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ABSTRACT. This paper presents an algorithm for totally ordered
multicast which preserves Quality of Service (QoS) guarantees.
The paper assumes a QoS reservation model in which the network
allows for reservation of variable bandwidth, specified by the av-
erage transmission rate and the maximum burst. As long as the
application sends at the reserved rate, the network guarantees to
deliver messages with bounded delays. For this model, the pa-
per presents a totally ordered multicast algorithm that preserves
the bandwidth and latency reserved by the application within
certain additive constants that do not depend on the number of
processes participating. This is an improvement over previous
work, which gave latency bounds proportional to the number of
processes. Furthermore, the presented algorithm allows for dy-
namic joining and leaving of processes while still preserving the
QoS guarantees.
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1. INTRODUCTION

Totally ordered multicast allows multiple processes to send messages,
so that all the processes deliver messages in the same order. Totally
ordered multicast is a useful paradigm for applications that replicate
state using the state machine approach [Lam78, Sch90]. Much work has
been dedicated to totally ordered multicast algorithms (e.g., [Lam78,
CHD98, CM8&4)).

In the past few years, we have witnessed new applications that require
quality of service (QoS) guarantees from the network (e.g., [McC92]).
Some need strict guarantees on available bandwidth, others need a bound
on the latency a packet can suffer when transmitted over the network.
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ATM networks [ATM96] allow applications to reserve QoS parameters
such as bounded latency, guaranteed bandwidth and bounded loss rate.
The IETF Integrated Services working group is concerned with adding
similar QoS support to the Internet. The QoS parameters that the new
services will support include, among others, bounded latency, guaran-
teed bandwidth reservation and bounds on message loss (see [SPG97]).

There are several applications that replicate some state with a certain
degree of consistency and yet also require predictable message delays.
Such applications can benefit from totally ordered multicast, as long as
the introduction of total order does not introduce excessive delays. An
example of such an application is a military command and control ap-
plication, where several geographically distributed parties concurrently
update the battlefield state. The shared state reflects information such
as the current location of forces, the ammunition supply, intelligence in-
formation about the enemy whereabouts, strategic plans, etc. For such
an application, timely updates are crucial. In addition, the involved par-
ties need to observe a consistent state, for example, to agree upon the
strategic plans. Other example applications include joint editing of a
shared white-board [McC92], a shared text editor [UCL], and multi-user
online strategy games [GD98, ten].

Applications such as those described above seldom exploit totally or-
dered multicast. This is because achieving total order requires delaying
messages until agreement upon their order is reached, and many believe
that this delay is too large. In this paper we show that totally ordered
multicast can be achieved with guaranteed bounded delays. We present
the first — as far as we know — totally ordered multicast algorithm which
achieves delays that are not proportional to the number of processes
participating in the multicast.

Specifically, we consider a network that provides QoS guarantees, and
build on top of it a totally ordered multicast service which preserves the
bandwidth and latency reserved by the application within some additive
constants. We consider an underlying network with a reservation service
for Variable Bit-Rate (VBR) [ATM96], which allows for some bursty
transmission. We assume that while messages are sent at the reserved
rate, they arrive within a bounded latency. We further assume that the
network can provide a bounded loss rate.

Our algorithm tolerates process failures and recoveries. It allows for
dynamic joining and leaving of processes while still preserving the QoS
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guarantees. This is in contrast to totally ordered group communication
algorithms (e.g., [FvR97, WMK95, CHD98]) which typically block mes-
sage delivery at re-configuration times, and thus induce a large latency.

1.1. Totally ordered multicast versus Atomic Broadcast. Totally
ordered multicast guarantees that if two correct processes deliver the
same two messages, then they deliver these messages in the same order.
(The formal definition appears in Section 3). Unlike Atomic Broad-
cast [HT93], totally ordered multicast does not guarantee that correct
processes deliver the same messages: if a faulty process sends a message,
the message may be delivered by one correct process and not by another.

In [BJKALOO] we show that if processes can fail, an algorithm im-
plementing Atomic Broadcast can guarantee, at best, a latency bound
which is proportional to the number of failures it can tolerate. In this
paper, on the other hand, we present an algorithm for totally ordered
multicast, which provides constant latency bounds. These bounds do
not depend on the number of failures or on the number of participating
processes in any way.

We believe a totally ordered multicast service to be useful for appli-
cations that require real-time updates of a shared state. Consider, for
example, the military application described above, where it is impor-
tant for users to observe state changes in a timely manner. It is also
desirable that all participants observe the state consistently. However,
consistency cannot be achieved at the cost of compromising timeliness.

Using our totally ordered multicast service, updates are always timely,
and are also consistent while no failures occur. Furthermore, if there is
a point after which no failures occur, then after this point updates are
always consistent, i.e., the same messages are delivered to all processes.
When a process fails, the totally ordered multicast service can deliver an
update that was initiated by the faulty process to one correct process and
not to another. This can cause the state of two correct processes to differ.
Such inconsistencies can be detected and reconciled, for example, using
the algorithms of [KD96, FV97], which implement Atomic Broadcast
atop group communication systems providing totally ordered multicast.

Several group communication systems provide totally ordered multi-
cast; most do not address QoS issues. The only exception that we are
aware of is RTCAST [ASJS96]. RTCAST assumes a stronger failure
model than we do in this paper, and does not work with our failure
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model. Furthermore, RTCAST achieves a latency bound which is linear
in the number of processes, and not constant as we do (cf. Section 7).

2. MODEL

We assume a static universe of n processes, with distinct identifiers in
{1,---,n}. Processes communicate by exchanging multicast messages
within a multicast group'. Processes can voluntarily join and leave the
multicast group at any time. Processes can fail by crashing and may
later recover. We do not consider Byzantine (malicious) failures.

Processes use an underlying network communication service which al-
lows for QoS reservation. Specifically, the network allows for reservation
of variable bandwidth, specified by the average transmission rate and
the maximum burst. As long as messages are sent at the reserved rate,
the network guarantees to deliver messages with a bounded delay.

We present an algorithm that guarantees total ordering of messages
and also preserves QoS. The algorithm is implemented by a Totally Or-
dered Multicast (TO) layer that resides between the application and the
underlying network, as depicted in Figure 1.

join(r); RN(r) ;  leave) . Application meast(m),
join-OK() , net-reserve(r) ; netleave),  TQO net-measi(m), deliver(m) j
Networ k net-receive(m) j

FI1GURE 1. The TO service interface.

In Section 3 we specify the semantics of the TO layer. In Section 4
we specify our assumptions about the underlying network. We assume
that processes are equipped with clocks, which are synchronized within
a constant. We elaborate on this assumption in Section 5.

1For simplicity, we assume that a single multicast group exists.
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3. ToTALLY ORDERED MULTICAST SERVICE SPECIFICATION

We now specify the totally ordered multicast service. This service is
composed of the TO layer and the underlying network (cf. Figure 1).
In this section we use the term process to refer to an application process
running at a certain location. Processes use the service to send messages
of a bounded size to the multicast group; the service delivers messages
to all the processes in the same order.

Upon joining the multicast group, a process reserves the bandwidth
required for its communication, that is, the process asks the service
to allocate a certain bandwidth. If a process subsequently wishes to
change its reserved bandwidth, it renegotiates its reservation parameters
according to its new transmission rate.

Our service works within the framework of the VBR reservation model
[ATMO96], which allows applications to send bursty traffic. In this model,
processes reserve an average transmission rate as well as a maximum
burst size. Typically, the application declares its transmission rate in
bytes per second. For simplicity, we assume that the rate is declared in
units of messages per second. Since message size is bounded, these rates
correspond closely.

Message sending is divided into time slots of a fixed length, ©. ©
is the same for all the processes and is fixed throughout the execution.
In addition, there exists a constant C' which is the number of slots over
which the average is computed. The rate is declared as two parameters:

1. AppAvgRate — the average message rate per © time. This means
that C * AppAvgRate is the maximum number of messages that
may be sent during C x © time.

2. AppMaxBurst — the maximum number of messages that may be
sent during © time.

The application interface of the service is as follows:

e join(r); is used by process i to join the multicast group and to
reserve QoS. The structure r has two fields: AppAvgRate and
AppM azxBurst, as explained above. This action is called initially,
to establish the transmission rate before any messages are sent.

e join-OK; reports to process i that its latest join operation was
successful, and ¢ can now start sending messages.

e leave; is used by process i to leave the multicast group.
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e RN(r); is used by process i to renegotiate the QoS reserved from
the network. The structure of r is as in the join action.

e mcast(m); is used by process i to multicast message m to the
multicast group. We assume that messages are unique, that is,
the same message is not sent more than once. In addition, the
messages are of a bounded size.

e deliver(m); ; is used to deliver to process i a multicast message m
that was previously multicast by process j.

We say that a message m is sent by a process i when mcast(m);
occurs, and that 4 delivers m when the totally ordered multicast service
at process i performs the deliver(m); ; action.

Definition 1. If a process issues at least one join in an execution, and
its latest join is followed by a join-OK but not by a leave or a failure,
then the process is correct from the point of its join-OK onward.

We assume that a process does not send messages until it joins the
group and receives a join-OK, and does not send messages after leaving
the group or recovering from a failure without re-joining. Furthermore,
we assume that the application never exceeds the reserved sending rate.

When composed with an application that satisfies the assumptions
above, the service satisfies the following property:

Definition 2. Totally Ordered Multicast:

e Total Order: If processes i and j both deliver the same two mes-
sages m and m', they deliver these messages in the same order.

o Integrity: A message m is only delivered if it was previously sent,
and is not delivered to the same process more than once.

e Liveness: If there is some point in the execution after which two
processes i and j are correct, then every message that i sends after
this point is eventually delivered by j.

In addition to meeting the specification above, the algorithm is re-
quired to deliver messages within a bounded latency, AppLatency. This
is the supremum over all executions, all messages m and all processes i
of the time since the mcast(m); action is performed in some execution
until m is delivered by all processes that deliver it.

The latency bound supplements our Liveness property. The Liveness
definition requires processes that remain in the group indefinitely from
some point onward to eventually deliver each other’s messages. The
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latency bound requires processes that do deliver a message to deliver it
within a certain time bound. Since the algorithm cannot know which
processes will remain live forever, it has to attempt to deliver messages
within this time bound to all processes that are correct during this time.

4. THE UNDERLYING NETWORK

We now describe our assumptions about the underlying network. In
this section, we use the term process to refer to an instance of the TO
layer running at a certain location.

The network preserves the FIFO order on messages sent between every
pair of processes2. The network does not duplicate, corrupt, or sponta-
neously generate messages. In addition, we assume that the underlying
network can guarantee a bounded loss rate (cf. Section 4.1 below).

In this paper we are only interested in studying cases in which QoS
reservation and renegotiation are successful. Thus, for simplicity, we
assume that all reservation requests made by a process are accepted by
the network. Typically, QoS reservation and renegotiation take some
time for the network to process. However, this time does not affect the
message latency and for the sake of the analysis in this paper it is safe
to ignore it. Therefore, for simplicity, we assume that once a reserva-
tion request is made, the bandwidth that was requested is immediately
available to the reserving process.

We assume that the network supports the VBR reservation model.
The network interface consists of the following types of actions:

e net-reserve(r); is used by process 7 to join the multicast group and
to reserve QoS from the network. The structure r has two fields:
NetAvgRate and NetM axzBurst. These are dual to the respective
application QoS parameters described in the previous section. This
action is called initially, to establish the transmission rate before
any messages are sent. The action can be subsequently called to
renegotiate the QoS reserved from the network.

e net-leave; is used by process ¢ to leave the multicast group.

e net-mcast(m); and net-receive(m); ; are used by process i to mul-
ticast and receive messages from the network.

2 Although messages sent over the Internet can rarely arrive out of FIFo order, this
is easy to fix using sequence numbers.
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Definition 3. A process is considered a member of the group from the
point it joins the group (using net-reserve(r);) onward, if it does not
subsequently leave the group or fail.

While the application sends at the reserved rate, we assume that the
network guarantees a maximum message latency A, and a bounded loss
rate. That is, the QoS reservation service is used to reserve this latency
and loss rate. These parameters are the same for all processes (unlike
the transmission rate which is unique to each process). For simplicity, we
assume that the same latency A and loss rate are successfully reserved
by all processes. Thus, any message sent from some process ¢ using the
net-mcast(m); action will reach every process j via the net-receive(m); ;
action in at most A time. In the next section we explain the nature of
the loss rate parameter and how its being used.

4.1. Message loss. In the literature, several different ways to express
a QoS parameter bounding the loss rate were suggested. We consider
the following definition when discussing our loss rate parameters:

Burst loss sensitivity [Par92] defines the maximum number of mes-
sages that can be lost in a given interval. The application specifies a
loss interval, x = k + [, in terms of a number of consecutive messages
from the same sender. The application then specifies a bound, [, on the
number of messages sent in the same interval that the network can lose®.
Formally:

Definition 4. Burst loss sensitivity of | out of k + | guarantees that if
there is some point in the execution after which two processes i and j are
group members, then for every k + 1 consecutive messages that i sends
after this point, j receives at least k.

5. CLOCK SYNCHRONIZATION AND SCHEDULING

We assume each process ¢ has an internal clock denoted by clock;. We
assume that the difference between clock; and the real time is bounded.
We denote by now the real time that has passed from the beginning of
the execution? (thus, each execution starts with now = 0). We assume
that there exists a constant I" such that the maximum difference between

3Burst loss sensitivity enumerates the maximum number of messages of MTU
(maximum transmission unit) size or smaller that may be lost. We assume that
messages are small enough to benefit from this guarantee.

4The real time is used as an abstraction for the latency analysis.
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clock; and now is at most I'/2: for each process i: now —T'/2 < clock; <
now + T'/2.

This implies that the maximum difference between two processes’ in-
ternal clocks is at most I'. The assumption that clocks are synchronized
within a bound is very reasonable. For example, the Network Time
Protocol (NTP) [Mil92] can synchronize clocks to within one to fifty
milliseconds on most network environments today. The synchronization
level depends on the network technology, and on the distances between
the synchronizing processes.

In addition to clock synchronization, we make the assumption that
each process can precisely schedule events according to its local clock.

6. THE ToTALLY ORDERED MULTICAST ALGORITHM

We now present our totally ordered multicast algorithm. The algo-
rithm is symmetric, in the sense that all the participating processes play
identical roles in the algorithm. The algorithm is composed of two lay-
ers: a forward error correction (FEC) layer which overcomes message
loss, and an Ordering layer, as depicted in Figure 2.

join(r) i RN(r) i Ieaveq mecast(m).

T

: o ‘ ' ' ‘ ¢ FEC-send(m) .
I Join-OK() defiver(m); ; FEC-receive(mys) ; .
ORDERING FEC-end-dot() i FEJc
net—reser‘ve(r) i net—l‘e:ave()i net—mca‘lst(m)i T

o —— S — e e

net—receive(m} )

FIGURE 2. The TO service decomposition.

The algorithm divides the time into slots of length ©. Processes
use slots for sending and delivering messages. Messages are sent and
delivered via the FEC layer, using the FEC-send and FEC-receive
actions. The algorithm ensures that an application message m, and all
the redundant FEC information associated with m, are sent (using net-
mcast) in the same slot as m was mcast by the application. To this



10 ZIV BAR-JOSEPH, IDIT KEIDAR, TAL ANKER, NANCY LYNCH

end, the FEC layer needs to be informed when a slot ends. This is done
using the FFEC-end-slot action.

The FEC layer is described in Section 6.1. In Section 6.2, we de-
scribe how the Ordering algorithm works while the network situation is
static (that is, while there are no process failures, and processes do not
dynamically join and leave the multicast group). In Section 6.3, we ex-
plain how the algorithm deals with process failures and dynamic joining
and leaving. In the Appendix, we present pseudo-code for the complete
Ordering algorithm as a timed automaton.

6.1. Forward Error Correction. FEC is a common technique to over-
come bounded message loss by sending redundant messages. We use
FEC to eliminate loss among correct processes: net-mcast(m); and net-
receive(m, s); ; actions are executed by the FEC layer, and all lost mes-
sages are recovered by this layer.

Assuming burst loss sensitivity of [ out of k + [, the FEC layer con-
structs [ redundant messages per each k messages sent using F'EC-mcast
(by the Ordering layer). We refer to such a set of k original messages plus
! redundant messages as a FEC block. The original k messages can be
reconstructed from any k messages of the FEC block. FEC techniques
for creating such redundant messages are well-studied in the literature
(e.g., in [NBT97]), and we do not discuss them here.

The FEC layer organizes messages according to slots. The Ordering
layer uses the F'EC-end-slot action to inform the FEC layer when a slot
ends. The FEC layer uses this action to keep track of which slot it is
in. The slot number is attached to each message. When a slot ends,
the FEC layer sends [ redundant messages for the remaining messages
in the terminating slot. Thus, the last FEC block of a slot may contain
less than k + 1 messages, in case the number of messages sent in the slot
is not a multiple of k.

On the receiving end, the FEC layer delivers messages via FEC-
receive(m, s), where s is m’s sending slot number. FEC notifies the
Ordering layer when all the messages from a certain sender for a slot
have been received by delivering a special L message.

We now explain the FEC layer operation. When FEC-mcast(m)
occurs, the FEC layer holds on to message m. When the FEC layer
has k + 1 messages, it constructs a new FEC block with the first &
plus I redundant messages. It tags each message in the block with its
slot number, its number in the block (from one to k + ), and with the



QOS PRESERVING TOTALLY ORDERED MULTICAST 11

number of messages in the FEC block (k + [ in this case). The latter
two numbers are used to reconstruct the messages at the receiving end.
It then multicasts all k + [ messages.

When FEC-end-slot occurs, the FEC layer constructs a FEC block
with [ redundant messages for the remainder of the original messages
for this slot. It tags the messages with a special end bit. So if the FEC
has ¢ unsent messages for slot s when slot s ended (¢ < k), it will now
send ¢ + | messages. The number of messages in the FEC block, ¢ + [,
is included in each message header.

Processing on the receiving end is done in FEC blocks. If original
messages of a FEC block arrive without gaps, the messages are immedi-
ately delivered. If there are gaps, that is, if a message is lost, then the
layer waits to receive enough messages from this block — ¢ from a block
of ¢ + [ messages, and then reconstructs the missing messages. If the
layer receives more messages from this block it discards them. By the
time the entire FEC block arrives, all the messages can be reconstructed
and delivered. Messages are delivered to the Ordering layer using FEC-
receive along with their sending slot number, which was included in the
message header.

The FEC layer at process ¢ knows that it processed the last block
from sender j for slot s if it delivers messages that have an end bit.
After processing this last block, it delivers a special | message to the
Ordering layer using F EC-receive(L); ;.

If the application does not send any message in slot s, the FEC layer
generates a dummy message and [ redundant messages for it. Upon
receipt, the dummy message is discarded, and a | message is delivered.

6.2. The Ordering Algorithm: Static Case. We now explain how
the Ordering algorithm works while the network situation is static. Upon
initiating the algorithm, the application specifies its transmission rate in
the join action. The Ordering algorithm, in turn, reserves the required
rate from the network. We later discuss the rate that needs to be al-
located, as a function of the application’s actual transmission rate and
the message loss rate.

Sending and receiving of messages is done through the FEC layer.
When a slot ends (that is, © time has passed from the time it started)
the Ordering layer notifies the FEC layer.

In each slot, the algorithm delivers messages according to the process
indices, i.e., it delivers all the messages for this slot sent by process 1,
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then all the messages sent by 2 etc. If process i is currently delivering
messages for slot s from process j, i will move to deliver the messages
from j + 1 mod n after it receives a FEC-receive(Ll);; message from
the FEC layer.

We now discuss the correctness, and the QoS guarantees of our algo-
rithm when no processes fail, join or leave.

Correctness. In order to prove correctness, we have to show that
Definition 2 holds. Integrity is trivially satisfied from our assumptions
on the network. Since we have a guarantee for a bounded loss rate from
the network, and we use the FEC layer, all processes will be able to
reconstruct all the original messages sent for each slot by other processes.
Total Order and Liveness hold since for every slot s, all processes deliver
all the messages sent for s in the same order. This is guaranteed by the
fact that j will not move on to deliver messages from i + 1 for slot s
before it received a notification from the FEC layer that it had delivered
the last message from ¢ for slot s. Since the last FEC block for each slot
(which is always sent when the TO layer performs the FEC-end-slot
action) carries with it the end flag, the FEC layer at j will know when
to notify the TO layer that it have received all the messages sent by i
for slot s, and thus the total ordering is guaranteed.

Latency. The maximum delay caused by this algorithm is:
AppLatency = A + T + ©. This is due to the fact that we deliver all
messages sent by each process for slot s at the same time. Thus, a
message sent by the application at process i at the beginning of s may
be delivered after messages sent by the application at j at the end of s
(see Figure 3).

i startss
j startss j finishess

All the processes receive
j’slast mesage for s

FI1GURE 3. Maximum delay of the TO algorithm, with
no failures.
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Rate. The messages this algorithm adds over the messages sent by
the application are the redundant messages added by the FEC layer. In
addition, in case no messages are sent in a slot, a dummy message is
added by the FEC layer. The latter effects the average rate, but not
the maximum rate. Thus, upper bounds on the average and maximum
rates used by our algorithm are:

NetAvgRate = AppAvgRate + ([AppAvgRate/k] +1) x 1+ 1

NetMazxBurst = AppMazBurst + ([AppMaxBurst/k] + 1) x|

6.3. Process Failures, Joins and Leaves. In this section we explain
how our algorithm handles process failures, joins, and leaves.

Process failures. Recall that our definition of totally ordered multi-
cast does not require correct processes to agree upon messages delivered
by faulty ones. Therefore, the algorithm can deliver messages at each
process without checking if other processes received these messages as
well. In order to avoid waiting for messages from faulty processes, we
implement an internal failure detector at each process.

According to the network guarantees, if a process sends a message all
other processes receive it in at most A time. Therefore, if a process i
waits more than A +T time from the time it finished slot s for a message
from process j for this slot, then 7 knows that j has failed. Once process
i detects that process j failed, it stops waiting for messages from j, and
delivers the rest of the messages sent by other processes for slot s. From
slot s+ 1 until j is added again (as we describe below), ¢ does not deliver
messages from j.

Dynamic Joins and Leaves. For a joining process j we allow an
initialization time during which j does not have to deliver all messages
it receives (it is not considered correct for the sake of the definition in
Section 3), and cannot send messages. At the end of this initialization
period, a join-OKj notifies j that it may start sending.

When a process j wants to join the algorithm, it needs to know in
which slot the rest of the processes are. To this end, j checks its own
clock, and computes the slot the execution has reached. Since each
execution starts with now = 0, j can know the slot it is in by setting
s to clock;/©. In order to join, j sends a (“join”,s); message to all
processes where s is the slot in which j should be added. Whenever
a process receives a “join” message it immediately processes it, and
records that j should be added at slot s. Since this message arrives at
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all processes at most A time after it is sent, and since the difference
between j’s clock and all other processes’ internal clocks is at most I, j
can know that all the processes will receive the message before they start

slot Smamdg(clockj +A+T)/O©+1. Thus, j sends (“join”, Smaz); to all
processes, and starts sending and delivering messages from slot Smax.
During slot Smax, j assumes all processes to be correct, that is, tries
to deliver messages from them unless it detects a failure by time-out as
explained above.

When a process i receives j’s (“join” , Smax); message, it adds j to its
list of active processes upon starting to deliver messages for slot Smax.
From Smaz onward (or until j is detected as failed again), ¢ waits for
messages from j in every slot.

Since all the active processes start slot Smax after j wakes up, j
will receive all the messages sent for slot Smaxz. Furthermore, all the
processes will receive j’s join message before they start this slot. Process
j only joins the algorithm (that is, starts delivering messages to the
application) at slot Smaz, and it discards all messages it receives for
earlier slots. Note that j is added to the algorithm at the same slot
(Smax) by all the processes (including j itself). Process j starts this
slot at the latest A + I' + © time after it wakes up.

The application leaves the algorithm using the leave action. When
leave(); is performed, the Ordering layer at process j notifies all other
processes by sending a (“leave”) message. It then waits to the end of
this sending slot, performs the net-leave action, and exits the algorithm.
This makes sure that the “leave” message is sent by the FEC layer. Upon
receipt, a “leave” message is stored in the message queue. When it is
time for process i to deliver a message from process j, and the next
message from j in the queue is a “leave”, process i stops waiting for
messages from j: it continues to deliver messages sent by other processes
and does not deliver messages from j until j is added again.

Correctness. Integrity follows directly from the correctness proof
in the previous section. We now show that Total Order is guaranteed:
Failures can cause messages delivered by one process not to be deliv-
ered by another process, when the sending process has failed. However,
the order of message delivery (by slot, and in each slot according to
processes indices) remains the same and the delivery order for messages
that are delivered is preserved. When a process j joins, all processes
receive j’s join message with j’s join slot before they begin to deliver
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any application messages from j. As argued above, this message reaches
all processes before j’s joins slot, and all processes add j in this slot.

We now prove Liveness. If two processes i and j are correct from
some point onward, then they are also both members of the group from
this point onward. Therefore, by the guarantees of the network and the
FEC layer, every message that is sent by 4 after this point is received
by j. If a process j is correct in slot s, and j sends a message m in this
slot, then every other correct process receives j’s “join” message before
m. Furthermore, since j is correct, i does not time-out on j in slot s (as
explained above). Therefore, i delivers m.

Latency. In this algorithm, a process j waits at most A + T time
after a slot s ends before j times-out on faulty processes and delivers
all the received messages for the slot. Thus, j delivers all the messages
for a slot s at most A + T + © time after it starts slot s. Furthermore,
Jj starts s at most ' time after every other process 7 starts slot s (see
Figure 4). Therefore, j will deliver all messages sent for s at most
A+T+0+T = A +2I' + O time from the time it was sent by the
application in 4, and: AppLatency = A + © + 2T.

i startss

jstartss  k fails j finishess o
j delivers all messages
for s

j iswaiting for a
message from k

A+O+2I

FIGURE 4. Maximal delay caused when process failures
are tolerated.

Rate. The transmission rate is not affected by the added support
for fault tolerance. Both NetAvgRate and NetMaxBurst remain the
same as in the previous section, since no new messages are added to the
algorithm presented in this section with the exception of “join” messages.
We do not take the cost of initialization and renegotiation into account
when analyzing the cost of the “normal” operation of the algorithm.
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7. RELATED WORK

The only previous work that we are aware of addressing QoS guaran-
tees of totally ordered multicast primitives is RTCAST [ASJS96]. The
failure model assumed in RTCAST is weaker than the one we assume.
There, it is assumed that if a process p fails, and a correct process g
receives, from the network, some message m sent by ¢ before its failure,
then every other correct process will receive m as well. In contrast, we
allow the network to deliver a message from a faulty process to some cor-
rect process and not to another. In the failure model of RTCAST, our
algorithm, as is, solves Atomic Broadcast. The latency bound achieved
by RTCAST is linear in the number of processes, and not constant as
we do here.

8. CONCLUSIONS AND FUTURE WORK

This paper sets the framework for analyzing QoS guarantees of multi-
cast primitives. Specifically, we have presented an algorithm for totally
ordered multicast that does not violate QoS guarantees. We considered
the variable bit rate model, where processes can send bursty traffic. We
have shown that our totally ordered multicast algorithm preserves the
latency of the underlying network within a constant, and this latency
does not depend on the number of processes or the number of failures.

Totally ordered multicast is a weaker service than Atomic Broadcast.
With totally ordered multicast, it is possible for one correct process to
deliver a message from a faulty process while another correct process
does not deliver this message. In [BJKALOO] we show that if processes
can fail, an algorithm implementing Atomic Broadcast can guarantee, at
best, a latency bound which is proportional to the number of failures it
can tolerate. Thus, there is a tradeoff between the consistency of Atomic
Broadcast and the timeliness of totally ordered multicast.

Understanding of this tradeoff may suggest a certain design for appli-
cations, like military command and control, that need to present updates
in a timely manner even if they are not entirely consistent, as long as
they later converge to a consistent state. Such applications may exploit
algorithms such as the one suggested here for fast updates, and in the
background implement Atomic Broadcast order so that the data will
eventually be consistent.

This paper is a first step in the way of providing a mathematical
approach to understanding the costs of different services in different
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network models. Such understanding is vital for efficient design of dis-
tributed applications. Future work will consider QoS preserving Atomic
Broadcast. Although constant bounds cannot be achieved for this prob-
lem, it is interesting to study the bounds that can be achieved. Future
work will also consider richer network models, making the suggested al-
gorithms more suitable for large scale distributed applications on the
Internet, such as collaborative text editing. An interesting issue to con-
sider is tolerating network partitions and reconnects; we discuss this
issue in the full paper.

Other interesting future work can consider different QoS parameters.
For example, instead of analyzing a fixed latency bound one may want
to consider the average latency and the maximum jitter (that is, the
variation of the latency). Randomized algorithms may be able to provide
such QoS guarantees most effectively.
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APPENDIX A. TIMED AUTOMATON IMPLEMENTING THE QRDERING

ALGORITHM

We now present a timed I/O automaton implementing the Ordering
algorithm, for each process ¢ running the algorithm. Figure 5 presents
the signature and state variables of the automaton. Figures 6 and 7
present the transitions.

Authors addresses:

Z. Bar-Joseph, MIT Lab for Computer Science, zivbj@Qmit.edu
I. Keidar, MIT Lab for Computer Science, idish@theory.lcs.mit.edu
T. Anker, Hebrew University of Jerusalem, anker@cs.huji.ac.il



QOS PRESERVING TOTALLY ORDERED MULTICAST 19

N. Lynch, MIT Lab for Computer Science, lynch@theory.lcs.mit.edu

Signature

Input:

join(r)i, r a structure with two integer fields

RN(r);, r a structure with two integer fields

leave();,

mcast(m);, m € M

FEC-receive(m,s); j, m € M,s € N
Output:

join-OK();

FEC-end-slot();

FEC-send(m); m € M

deliver(m); j, m € M

net-reserve(r); r a structure with two integer fields

net-leave();
Time-passing:

v(t),t € RT
Internal:

end-deliver

failure-detector

skip-failed

process-leave

end-recvSlot

wazit-start State

For all j, Rqueue(j), a FIFO queue of messages, initially empty
Squeue, a FIFO queue of messages, initially empty

current, an integer initially 1, // current process to receive from
myJoin, an integer initially 0

finished unbounded array of reals, initially 0 in all places
Join array of size n of integers, initially 0 in all places

Failed a group of process indices, initially empty
sendingSlot,recuSlot, integers initially 1,

rate, pair of integers initially L

changeRate, Pleave, Nleave, boolean initially FALSE

clock € R29, initially 0

last € Rt U {00}, initially co

Fi1GURE 5. The Ordering automaton for process i: sig-
nature and state.
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Transitions

Input join(r);
Eff: rate=r
changeRate = TRUE
myJoin = (clock+ A+T)/0 +1
add (" join" ,myJoin) to Squeue
recvSlot = myJoin
sendingSlot = [clock/©]
last = (sendingSlot + 1)©
Output join-OK();
Pre: sendingSlot = myJoin
Eff:
Input RN(r);
Eff: rate=r
changeRate = TRUE

Output net-reserve(r);
Pre: clock = last
changeRate = TRUE
r = rate
Eff: changeRate = FALSE
Input leave();
Eff: Pleave = TRUE
add (“leave’’) to Squeue
Output net-leave();
Pre: Nleave = TRUE
Eff:
Input mecast(m);
Eff: add m to Squeue
Output FEC-send(m);
Pre: (m) is first on Squeue
Eff: discard first element of Squeue(j)
Internal wait-start
Pre: sendingSlot < myJoin
clock = last
Eff: last:= clock + ©
sendingSlot + +
Output FEC-end-slot();
Pre: sendingSlot > myJoin
clock = last
Nleave = FALSE
changeRate = FALSE
Squeue is empty
Eff: if(Pleave = TRUE)
Nleave = TRUE
else {
last := clock + ©
finished[sendingSlot] = clock
sendingSlot + + }

FI1GURE 6. The Ordering algorithm automaton for pro-
cess ¢: transitions, part 1.
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Transitions

TimePassage v(t)

Cho:p >0

Pre: now +t—T/2 < clock+p <now+t+T/2
clock + p < last

Eff: now :=now+1t
clock := clock + p

Input FEC-receive(m,s);,;

Eff: if (m = ("join%,s))
Join[j] = s
elseif (s > myJoin)
add (m) to Rqueue(j)

Output deliver(m);,;

Pre: current > 0
j = current
(m) is first on Rqueue(j)
m #£1 && m #£" leave'
Eff: discard first element of Rqueue(y)

Internal process-leave

Pre: current >0
j = current
(m) is first on Rqueue(y)
m =" leave
Eff: Failed := FailedU j
discard all elements of Rqueue(y)
current = current + 1

Internal end-deliver

Pre: current >0
j = current
L is first on Rqueue(j)

Eff: discard first element of Rqueue(j)
current := (current + 1) mod (n + 1)

Internal end-recvSlot

Pre: current =0
Eff: current:=1
recvSlot + +
for all j s.t. Join[j] = recvSlot
Failed := Failed \ {5}

Internal failure-detector

Pre: current > 0
j = current
clock > finished[recvSlot]+ A 4+ T
Rqueue(y) is empty
Eff: add j to Failed
current := (current + 1) mod (n + 1)

Internal skip-failed

Pre: current € Failed
Eff: current := (current + 1) mod (n + 1)

F1GURE 7. The Ordering algorithm automaton for pro-
cess 4: transitions, part 2.
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