
Taking Omid to the Clouds:
Fast, Scalable Transactions for Real-Time Cloud Analytics

Ohad Shacham
Yahoo Research

ohads@oath.com

Yonatan Gottesman
Yahoo Research

yonatang@oath.com

Aran Bergman
Technion

aranb@campus.technion.ac.il
Edward Bortnikov

Yahoo Research
ebortnik@oath.com

Eshcar Hillel
Yahoo Research

eshcar@oath.com

Idit Keidar
Technion and Yahoo Research
idish@ee.technion.ac.il

ABSTRACT
We describe how we evolve Omid, a transaction process-
ing system for Apache HBase, to power Apache Phoenix, a
cloud-grade real-time SQL analytics engine.

Omid was originally designed for data processing pipelines
at Yahoo, which are, by and large, throughput-oriented mono-
lithic NoSQL applications. Providing a platform to support
converged real-time transaction processing and analytics ap-
plications – dubbed translytics – introduces new functional
and performance requirements. For example, SQL support
is key for developer productivity, multi-tenancy is essential
for cloud deployment, and latency is cardinal for just-in-time
data ingestion and analytics insights.

We discuss our efforts to adapt Omid to these new do-
mains, as part of the process of integrating it into Phoenix
as the transaction processing backend. A central piece of
our work is latency reduction in Omid’s protocol, which also
improves scalability. Under light load, the new protocol’s la-
tency is 4x to 5x smaller than the legacy Omid’s, whereas
under increased loads it is an order of magnitude faster. We
further describe a fast path protocol for single-key transac-
tions, which enables processing them almost as fast as native
HBase operations.

PVLDB Reference Format:
Shacham, Gottesman, Bergman, Bortnikov, Hillel, and Keidar.
Taking Omid to the Clouds:
Fast, Scalable Transactions for Real-Time Cloud Analytics. PVLDB,
11(12): xxxx-yyyy, 2018.
DOI: https://doi.org/10.14778/3229863.3229868

1. INTRODUCTION
In recent years, transaction processing [35] technologies

have paved their way into multi-petabyte big data plat-
forms [39, 26, 40]. Modern industrial transaction process-
ing systems (TPSs) [39, 40, 14, 8] complement existing un-
derlying NoSQL key-value storage with atomicity, consis-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/08... $ 10.00.
DOI: https://doi.org/10.14778/3229863.3229868

tency, isolation and durability (ACID) semantics that enable
programmers to perform complex data manipulation with-
out over-complicating their applications. Google’s Percola-
tor [39] pioneered a transaction API atop the Bigtable stor-
age. Apache Incubator projects Tephra [14] and Omid [40]
followed suit with Apache HBase [2].

Such technologies must evolve in light of the recent shift
towards massive deployment of big data services in pub-
lic clouds; for example, the AWS cloud can run HBase as
part of Elastic MapReduce [1], and SQL engines like Apache
Phoenix increasingly target public cloud deployment. Yet
adapting TPS technology for cloud use is not without chal-
lenges, as we now highlight.

1.1 Challenges
Diverse functionality. Large-scale transaction sup-

port was initially motivated by specific use cases like con-
tent indexing for web search [39, 40] but rapidly evolved into
a wealth of OLTP and analytics applications (e.g., [41]).
Today, users expect to manage diverse workloads within
a single data platform, to avoid lengthy and error-prone
extract-transform-load processes. A Forrester report [15]
coins the notion of translytics as “a unified and integrated
data platform that supports multi-workloads such as trans-
actional, operational, and analytical simultaneously in real-
time, ... and ensures full transactional integrity and data
consistency”.

As use cases become more complex, application developers
tend to prefer high-level SQL abstractions to crude NoSQL
data access methods. Indeed, scalable data management
platforms (e.g., Google Spanner [26], Apache Phoenix [6],
and CockroachDB [8]) now provide full-fledged SQL inter-
faces to support complex query semantics in conjunction
with strong data guarantees. SQL APIs raise new require-
ments for transaction management, e.g., in the context of
maintaining secondary indexes for accelerated analytics.

Scale. Public clouds are built to serve a multitude of ap-
plications with elastic resource demands, and their efficiency
is achieved through scale. Thus, cloud-first data platforms
are designed to scale well beyond the limits of a single ap-
plication. For example, Phoenix is designed to scale to 10K
query processing nodes in one instance, and is expected to
process hundreds of thousands or even millions of transac-
tions per second (tps).

Latency. Similarly to many technologies, the adoption
of transactions took a “functionality-first” trajectory. For

1



example, the developers of Spanner [26] wrote: “We be-
lieve it is better to have application programmers deal with
performance problems due to overuse of transactions as bot-
tlenecks arise, rather than always coding around the lack of
transactions”. Yet the expectation for low latency is rapidly
picking up. Whereas early applications of big data transac-
tion processing systems were mostly throughput-sensitive
[39, 40], with the thrust into new interactive domains like so-
cial networks [7], messaging [22] and algorithmic trading [11]
latency becomes essential. SLAs for interactive user expe-
rience mandate that simple updates and point queries com-
plete within single-digit milliseconds. The early experience
with Phoenix shows that programmers often refrain from us-
ing transaction semantics altogether for fear of high latency,
and instead adopt solutions that may compromise consis-
tency, e.g., causing an index to inconsistently represent the
data.

Multi-tenancy. Data privacy is key in systems that
host data owned by multiple applications. Maintaining ac-
cess rights is therefore an important design consideration for
TPSs, e.g., in maintaining shared persistent state.

1.2 Evolving Omid for public clouds
The motivation of this work is to improve scalability, la-

tency and functionality of Omid [5] to the scale needed
in large, multi-tenant clouds. The paper describes recent
functionality extensions and performance improvements we
made in Omid to power Phoenix [6], a Hadoop SQL-compliant
data analytics platform designed for cloud deployment.

In contrast to earlier SQL query engines for Hadoop (e.g.,
Hive[3] and Impala [4]), which focused on large-scale pro-
cessing of immutable data, Phoenix targets converged data
ingestion and analytics [16], which necessitates transaction
semantics. Phoenix applications are both latency and through-
put sensitive. Phoenix uses HBase as its key-value stor-
age layer, and Omid as a transaction processing layer atop
HBase1.

Omid is an open source transaction manager for HBase.
It provides a (somewhat relaxed) variant of snapshot isola-
tion (SI) [21], similarly to other modern transaction man-
agers [39, 26, 14, 8]. Its implementation is lock-free, which
makes it scale better than traditional lock-based serializabil-
ity protocols. Omid is database-neutral, i.e., it can use any
data store with a traditional NoSQL API (see Section 2). In
particular, it does not require any changes to HBase code.

This paper makes the following contributions:

1. Protocol re-design for low-latency (Section 3). The
new protocol, Omid Low Latency (Omid LL), dissi-
pates Omid’s major architectural bottleneck. It re-
duces the latency of short transactions by 5x under
light load, and by 10x–100x under heavy load. It also
scales the overall system throughput to 550K tps while
remaining within real-time latency SLAs. In contrast
to previously published protocols (e.g., [39]), our solu-
tion is amenable to multi-tenancy. The development
of this new feature is reported in [10].

2. Novel fast-path (FP) algorithm (Section 4). Our novel
Omid FP protocol maximizes the performance of single-
key transactions that arise in many production use
cases. It defines a dedicated API for single-key read,

1Tephra is supported as alternative transaction manager, though
its scalability and reliability are inferior to Omid’s.

write, and read-modify-write transactions, which ex-
ecute at the latency of native HBase operations re-
gardless of system load. They run twice as fast as
Omid LL transactions, and complete within 2–4 ms on
mid-range hardware. This comes at the cost of a minor
(15–25%) negative impact on long (latency-insensitive)
transactions. Note that Omid LL and Omid FP are
complementary latency-oriented improvements.

3. Evaluation and comparison with alternative designs
(Section 5). We extensively evaluate the new algo-
rithms. We further compare Omid’s centralized archi-
tecture to a decentralized two-phase commit (2PC)-
based approach, as adopted in Percolator and Cock-
roachDB.

4. SQL compliance (Section 6). We add support for cre-
ating secondary indexes on-demand, without imped-
ing concurrent database operations or sacrificing con-
sistency. We further extend the traditional SI model,
which provides single-read-point-single-write-point se-
mantics, with multiple read and write points. This
functionality is used to avoid recursive read-your-own-
writes scenarios in complex queries. The development
of these new features in Omid and Phoenix is reported
in [9] and [12], respectively.

Finally, Section 7 reviews related work, and Section 8 con-
cludes.

2. BACKGROUND
A transaction processing system runs atop an underly-

ing key-value store and allows users to bundle multiple data
operations into a single atomic transaction. Section 2.1 de-
scribes the NoSQL data model and the data access API of
the underlying key-value store, and Section 2.2 defines trans-
action semantics provided by the TPS. Section 2.3 provides
background on the modus operandi of existing TPSs that
support SI, including Omid. Finally, Section 2.4 overviews
HBase and Phoenix.

2.1 Data store API
The data store holds objects (often referred to as rows or

records) identified by unique keys. Each row can consist of
multiple fields, representing different columns. We consider
multi-versioned objects, where object values are associated
with version numbers, and multiple versions associated with
the same key may co-exist. We further assume that a write
operation can specify the version number it writes to. The
data store provides the following API:

get(key, version) – returns the requested version of key.
The API further allows traversing (reading) earlier ver-
sions of the same key.

scan (fromKey, toKey, version) – a range query (exten-
sion of get). Returns an iterator that supports retrieval
of multiple records using getNext() calls.

put(key, version, fields, values) – creates or updates an
object, setting the specified fields to the specified val-
ues. If the version already exists, its value is updated;
otherwise, a new version is added.

remove(key, version) – removes an object with the given
key and version.

check&mutate(key, field, old, new) – checks the record
associated with key. If field holds old, replaces it with

2



new; either way returns field’s previous value. If old is
nil, creates field and initializes it with new only if key
is missing in data store.

Most NoSQL data store implementations guarantee atomic
execution of each of the above API’s, except traversals of
iterators returned by scan.

2.2 Transaction semantics
TPSs provide begin and commit APIs for delineating trans-

actions: a transaction is a sequence of read and write op-
erations on different objects that occur between begin and
commit. For simplicity, we only describe single-key oper-
ations here; multi-key range queries (scans) are treated as
sequences of reads. Thus, transactional reads and writes are
implemented using the datastore’s get and put operations.
Two transactions are said to be concurrent if their execu-
tions overlap, i.e., one of them begins between the begin
time and commit time of the other; otherwise, we say that
they are non-overlapping.

A TPS ensures the ACID properties for transactions: atom-
icity (all-or-nothing), consistency (preserving each object’s
semantics), isolation (in that concurrent transactions do not
see each other’s partial updates), and durability (whereby
updates survive crashes).

Different isolation levels can be considered for the third
property. We consider a variant of snapshot isolation (SI) [21]
that, similarly to generalized snapshot isolation [30], relaxes
the real-time order requirement. Nevertheless, our imple-
mentation only relaxes the ordering of fast path transactions
(described in Section 4) relative to regular ones (that do not
use the fast path); regular transactions continue to satisfy
SI amongst themselves. Moreover, Omid LL, without the
fast path, satisfies SI as Omid does.

Our relaxed correctness condition satisfies the key “snap-
shot” property of SI, which ensures that a transaction read-
ing from the database does not see a mix old and new val-
ues. For example, if a transaction updates the values of
two stocks, then no other transaction may observe the old
value of one of these stocks and the new value of the other.
However, it relaxes the real-time order guarantee of SI by
allowing (fast-path) transactions to take effect ‘in the past’.
Specifically, the system enforces a total order T on all com-
mitted transactions, so that (i) non-overlapping transactions
that update the same key occur in T in order of their commit
times; (ii) each transaction’s read operations see a consistent
snapshot of the database reflecting a prefix of T ; and (iii)
a transaction commits only if none of the items it updates
is modified by a transaction ordered in T after its snapshot
time and before its commit time.

Note that as with SI, two concurrent transactions con-
flict only if they both update the same item. In contrast,
under serializability, a transaction that updates an item
also conflicts with transactions that read that item. Snap-
shot isolation is thus amenable to implementations (using
multi-versioning) that allow more concurrency than serial-
izable ones, and hence scale better. It is provided by popu-
lar database technologies such as Oracle, PostgreSQL, and
SQL Server, and TPSs such as Percolator, Omid, and Cock-
roachDB.

Following a commit call, the transaction may successfully
commit, whereby all of its operations take effect, or abort,
in which case none of its changes take effect.

Figure 1: Transaction processing architecture: A client library
exposes an API for executing transactions of data store opera-
tions. A centralized Transaction Manager (TM) handles trans-
action begin and commit requests, while data is written directly
to the underlying data store. The TM has a backup for high
availability.

Algorithm 1 TPS operation schema.

1: procedure begin
2: obtain read timestamp tsr
3: procedure write(tsr, key, fields, values)
4: . transactional write
5: optionally check for conflicts and abort if found
6: indicate write intent for key with values and tsr
7: add key to local write-set

8: procedure read(tsr, key) . transactional read
9: if key has write intent then

10: resolve, possibly abort writing transaction

11: return highest version ≤ tsr of key

12: procedure commit(tsr, write-set)
. check for write-write conflicts

13: obtain commit timestamp tsc
14: if validate(write-set, tsr) then
15: write commit version tsc to persistent commit entry
16: else
17: abort
18: post-commit: update meta-data

2.3 TPS operation schema
Figure 1 depicts, at a high level, the primary components

of the TPS architecture, their APIs, and interaction with
the data store.

In many TPSs, transaction processing follows the follow-
ing general schema, outlined in Algorithm 1, while systems
vary in their implementations of each of the steps.

Most of the systems employ a centralized transaction man-
ager (TM) service [39, 34, 40, 14], sometimes called times-
tamp oracle, for timestamp allocation and other functionali-
ties. Because a centralized service can become a single point
of failure, the TM is sometimes implemented as a primary-
backup server pair to ensure its continued availability fol-
lowing failures.

Begin. When a transaction begins, it obtains a read
timestamp (version) tsr for reading its consistent snapshot.
In most cases, this is done using the centralized TM [39, 34,
40, 14].

Transactional writes. During a transaction, a write op-
eration indicates its intent to write to a single object a cer-
tain new value with a certain version number. In Omid, the
version is the transaction’s tsr, which exceeds all versions
written by transactions that committed before the current

3



transaction began. Note that the version order among con-
current transactions that attempt to update the same key
is immaterial, since all but one of these transactions are
doomed to abort.

It is possible to buffer write intents locally (at the client)
in the course of the transaction, and add the write intents
to the data store at commit time [39].

In some solutions writes check for conflicts before declar-
ing their intents [8], whereas in others, all conflict detection
is deferred to commit time [39, 34, 40, 14].

Transactional reads. The reads of a given transaction
obtain a consistent snapshot of the data store at logical time
(i.e., version) tsr. Each read operation retrieves the value of
a single object associated with the highest timestamp that
is smaller or equal to the transaction’s tsr.

On encountering a write intent, read cannot proceed with-
out determining whether the tentative write should be in-
cluded in its snapshot, for which it must know the writing
transaction’s commit status. To this end, TPSs keep per-
transaction commit entries, which are the source of truth
regarding the transaction status (pending, committed, or
aborted). This entry is updated in line 15 of Algorithm 1
as we explain below, and is checked in order to resolve write
intents in line 10. In some cases [39, 8], when the status
of the writing transaction is undetermined, the read force-
fully aborts it by updating the commit entry accordingly, as
explained below.

Commit. Commit occurs in four steps:
1. Obtain a commit timestamp, tsc. In most cases, e.g.,

[39, 34, 40, 14], this is the value of some global clock
maintained by a centralized entity.

2. Validate that the transaction does not conflict with
any concurrent transaction that has committed since
it had begun. For SI, we need to check for write-write
conflicts only. If write intent indications are buffered,
they are added at this point [39]. Validation can be
centralized [34, 40, 14] or distributed [39, 8].

3. Commit or abort in one irrevocable atomic step by
persistently writing to the commit entry, which can
reside in a global table [40, 8] or alongside the first key
written by the transaction [39].

4. Post-commit : Finally, a transaction changes its write
intents to persistent writes in case of commit, and re-
moves them in case of abort. This step is not essen-
tial for correctness, but reduces the overhead of future
transactions. It occurs after the transaction is persis-
tently committed or aborted via the commit entry, and
can be done asynchronously.

2.4 Big data platforms
Apache HBase is one of the most scalable key-value stor-

age technologies available today. Like many state-of-the-art
data stores, it scales through horizontal sharding (partition-
ing) of data across regions. An HBase instance is deployed
on multiple nodes (region servers), each of which typically
serves hundreds of regions. Production HBase clusters of
1K nodes and above are becoming common. For example,
Yahoo Japan leverages an HBase cluster of 3,800 nodes that
collectively store 37PB of data [17].

Phoenix complements the HBase storage tier with a query
processing (compute) tier. The latter scales independently
(the current scalability goal is 10,000 query servers). Phoenix

compiles every SQL statement into a plan, and executes it
on one or more servers. Its query processing code invokes
the underlying HBase for low-level data access, and a TPS
(Omid or Tephra) for transaction management, through client
libraries.

Wherever possible, Phoenix strives to push computation
close to data (e.g., for filtering and aggregation), in order to
minimize cross-tier communication. For this, it makes ex-
tensive use of server-side stored procedures, which in HBase
are supported by the non-intrusive coprocessor mechanism.
Omid uses HBase coprocessors too, both for performance
improvements and for specific services, such as garbage col-
lection of redundant data.

3. LOW-LATENCY TRANSACTIONS
We now describe Omid LL, a scalable low-latency TPS

algorithm that satisfies standard (unrelaxed) SI semantics
and is amenable to multi-tenancy. We saw above that, while
many TPSs follow a similar schema, they make different
design choices when implementing this schema. We overview
our design choices in Section 3.1. We then proceed to give
a detailed description of the protocol in Section 3.2.

3.1 Omid LL design choices
We now discuss our design choices, which are geared to-

wards high performance without sacrificing cloud deploya-
bility. Table 1 compares them with choices made in other
TPSs. We are not familiar with another TPS that makes
the same design choices as Omid LL.

Table 1: Design choices in TPSs. C – centralized, D –
distributed, R – replicated.

TPS validation commit multi read
entry tenancy force

updates abort
Percolator,Omid 2PC D D no yes
CockroachDB D D yes yes
Omid1, Tephra C R yes no
Omid C C yes no
Omid LL C D yes yes

Centralized validation. Omid LL adopts Omid’s cen-
tralized conflict detection mechanism, which eliminates the
need for locking objects in the data store, and is extremely
scalable [40].

Other TPSs (like Percolator and CockroachDB [8]) in-
stead use a distributed 2PC-like protocol that locks all writ-
ten objects during validation (either at commit time or dur-
ing the write). To this end, they use atomic check&mutate
operations on the underlying data store. This slows down
either commits (in case of commit-time validation) or trans-
actional writes (in case of write-time validation), which takes
a toll on long transactions, where validation time is substan-
tial. To allow us to compare the two approaches, we also
implement a 2PC-based version of Omid, Omid 2PC, which
follows Percolator’s design.

Distributed commit entry updates with multi-tenancy.
The early generation of Omid [34] (referred to as Omid1)
and Tephra replicate commit entries of pending transactions
among all active clients, which consumes high bandwidth
and does not scale. Omid instead uses a dedicated commit
table, and has the centralized TM persist all commits to this
table. Our experiments show that the centralized access to
commit entries is Omid’s main scalability bottleneck, and

4



while this bottleneck is mitigated via batching, this also in-
creases latency. Omid chose this option as it was designed
for high throughput.

Here, on the other hand, we target low latency. We there-
fore distribute the commit entry updates, and allow commit
entries of different transactions to be updated in parallel
by independent clients. We will see below that this modifi-
cation reduces latency by up to an order of magnitude for
small transactions.

We note that commit table updates are distributed also
in CockroachDB and Percolator. The latter takes this ap-
proach one step further, and distributes not only the commit
table updates but also the actual commit entries. There,
commit entries reside in user data tables, where the first
row written in a given transaction holds the commit entry
for that transaction. The problem with this approach is that
it assumes that all clients have permissions to access all ta-
bles. For example, a transaction attempting to read from
table A may encounter a write intent produced by a trans-
action that accessed table B before table A, and will need
to refer to that transaction’s commit entry in table B in or-
der to determine its status. This approach did not pose a
problem in Percolator, which was designed for use in a single
application, but is unacceptable in multi-tenant settings.

Unlike data tables, which are owned by individual applica-
tions that manage their permissions, the dedicated commit
table is owned by the TPS; it is accessed exclusively by the
TPS client library, which in turn is only invoked internally
by the database engine, and not by application code.

The commit table is a highly contended resource. While
it is not very big at any given time, it is accessed by every
transaction that modifies data. In large clusters, the update
rate may become huge (see Section 5). We therefore shard
this table evenly across many nodes in order to spread the
load.

Write intent resolution. As in other TPSs, reads re-
solve write intents via the commit entry. If the transaction
status is committed, the commit time is checked, and, if
smaller than or equal to tsr, it is taken into account; if the
transaction is aborted, the value is ignored. In case the
transaction status is pending, Omid FP, like Percolator and
CockroachDB, has the reader force the writing transaction
to abort. This is done using an atomic check&mutate oper-
ation to set the status in the writing transaction’s commit
entry to aborted.

Omid and Tephra, on the other hand, do not need to
force such aborts2, because they ensure that if the read sees
a write intent by an uncommitted transaction, the latter
will not commit with an earlier timestamp than the read.
Omid LL avoids such costly mechanisms by allowing reads
to force aborts.

3.2 Omid LL algorithm
Like Omid, Omid LL uses a dedicated commit table (CT)

for storing commit entries. A transaction is atomically com-
mitted by adding to the CT a commit entry mapping its tsr
to its tsc. The post-commit phase then copies this infor-
mation to a dedicated commit column in the data table, in
order to spare future reading transactions the overhead of

2Omid’s high availability mechanism may force such aborts
in rare cases of TM failover.

Data Table Commit Table
key value version commit tsr commit
k1 a 3 nil

(a) Pending transaction

Data Table Commit Table
key value version commit tsr commit
k1 a 3 nil 3 7

(b) Committed transaction
Data Table Commit Table

key value version commit tsr commit
k1 a 3 7 3 7

(c) Post-committed transaction

Figure 2: Evolution of Omid LL metadata during a transaction.
The transaction receives tsr = 3 in the begin stage and uses this
as the version number for tentative writes. It receives a commit
timestamp tsc = 7 when committing.

Algorithm 2 Omid LL’s TM algorithm with HA support.

1: procedure begin
2: checkRenew()
3: return Clock.fetchAndIncrement()

4: procedure commit(txid, write-set)
5: checkRenew()
6: tsc ← Clock.fetchAndIncrement()
7: if conflictDetect(txid, write-set, tsc) then
8: return tsc
9: else

10: return abort
11: procedure checkRenew . HA support; δ is the lease time
12: if lease < now + 0.2δ then . extend lease
13: renew lease for δ time . atomic operation
14: if failed then halt
15: if Clock = epoch then . extend epoch
16: epoch ← Clock + range
17: if ¬CAS(maxTS, Clock, epoch) then halt

checking the commit table. Figure 2 shows the metadata of
a transaction during its stages of execution.

Whereas Omid’s CT is updated by the TM, Omid LL
distributes the CT updates amongst the clients. Its TM is
thus a simplified version of Omid’s TM, and appears in Algo-
rithm 2. It has two roles: First, it allocates begin and com-
mit timestamps by fetching-and-incrementing a monotoni-
cally increasing global clock. Second, upon commit, it calls
the conflictDetect function, which performs validation (i.e.,
conflict detection) using an in-memory hash table by check-
ing, for each key in the write-set, that its commit timestamp
in the hash-table is smaller than the committing transac-
tion’s tsr. If there are no conflicts, it updates the hash table
with the write-set of the new transaction and its tsc. The
checkRenew procedure supports the TM’s high availability,
and is explained at the end of this section.
Client operations proceed as follows (cf. Algorithm 3):

Begin. The client sends a begin request to the TM, which
assigns it a read timestamp tsr.

Write. The client uses the data store’s update API to
add a tentative record to the data store, with the written
key and value, version number tsr, and nil in the commit
column. It also tracks key in its local write-set.

Read. The algorithm traverses data records (using the
data store’s ds.get API) pertaining to the requested key with

5



Algorithm 3 Omid LL’s client-side operations.

procedure begin
return TM.begin

procedure write(tsr, key, fields, values)
track key in write-set
add commit to fields and nil to values
return ds.put(key, tsr, fields, values)

procedure read(tsr, key)
for rec ← ds.get(key, versions down from tsr) do

. set tsc to the commit timestamp associated with rec
if rec.commit 6=nil then . commit cell exists

tsc ← rec.commit
else . commit cell is empty, check CT

tsc ← CT.get(rec.ts)
if tsc = nil then . no CT entry, set status to ⊥

tsc ←CT.check&mutate(rec.ts, commit, nil, ⊥)
if tsc=nil then . forced abort successful

tsc ← ⊥
if tsc = ⊥ then

. check for race: commit before ⊥ entry created
re-read rec from ds
if rec.commit 6=nil then

tsc ← rec.commit
CT.remove(rec.ts)

else continue . writing transaction aborted

if tsc < tsr then
return rec.value

return nil . no returnable version found in loop

procedure commit(tsr, write-set)
tsc ← TM.commit(tsr, write-set) . may return abort
if tsc 6= abort then

if CT.check&mutate(tsr, commit, nil, tsc) = ⊥ then
tsc ← abort

. post-commit
for all keys k ∈ write-set do

if tsc = abort then ds.remove(k, tsr)
else ds.put(k, tsr, commit, tsc)

CT.remove(tsr) . garbage-collect CT entry

a version that does not exceed tsr, latest to earliest, and re-
turns the first value that is committed with a version smaller
than or equal to tsr. To this end, it needs to discover the
commit timestamp, tsc, associated with each data record it
considers.

If the commit cell of the record is empty (commit=nil),
then we do not know whether the transaction that wrote it
is still pending or simply not post-committed. Since read
cannot return without determining its final commit times-
tamp, it must forcefully abort it in case it is still pending,
and otherwise discover its outcome. To this end, read first
refers to the CT. If there is no CT entry associated with
the transaction (tsc=nil), read attempts to create an entry
with ⊥ as the commit timestamp. This is done using an
atomic check&mutate operation, due to a possible race with
a commit operation; if a competing commit attempt finds
the ⊥ entry, it aborts. Note that it is possible to wait a con-
figurable amount of time before attempting to create a ⊥
entry, in order to allow the transaction to complete without
aborting it.

There is, however, a subtle race to consider in case the
commit record is set to ⊥ by a read operation. Consider
a slow read operation that reads the data record rec when
its writing transaction is still pending, and then stalls for a

while. In the interim, the writing transaction successfully
commits, updates the data record during post-commit, and
finally garbage-collects its CT entry. At this point the slow
reader wakes up and does not find the commit entry in the
CT. It then creates a ⊥ entry even though the transaction
had successfully committed. To discover this race, we have
a read operation that either creates or finds a ⊥ entry in the
CT re-read the data record, and if it does contain a commit
entry, use it.

Commit. The client first sends a commit request to
the TM. If the TM detects conflicts then the transaction
aborts, and otherwise the TM provides the transaction with
its commit timestamp tsc. The client then proceeds to
commit the transaction, provided that no read had forcefully
aborted it. To ensure the latter, the client uses an atomic
check&mutate to create the commit entry.

To avoid an extra read of the CT on every transactional
read, once a transaction is committed, the post-commit stage
writes the transaction’s tsc to the commit columns of all
keys in the transaction’s write-set. In case of an abort, it
removes the pending records. Finally, it garbage-collects the
transaction’s CT entry.

3.2.1 High availability
The TM is implemented as a primary-backup process pair

to ensure its high availability. The backup detects the pri-
mary’s failure using timeouts. When it detects a failure, it
immediately begins serving new transactions, without any
recovery procedure. Because the backup may falsely suspect
the primary because of unexpected network or processing
delays we take precautions to avoid correctness violations in
cases when both primaries are active at the same time.

To this end, we maintain two shared objects, managed in
Apache Zookeeper and accessed infrequently. The first is
maxTS, which is the maximum timestamp an active TM is
allowed to return to its clients. An active (primary) TM
periodically allocates a new epoch of timestamps that it
may return to clients by atomically increasing maxTS us-
ing an atomic compare-and-swap (CAS) operation. Follow-
ing failover, the new primary allocates a new epoch for itself,
and thus all the timestamps it returns to clients exceed those
returned by previous primary.

The second shared object is a locally-checkable lease, which
is essentially a limited-time lock. The lease is renewed for
some parameter δ time once 80% of this time elapses. As
with locks, at most one TM may hold the lease at a given
time. This ensures that no client will be able to commit a
transaction in an old epoch after the new TM has started
using a new one.

4. FAST-PATH TRANSACTIONS
The goal of our fast path is to forgo the overhead associ-

ated with communicating with the TM to begin and com-
mit transactions. This is particularly important for short
transactions, where the begin and commit overhead is not
amortized across many operations. We therefore focus on
single-key transactions.

To this end, we introduce in Section 4.1 a streamlined
fast path (FP) API that jointly executes multiple API calls
of the original TPS. We proceed, in Section 4.2, to explain
a high-level general fast path algorithm for any system that
follows the generic schema of Algorithm 1 above. Finally,

6



in Section 4.3, we describe our implementation of the fast
path in Omid FP, and important practical optimizations we
applied in this context.

4.1 API
For brevity, we refer to the TPS’s API calls begin, read,

write, and commit as b, r, w, and c respectively, and we
combine them to allow fast processing. The basic FP trans-
actions are singletons, i.e., transactions that perform a single
read or write. These are supported by the APIs:

brc(key) – begins an FP transaction, reads key within it,
and commits.

bwc(key,val) – begins an FP transaction, writes val into a
new version of key that exceeds all existing ones, and
commits.

We further support a fast path transaction consisting of
a read and a dependent write, via a pair of API calls:

br(key) – begins an FP transaction and reads the latest
version of key. Returns the read value along with a
version ver.

wc(ver, key,val) – validates that key has not been written
since the br call that returned ver, writes val into a new
version of key, and commits.

Read-only transactions never abort, but bwc and wc may
abort. If an FP transaction aborts, it can be retried either
via the fast path again, or as a regular transaction.

4.2 Generic fast path algorithm

Algorithm 4 Generic support for FP transactions; each
data store operation is executed atomically.

Client-side logic:

1: procedure brc(key)
2: rec ← ds.get(last committed record of key) . no preGet
3: return rec.value
4: procedure bwc(key, value)
5: return ds.putVersion(∞, key, value)

6: procedure br(key)
7: rec ← ds.get(last committed record of key) . no preGet
8: return 〈rec.version, rec.value〉
9: procedure wc(ver, key, value)

10: return ds.putVersion(ver, key, value)

Data store (stored procedure) logic:

11: procedure putVersion(old, key, value)
. used by FP writes (bwc and wc)

12: if key has no tentative version ∧
13: last committed version of key ≤ old then
14: ver ← F&I(key’s maxVersion) +1
15: ds.put(key, value, ver, ver) . no prePut
16: return commit
17: else
18: return abort
19: procedure preGet(tsr, key)

. executed atomically with ds.get call, once per key
20: bump(key’s maxVersion, tsr)

21: procedure prePut(key, val, tsr, nil)
. checked atomically before put (by transactional write)

22: if key has a committed version that exceeds tsr then
23: abort
24: procedure preUpdate(key, tsr, commit, tsc)

. executed atomically with ds.update call (by post-commit)
25: bump(key’s maxVersion, tsc)

The generic fast path algorithm, which we present in Al-
gorithm 4, consists of two parts: client side-logic, and logic
running within the underlying data store. The latter is im-
plemented as a stored procedure, Specifically, it supports a
new flavor of put, putVersion, which is used by singleton
writes, and it extends the put, get, and update APIs used
by regular transactions with additional logic. The new logic
is presented in the preGet, prePut, and preUpdate proce-
dures, which are executed before, and atomically with, the
corresponding data store calls.

Singleton reads (line 1) simply return the value associated
with the latest committed version of the requested key they
encounter. They ignore tentative versions, which may lead
to missing the latest commit in case its post-commit did
not complete, but is allowed by our semantics. FP reads
can forgo the begin call since they do not need to obtain a
snapshot time a priori. They can also forgo the commit call,
since they perform a single read, and hence their ‘snapshot’
is trivially valid.

In case bwc encounters a tentative version, it does not
try to resolve it, but rather simply aborts. This may cause
false aborts in case the transaction that wrote the tentative
version has committed and did not complete post-commit,
as well as in the case that it will eventually abort. In gen-
eral, this mechanism prioritizes regular transactions over FP
ones. We choose this approach since the goal is to complete
FP transactions quickly, and if an FP transaction cannot
complete quickly, it might as well be retried as a regular
one.

Such a singleton write has two additional concerns: (1)
it needs to produce a new version number that exceeds all
committed ones and is smaller than any commit timestamp
that will be assigned to a regular transaction in the future.
(2) It needs to make sure that conflicts with regular trans-
actions are detected.

To handle these concerns, we maintain the timestamps
as two-component structures, consisting of a global version
and a locally advancing sequence number. In practice, we
implement the two components in one long integer, with
some number ` least significant bits reserved for sequence
numbers assigned by FP writes (in our implementation, ` =
20). The most significant bits represent the global version
set by the TM. The latter increases the global clock by 2`

upon every begin and commit request.
To support (1) a bwc transaction reads the object’s latest

committed version and increments it. The increment is done
provided that it does not overflow the sequence number. In
the rare case when the lower ` bits are all ones, the global
clock must be incremented, and so the FP transaction aborts
and is retried as a regular one.

It is important to note that the singleton write needs to
atomically find the latest version and produce a new one that
exceeds it, to make sure that no other transaction creates a
newer version in the interim. This is done by a new putVer-
sion function implemented in code that resides at the data
store level. In Section 4.3 below, we explain how we imple-
ment such atomic conditional updates in an HBase coproces-
sor as part of Omid FP. The first parameter to putVersion
is an upper bound on the key’s current committed version;
since a singleton write imposes no constraints on the object’s
current version, its upper bound is ∞.

Next, we address (2) – conflicts between FP and regular
transactions. In case an ongoing regular transaction writes

7



to a key before bwc accesses it, bwc finds the tentative write
and aborts.

It therefore remains to consider the case that a regular
transaction T1 writes to some key after FP transaction FP1,
but T1 must abort because it reads the old version of the key
before FP1’s update. This scenario is illustrated in Figure 3.
Note that in this scenario it is not possible to move FP1 to
‘the past’ because of the read.

Figure 3: Conflict between FP transaction FP1 and regular
transaction T1.

In order for T1 to detect this conflict, the version written
by FP1 has to exceed T1’s snapshot time, i.e., tsr. To this
end, we maintain a new field maxVersion for each key, which
is at least as high as the key’s latest committed version. The
data store needs to support two atomic operations for up-
dating maxVersion. The first is fetch-and-increment, F&I,
which increments maxVersion and returns its old value; F&I
throws an abort exception in case of wrap-around of the se-
quence number part of the version. The second operation,
bump, takes a new version as a parameter and sets maxVer-
sion to the maximum between this parameter and its old
value.

Singleton writes increment the version using F&I (line 14),
and the post-commit of transactional writes (line 24) bumps
it to reflect the highest committed version. Every trans-
actional read bumps the key’s maxVersion to the reading
transaction’s tsr (line 19); transactional writes (line 21) are
modified to check for conflicts, namely, new committed ver-
sions exceeding their tsr.

In the example of Figure 3, T1’s read bumps x’s maxVer-
sion to its tsr, and so FP1, which increments x’s maxVer-
sion, writes 1 with a version that exceeds tsr. Thus, T1’s
write detects the conflict on x.

Note that this modification of transactional writes incurs
an extra cost on regular (non-FP) transactions, which we
quantify empirically in Section 5.

The br and wc operations are similar to brc and bwc, re-
spectively, except that wc uses the version read by br as its
upper bound in order to detect conflicting writes that occur
between its two calls.

4.3 Implementation and optimization
Associating a maxVersion field with each key is waste-

ful, both in terms of space, and in terms of the number of
updates this field undergoes. Instead, when implementing
support for Omid FP’s fast path in HBase, we aggregate the
maxVersions of many keys in a single variable, which we call
the Local Version Clock (LVC).

Our implementation uses one LVC in each region server.
Using a shared LVC reduces the number of updates: a trans-
actional read modifies the LVC only if its tsr exceeds it. In
particular, a transaction with multiple reads in the same
region server needs to bump it only once.

We implement the two required atomic methods - F&I and
bump on the LVC using atomic hardware operations (F&I
and CAS, respectively). The HBase coprocessor mechanism

enforces atomic execution of the stored code blocks by hold-
ing a lock on the affected key for the duration of the oper-
ation. Thus, putVersion executes as an atomic block, and
calls the LVC’s F&I method inside this block. Similarly, the
calls to bump from preGet and preUpdate execute inside an
atomic block with the ensuing get an update, respectively.

Note that although the coprocessor only holds a lock on
the affected key, the joint update of the key and the LVC
is consistent because it uses a form of two-phase locking:
when the stored procedure begins, its locks the key, then the
atomic access to the LVC effectively locks the LVC during
its update; this is followed by an update of the key’s record
and the key’s lock being released.

The LVC is kept in memory, and is not persisted. Mi-
gration of region control across region servers, which HBase
performs to balance load and handle server crashes, must be
handled by the LVC management. In both cases, we need to
ensure that the monotonicity of the LVC associated with the
region is preserved. To this end, when a region is started in
a new server (following migration or recovery), we force the
first operation accessing it in the new server to accesses the
TM to increment the global clock, and then bump the local
clock to the value of the global clock. Since the LVC value
can never exceed the global clock’s value, this bootstrapping
procedure maintains its monotonicity.

5. EVALUATION
We describe our methodology and experiment setup in

Section 5.1, and present our results in Section 5.2.

5.1 Methodology

5.1.1 Evaluated systems
We now evaluate our protocol improvements to Omid. We

evaluate Omid LL as described in Section 3 and Omid FP
as described in Section 4. Our baseline is the legacy Omid
implementation [40]. We also compare the systems to Omid
2PC, which uses distributed conflict resolution. Omid 2PC
defers writes to commit time (as Percolator does), whence it
writes and validates keys using check&mutate. In Omid FP,
single-key transactions use the FP API, whereas longer trans-
actions use the standard API. The other systems use the
standard API only.

Note that both CockroachDB and Percolator use 2PC-
based conflict resolution, so our Omid 2PC mimics their
protocols. Direct comparison with the actual systems is not
feasible because Percolator is proprietary and CockroachDB
supports SQL transactions over a multi-tier architecture us-
ing various components that are incompatible with HBase.
We also do no compare Omid FP to Omid1 and Tephra,
since both significantly outperforms Omid1 [40].

To reduce latency, we configure the TPSs to perform the
post-commit phase asynchronously, by a separate thread,
after the transaction completes.

Note that Translytics requires many short transactions
and long scans. In this paper we improve the performance
of short transactions, while incurring few aborts. The latter
implies that scans do not spend much time forcing aborts,
and therefore, their performance is the same as in the vanilla
Omid.

8



5.1.2 Experiment setup
Our experiment testbed consists of nine 12-core Intel Xeon

5 machines with 46GB RAM and 4TB SSD storage, inter-
connected by 10G Ethernet. We allocate three of these to
HBase nodes, one to the TM, one to emulate the client whose
performance we measure, and four more to simulate back-
ground traffic as explained below. Each HBase node runs
both an HBase region server and the underlying Hadoop
File System (HDFS) server within 8GB JVM containers.

Note that the only scalability bottleneck in the tested sys-
tems is the centralized TM. HBase, on the other hand, can
scale horizontally across thousands of nodes, each of which
processes a small fraction of the total load. Since each node
typically serves millions of keys, data access rates remain
load-balanced across nodes even when access to individual
keys is highly skewed. And since read/write requests are
processed independently by each HBase node, their perfor-
mance remains constant as the workload and system size are
scaled by the same factor.

Thus, to understand the system’s performance at scale,
we can run transactions over a small HBase cluster with an
appropriately-scaled load, but need to stress the TM as a
bigger deployment would. We do this at a ratio of 3:1000;
that is, we run transactions on a 3-node HBase cluster and
load the TM with a begin/commit request rate that would
arise in a 1000-node HBase cluster with the same per-node
load. For example, to test the client’s latency at 100K tps,
we have the TM handle 100K tps, and have an HBase de-
ployment of three nodes handle read/write requests of 300
tps. As explained above, the HBase latency at 100K tps
with 1000 servers would be roughly the same as in this de-
ployment.

We use four machines to generate the background load on
the TM using a custom tool [40] that asynchronously posts
begin and commit requests on the wire and collects the TM’s
responses. We note that although in this experiment the
TM maintains a small number of client connections (serving
many requests per connection), the number in a true 1000-
node system still falls well within the OS limit, hence no real
bottleneck is ignored.

We measure the end-to-end client-incurred latency on a
single client node that generates transactions over the 3-
server HBase cluster. Note that the client also generates be-
gin/commit requests, which account for ∼ 0.3% of the TM’s
load. The client runs the popular YCSB benchmark [25],
exercising the synchronous transaction processing API in a
varying number of threads.

5.1.3 Workload
Our test cluster stores approximately 23M keys (∼7M keys

per node). The values are 2K big, yielding roughly 46GB
of actual data, replicated three-way in HDFS. The keys are
hash-partitioned across the servers. The data accesses are
50% reads and 50% writes. The key access frequencies fol-
low a Zipf distribution, generated following the description
in [36], with θ = 0.8, which yields the abort rate reported
in the production delpoyment of Omid [40]. In this distri-
bution, the first key is accessed 0.7% of the time.
We test the system with two transaction mixes:

Random mix – transaction sizes (number of reads and
writes) follow a Zipf distribution with θ = 0.99, with a
cutoff at 10. With these parameters, 63% of the trans-
actions access three keys or less, and only 3% access

10 keys. We vary the system load from 30K to 500K
transactions per second (tps).

BRWC – 80% of the transactions are drawn from the ran-
dom mix distribution, and 20% perform a read and
then a write to the same key.

We add the BRWC workload since single-key read+write
transactions are common in production, but are highly un-
likely to occur in our random mix, which uses random key
selection with billions of keys.

100 200 300 400 500
Throughput (tps * 1000)

0

10

20

30

40

50

La
te

nc
y 

[m
se

c]

Omid
Omid LL

Figure 4: Throughput vs. latency, transaction size = 1.

5.2 Results

Throughput and latency of short transactions.
Omid FP is motivated by the prevalence of short transac-
tions in production, and is designed with the goal of accel-
erating such transactions. Its advantage is less pronounced
for long transactions, where the cost of begin and commit is
amortized across many reads and writes. To make the com-
parison meaningful, we classify transactions by their lengths
and whether they access a single key, and study each trans-
action class separately.

We begin with short transactions. Figure 4 presents the
average latency of single-key transactions run as part of the
random mix, as a function of system throughput. Figure 5a
then zooms in on the latency of such transactions under a
throughput of 100K tps, and breaks up the different factors
contributing to it. Figure 5b presents a similar breakdown
under a high load of 500K tps; Omid is not included since
it does not sustain such high throughput.

As we can see, under light load, Omid LL and Omid 2PC
improve the latency of Omid by 4x to 5x. This is because
in Omid, both begin and commit wait for preceding trans-
actions to complete the writes of their commit entries; this
stems from Omid’s design choice to avoid the need for re-
solving pending write intents by aborting transactions; see
penultimate column in Table 1. Single-key writes suffer from
both the begin and commit latencies, whereas single-key
reads suffer only from begins (Figure 5a). Omid 2PC has
longer commit latencies and shorter write latencies because
it defers writes to commit time.

As load increases, Omid suffers from a well-pronounced
bottleneck, and its latency at 250K tps is doubled, where
the other systems are unaffected. The extra delay in Omid
is due to batching of commit record updates, which its TM
applies to handle congestion [40].

Under low load, Omid LL is slightly faster than Omid 2PC
(due to the latter’s use of atomic check&mutate). But un-
der high load, Omid 2PC is slightly better (10% faster on

9



Omid

Omid 
LL

Omid 
2P

C

Omid 
FP

Omid

Omid 
LL

Omid 
2P

C

Omid 
FP

Omid

Omid 
LL

Omid 
2P

C

Omid 
FP

0
5

10
15
20
25
30
35
40

La
te

nc
y 

[m
se

c]

Write Read BRWC

(a) Low load (100K tps).

Omid 
LL

Omid 
2P

C

Omid 
FP

Omid 
LL

Omid 
2P

C

Omid 
FP

Omid 
LL

Omid 
2P

C

Omid 
FP

0
2
4
6
8

10
12
14

La
te

nc
y 

[m
se

c]

Write Read BRWC

Commit Read/
Write Begin

(b) High load (500K tps).

Figure 5: Latency breakdown for single-key transactions under random mix workload.

average for single-key transactions) due to the centralized
conflict analysis becoming a bottleneck in Omid LL.

The FP API delivers better performance for this traf-
fic. For instance, under low load (Figure 5a), single writes
take an average of 2.4ms using the bwc API versus 5.7ms in
Omid LL (and 5.9ms in Omid 2PC). For comparison, a na-
tive HBase write takes roughly 2ms under this load. A single
read executed using brc takes 1.5ms, which is the average
latency of a native HBase read, versus 2.5ms as a regular
transaction in Omid LL (2.7ms in Omid 2PC). For transac-
tions that read and write a single key as part of the BRWC
workload, the fast path implementation (consisting of br and
wc calls) completes within 4ms, versus 6.5ms for Omid LL,
7.1ms for Omid 2PC, and 37.6ms for Omid. Under high load
(Figure 5b), the fast path is even more beneficial: it reduces
the latency of both read and write by more than a factor of
2.

Long transactions. We now examine longer transactions
run as part of the random mix. Figure 6 shows the results
for transactions of lengths 5 and 10. We see that the ab-
solute latency gap of the new systems over Omid remains
similar, but is amortized by other operations. Omid’s con-
trol requests (begin and commit) continue to dominate the
delay, and comprise 68% of the latency of 10-access transac-
tions (under low load). In contrast, the transaction latency
of Omid LL (and Omid FP) is dominated by data access,
as only 13% (resp. 18%) of the time is spent on the control
path. Omid 2PC spends 66% time executing commit be-
cause it defers writes to commit time, but this is offset by a
shorter read/write execution time.

The FP mechanism takes a toll on the data path, which
uses atomic check&mutate operations instead of simple writes.
This is exacerbated for long transactions. For example, a
10-access transaction takes 24.8ms with Omid FP, versus
21.7ms with Omid LL. The performance of Omid 2PC with
long transactions is similar to that of Omid FP – e.g., 25.6ms
for 10-access transactions – because it also uses check&mutate
operations during the commit validation phase.

Figure 7 summarizes the tradeoffs entailed by Omid FP
relative to Omid LL for the different transaction classes. We
see that under low load (Figure 7a), the speedup for single-
write transactions is 2.3x, whereas the worst slowdown is
13%. In systems geared towards real-time processing, this
is a reasonable tradeoff, since long transactions are infre-
quent and less sensitive to extra delay. Under high load
(Figure 7b), the fast path is even more advantageous: the
speedup for writes is 2.7x.

Abort rates. We note that Omid FP yields slightly
higher rates of transaction aborts compared to Omid (recall
that Omid LL aborts tentative writes in favor of concur-
rent reads, whereas Omid FP also aborts singleton writes in
presence of concurrent tentative writes). However, the abort
rates exhibited by all the systems are minor. Here, under
the highest contention, Omid FP aborts approximately 0.1%
of the transactions versus Omid LL’s 0.08%, Omid 2PC’s
0.08% and Omid’s 0.07%.

6. SQL ORIENTED FEATURES
Comprehensive SQL support in Phoenix involved func-

tionality extensions as well as performance optimizations.
Performance-wise, Phoenix extensively employs stored pro-

cedures implemented as HBase coprocessors in order to elim-
inate the overhead of multiple round-trips to the data store.
We integrated Omid’s code within such HBase-resident pro-
cedures. For example, Phoenix coprocessors invoke transac-
tional reads, and so we implemented Omid’s transactional
read – the loop implementing read in Algorithm 3 – as a
coprocessor as well. This allowed for a smooth integration
with Phoenix and also reduced the overhead of transactional
reads when multiple versions are present.

Functionality-wise, we added support for on-the-fly con-
struction of secondary indexes (see Section 6.1) and ex-
tended Omid’s SI model to allow for multiple read- and
write-points, as required in some Phoenix applications (see
Section 6.2).

6.1 Index construction
A secondary index in SQL is an auxiliary table that pro-

vides fast access to data in a table by a key that is different
from the table’s primary key. This need often emerges in
analytics scenarios, in which data is accessed by multiple
dimensions. Typically, the secondary key serves as the pri-
mary key of the secondary index, and is associated with a
unique reference into the base table (e.g., primary key +
timestamp). SQL query optimizers exploit secondary in-
dexes in order to produce efficient query execution plans.
Query speed is therefore at odds with update speed since
every write to a table triggers writes to all its indexes.

The SQL standard allows creating indexes on demand.
When a user issues a Create Index command, the database
(1) populates the new index table with historic data from
the base table, and (2) installs a coprocessor to augment
every new write to the base table with a write to the index
table. It is desirable to allow temporal overlap between the

10



100 200 300 400 500
Throughput (tps * 1000)

0

20

40

60

80

100

La
te

nc
y 

[m
se

c]

Omid
Omid LL

(a) Throughput vs latency, transaction size=10

Omid

Omid 
LL

hb
ase

Omid 
FP

Omid

Omid 
LL

hb
ase

Omid 
FP

0

10

20

30

40

50

60

La
te

nc
y 

[m
se

c]

TX size 5TX size 10

Commit
Read/
Write
Begin

(b) Latency breakdown, transaction size = 5,
10

Figure 6: Latency vs. throughput and latency breakdown for long transactions in random mix workload.

Write Read BRWC Tx of
size 5

Tx of
size 10

-50%
-25%

0%
25%
50%
75%

100%
125%
150%

Sp
ee

du
p

(a) Low load (100 tps)

Write Read BRWC Tx of
size 5

Tx of
size 10

-50%

0%

50%

100%

150%

Sp
ee

du
p

(b) High load (500 tps)

Figure 7: Latency speedup with fast path API in Omid FP.

two, in order to avoid stalling writes while the index is being
populated.

We exploit Omid’s SI semantics in order to create such
indexes. To achieve (1), Phoenix invokes a transaction that
scans a snapshot of the base table and streams the data
into the index table. This way, historic data is captured
without blocking concurrent puts. Phoenix has two types
of indexes: global (sharded independently of the base table)
and local (co-sharded with the base table). In the latter
case, the index building transaction is pushed into a copro-
cessor; this local distributed execution speeds up the process
significantly.

Once the bulk population completes, the index can be-
come available to queries. To achieve (2), the database
creates a coprocessor that augments all transactions that
update the base table with an additional update of the sec-
ondary index.

In order to guarantee the new index’s consistency with re-
spect to the base table, the snapshot creation and the trigger
setup must be atomic. In other words, all writes beyond the
snapshot timestamp must be handled by the coprocessor.
Omid achieves this through a new fence API implemented
by the TM, which is invoked when the coprocessor is in-
stalled. A fence call produces a new fence timestamp by
fetching-and-incrementing the TM’s clock, and records the
fence timestamp in the TM’s local state. Subsequently, the
TM aborts every transaction whose read timestamp pre-
cedes the fence’s timestamp and attempts to commit after
it. Note that even though building an index can take hours,
the fence operation is an atomic operation that occurs at
index creation. Therefore, the fence only forces aborts of
transactions that are active at the point in time when the
fence is created and write to the fence’s table. In practice,
this amounts to around 10 transactions, and even if transac-
tions are long, it is still less than 100 transactions. Moreover,

there is at most one fence timestamp per index at a given
time.

Neither the bulk index population nor its incremental up-
date require write conflict detection among the index keys,
for different reasons. The former does not contend with any
other transaction, and hence is committed automatically –
the commit cells are created simultaneously with the rest of
the index data. The latter is voided by the TM detecting
conflicts at the base table upon commit. Hence, in transac-
tions augmented with secondary index updates, there is no
need to embed the added index keys in the commit request,
and so the load on the TM does not increase. Omid provides
extensions for its put API for this scenario.

6.2 Extended snapshot semantics
Some Phoenix applications require semantics that deviate

from the standard SI model in that a transaction does not
see (all of) its own writes. We give two examples.

Checkpoints and snapshots. Consider a social net-
working application that stores its adjacency graph as a ta-
ble of neighbor pairs. The transitive closure of this graph
is computed in multiple iterations. Each iteration scans the
table, computes new edges to add to the graph, and inserts
them back into the table. Other functions like PageRank
are implemented similarly. Such programs give rise to the
pattern given in Figure 8.

Note that the SQL statement loops over entries of T .
Normally, the SI model enforces read-your-own-writes se-
mantics. However, in this case the desirable semantics are
that the reads only see data that existed prior to the current
statement’s execution. This isolation level is called snapshot
isolation exclude-current (SIX).

To support this behavior, we implement in Omid two new
methods, snapshot and checkpoint. Following a checkpoint,
we move to the SIX level, where reads see the old snapshot

11



SQL program that requires SIX isolation:

for iterations i = 1, . . . do
insert into T as select func(T.rec) from T where ...

Calls generated by Phoenix for the SQL program:

for iterations i = 1, . . . do
checkpoint . move to SIX isolation
iterator ← T.scan(. . . ) . scan in current snapshot
for all rec ∈ iterator.getNext() do . parallel loop

T.put(func(rec)) . write to next snapshot

snapshot . make all previous writes visible

Figure 8: SQL program requiring SIX isolation and correspond-
ing Phoenix execution plan.

(i.e., updates that precede the checkpoint call) and writes
occur in the next snapshot, which is not yet visible. The
snapshot call essentially resets the semantics back to SI,
making all previous writes visible. Given these two calls,
Phoenix translates SQL statements as above to the loop
in Figure 8– it precedes the evaluation of the nested SQL
statement with a checkpoint, and follows it with a snapshot.
Thus, each SQL statement sees the updates of the preceding
iteration but not of the current one.

To support the SIX isolation level in Omid, the TM pro-
motes its transaction timestamp counter tsr in leaps of some
∆ > 1 (rather than 1 as in the legacy system). The client
manages two distinct local timestamps, τr for reads and τw
for writes. By default, it uses τr = τw = tsr, which achieves
the traditional SI behavior. Omid then has the new meth-
ods, snapshot and checkpoint, increment τr and τw, respec-
tively. If the consistency level is set to SIX, it maintains
τw = τr + 1 < tsr + ∆, thereby separating the reads from
the writes. A transaction can generate ∆ − 1 snapshots
without compromising correctness. By default, Omid uses
∆ = 50.

Snapshot-all. When a transactions involves multiple snap-
shots that update the same key, it is sometimes required to
read all versions of key that existed during the transaction.
This is called the snapshot-all isolation level.

We use this isolation level, for example, when aborting a
transaction that involves multiple updates to a key indexed
by a secondary index. Consider a key k that is initially
associated with a value v0, and a secondary index maps v0
to k. When a transaction updates k to take value v1, a
tentative deletion marker is added to v0 in the secondary
index while v1 is added. If the transaction then updates
the same key (in an ensuing snapshot) to take the value
v2, then v1 is marked as deleted and v2 is added, and so
on. In case the transaction aborts, we need to roll-back all
deletions. But recall that index updates are not tracked in
the write-set, and so we need to query the data store in
order to discover the set of updates to roll back. We do
this by querying k in the primary table with the snapshot-
all isolation level, to obtain all values that were associated
with k throughout the transaction, beginning with v0. We
can then clean up the redundant entries in the secondary
index, and remove the deletion marker from v0.

7. RELATED WORK
The past few years have seen a growing interest in dis-

tributed transaction management [38, 27, 18, 20, 42, 33, 32].
Recently, many efforts have been dedicated to improving
performance using advanced hardware trends like RDMA

and HTM [43, 28, 29]. These efforts are, by and large, or-
thogonal to ours.

Our work follows the line of industrial systems, such as
Google’s Spanner [26], Megastore [19], and Percolator [39],
CockroachDB [8], and most recently Apache Phoenix [6];
the latter employs transaction processing services provided
by either Tephra [14] or Omid [40]. Production systems
commonly develop transaction processing engines on top of
existing persistent highly-available data stores: for example,
Megastore is layered on top of Bigtable [24], Warp [32] uses
HyperDex [31], and CockroachDB [8] uses RocksDB [13].
Similarly to Omid, Omid FP is layered atop HBase [2].

As discussed in Section 3, a number of these systems fol-
low a common paradigm with different design choices, and
we choose a new operation point in this design space. In
particular, Omid LL eliminates the bottleneck of Omid by
distributing the commit entry, makes commits and begins
faster than Omid’s by allowing reads to abort pending trans-
actions. Unlike Percolator and CockroachDB, Omid LL uses
scalable centralized conflict detection. This eliminates the
need to modify HBase to support locking, and facilitates
committing the algorithm back to the production system.

As a separate contribution we developed a fast path for
single-key transactions, which is applicable to any of the
aforementioned systems, and embodied it in Omid FP. A
similar mechanism was previously developed in Mediator [23]
for the earlier generation of Omid [34]. Mediator focused on
reconciling conflicts between transactions and native atomic
operations rather than adding an FP API as we do here. As
a consequence, Mediator is less efficient than our fast path,
and moreover, its regular transactions can starve in case of
contention with native operations.

Our implementation of the fast path uses a local version
clock. Similar mechanisms were used in Mediator and in
CockroachDB, which uses per-region Hybrid Logical Clocks
[37] for distributed timestamp allocation.

8. CONCLUSION
As transaction processing services begin to be used in new

application domains, low transaction latency and rich SQL
semantics become important considerations. In addition,
public cloud deployments necessitate solutions compatible
with multi-tenancy. Motivated by such use cases we evolved
Omid for cloud use.

As part of this evolution, we improved Omid’s protocol
to reduce latency (by up to an order of magnitude) and im-
prove throughput scalability. We further designed a generic
fast path for single-key transactions, which executes them
almost as fast as native HBase operations (in terms of both
throughput and latency), while preserving transactional se-
mantics relative to longer transactions. Our fast path algo-
rithm is not Omid-specific, and can be similarly supported
in other transaction management systems. Our implemen-
tation of the fast path in Omid FP can process single-key
transactions at a virtually unbounded rate, and improves
the latency of short transactions by another 3x–5x under
high load.

We have extended Omid with functionalities required in
SQL engines, namely secondary index construction and multi-
snapshot semantics. We have successfully integrated it into
the Apache Phoenix translytics engine.

Acknowledgments
We thank James Taylor for fruitful discussions.

12



9. ADDITIONAL AUTHORS

10. REFERENCES
[1] Amazon EMR. https://aws.amazon.com/emr/.

[2] Apache HBase. http://hbase.apache.org.

[3] The Apache Hive data warehouse.
https://hive.apache.org.

[4] Apache Impala. https://impala.apache.org.

[5] Apache Omid.
https://omid.incubator.apache.org/.

[6] Apache phoenix. https://phoenix.apache.org.

[7] Chatter. https://www.salesforce.com/eu/
products/chatter/overview/.

[8] CockroachDB. https://github.com/cockroachdb/
cockroach/blob/master/docs/design.md.

[9] Omid-82.
https://issues.apache.org/jira/browse/OMID-82.

[10] Omid-90.
https://issues.apache.org/jira/browse/OMID-90.

[11] Opentsdb – the scalable time series database.
http://opentsdb.net.

[12] Phoenix-3623. https:
//issues.apache.org/jira/browse/PHOENIX-3623.

[13] RocksDB. http://rocksdb.org/.

[14] Tephra: Transactions for Apache HBase.
https://tephra.io.

[15] The Forrester Wave: Translytical Data Platforms, Q4
2017. https://reprints.forrester.com/#/assets/
2/364/RES134282/reports.

[16] Who is using Phoenix?
https://phoenix.apache.org/who_is_using.html.

[17] Yahoo Japan: Hortonworks customer profile.
https://hortonworks.com/customers/

yahoo-japan-corporation/.

[18] Aguilera, M. K., Leners, J. B., and Walfish, M.
Yesquel: Scalable sql storage for web applications. In
Proceedings of the 25th Symposium on Operating
Systems Principles (2015), SOSP ’15, pp. 245–262.

[19] Baker, J., Bond, C., Corbett, J. C., Furman, J.,
Khorlin, A., Larson, J., Leon, J.-M., Li, Y.,
Lloyd, A., and Yushprakh, V. Megastore:
Providing scalable, highly available storage for
interactive services. In Proceedings of the Conference
on Innovative Data system Research (CIDR) (2011),
pp. 223–234.

[20] Balakrishnan, M., Malkhi, D., Wobber, T., Wu,
M., Prabhakaran, V., Wei, M., Davis, J. D.,
Rao, S., Zou, T., and Zuck, A. Tango: Distributed
data structures over a shared log. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating
Systems Principles (2013), SOSP ’13, pp. 325–340.

[21] Berenson, H., Bernstein, P. A., Gray, J.,
Melton, J., O’Neil, E. J., and O’Neil, P. E. A
critique of ANSI SQL isolation levels. In Proceedings
of the 1995 ACM SIGMOD International Conference
on Management of Data, San Jose, California, May
22-25, 1995. (1995), pp. 1–10.

[22] Borthakur, D., Gray, J., Sarma, J. S.,
Muthukkaruppan, K., Spiegelberg, N., Kuang,
H., Ranganathan, K., Molkov, D., Menon, A.,
Rash, S., Schmidt, R., and Aiyer, A. Apache

hadoop goes realtime at facebook. In Proceedings of
the 2011 ACM SIGMOD International Conference on
Management of Data (New York, NY, USA, 2011),
SIGMOD ’11, ACM, pp. 1071–1080.

[23] Bortnikov, E., Hillel, E., and Sharov, A.
Reconciling transactional and non-transactional
operations in distributed key-value stores. In
Proceedings of International Conference on Systems
and Storage (New York, NY, USA, 2014), SYSTOR
2014, ACM, pp. 10:1–10:10.

[24] Chang, F., Dean, J., Ghemawat, S., Hsieh,
W. C., Wallach, D. A., Burrows, M., Chandra,
T., Fikes, A., and Gruber, R. E. Bigtable: A
distributed storage system for structured data. ACM
Trans. Comput. Syst. 26, 2 (June 2008), 4:1–4:26.

[25] Cooper, B. F., Silberstein, A., Tam, E.,
Ramakrishnan, R., and Sears, R. Benchmarking
cloud serving systems with ycsb. In Proceedings of the
1st ACM Symposium on Cloud Computing (New
York, NY, USA, 2010), SoCC ’10, ACM, pp. 143–154.

[26] Corbett, J. C., Dean, J., Epstein, M., Fikes, A.,
Frost, C., Furman, J., Ghemawat, S., Gubarev,
A., Heiser, C., Hochschild, P., Hsieh, W.,
Kanthak, S., Kogan, E., Li, H., Lloyd, A.,
Melnik, S., Mwaura, D., Nagle, D., Quinlan, S.,
Rao, R., Rolig, L., Saito, Y., Szymaniak, M.,
Taylor, C., Wang, R., and Woodford, D.
Spanner: Google’s globally-distributed database. In
10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12) (2012),
pp. 261–264.

[27] Cowling, J., and Liskov, B. Granola: Low-overhead
distributed transaction coordination. In Proceedings of
the 2012 USENIX Conference on Annual Technical
Conference (2012), USENIX ATC’12, pp. 21–21.

[28] Dragojević, A., Narayanan, D., Castro, M., and
Hodson, O. Farm: Fast remote memory. In 11th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14) (Apr. 2014),
pp. 401–414.

[29] Dragojević, A., Narayanan, D., Nightingale,
E. B., Renzelmann, M., Shamis, A., Badam, A.,
and Castro, M. No compromises: Distributed
transactions with consistency, availability, and
performance. In Proceedings of the 25th Symposium on
Operating Systems Principles (2015), SOSP ’15,
pp. 54–70.

[30] Elnikety, S., Zwaenepoel, W., and Pedone, F.
Database replication using generalized snapshot
isolation. In 24th IEEE Symposium on Reliable
Distributed Systems (SRDS 2005),26-28 October 2005,
Orlando, FL, USA (2005), IEEE Computer Society,
pp. 73–84.

[31] Escriva, R., Wong, B., and Sirer, E. G.
Hyperdex: A distributed, searchable key-value store.
In Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communication (2012), SIGCOMM ’12, pp. 25–36.

[32] Escriva, R., Wong, B., and Sirer, E. G. Warp:
Lightweight multi-key transactions for key-value
stores. CoRR abs/1509.07815 (2015).

13

https://aws.amazon.com/emr/
http://hbase.apache.org
https://hive.apache.org
https://impala.apache.org
https://omid.incubator.apache.org/
https://phoenix.apache.org
https://www.salesforce.com/eu/products/chatter/overview/
https://www.salesforce.com/eu/products/chatter/overview/
https://github.com/cockroachdb/cockroach/blob/master/docs/design.md
https://github.com/cockroachdb/cockroach/blob/master/docs/design.md
https://issues.apache.org/jira/browse/OMID-82
https://issues.apache.org/jira/browse/OMID-90
http://opentsdb.net
https://issues.apache.org/jira/browse/PHOENIX-3623
https://issues.apache.org/jira/browse/PHOENIX-3623
http://rocksdb.org/
https://tephra.io
https://reprints.forrester.com/#/assets/2/364/RES134282/reports
https://reprints.forrester.com/#/assets/2/364/RES134282/reports
https://phoenix.apache.org/who_is_using.html
https://hortonworks.com/customers/yahoo-japan-corporation/
https://hortonworks.com/customers/yahoo-japan-corporation/


[33] Eyal, I., Birman, K., Keidar, I., and van
Renesse, R. Ordering transactions with prediction in
distributed object stores. In LADIS (2013).

[34] Ferro, D. G., Junqueira, F., Kelly, I., Reed, B.,
and Yabandeh, M. Omid: Lock-free transactional
support for distributed data stores. In IEEE 30th
International Conference on Data Engineering,
Chicago, ICDE 2014, IL, USA, March 31 - April 4,
2014 (2014), pp. 676–687.

[35] Gray, J., and Reuter, A. Transaction Processing:
Concepts and Techniques, 1st ed. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1992.

[36] Gray, J., Sundaresan, P., Englert, S.,
Baclawski, K., and Weinberger, P. J. Quickly
generating billion-record synthetic databases. In
Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data (New York, NY,
USA, 1994), SIGMOD ’94, ACM, pp. 243–252.

[37] Kulkarni, S., Demirbas, M., Madeppa, D., Avva,
B., and Leone, M. Logical physical clocks and
consistent snapshots in globally distributed databases.

[38] Patterson, S., Elmore, A. J., Nawab, F.,
Agrawal, D., and Abbadi, A. E. Serializability, not
serial: Concurrency control and availability in
multi-datacenter datastores. In PVLDB (2012), vol. 5,
pp. 1459–1470.

[39] Peng, D., and Dabek, F. Large-scale incremental
processing using distributed transactions and
notifications. In 9th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
10) (2010).

[40] Shacham, O., Perez-Sorrosal, F., Bortnikov,
E., Hillel, E., Keidar, I., Kelly, I., Morel, M.,
and Paranjpye, S. Omid, reloaded: Scalable and
highly-available transaction processing. In 15th
USENIX Conference on File and Storage Technologies
(FAST) (2017).

[41] Shute, J., Vingralek, R., Samwel, B., Handy,
B., Whipkey, C., Rollins, E., Oancea, M.,
Littleeld, K., Menestrina, D., Ellner, S.,
Cieslewicz, J., Rae, I., Stancescu, T., and Apte,
H. F1: A distributed sql database that scales. In
VLDB (2013).

[42] Thomson, A., Diamond, T., Weng, S.-C., Ren,
K., Shao, P., and Abadi, D. J. Calvin: Fast
distributed transactions for partitioned database
systems. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data
(2012), SIGMOD ’12, pp. 1–12.

[43] Wei, X., Shi, J., Chen, Y., Chen, R., and Chen,
H. Fast in-memory transaction processing using rdma
and htm. In Proceedings of the 25th Symposium on
Operating Systems Principles (2015), SOSP ’15,
pp. 87–104.

14


	Introduction
	Challenges
	Evolving Omid for public clouds

	Background
	Data store API
	Transaction semantics
	TPS operation schema
	Big data platforms

	Low-Latency Transactions
	Omid LL design choices
	Omid LL algorithm
	High availability


	Fast-Path Transactions
	API
	Generic fast path algorithm
	Implementation and optimization

	Evaluation
	Methodology
	Evaluated systems
	Experiment setup
	Workload

	Results

	SQL Oriented Features
	Index construction
	Extended snapshot semantics

	Related Work
	Conclusion
	Additional Authors
	References

