, June 1995.

[FKM™*95]

[FLP85]

[KD95]

[Kei94]

[KTHBS9]

[Lam78]

[MADK94]

[MAMSA94]

[MHS89]

[MMSA93]

[PBS89]

R. Friedman, I. Keidar, D. Malki, K. Bir-
and D. Dolev. Deciding in Parti-
TR 95-16, Institute of
Computer Science, The Hebrew University
of Jerusalem, Jerusalem, Israel, November
1995. Also Cornell TR95-1554. Available via
anonymous ftp at cs.huji.ac.il (132.65.16.10) in
users/transis/ TR95-16.ps.gz.

M. Fischer, N. Lynch, and M. Paterson.
Impossibility of Distributed Consensus with
One Faulty Process. J. ACM, 32:374-382,
April 1985.

I. Keidar and D. Dolev. Increasing the Re-
silience of Atomic Commit, at No Additional
Cost. In ACM Symp. on Prin. of Database
Systems (PODS), pages 245-254, May 1995.
Previous version available as Technical Report
(CS94-18, The Hebrew University, Jerusalem,
Isreal.

I. Keidar. A Highly Available Paradigm
for Consistent Object Replication. Master’s
thesis, Institute of Computer Science, The
Hebrew University of Jerusalem, Jerusalem,
Israel, 1994. Also available as Technical Report
CS95-5, and via anonymous ftp at cs.huji.ac.il
(132.65.16.10) in users/transis/thesis/keidar-
msC.ps.gz.

M. F. Kaashoek, A. S. Tanenbaum, S. F. Hum-
mel, and E. H. Bal. An Efficient Reliable
Broadcast Protocol. Operating Systems Re-
view, 23(4):5-19, October 1989.

L. Lamport. Time, Clocks, and the Ordering
of Events in a Distributed System. Communi-
cations of the ACM, 21(7):558-565, July 78.

D. Malki, Y. Amir, D. Dolev, and S. Kramer.
The Transis Approach to High Availability
Cluster Communication. TR CS94-14, Insti-
tute of Computer Science, The Hebrew Uni-
versity of Jerusalem, June 1994.

L. E. Moser, Y. Amir, P. M. Melliar-Smith,
and D. A. Agarwal. Extended Virtual Syn-
chrony. In International Conference on Dis-
tributed Computing Systems, number 14th,
June 1994.

man,
tionable Networks.

Tim Mann, Andy Hisgen, and Garret Swart.
An Algorithm for Data Replication. Technical
Report 46, DEC Systems Research Center,
June 1989.

L. E. Moser, P. M. Melliar-Smith,
V. Agrawala. Asynchronous Fault-Tolerant
Total Ordering Algorithms. SIAM Journal of
Computing, 22(4):727-750, August 1993.

L. L. Peterson, N. C. Buchholz, and R. D.
Schlichting. Preserving and Using Context
Information in Interprocess Communication.
ACM Trans. Comput. Syst., 7(3):217-246, Au-
gust 89.

and

[Sch90]

[Ske81]

[VRCGS92]

F. B. Schneider. Implementing Fault Tolerant
Services Using The State Machine Approach:

A Tutorial. Computing Surveys, 22(4):299-
319, December 1990.
D. Skeen. Nonblocking Commit Protocols.

In SIGMOD Intl. Conf. Management of Data,
1981.

R. Van Renesse, R. Cooper, B. Glade, and
P. Stephenson. A RISC Approach to Process
Groups. In Proceedings of the 5th ACM
SIGOPS Workshop, pages 21-23, September
1992.

