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Abstract

This work provides an efficient paradigm for object replication using the State Machine ap-
proach, overcoming network partitions and reconnects. The Consistent Object Replication Layer
(CORelL) supplies the application builder with long-term services such as reconciliation of states
among recovered and reconnected processors and global message ordering. CORelL is a high-level
communication service layer, designed in the Transis environment. It supplies the services defined
for the Replication Service layer in HORUS and Transis.

We present an algorithm for totally ordering messages in the face of network partitions and site
failures. The novelty of this algorithm is that it always allows a majority (or quorum) of connected
processors in the network to make progress (i.e. totally order messages), if they remain connected
for sufficiently long, regardless of past failures. Furthermore, our algorithm always allows processors
to initiate messages, even when they are not members of a connected majority component in the
network. Thus, messages can eventually become totally ordered even if their initiator is never a
member of a majority component. The algorithm orders each message within two communication
rounds, if no failures occur during these rounds.

We describe how COReL may be used in the design of distributed and replicated database
systems. We present an atomic commitment protocol (ACP) based on COReL. The novelty of this
ACP is that it always allows a majority (or quorum) of processors that become connected to resolve
the transaction, if they remain connected for sufficiently long. We know of no other ACP with this
feature. We suggest a paradigm for replica control, based on COReL, that always allows a majority
of connected processors to update the database.
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1 Introduction

Reliability and availability of loosely coupled distributed systems is becoming a requirement
for many installations. The availability of data and services can be increased by replica-
tion. If the data is replicated in several sites, it can still be available after site failures,
and communication-link failures. However, implementing an object with several copies re-
siding on different sites may introduce inconsistencies between copies of the same object.
Consistency may be achieved by applying updates in the same order at all the replica.

We present an algorithm that implements replication using the State Machine approach [29],
overcoming network partitions and reconnects. Replica of the state machine receive all the
update messages in the same order. If the communication allows, all the replica eventually
reach the same state. The algorithm totally orders messages in the face of network partitions
and site failures. The algorithm was designed in the Transis [3] environment; Transis is a
sophisticated transport layer that supplies group multicast and membership services.

The Consistent Object Replication Layer (COReL) supplies the application builder with
long-term services such as reconciliation of states among recovered and reconnected proces-
sors and global message ordering. It supports consistent object replication over dynamic
networks; the network may partition into several components', and remerge. COReL is a
high-level communication service layer, designed in the Transis environment. It supplies the
services defined for the Replication Service layer in HORUS and Transis [22]. COReL may be
implemented over any transport layer that supplies similar group membership and multicast
services.

It is well known that reaching agreement in asynchronous environments with a possibility
of even one failure is impossible [17]. Every fault-tolerant algorithm that correctly solves the
consensus problem in an asynchronous environment is bound to have an infinite run, in which
no processor fails and no decision can be made. In the algorithm we present, this difficulty
is encapsulated in the membership protocol of the underlying Transport Layer. When we
claim that a quorum of connected processors may always totally order their messages, we
implicitly require that the underlying membership protocol will not falsely report of failures.
In theory, the adversary may delay messages in such a way that will cause the membership
protocol to constantly change the view. In this case, the presented algorithm might run
indefinitely without ordering even a single message. In practice, we expect false-detections
to be rare.

We present an algorithm for totally ordering messages in the face of network partitions
and site failures. The novelty of this algorithm is that it always allows a majority (or quorum)
of connected processors in the network to make progress (totally order messages), if they
remain connected for sufficiently long, regardless of past failures. Some previous algorithms
allow a majority to continue operating in the face of one failure, but if failures cascade, and
later a majority becomes connected, it might remain blocked. Furthermore, our algorithm

! A component is sometimes called a partition. In our terminology, a partition splits the network into
several components.



always allows processors to initiate messages, even when they are not members of a majority
component. Thus, messages can eventually become totally ordered even if their initiator is
never a member of a majority component. The algorithm orders each message within two
communication rounds, if no failures occur during these rounds?.

In Section 8 we describe how COReL may be used in the design of distributed and repli-
cated database systems. We suggest to represent transactions as messages, and disseminate
them using COReL. COReL guarantees that all the transactions will reach all the sites in
the same order. If the database servers at the different sites are identical deterministic state
machines this is sufficient to ensure consistency. Otherwise, an atomic commitment protocol
(ACP) is invoked to guarantee transaction atomicity. In Section 8.3 we present an ACP
based on COReL. The novelty of this ACP is that it always allows a majority (or quorum)
of processors that become connected to resolve the transaction, if they remain connected
for sufficiently long. We know of no other ACP with this feature. Moreover, when COReL
is used for transaction dissemination and ordering as well as for atomic commitment, the
processors that succeed to resolve the transaction, are also allowed to totally order new mes-
sages (i.e. to perform updates to the database). Thus, the database is always available to
a quorum of connected processors. If an ACP is invoked for each transaction, and partition
occurs before the votes of the detached processors are received by the coordinator, the trans-
action is aborted. In a dynamic network, where view changes are frequent, this may cause
many transactions to abort. In our approach, if the servers are deterministic state machines,
transactions may become totally ordered and may be applied even if members that did
not acknowledge them detach. A network partition never forces us to abort a transaction.
Other advantages of our approach are the ability to pipeline transactions, and piggyback
all the “voting” information on regular messages, and efficient message dissemination that
takes advantage of network broadcast capabilities. Furthermore, using COReL for all the
communication tasks supports simple design of database schedulers, free of communication
trouble.

This thesis is organized as follows: Section 2 is a survey of related work, in Section 3 we
describe the semantics and guarantees of the provided replication service. In Section 4 we
formally describe the model for the environment in which COReL may be implemented, e.g.
the Transis environment. In Section 5 we present the algorithm, and in Section 6 we prove
its correctness. In Section 7 we suggest some extensions to the algorithm. These extensions
are not presented in full detail, and are brought without proof of correctness. In Section 8
we describe how COReL may be used in the design of distributed and replicated database
systems. Section 9 concludes the thesis.

2By “no failures occur” we implicitly mean that the underlying membership service does not falsely report
of failures.



2 Related Work

The Consistent Object Replication Layer (COReL) is built as a high-level communication
service layer, on top of a transport layer that supplies reliable group communication services.
COReL supplies highly available services for consistent replication, and may be used to design
efficient protocols for distributed databases. We survey paradigms for group communication
in Section 2.1. In Section 2.2 we survey algorithms for fault tolerant replication that are
based on group communication. In Section 2.3 we survey commit protocols for distributed
transactions, and in Section 2.4 we survey protocols for replication in database systems.

2.1 Group Communication

Communication mechanisms are central to any replicated or distributed system. Today,
distributed and replicated database systems are built using point-to-point communication
mechanisms, such as TCP/IP, DECNET, ISO and SNA. These mechanisms provide reliable
point-to-point message passing between live and connected processors. These mechanisms
do not make efficient use of the hardware capabilities. In particular, the broadcast or mul-
ticast mechanisms are not used. Replicated systems are natural candidates for using these
mechanisms, since each update message is sent to multiple destinations. In addition, a repli-
cated system requires global order on updates (or transactions). Group multicast paradigms
that use broadcast mechanisms support efficient message ordering, while point-to-point com-
munication does not support global message ordering. Thus, using group communication
mechanisms can lead to simpler and more efficient solutions for replication.

One of the leading systems in the area of group communication is the ISIS system [7, 9].
The novelty of ISIS is in the formal and rigorous definition of the service interface. ISIS
supplies group communication services that maintain the virtual synchrony [8] property,
which is important for consistent application semantics. When the network partitions, ISIS
allows only one network component (the primary) to operate in the system. The members
of disconnected components are blocked. This approach can lead to inconsistent results if a
processor that is extracted from the primary component continues to deliver messages for
a “while” before recognizing the partition. The ISIS system is currently being redesigned
and built from scratch. The new version of ISIS is called HORUS; it employs a membership
algorithm based on the approach of the Transis membership [13], that allows several network
components to coexist in case of network partitions.

The AMOEBA distributed operating system supplies group communication services [20].
These services support reliable totally ordered broadcast among process groups. The service
is implemented on top of an unreliable network, taking advantage of hardware broadcast
capabilities. The membership service of the AMOEBA system lets the user determine the
minimal size with which the system can continue operating. If the user determines a majority
threshold, the result is a primary-component membership service. On lower thresholds, the
system may partition. AMOEBA does not provide any solution for merging operational
partitions upon reconnection.

(&3¢



Melliar-Smith et al. suggest in [23] a protocol for reliable broadcast communication over
physical LANs, the Trans protocol. Similar ideas appear in the Psync protocol [27]. These
protocols use the hardware broadcast capability for message dissemination and a combined
system of positive and negative acknowledgments to detect message losses and recover them.
Melliar-Smith et al. provide the Total protocol for total ordering of messages over Trans [25].

The Transis System [3] supports fast and reliable message multicast among currently
connected processors, on top of an unreliable network. Transis utilizes the characteristics of
available hardware, and recovers message losses using an algorithm similar to the Trans and
Psync algorithms. An alternative algorithm for message recovery and total order, Totem [5],
is also implemented in the Transis environment. The environment is dynamic and processors
can come up and may crash, may partition and re-merge. Transis maintains the member-
ship [2] of connected processors automatically. The membership service of Transis supports
the virtual synchrony property, and provides consistent semantics as described in [13] that
are required for the algorithm we present here (see Section 4).

Recent work by Moser et al. [24] defines a computation model that supports network
partitions — the Fatended Virtual Synchrony (EVS) Model. The model rigorously defines the
semantics of message multicast in a partitionable network. These semantics are valuable for
developing applications that tolerate partitions, such as the algorithm presented here. In the
Transis environment, two total ordering algorithms that support EVS [5, 3] are implemented.

2.2 Fault Tolerance and Replication with Group Communication

One of the main applications of group multicast is object replication. Totally ordered multi-
cast guarantees the consistency of all the replica of an object (if the object may be represented
as a deterministic state machine). To increase availability when failures are possible, fault
tolerant algorithms must be designed. Most of the algorithms for group multicast mentioned
above, detect failures, and extract faulty members from the membership. Usually, only a pri-
mary component is allowed to continue operating when a partition occurs. These algorithms
do not recover the states of reconnected processors; but rather rely on their application to
supply long-term services such as reconciliation of states. The only exception that we know
of is the Total algorithm [25].

Total does not maintain a membership of the connected processors, and does not give up
on processors that do not respond for a long time. Total is highly fault tolerant, it allows all
the processors to send messages, and if a majority of the processors are alive and connected,
they eventually succeed to totally order messages with a high probability. Total, however, is
too complicated to be of practical use. It incurs a high overhead: even if no failures occur
it requires a minimum of five communication rounds to order a message, and the maximum
number of communication rounds required is not bounded (but is finite with a probability
close to one). The algorithm we present here requires two communication rounds to order
a message if no failures occur during these rounds®. Thus, our algorithm supplies services

3By “no failures occur” we implicitly mean that the underlying membership service does not falsely report



similar to those supplied by Total, and with the same level of fault-tolerance. Using the
membership service of Transis, we provide a simpler and more efficient protocol. In Total,
all the processors “vote” on the order of each message separately, whereas in our algorithm,
the membership service allows us to collect votes only when configuration changes occur.
In our algorithm, a connected majority does not need to take into consideration concurrent
messages in other components.

The algorithm in [1] exploits the Transis membership to design a replicated server that
tolerates network partitions. The novelty of [1] is the idea to separate between message
dissemination and message ordering, allowing all the processors to initiate messages, and
disseminating them among the processors as fast as the communication allows. The ordering
of messages is done separately. The main drawback of this algorithm is that messages can
not be ordered without being acknowledged by all the processors. Thus, if one processor
crashes, the algorithm does not order new messages until its recovery.

2.3 Distributed Transaction Commitment

A lot of work has been done in the area of distributed and replicated databases. Most of
the suggested protocols, as well as most of the existing distributed database systems use an
atomic commitment protocol (ACP): To ensure consistency in distributed databases when
a transaction spans several sites, the database servers at all sites have to reach a common
decision whether the transaction should be committed or not. A mixed decision results in
an inconsistent database, a unanimous decision guarantees the atomicity of the transaction
(provided that each local server can guarantee local atomicity of transactions). To this end
an ACP is invoked. Usually, the ACP is invoked for each transaction separately. Chapter 7
of [6] contains a detailed presentation of atomic commitment protocols.

The simplest and most renowned ACP is two phase commit (2PC'). Several variations of
2PC were suggested, the simplest version is centralized — one of the processors is designated
as the transaction coordinator. The transaction coordinator sends a transaction (or request
to prepare to commit) to all the participants. Each processor answers by a Yes (“ready
to commit”) or by a No (“abort”) message. If any processor votes No, all the processors
abort. The transaction coordinator collects all the responses and informs all the processors
of the decision. In absence of failures, this protocol preserves atomicity. Between the two
phases, each processor blocks, i.e. keeps the local database locked, waiting for the final word
from the transaction coordinator. If a processor fails before its vote reaches the transaction
coordinator, it is usually assumed that it had voted No. If the transaction coordinator fails,
all the processors remain blocked indefinitely, unable to resolve the last transaction.

The 2PC protocol is an example of a blocking protocol: operational sites sometimes wait
on the recovery of failed sites. Locks must be held in the database while the transaction
is blocked. Even though blocking preserves consistency, it is highly undesirable because
the locks acquired by the locked transaction cannot be relinquished, rendering the data

of failures. In a practical system, fault detectors may be fine-tuned to avoid false detections almost entirely.



inaccessible by other requests. Consequently, the availability of data stored in reliable sites
can be limited by the availability of the weakest component in the distributed system.

For this reason, Skeen [30] introduced the notion of non-blocking protocols for atomic
commitment. A protocol that never requires an operational site to block until a failure
is recovered is called a non-blocking protocol. Skeen presented a rigorous model of crash
recovery in distributed systems [32]. In this model, it is assumed that failures can be detected,
and therefore consensus is achievable (see Section 4.3), and non-blocking protocols may be
designed.

Skeen designed a family of protocols, the three phase commit protocols [30], that are
resilient to site failures. These protocols consist of a basic three-phase atomic commitment
protocol that is invoked while there are no failures, and a special Termination Protocol that
is invoked when failures are detected. These protocols never require an operational site
to block (where “operational site” refers to a site that has not failed since the beginning
of the transaction). These protocols are not resilient to network partitions, and may lead
to inconsistent results if partitions occur. Skeen et al. proved [32] that there exists no
non-blocking protocol resilient to network partitioning. When a partition occurs, the best
protocols allow no more than one group of sites to continue while the remaining groups block.

Skeen suggested a variation of three phase commit that maintains consistency in spite
of network partitions [31]. This protocol is blocking; it is possible for an operational site
to be blocked until a failure is mended. In case of failures, the algorithm uses a majority
or quorum based termination protocol, that allows a majority set (or a quorum) to resolve
the transaction. If failures cascade, however, a majority of processors can become connected
and still remain blocked. As it was proved that completely non-blocking termination is
impossible to achieve, further research in this area concentrated on minimizing the number
of blocked sites when partitions occur. Chin et al. [11] define Optimal Termination Protocols
in terms of the average number of sites that are blocked when a partition occurs. The
average is over all the possible partitions, and all the possible states in the protocol in which
the partitions occurs. The analysis deals only with states in the original commit protocol,
and ignores the possibility for cascading failures (failures that occur during the termination
protocol). It is proved that any ACP with optimal termination protocols takes at least three
phases, and that the quorum-based termination protocols are optimal. To our knowledge,
no ACP was suggested that always allows a connected majority to proceed, regardless of
past failures. In Section 8.3 we present a commitment protocol based on COReL that
always allows a connected majority to resolve the transaction (if it remains connected for
sufficiently long). Another advantage of our approach is the ability to pipeline transactions.
Generally, an ACP is invoked for each transaction separately. Three phase commit protocols
involve special rounds of communication, dedicated to exchanging “voting” messages of the
protocol, while in our approach, all the information needed for the protocol is piggybacked
on regular messages.



2.4 Database Replication

Extensive work was done in the area of database replication. Replication can increase perfor-
mance, if queries are more frequent than updates, and may increase availability. To increase
availability, the replica control protocol must be resilient to failures. Network partitions are
generally considered the most disruptive type of failures.

A replicated database is considered correct if it behaves as if each object has only one
copy, as far as the user can tell. This property is called one-copy equivalence. In a one-
copy database, the system should ensure serializability; that is, interleaved execution of
user transactions is equivalent to some serial execution of those transactions. A replicated
database system is considered correct if it is one-copy serializable (1SR), i.e. it ensures
serializability and one-copy equivalence. Chapter 8 of [6] contains a detailed definition of
1SR histories and their representation, and a description of several protocols that maintain
1SR.

Several protocols were suggested for maintaining 1SR in spite of network partitions,
allowing a primary component to process transactions while other processors are blocked.
The most basic ones are the Primary Site/Copy algorithms. In this approach, one copy of
an item is designated as the primary copy, and is responsible for all the operations on that
item. In the case of failure, only the partition that contains the primary copy can access the
data item. Updates are forwarded at recovery to regain consistency. The drawback of this
approach is that if the primary site fails, all the other sites remain blocked.

Other algorithms are based on quorums. The majority consensus approach [33] was
generalized to quorum consensus with Gifford’s [18] weighted voting algorithm. In this
algorithm, each copy of a data item is assigned a number of votes. The user defines a read-
quorum r and a write-quorum w for each item, such that r + w > v and w > v/2 where v
is the total number of votes assigned to the item. Read operations are required to collect
information from r sites, and write operations to write to w sites. The dissemination is per
operation, and not per transaction, and as a result, the transaction is blocked after every
operation, waiting for response. In our approach the entire transaction executes locally
as one unit, without waiting for response on every operation. Herlihy [19] generalized the
quorum consensus approach to data types with semantical operations other than read and
write. In this approach each data-type defines operations on quorums for these operations.
This design also supports dynamic change of the quorums.

To reduce the communication, El Abbadi et al. suggested the Accessible Copies Algo-
rithm [16], and its generalization described in [15]. These algorithms maintain a view of the
system. Since perfect knowledge is not always possible, the processors maintain an approx-
imate view of the network — a wvirtual partition. A data item can be read/written within
a component (virtual partition) only if a majority of its read/write votes are assigned to
copies that reside on sites that are members of this component. In this case the data item
is said to be accessible. Read and write operations on accessible data items are done by
collecting sub-quorums of the number of votes in the component. For example, if the read
sub-quorum is one vote, read operations are implemented by reading the nearest copy of



the item, and write operations are implemented by writing all copies residing on members
of the component. The maintenance of virtual partitions greatly complicates the algorithm.
When the view changes, the processors need to run a protocol to agree on the new view, and
recover the most up-to-date state. Our approach frees the database server of communication
tasks, and it needs only concentrate on scheduling of transactions at its local site.

In order to guarantee the atomicity of transactions, the algorithms mentioned above use
an ACP, and therefore are bound to block if the coordinator fails in the course of the ACP.
Thus, these approaches do not always allow a connected majority to update the database.
Our approach always allows a quorum to resolve transactions that were initialized in previous
components, and continue to update the database. Moreover, if a partition occurs before the
votes of the detached processors are received by the coordinator, the transaction is aborted.
In a dynamic network, where view changes are frequent, this may cause many transactions
to abort. In our approach, if the servers are deterministic state machines, transactions may
become totally ordered and may be applied even if members that did not acknowledge them
detach. A network partition never forces us to abort a transaction.

Davidson et al. [12] survey approaches to replication in the face of partition failures.
They classify partition processing strategies for replicated databases along two orthogonal
lines. In the first dimension, they propose that consistency can be sacrificed to increase
availability. Pessimistic strategies prevent inconsistencies by limiting availability. Each
component makes the worst-case assumptions on what other components are doing. All the
protocols surveyed above are pessimistic. Optimistic strategies do not limit the availability.
Any transaction may be executed in any component. If distinct components operate on the
same item concurrently, inconsistencies can be introduced. When the partition recovers, the
system must detect inconsistencies and resolve them. The results of a committed transaction
may need to be undone. COReL may be used in the design of optimistic servers, by using
CORelL to disseminate the messages, and applying them to the database before they are
ordered. We do not elaborate on this idea in this work.

The second dimension, distinguishes between syntactic and semantic approaches. Syn-
tactic approaches use 15R as their sole correctness criterion, and make no limitations on the
semantics of the transactions. All the protocols we surveyed above are syntactic. COReL
is suitable for this approach, because the total order on transactions may guarantee 1SR.
Semantic approaches, on the other hand, limit the transaction model. An example of a
semantic limitation is the requirement that all operations be commutative. In this case,
executions that are interleaved in different orders yield identical results. CORel may also
be used in the design of applications with a semantic approach, in this case the ordering
feature of COReL is not needed, and COReL is used only for guaranteed-delivery message
dissemination.

Pu et al. [28] suggest an asynchronous approach to replica control; they introduce the
notion of epsilon serializability (ESR). ESR suggests a tradeoff between availability and con-
sistency, it allows inconsistent data to be seen, but requires that data will eventually converge
to a consistent (1SR) state. Several replica control protocols for maintaining ESR were sug-
gested. Some of these limit the transaction model, e.g. using only commutative operations.

10



Another replica control protocol proposed in [28] is the ordered updates (ORDUP) protocol.
The idea behind ORDUP is to execute transactions asynchronously, but in the same order at
all replica. Update transactions are represented as messages and are disseminated to all the
sites; they are applied to the database when they are totally ordered. There are no limita-
tions on transaction semantics. We adopt this approach for replication using COReL. Their
work does not suggest an efficient algorithm for disseminating and ordering messages. We
propose that COReL be used to perform these tasks efficiently, i.e. we suggest to implement
the ORDUP replica control service as a COReL application.

3 The Service Model

The Consistent Object Replication Layer (COReL) supplies the application builder with long-
term services such as reconciliation of states among recovered and reconnected processors and
global message ordering. It supports consistent object replication over dynamic networks; the
network may partition into several components, and remerge. It is explicitly assumed that
multiple network components may exist in the system simultaneously. COReL is designed as
a high level communication layer, supporting the services defined for the Replication Service
layer in HORUS and Transis [22]. This layer is built on top of a transport layer that supplies
reliable group multicast and membership services with the restrictions described in Section 4.

COReL supports long-term reliable multicast; it guarantees that all the messages will
eventually reach all their destinations, and will be totally ordered in the same order ev-
erywhere. CORelL is resilient to both processor failures and communication link failures.
The algorithm we present is non-blocking; it always allows processors to multicast messages.
Furthermore, it always allows members of a connected primary component in the network
to make progress (totally order messages).

3.1 COReL groups

CORelL supports consistent replication services within fixed replication groups. A CORelL
group is static and determined by the application. It represents a long-term replication
group, which is not changed by transient failures and recoveries. A COReL group will
usually consist of a set of replicated servers (e.g. a group of database servers in a replicated
database setting). In the sequel, we will restrict our discussion to one COReL group of
servers.

3.2 General Architecture

A fixed set of servers (All_Servers) are running COReL. The set of participating processors
is known to all servers. Each server uses COReL to multicast messages to the other servers.
CORel is implemented as a library and the server code is linked with it. We refer to
the server as the CORelL application. Each copy of COReL receives messages from its

11



application, disseminates them to the other replica of COReL and delivers the messages to
its application. The COReL replica communicate using the Transport Layer. Below, we will
refer to the instance of COReL at site p simply as processor p.

Each processor maintains a local message queue M Q. that is an ordered list of all the
messages that this processor received from the Transport Layer. After message m was
received by CORelL at site p, and p wrote it on stable storage (in its M Q) we say that p has
the message m. Messages are uniquely identified through a pair < sender, counter >. This
pair will be referred to as the message id.

This work deals with the ordering of messages and events. We define the causal partial
order below, motivated by Lamport’s [21] definition of order of events in a distributed system.

Definition: Causal Order The causal order of message delivery is defined as the transitive
closure of:

(1) m == m' if receive,(m) — send,(m’)

(2) m == m' if send,(m) — send,(m’)

3.3 Service Levels

At each server, COReL builds its knowledge about the order of messages at other processors.
We use the colors model defined in [1] to indicate the knowledge level associated with each
message, as described below. The application may request of COReL to receive up-calls with
each message when the message becomes locally ordered (red), when it becomes globally
totally ordered (green) and/or when it becomes stable (white). COReL associates colors to
each message, and supplies its application with the following service levels:

red: No knowledge about the message’s global total order (among All_Servers). A message
in M@ is red if there is no knowledge that it has a different color. Red messages have
the following guarantees:

e Guaranteed global causal order; the red messages are received in an order that is
consistent with the causal partial order.

e Guaranteed local total order for new messages in the current network component
(i.e. all the members of a connected network component receive new red message
in the same order).

green: Knowledge about the message’s global total order. A processor totally orders a
message in the global total order when it knows that no other message will be ordered
before it. A message becomes green when it is totally ordered. The set of green
messages at each site at a given time is a prefix of M Q. The last green message in
MQ marks the green line, i.e. all the messages that precede it are green.
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white: Knowledge that all the other processors know the message’s order. A message be-
comes white (or stable) at processor p, when p knows that every processor in All_Servers

has totally ordered it (marked it as green)*.

The notion of white messages is needed only for garbage collection. COReL may discard
messages when they become white, since no other server will need information about them in
the future. For simplicity of the presentation in this paper, we will not distinguish between
green and white messages. We will refer to messages that are either green or white simply
as green messages.

3.4 Message Dissemination

Each copy of COReL logs all the messages that it receives from the Transport Layer. When
network failures are mended and previously disconnected network components remerge, the
logged messages are replayed to members that didn’t receive them beforehand. Each pro-
cessor disseminates all the messages that it received, regardless of their initiator. This way,
two processors that never directly communicate with each other, will eventually receive each
other’s messages from other processors. The algorithm disseminates messages to all the tar-

gets as fast as communication allows. This property is called the Eventual Path Requirement
in [1].

3.5 Message Ordering

When the network partitions into several components, the algorithm always allows a pri-
mary component, that remains connected for sufficiently long, to continue ordering messages.
Processors in other components may continue to send messages but cannot agree upon their
place in the total order before communicating with members of a primary component. Mes-
sages initiated in minority components may diffuse through the system and become totally
ordered even if their initiator is never a member of a primary component.

We use a quorum system to decide if a group of connected processors may become a
primary component. Different quorums systems may be used, at the user’s choice. In
Section 4.4 we specify the requirements of the quorum system.

At every point during the history of the protocol, if a quorum of processors become
connected, and remain connected for sufficiently long, these processors will manage to pro-
ceed and totally order all their messages. By remain connected we implicitly assume that
the underlying membership protocol does not report of view changes. We elaborate on this
assumption in Section 4.3.

4Determining when a message is white (or stable) is not a service of the Replication Layer in HORUS and
Transis. This service is supplied by a separate Stability Layer that is run on top of the Replication Layer.
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4 The Environment Model

CORelL is a high-level communication service layer, designed in the Transis environment.
Transis is a sophisticated transport layer [3, 2] that supplies omission fault free group multi-
cast and membership services with a built-in flow control in an asynchronous environment.
COReL uses Transis as a building block for reliable communication within connected net-
work components®. COReL may be implemented using any transport layer that supplies
similar services, such as Totem [5], Trans [23] and HORUS [35, 34] with the membership
service of Transis [2, 13].

4.1 Group Multicast and Membership

The Transis environment supports multicast communication among groups of processors.
The basic communication primitive is to post (send) a message to a group. Transis delivers
a posted message to all the members of the group, including the member that sent it. When
Transis delivers a message to its application we say that the application receives the message.
In our discussion, COReL is a Transis application.

After a group is created, the group undergoes configuration (membership) changes when
processors are added to the group (e.g. when they join the group, or when detached com-
ponents of the group reconnect); and when members are taken out of the group (e.g. when
members voluntarily leave the group or when they detach or crash). The membership ser-
vice of Transis reports these changes to the application through special configuration change
(membership change) messages. Configuration change messages are delivered among the
stream of regular messages. The first message delivered to any processor when it joins or
forms a new group is a configuration-change message containing the set of processors that
are currently members of the group. Thus, during the execution of an application in the
Transis environment, Transis delivers to it a sequence of regular messages interposed by
configuration change messages.

Definition: Let m be a message, such that the last configuration-change message preceding
m is C'. Then we say that m is delivered in the context of C'. Or shorter, m is delivered

in C.

4.2 Transport Layer’s Total Order Properties

CORelL may be implemented using any transport layer that supplies reliable locally ordered
group multicast and membership services that maintain the following properties:

Property 4.1 The Transport Layer totally orders the messages within each component. A
logical timestamp (TS) or serial number is attached to every message when it is delivered.
The TS has the following properties:

5A component is sometimes called a partition. In our terminology, a partition separates the network
into several components.
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o The same timestamp is attached to the message at all the processors that deliver it.

o Different messages have different timestamps, even if they are delivered in different
componenlts.

o The TS total order preserves the causal partial order, defined by Lamport [21].

The Transport Layer delivers messages at each site in timestamp order®. This implies
that every two messages are delivered in the same order at all the processors that deliver both
of them.

Property 4.2 Let p and q be processors, and assume that both p and q deliver the same two
consecutive configuration changes Cy, Cy. Then for every message m that p delivers between
C'1 and Cy, processor q also delivers m between Cy and C.

When the configuration changes from Cy to Cy, Property 4.2 guarantees full agreement
on the set of messages delivered in the context of 'y among processors that remain connected
in spite of the configuration change.

Among processors that do not remain connected, we would also like to guarantee agree-
ment to some extent. If two processors become disconnected, we do not expect to achieve
full agreement on the set of messages they delivered in the context of C; before detaching.
Instead, we require that they agree on a subset of the messages that they deliver in C, as
described below. Let processors p and g be members of C';. Assume that p delivers a message
m before m’ in C1, and that ¢ delivers m’, but without delivering m. This can happen only
if p and ¢ became disconnected (from Properties 4.1 and 4.2, they will not both be members
of the same next configuration). In Property 4.3 we require that if ¢ delivers m’ without m,
then no message m” sent by ¢, after delivering m’, can be received by p in the context of C.

Property 4.3 Let p and q be members of configuration C'. If p delivers a message m before
m' in C, and if ¢ delivers m' and later sends a message m", such that p delivers m" in C,
then ¢ delivers m before m'.

These properties are fulfilled in the Agreed Communication service of the Extended Vir-
tual Synchrony (EVS) model [24]. Therefore, COReL may be implemented using any trans-
port layer that supports EVS.

In the Transis environment, three different protocols for Total Ordering of messages are
implemented. The protocol in [3] and Totem [5] support the services of the EVS model.

6This property is required for messages at the level of the transport layer. If COReL retransmits the
same application message, the retransmission is regarded as a new transport layer message.



4.3 Correctness of the Membership Service

We expect the membership service to correctly reflect the network situation, and we expect
connected processors to have the same view of the membership in the system. Since it is well
known that reaching agreement in asynchronous environments is impossible [17], this goal
may not be achieved in any practical implementation of a membership protocol. Existing
membership protocols circumvent this difficulty in different ways. The protocols in [2, 5, 13]
use an inaccurate failure detector, based on timeout: when a processor is presumed faulty,
it is taken out of the view. Messages from processors that are not part of the current view
are discarded. A presumed failed machine can re-join the membership. In practice, failure
detection can be fine-tuned to avoid false detection almost entirely.

In the algorithm we present, this difficulty is encapsulated in the membership protocol.
When we claim that a quorum of connected processors may always totally order their mes-
sages, we implicitly require that the underlying membership protocol will not report of any
false detections. In theory, the adversary may delay messages in such a way that will cause
the membership protocol to constantly change the view. This way, the presented algorithm
can run indefinitely without ordering even a single message.

Consensus can be achieved, however, in an asynchronous system with external fault-
detectors as described in [10]. If we strengthen the model of the underlying membership
algorithm to work with external fault detectors, we can guarantee that a quorum of connected
processors will eventually succeed in ordering messages.

The algorithm is correct in both models, in the sense that it does not order messages
differently at different sites. The liveness of the algorithm (its ability to make progress),
depends on the underlying transport layer’s behavior.

4.4 Quorums and Primary Components

When the network partitions into several components, the algorithm allows a primary com-
ponent to continue ordering messages. Processors in other components may continue to send
messages but cannot agree upon their place in the total order before communicating with
members of a primary component.

We use a quorum system to decide if a group of connected processors may become a
primary component. To enable maximum flexibility we allow the quorum system to be
elected in a variety of ways (e.g. majority). We assume a predicate Quorum(S) that is
TRUE for a given subset S of the processors iff S is a quorum. The requirement from this
predicate is that for any two sets of processors S and S’ such that S NS’ = ), at most one of
Quorum(S) and Quorum(S’) holds, i.e. every pair of quorums intersect. Numerous quorum
systems that fulfill these criteria were suggested. An analysis of the availability of different
quorum systems may be found in [26].
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5 The Algorithm

We present an algorithm for guaranteed delivery and total ordering of multicast messages.
The algorithm is symmetric, all the participating processors run the same protocol.

The algorithm guarantees that all messages will eventually reach all sites, and will be
totally ordered (become green) in the same order at all sites. It always allows members of a
connected primary component to totally order messages. The algorithm is resilient to both
processor failures and network partitions.

5.1 Guaranteed Delivery

When processors fail or when the network partitions, messages are disseminated in the re-
stricted context of a smaller configuration, and are not received at sites which are members
of other components. The participating processors keep these messages for as long as they
might be needed for retransmission, i.e. until they become white. Each processor logs (on
stable storage) every message that it receives from the Transport Layer. A processor ac-
knowledges a message after it is written to stable storage. The acknowledgments (ACKs)
may be piggybacked on regular messages.

When network failures are mended and previously disconnected network components
remerge, a Recovery Procedure is invoked; the members of the new configuration exchange
messages containing information about messages in previous components and their order.
If they remain connected for sufficiently long, each processor knows exactly which messages
every other member has. They now determine which processor will retransmit which message
(in case retransmissions are needed), and the logged messages are replayed to members that
didn’t receive them beforehand.

5.2 Message Ordering

Within each component messages are ordered by the Transport Layer. The Transport Layer
supplies a unique timestamp” ( T'S) for each message when it delivers the message to COReL.
We use this order to determine the global total order. When COReL receives the message,
it writes the message on stable storage along with its TS.

When a message is retransmitted, the timestamp that was given when the original trans-
mission of the message was received, is attached to the retransmitted message, and is the
only timestamp used for this message.

Incoming messages within each component are inserted at the end of the local M@, thus
MQ reflects the order of the messages local to this component. When components merge,
retransmitted messages from other components are inserted into the queue in an order that
may interleave with local messages (but never preceding green messages).

We use the notion of a primary component to allow members of one network component
to continue ordering messages when a partition occurs. For each processor, the primary

“This timestamp is globally unique, even in the face of partitions.
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component bit is set iff this processor is currently a member of a primary component. In
Section 5.6.1 we describe how the primary component is maintained. Messages that are
received in the context of a primary component (i.e. when the primary component bit is set)
may become totally ordered according to the following rule:

Order Rule 1 Members of the current primary component PM are allowed to totally order
a message (in the global order) once the message was acknowledged by all the members of

PM.

Note: Messages may become green by Order Rule 1 in contradiction to the TS order
(with respect to causally concurrent messages in other components).

If a message is totally ordered (i.e. becomes green) at some processor p according to
this rule, then p knows that all the other members of the primary component received the
message, and have written it on stable storage. Furthermore, the algorithm guarantees
that all the other members already have an obligation to enforce this decision in any future
component using the following mechanism:

We define an intermediate, yellow, level of knowledge between the red and the green,
among members of a primary component. Yellow is not a new service level, it is only an
internal indication used by COReL. Each processor marks as yellow messages that it received
and acknowledged in the context of a primary component, and as a result, might have become
green at other members of the primary component. A processor marks a message as green
when it knows that all the other members of the primary component know that the message
is yellow. For each processor, the yellow messages are the next candidates to become green.

Yellow messages precede all the red messages in MQ, and follow all the green messages.
Thus, M@ is divided into three zones: a green prefix, then a yellow zone and a red suffix.
The last yellow message in MQ marks the yellow line; the set of messages between the
yellow and the green lines are yellow.

When components merge, members of the last primary component enforce all the green
and the yellow messages that they have before any concurrent red messages. Concurrent red
messages from distinct components are interleaved according to the TS order.

Thus, if a member of a primary component marks a message as green according to Order
Rule 1 then all the other members of the primary component have the message marked
as yellow or green. Since two primary components always intersect, in the next primary
component that will be formed there will be at least one member that is obliged to this
message (i.e. has it marked as yellow or green). This member will make sure that this
message will precede any concurrent message from a minority component.

5.3 Notation

We use the following notation:

o MQF is the MQ of processor p.
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Prefix(MQF, m) is the prefix of M QP ending at message m.

At each processor, MQ imposes an order on the set of messages in it. We denote by
P ’ /- P
m < m' the fact that m precedes m’ in MQP.

Green(MQF) is the green prefix of MQP.

We define processor p knows of a primary component PM recursively as follows:

1. If a processor p was a member of PM then p knows of PM.
2. If a processor ¢ knows of PM, and p recovers the state of ¢, then p knows of PM.

5.4 Invariants of the Algorithm

Both red and green messages are delivered to the application in an order that is consistent
with the causal partial order defined by Lamport [21]. The order of messages in M Q of each
processor always preserves the causal partial order.

Messages that are totally ordered are marked as green. Once a message is marked as
green, its place in the total order may not change, and no new message may be ordered
before it. Therefore, at each processor, the order of green messages in M @Q is never altered.
Furthermore, the algorithm totally orders messages in the same order at all sites, therefore
the different processors must agree on their green prefixes.

The following properties are tnvariants of the algorithm; they are maintained by each
step of the algorithm:

FIFO If a processor p has in its M Q a message m that was originally sent by processor ¢,

then for every message m’ that ¢ sent before m, M QP contains m’ before m.

Causal If a processor p has in its MQ a message m that was originally sent by processor
q, then for every message m’ that ¢ had in its MQ before sending m, M QP contains
m' before m.

No Changes in Green New green messages are appended to the end of Green(MQF), and
this is the only way that Green(MQF) may change.

Agreed Green The processors have compatible green prefixes: for every pair of processors
p and ¢ running the algorithm, and for every Green(MQP), (at every point in the course

of the algorithm), and every Green(MQ?), one of Green(MQF) and Green(MQ?) is
a prefix of the other.

Yellow If a processor p marked a message m as green in the context of a primary component
PM, and if a processor ¢ knows of PM, then:

1. Processor ¢ has m marked as yellow or green.
2. Prefix(MQ?, m) = Prefie(MQF,m).

In Section 6 we formally prove that these invariants hold.
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5.5 Handling Messages

CORel is event driven. Each COReL server reacts to messages as it receives them:

e When COReL receives a message from the application (a down-call):
Create a Regular Message that reflects this application message and disseminates it
among the servers using the Transport Layer®.

o When a Regular Message m is received from the Transport Layer:

— Insert m to M@, and write it on stable storage. If the primary component bit is
set, mark the message as yellow.

— Send an ACK? for m. (It is possible to piggyback the ACK on the next message
that will be sent).

— If the red service level is requested, notify the application of the new “red” mes-
sage. Note: The application does not distinguish between red and yellow mes-
sages. Yellow is not a service level, it is only an internal indication used by

CORelL.

e When an ACK is received (possibly piggybacked on a regular message):
If the primary component bit is set, try to totally order messages (i.e. mark messages
as green) according to Order Rule 1. When a message is totally ordered, notify the
application of the new green message.

e The handler for Configuration Change Messages is described in the next section.

5.6 Handling Configuration Changes

The main subtleties of the algorithm are in handling configuration changes. Faults can occur
at any point in the course of the protocol, and the algorithm ensures that even in the face
of cascading faults, no inconsistencies are introduced. To this end, every step taken by the
handler for configuration changes must maintain the invariants described in Section 5.4.

When merging components, messages that were passed in the more restricted context
of previous components need to be disseminated to all members of the new configuration.
Green and yellow messages from a primary component should precede messages that were
concurrently passed in other components. All the members of the new configuration must
agree upon the order of all past messages. To this end, the processors run the Recovery
Procedure.

8The message is not be inserted into MQ until it is delivered by the Transport Layer to COReL.

9The Stability Layer in HORUS and Transis may be used for disseminating and analyzing ACKs. COReL
may run on top of an instance of the Stability Layer, and receive an up-call whenever a message is locally
stable, i.e. acknowledged by all the members of the current configuration. In this case COReL will send the
ACK to the stability layer, and the stability layer will disseminate it.
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If the new configuration C' introduces new members, the Recovery Procedure is invoked
in order to bring all the members of the new configuration to a common state. New mes-
sages that are delivered in the context of C are not inserted into MQ before the Recovery
Procedure, and thus the FIFO and Causal invariants are not violated. The members of
C exchange state messages, containing information about messages in previous components
and their order. In addition, each processor reports of the last primary component that
it knows of, and of its green and yellow lines. Every processor that receives all the state
messages knows exactly which messages every other member has, the messages that not all
the members have are retransmitted.

In the course of the Recovery Procedure, the members agree on the green and yellow lines.
The new green line is the mazimum of the green lines of all the members; every message
that one of the members of C' had marked as green, becomes green for all the members.
The id of the last green message is sufficient to denote the set of green messages for each
processor, since the order of green messages is globally agreed (as stated by the Agreed
Green invariant).

The members that know of the latest primary component, P M, determine the new yellow
line. The new yellow line is the minimum of the yellow lines of the members that know of
PM. If some message m is red for a member that knows of PM, then by the Yellow
invariant, it was not marked as green by any member of PM. In this case if any member
had marked m as yellow, it changes m back to red. The members that determine the new
yellow line all know of the same latest primary component, and since new messages are only
marked as yellow in the context of primary components, there are no contradictions in the
yellow zones of these processors, their green and yellow prefixes are all prefixes of some agreed
order. Therefore, the id of the latest yellow message is sufficient to denote the set of yellow
messages at these processors. Note that in general, yellow zones of different processors, that
know of different primary components, are not always prefixes of some agreed global order.
A detailed description of the Recovery Procedure is presented in Section 5.6.2.

After reaching an agreed state, the members of a majority component in the network may
practice their right to totally order new messages. They must order all the yellow messages
first, before new messages, and before red messages form other components, in order to be
consistent with decisions made in previous primary components.

If for a new configuration C', Quorum(C') holds, the members of C' will try to establish
a new primary component. The algorithm for establishing a new primary component is
described in Section 5.6.1. All committed primary components are sequentially numbered
(as we prove in Claim 4). We refer to the primary component with sequential number 7 as
PM,.

In the course of the run of the configuration change handler, the primary component
bit is unset, regular messages are blocked, and no new regular messages are initiated. The
handler for configuration changes is described in Figure 1.
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Configuration Change Handler for the Configuration C:

e Unset the primary component bit.

Stop handling regular messages, and stop sending regular messages.

If C' contains new members, run the Recovery Procedure described in Section 5.6.2.

If Quorum(C') holds, run the algorithm for establishing a new primary component,
described in Section 5.6.1.

Continue handling and sending regular messages.

Figure 1: Configuration Change Handler

5.6.1 Establishing a Primary Component

A new configuration, C, is established as the new primary component, if Quorum(C') holds,
after the retransmission phase described in Section 5.6.2. The primary component is estab-
lished in a three-phase agreement protocol. In the first phase all the processors declare of
their intention to establish the new primary component. In the second phase, the members
commit to establish the new primary component, and mark all the messages in their MQ
as yellow. In the establish phase, all the processors mark all the messages in their MQ
as green. A processor marks the messages in its MQ as green only when it knows that all
the other members marked them as yellow. Thus, if a failure occurs in the course of the
protocol, the Yellow invariant is not violated.
The new primary component is established as follows:

o All the members attempt to establish C' as the new primary component.

o After receiving attempt messages from all the members, each processor commits to the
new primary component, and marking all the non-green messages in its MQ as yellow.

o After receiving commit messages from all the members, each processor establishes the
new primary component by setting the primary component bit to TRUE, and marks all
the messages in its MQ as green. (These messages should now become green according

to Order Rule 1).

o If the Transport Layer reports of a configuration change before the process is over —
the establishing is aborted, but none of its effects are undone. The primary component
bit remains unset until the next successful establish process.

Each processor maintains the following variables:

Last_Committed Primary is the number of the last primary component that this pro-
cessor has committed to establish.
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Last_Attempted _Primary is the number of the last primary component that this proces-
sor has attempted to establish. This number may be higher than the number of the
last component actually committed to, in the case of failures.

The algorithm for establishing a new primary component is described in Figure 2.

Establishing a New Primary Component
If C' contains new members, the Recovery Procedure is run first. If Quorum(C') holds all
members of a configuration C' try to establish it as the new primary component:

e Compute the number of the new primary being established:
New_Primary = max;ec(Last_Attempted_Primary;) + 1 .
The members of C' now try to establish it as PMycw_primary-

o Attempt to establish PMycw _Primary:
Set Last_Attempted_Primary to New_Primary on stable storage, and send an at-
tempt message, to notify the other members of the attempt.

e Wait for attempt messages from all members of C'. When these messages arrive, do
the following in one atomic step:

1. Commit to the configuration by setting Last_-Commitled_Primary to
New_Prvmary on stable storage.

2. Mark all the messages in the M Q that are not green as yellow.
Send a commit message, to notify the other members of the commitment.

o Wait for commit messages from all members of C', and then establish C', by setting
to TRUE the primary component bit. Mark as green all the messages in M Q.

o If the Transport Layer reports of a configuration change before the process is over —
the establishing is aborted, but its effects are not undone.

Figure 2: Establishing a new primary component

5.6.2 Recovery Procedure

If the new configuration, C', introduces new members, then each processor that delivers the
configuration change runs the following protocol:

Recovery Procedure for processor p
1. Send state message including the following information:

o Last_ Committed_Primary.
o Last_Attempted_Primary.
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e The id of the last message that p received from every processor ¢q. Note that
this is sufficient to represent the set of messages that p has, because the order
of messages in MQ? always preserves the causal order, and in particular, the
messages from each processor arrive in FIFO order.

e The id of the latest green message (green line).
e The id of the latest yellow message (yellow line).
2. Wait for state messages from all the other processors in the new configuration. The

state messages reflect the set of messages each processor had at the time of the config-
uration change.

From the state messages it can be determined which messages should be retransmitted
and which processors have these messages.

3. Compute:
Maz_Commutted = max,ec Last_Commatted_Primary,.

Denote as Representatives all the members that have Last_Committed_Primary =
Mazx_Commutted.

The Representatives advance their green lines to include all messages that any member
of C had marked as green.

The Representatives retreat their yellow lines to include only messages that all of them
had marked as yellow, and in the same order: if processor p has a message m marked
as yellow, while another member with Last_Commatted_Primary = Max_Commatted
has m marked as red, or does not have m at all, then p changes to red m along with
any messages that follow it in MQP.

4. A unique representative from the group of Representatives is chosen deterministically.

If all the members have the same last committed primary component, (i.e. all are
Representatives), go directly to Step 7, no representative needs to be chosen.

Determine the following sets of messages:

component_stable is the set of messages that all the members in the new configura-
tion have.

component_ordered is the set of messages that were ordered by every member in
the new configuration (i.e. messages that are green for all the members of ().

priority are yellow and green messages that the representative has.

5. Retransmission of priority messages:

The chosen representative computes the maximal prefix of its M@ that contains only
component_ordered messages. It sends the set of priority messages in its MQ that
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follow this prefix. For component_stable messages, it sends only the header (including
the original ACKs), and the other messages are sent with their data and original

piggybacked ACKs.

Members from other configurations insert these messages into their MQs, in the or-
der of the retransmission, following the green prefix, and ahead of any non_priority
messages.

Note that it is possible for members to already have some of these messages, and even
in a contradicting order (but in this case, not as green messages). In this case they
adopt the order enforced by the representative.

6. It Last_Commatted_Primary, < Max_Committed; do the following in one atomic
step:

o If p has yellow messages that were not retransmitted by the representative, change
these messages to red, and reorder them in the red part of MQ according to the

TS order.
o Set Last_Commaitted_Primary on stable storage to Max_Commatted.

e Set the green and yellow lines according to the representative; the yellow line is
the last retransmitted message.

7. Retransmission of red messages:

Messages that not all the members have, need to be retransmitted. Each message
is retransmitted by at most one processor; this can be determined according to any
deterministic rule. The processors that need to retransmit messages send them, with
their original ACKs, in an order maintaining the Retransmission Rule (described in

Figure 3).

Retransmission Rule If processor p has messages m and m' such that m' is or-
dered after m in p’s messages queue, then during Step 7 of the Recovery Procedure:

o If p has to retransmit both messages then it will retransmit m before m’.

o If p has to retransmit m' and another processor q has to retransmit m then p
does not retransmit m' before receiving the retransmission of m.

Figure 3: Retransmission Rule

Concurrent retransmitted messages from different processors are interleaved in MQ
according to the TS order of their original transmissions.

After receiving all of the retransmitted messages: if Primary(C') holds then the members
try to establish a new configuration. (The algorithm is described Section 5.6.1).



Note: If the transport layer reports of a configuration change before the protocol is
over, the protocol is immediately restarted for the new configuration. The effects of the
non-completed run of the protocol do not need to be undone.

It the configuration change reports only of processor faults, and no new members are
introduced, the processors need only establish the new configuration and no retransmissions
are needed. This is due to the fact that, from Property 4.2 of the Transport Layer, all the
members received the same set of messages until the configuration change.

6 Correctness Proof of the Algorithm

We now prove the correctness of the algorithm. In Section 6.1 we prove that the order of
messages in MQ of each processor always preserves the causal partial order, and thus, the
total order determined by the algorithm at each site preserves the causal partial order. We
conclude that at each site messages become both red and green in causal order.

In Section 6.2 we prove that messages are totally ordered in the same order at all the
processors. The proof is based on the order imposed on committed primary components.
We prove that if a message m is marked as green by some processor p in the context of
some primary component, then in all the later primary components, all the members will
agree with p on m’s order. In other words, every primary component preserves the order
determined by previous primary components.

Notation

We denote by p commits j the event that p, as a member of PM;, commits to PM; when
trying to establish it as the new primary component. We denote by p adopts j the event
that in Step 6 of the Recovery Procedure p sets its Last_Committed_Primary to j according
to the representative’s Last_Commatted_Primary.

We denote by C,(C') the event that processor p receives the Configuration Change mes-
sage introducing the configuration C.

The Epochs Model

The processors running the protocol may be viewed as state machines; they react to
messages that they receive by the Transport Layer. The event e(m,p) is the reaction of
processor p when it receives the message m. The event may include internal state changes
as well as transmission of messages by p.

A history of the protocol is a set of events, partially ordered by the causal partial order.
In Section 3 we define the causal order of messages motivated by Lamport’s [21] definition
of the order of events in a distributed system. We generalize the definition of causal order
to events and configurations as follows:

e The causal order of events is defined as follows:
e(m,p) == e(m/,q) if m == m’.
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e The causal order of configurations is defined as follows: Configuration C' causally

precedes configuration C' if (3p)(3q) C,(C) == C,(C").

A history is divided into epochs:

Definition:

e Anevent e(m, p) happens in epoch;(p) if e occurs when Last_Committed_Primary, =1
and e does not change Last_Commutted_Primary,.

e The event in which Last_Commaitted_Primary, is changed to ¢ is the first event in
epoch;(p). Note that Last_Committed_Primary, may change in two types of events,
when p commits ¢, or when p adopts .

We say that epoch;(p) is empty if in the history of p, Last_Committed_Primary, was
never z.

6.1 Causal Order

We first prove that the order determined by the algorithm at each site preserves the causal
partial order.

Claim 1 Messages are received at each site in an order preserving the causal partial order,
and the order of the messages in MQ of each processor always preserves the causal partial
order.

Proof: Messages are ordered at each processor’s MQ when they are first delivered to
it. This order may be altered only in the course of a configuration change protocol when a
representative of a primary component enforces its order over the TS order. The proof is
by induction on the steps of the protocol in which a message is transmitted or reordered in
MQ.

When a regular message is first transmitted to the members of the current configuration
we assume that the Transport Layer delivers it in TS order, (which preserves the causal
order), and without missing causally preceding messages (in the context of the same config-
uration). The messages are inserted into each MQ in this order.

In a new configuration, C, regular messages are sent only after the Recovery Procedure
ends, and therefore are received by each processor after all the messages that were sent in
configurations that causally precede C.

We now show that during a configuration change the order in which retransmitted mes-
sages are delivered at each site, and placed in M Q preserves causality.

We assume (by induction) that for each member p of a configuration C that receives the
configuration change message introducing C'; the order of messages in MQP preserves the
causal partial order when the configuration change occurs, and we show that this property
still holds throughout the Recovery Procedure.
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By the Retransmission Rule the retransmission order preserves the order of the messages
in M@ of the retransmitting processor. From our assumption, this order preserves the causal
partial order. Therefore, from the assumption on the transport layer, the delivery order of
retransmitted messages preserves the causal partial order.

Retransmitted messages are inserted into MQ according to the TS order with the ex-
ception of one special case: messages that are retransmitted by the chosen representative,
r, in Step 5 of the Recovery Procedure are inserted into MQ at the receiving end ahead
of non_priority messages, i.e. before any messages that r didn’t have marked as yellow or
green. This does not violate causality, since, from the inductive assumption on MQ". the
non_priority messages do not causally precede any priority message in MQ". Thus, in all
cases, retransmitted messages are inserted into M Q in causal order.

If m' % m and p reorders m to follow m’ in Step 5 of the Recovery Procedure then
the representative, r, either had m’ and not m, or m’ before m. Therefore, by the inductive
assumption on MQ", m’ does not causally follow m. O

Corollary 2 Red messages are delivered to the application in an order that preserves the
causal partial order.

Proof: Follows from Claim 1 and the fact that messages become red in the order that they
are inserted into M Q. O

Corollary 3 The total order of messages computed at each site extends the causal order.

Proof: Follows from Claim 1 and the fact that the ordered messages are a prefix of MQ.
O

6.2 Total Order

We now prove that messages are totally ordered in the same order at all the processors. The
proof is based on the order imposed on committed primary components. We prove that if a
message m is marked as green by some processor p in the context of some primary component,
then in all the later primary components, all the members will agree with p on m’s order. In
other words, every primary component preserves the order determined by previous primary
components. The proof is by induction on the committed primary components.

Claim 4 If p and q committed to primary components with number i, PM? and PM} re-
spectively, then PMY and PM} are the same.

Proof:  Assume the contrary. Since every two primary components intersect there is
a processor r that is a member of both PM] and PM}. Since both configurations were
committed to, r attempted to establish both. W.l.o.g. r attempted to establish PM! before
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attempting to establish PM/, then when trying to establish PM/, r had at least 7 as the
number of the Last_Attempted_Primary, and therefore the New_Primary suggested for the
new configuration is greater than ¢, which contradicts the assumption. O

Henceforth we will refer to primary component number ¢ as PM,;.

Claim 5 If p adopts j then there exists a processor q s.t. ¢ commits j.

Proof: A processor sets its Last_Committed_Primary to j either when committing to 7,
or when adopting from another processor that has its Last_Commztted_Primary set to j.
Therefore, there must be one processor that commits to 7, in order to start the chain. O

Claim 6 For each processor p, the value of Last_Commutted_Primary, does not decrease.

Proof: In the protocol, a processor may change its Last_Committed_Primary in two
cases:

e In Step 6 of the Recovery Procedure, when adopting the value of the representative’s
Last_Commatted_Primary. In this case the Last_Committed_Primary of p does not
decrease, otherwise p would have been chosen as the representative.

e When committing to a new primary component PM;. Assume that immediately before
committing to PM; Last_Commutted_Primary, = 1. We consider two cases:

— If p committed to 2, then before committing to PM;, p attempted ¢, therefore,
Last_Attempted_Primary, > 1 when C,(PM,) occurs.

— Otherwise, p adopted ¢z, and from Claim 5, some member ¢ of PM; has com-
mitted to PM;. Since ¢ committed to PM; all the members of PM; have at-
tempted to to establish it, and, furthermore, all the members of PM; set their
Last_Attempted_Primary to ¢ causally before any processor committed to z. Since
every two primary components intersect, there exists a processor r that is a mem-
ber of both PM; and PM;; r’s attempt to establish PM,; causally precedes the
event that p sets its Last_Commuitted_Primary to i. Therefore, when r starts to
run the Recovery Procedure in which p commits to PM;, Last_Attempted_Primary, >
2, and this is the value that r sends in the state message.

In both cases, the number 7, of the new primary that the members try to establish > .

O
Corollary 7 If events e and €' happen at p in epochs i and i’ respectively, and if 1 <1’ then

e happens before ¢'. Note: the order on e and €' is well defined since they both happen at
Processor p.
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Proof: Immediate from Claim 6. O

Claim 8 If processor p totally orders a message m according to Order Rule 1 in the context
of PM; then all the members of PM; have committed to PM;. Therefore, epoch © is not

empty for these processors.

Proof: In order to totally order m according to Order Rule 1 in the context of PM;, p has
to establish PM,; (and set to TRUE the primary component bit). Before establishing PM;,
p waits for all the members of PM; to send a commit message, therefore all the members of
PM,; have committed to PM;. O

We now proceed to the main part of the proof. In Claims 10 through 14 we prove, by
induction, that the following proposition holds in epoch;(q) for each processor ¢ and for all j:

Proposition 9 for processor ¢ in epoch j:

Assume that a message m was marked as green by some processor p,, in the context of
PM;,  according to Order Rule 1, and that i, is the first primary component in which some
processor marked m as green according to Order Rule 1. Then:

o Ifj > i, and if epoch;(q) is non-empty: q has m marked as yellow or green, and
Prefix(MQ?, m) = Prefix(M Q™ ,m) in epoch;.

o Ifj =tin, and if epoch;(q) is non-empty then starting at a certain point in epoch;(q),
q has m marked as yellow or green and Prefix(MQ?, m) = Prefix(MQF™ m).

Definition:
We say that there are no contradictions in the green zone when Configuration C' is intro-

duced if :
e For each member p of configuration C', C,,(C) occurs.

o Let Representatives be the set of members of C' with the highest Last_Commzitted_Primary
(as denoted in Step 3 of the Recovery Procedure). For each member p of C, and for
each message m that p has marked as green in M QP before C,(C) occurs:

— All the Representatives have m marked as yellow or green.

— Processor p agrees with all the Representatives on the ordered prefix of its MQ
that ends at m.

Claim 10 Assume that there are no contradictions in the green zone when the Configuration
C is introduced. Let m be a message that all the Representatives have as yellow or green and
agree on Prefix(MQ,m) when they receive the Configuration Change Message introducing
C.
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Then, at the end of Step 7 of the Recovery Procedure all the members of C' that execute
Step 7 have identical MQs, and the message order in their Prefix(MQ,m) is the same as
the order in Prefix(MQ,m) of the Representatives when C,(C) occurred. The message order
in the M Qs is not altered until the end of this instance of the Recovery Procedure.

Proof: We first show that all the members agree on a prefix of their M Qs that contains all
the messages that were marked as green by at least one of the members before this instance
of the Recovery Procedure.

Let m be a message that all the Representatives have as yellow or green and agree on
Prefix(MQ,m) when they receive the Configuration Change Message introducing C'.

In Step 3 of the Recovery Procedure all the Representatives mark m as yellow or green,
and the order of messages in their M Qs is not altered. At the end of this step, all the
Representatives agree on the prefix of green and yellow messages in their M Qs. From the
assumption, this prefix is consistent with the order in the green prefixes of all the other
members of C.

In Step 5 of the Recovery Procedure there are two cases to consider:

o If m is component_ordered, i.e. m is green for all the members of C, then, from the
assumption, all the members have identical prefixes ending at m. In this case, m is
not retransmitted, m remains green and its order isn’t altered.

e Otherwise, m (or its header) is retransmitted by the representative. Since no member
had green messages in an order that contradicts Prefizx(MQ, m) of the Representatives,
all the members adopt the order of the representatives on a prefix of their M Qs that
contains m.

In Step 6 all the members of C' mark m as green or yellow, (according to the representa-
tive’s color) At the end of this step, all the members have the same set of green and yellow
messages in their MQs, and in the same order.

We have shown that at the end of Step 6 all the members of C' that execute this step
agree on a prefix of their M Qs that contains all the messages that were marked as green by
one of the members before this instance of the Recovery Procedure. Furthermore, they agree
on the prefix of green and yellow messages in their M Qs. We now show that at the end of
Step 7 all the members of C' that execute Step 7 have identical M Qs. And indeed, before
this step they agree on the order of all green and yellow messages. During this step, all the
members retransmit all the red messages, and insert them into their M@Qs. Thus, all the
processors have the same set of red messages in their M Qs. The red messages in each MQ
are ordered according to the timestamp order of their original transmissions. Therefore, at
the end of this step, all the members of ' have identical M@Qs, and the message order is
consistent with the order in the Prefiz(MQ, m) of the Representatives when C,(C') occurred.

No new messages arrive until the end of the Recovery Procedure, and the message order
in each MQ is not altered until the end of this instance of the Recovery Procedure. O
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Claim 11 Assume that for each member p of the configuration C, C,(C) occurs (i.e. p
recetves the configuration change message introducing C), and let j be the highest value of
Last_Committed_Primary, among members of C at the time C,(C) occurs. If Proposition 9
holds for each member p of C for every epoch i < j when C,(C') occurs, then throughout this
execution of the Recovery Procedure, Proposition 9 holds for all the members of C' for every
epoch 1 < 3.

Proof: Let m be a message that was first marked as green according to Order Rule 1 in the
context of PM;, (by some processor p,,) , and assume that j > i,,. From the assumption,
all the Representatives (members with Last_Committed_Primary= j) have m as yellow
or green when they start to run the protocol, and their Prefix(MQ,m) are identical to
Prefic(MQP™ m). Therefore, in Step 3 of the Recovery Procedure, none of the members
changes m to red, and all the messages in their Prefiz(MQ,m) are yellow or green.

Furthermore, if any other member p of C' has m marked as green, then Prefiz(MQF, m) =
Prefic(MQP™ m)

In Step 5 of the Recovery Procedure there are two cases to consider:

o If m is component_ordered, i.e. m is green for all the members of €', and all the
members have identical prefixes ending at m, then m is not retransmitted, m remains
green and its order isn’t altered.

e Otherwise, m (or its header) is retransmitted by the representative in Step 5, and
marked as green or yellow (according to the representative’s color) in Step 6 of the
protocol, by every member that sets its Last_Commatted_Primary to j. No member
changes it to red at this step, and no member had it marked as green in contradicting
order. Thus, at the end of this step of the Recovery Procedure all the members have
m as yellow or green and their Prefiz(MQ,m) are identical.

We have shown that m is not changed to red by any of the members of C' in the course of
the Recovery Procedure. Therefore, if for a processor p, Last_C'ommatted_Primary, > i,
when p started to run the protocol, Proposition 9 still holds for p at any point in the course
of the protocol.

It is now left to show for the case that Last_C'ommaitted_Primary, is initially smaller
than 2,,, but is changed in the course of the protocol. In this case, p adopts j in Step 6 of
the Recovery Procedure.

And indeed, if p sets its Last_Commzitted_Primary to j on stable storage in Step 6 of
the protocol, then, from the discussion above p had already received m before Step 6 of
the protocol, and in Step 6, p marks it as green or yellow, according to its color at the
representative, and adopts the order of messages in Prefix(MQ,m) of the representative,
when changing its Last_Committed_Primary to j.

Every processor that reaches the end of Step 6 of the Recovery Procedure, has its
Last_Committed_Primary> t,,, and has m marked as yellow or green, and its Prefizt(MQ,m)
is identical to Prefix(MQP™ m). This is not altered in later steps of the protocol. O
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Claim 12 If at a certain point in epoch;(q), g has m marked as yellow or green and
Prefix(MQ?,m) = Prefix(MQP™ m), then Proposition 9 holds for q in epoch;, i.e. this
property is not altered in later steps of the protocol.

Proof: The color of messages may change from yellow to red only in the course of the
Recovery Procedure, and the order of messages in MQ may only be altered in the course
of the Recovery Procedure. Therefore, it is sufficient to show that Proposition 9 is invariant
under the Recovery Procedure, .e. that if it holds for all the members when they start to
run the Recovery Procedure, then it also holds for all the members throughout the execution
of the Recovery Procedure.

If not all the members of C receive the configuration change message introducing C, then
not all the members of €' run the Recovery Procedure, therefore the other members of C'
receive another configuration change message without going past Step 2 of this instance of
the protocol. In this case, no messages are changed to red and the M Qs are not altered.

Therefore, we may restrict our discussion to instances of the Recovery Procedure for
configurations € s.t. all the members of C receive the configuration change message that
introduces C'. The conclusion in this case is derived from Claim 11. O

Claim 13 If Proposition 9 holds for all the processors in every epoch k s.t. k < j, and if q
commits j, then Proposition 9 holds for q in epoch j.

Proof: If ¢ commits j then ¢ is a member of PM;, and all the members of PM; have
attempted to establish it, therefore all of them received the Configuration Change message
introducing PM;, and all of them reached the end of Step 7 of this instance of the Recovery
Procedure.

Let k be max,epn; Last_Committed_Primary, when C,(PM;) occurs. For every mes-
sage m that one of the members p has green, there exists a first primary component PM;  in
the context of which m was marked as green according to Order Rule 1, and 7,, < k. From
the assumption, all the Representatives (members with Last_Committed_Primary = k)
have m marked as yellow or green, and agree with p on Prefie(MQ,m). Therefore, there
are no contradictions in the green zone when PM; is introduced.

Let m be a message that was first marked as green (according to Order Rule 1) in the
context of PM; by some processor p’. We first show that at a certain point in epoch;(q),
q has m marked as yellow or green and Prefic(MQ? m) = Prefic(MQP™ m). We consider

three cases:

o If 5 > 1, since every two primary components intersect, there exists at least one
processor that is a member of both PM; and PM;  and from Claim 8, this processor
committed to PM;,_, therefore, k > 1,,.

m )

Let Representatives be the following set:
{p € PM; : Last_Committed_Primary, = k when C,(PM;) occurs }.
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From the assumption Proposition 9 holds for all the representatives in k, thus, Propo-
sition 9 holds for them when C,(PM;) occurs. Therefore, all the representatives have
m marked as yellow or green and the prefixes of their M Qs that end at m are identical
when C,(PM;) occurs. Furthermore, none of the other members have green messages
in contradicting order.

Therefore, from Claim 10, at the end of Step 7 of the Recovery Procedure all the
members of PM; have identical M Qs, and the message order is consistent with the
order in Prefiz(M Qp/,m) when C,(PM;) occurred. The MQs are not altered until

the end of this instance of the Recovery Procedure.

e If j =i, and some member, p, of PM; had m in its MQ when C,(PM;) occurred,
then m is marked as green by the members of PM; that establish it.

Every processor that completes the execution of this instance of the Recovery Proce-
dureand establishes PM; marks as green all the messages in its M Q. If some processor
establishes PM; then all the other members committed to 7, and marked all these mes-
sages as yellow. From the above discussion, their M Qs are identical at this point.

o We have shown that for every processor that runs this instance of the Recovery Pro-
cedure, Proposition 9 holds in the course of the run of the protocol, and when the
protocol ends.

It is left to show that if m is marked as green according to Order Rule 1 in the context
of PM; by some processor p,,, and p,, first received m in the context of PM;, then ¢
has m marked as yellow or green at some point in epoch j and Prefie(MQF™, m) =
Prefie(MQ?,m). And indeed, if p,, marked m as green then it received acknowledg-
ments for it from all the members of PM;, all of them received m in the context of
PM;, and therefore, marked it as yellow when receiving it. From Property 4.3 of the
Transport Layer, all the members of PM; received the same set of messages following
the configuration change and before m, and in the same order. These messages are
ordered in the M Q of each processor in the order they are received.

We have shown that in all cases, at a certain point in epoch;(q), ¢ has m marked as yellow
or green and Prefic(MQ% m) = Prefix(MQP™ m), it is left to show that this property
persists, i.e. that it is not altered in later steps of the protocol. Claim 12 concludes the
proof. O

Claim 14 Proposition 9 holds for every processor q in every epoch j.

Proof: The proof is by induction on j:

For 3 = 0, the epochg at each processor precedes committing to any primary component,
therefore for all m, ¢,, > 7 and Property 4.1 trivially holds.

We now assume that Property 4.1 holds for all the processor in every epoch k s.t. k < 7,
and prove that it holds for all the processors in epoch;. If no processor has committed to

34



PM;, then for all the processors epoch; is empty and Proposition 9 trivially holds. Otherwise,
let ¢ be a processor s.t. epoch;(q) is non-empty. There are two cases to consider:

o If ¢ commits j - then from Claim 13, Proposition 9 holds for ¢ in epoch j.

e If epoch;(q) is non-empty and ¢ does not commit to j, then ¢ adopts j in the course
of a run of the Recovery Procedurefor some configuration C'. In this case, j = max,ec
Last_Committed_Primary, at the time C,(C') occurs, and ¢ adopts j in Step 6 of the
Recovery Procedure. Since g passed Step 2 of this instance of the protocol, we conclude
that for each member p of the configuration C, C,(C) occurred ( i.e. p received the
configuration change message introducing C).

Therefore, from Claim 11, Proposition 9 holds for all the members of C' for every
epoch ¢ < j, throughout this execution of the Recovery Procedure. In particular,
Proposition 9 holds at some point in epoch;(g). Claim 12 concludes the proof.

a

Corollary 15 Messages become green in the same order at all sites.

Proof: From the protocol, the order of green messages in M@ is never altered. The proof
immediately follows from Claim 14. O

7 Extensions

In this section we present two extensions of the algorithm, optimizing it for highly unreliable
networks, where a majority of the processors are rarely connected at once. We present these
extensions without full details, and without proof. We intend to further develop these ideas
in future work.

7.1 Agreeing on Total Order with Order Proposals

In networks where the communication is not reliable, it is possible that a majority component
will not be formed for a long period. This may happen even if all the processors are alive, and
messages from all of them eventually reach all the destinations. In this case, we would like
to enable the processors to totally order messages according to an alternative mechanism,
that would not require a primary component to be established.

This mechanism allows one designated processor, the source, to issue Order Proposal
messages. An order proposal prp is a suggestion to totally order a defined set of messages,
Msgs(prp). The idea to agree upon the order of a set (or cut) of messages is based on the
concept introduced in [4].



7.1.1 Initiation of an Order Proposal

The order proposals are initiated by the source and disseminated to all the other processors.
Each processor that receives the proposal votes either Accept or Reject on it, as described
below. If All_Servers vote accept on the proposal, it is applied, and Msgs(prp) are totally
ordered (marked as green). Otherwise — it is rejected.

The source initiates order proposals only when it is not a member of a quorum component;
it does not initiate a new order proposal before learning the result of its previous proposal.
The source may initiate a new proposal when it learns that its previous proposal was accepted
by all the servers, or that it was rejected by some server.

An order proposal is rejected by a processor p if p has new information about the last
committed primary component that was not known to the source when the proposal was
initiated. Therefore, an order proposal succeeds only if no primary component is formed
after the last committed primary that the source knows of (when initiating the message), by
members that didn’t yet receive the proposal.

Note that this mechanism will succeed to totally order messages only if none of the
processors actually fails, and the message is eventually propagated to all of the processors.
Therefore, relying on a single source to initiate order proposals does not affect the resiliency.

We present the concept of order proposals, and how to incorporate them into the algo-
rithm presented in Section 5. The presentation is not rigorous, and the algorithm is not
described in full detail. In the future, we intend to prepare a detailed presentation of the
subject, including a proof of correctness.

7.1.2 The Structure of an Order Proposal

The source generates Order Proposals and disseminates them to the other processors. Each
processor maintains a data structure Last_Order_Proposal that contains the last order pro-
posal that it received, and all the information that it has about votes of other processors
on the proposal. We do not go into detail in describing the accurate structure of an order
proposal. Conceptually, order proposals should contain the following information:

e A unique Proposal Id generated by the source.

o Last_Commutted_Primary,,, is the Last_C'ommatted_Primary that was known to the
source when the proposal prp was initiated.

e An ordered list of messages in the source’s yellow zone.

o A proposed Cut. The cut is a vector containing the maximal message id from each
processor that was known to the source when the proposal was initiated. When ini-
tiating an Order Proposal, prp, the source proposes to totally order the set of yellow
and red messages that it has in its M Q at the time of proposal. We denote this set by
Msgs(prp). The proposed order for red messages is the 7'S order, and the suggested
order for yellow messages is explicitly mentioned in prp.
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e The green line of the source when the proposal was initiated. (The green line is the id
of the last message that the source has green).

o A status vector containing the vote of each processor on the proposal. The vote may
take 3 values: Accept Reject or Unknown. The local status of a proposal is the vote of
this processor. When the message is initiated, the value of the source’s vote is Accept,
and all the other votes are Unknown. The message collects votes as it is propagated
to all the servers.

7.1.3 Handling Order Proposals

Upon receiving a new proposal, each processor votes on it and incorporates it into the local
data structure.
The general outline of the handler for order proposals is:

1. Check if new Proposal has the same proposal id as Last_Order_Proposal, and its local
status is not reject. If yes — incorporate new votes into the status vector. If any
processor voted reject, set the local status to reject.

Otherwise, if the new proposal is later than Last_Order_Proposal:

e Save the new message as Last_Order_Proposal, annulling any previous commit-
ment to an order proposal.

e If one of the follows happen:

— Local Last_Committed_Primary is higher than the one in the message.

— Local Last_Commuitted_Primary is the same as the one in the message, and
the message contains a yellow message that you have as red.

— The status vector contains a reject vote.

Then — reject the message: Mark the message as rejected. Send a rejection
message (the proposal message with your status as reject).

o Otherwise: Accept the message: Mark the message as accepted. Send an ac-
knowledgment (the proposal message with your status as accept).

2. If the proposal was accepted by All_Servers, reorder messages in MQ according to
the proposed order, and mark all the proposed messages as green.

7.1.4 Order Proposals and Configuration Changes

The handling of Order Proposals is incorporated in several steps of configuration changes:

e In Step 1 of the Recovery Procedure, each processor attaches to its state message the
Last_Order_Proposal that it knows of.
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e At the end of Step 2 each processor tries to handle the new order proposals. Since
the order proposals are sent outside their causal order, processors may receive a pro-
posal prp before recovering Msgs(prp), or when their Last_Committed_Primary is
smaller than Last_Commutted_Primary,,,. Each processor p responds to each new
order proposal, prp, as follows:

— If Last_Commatted_Primary, = Last_Commatted_Primary,,, and p has all of
Msgs(prp), p handles prp as described in the previous section.

— If p has ground to reject prp, it immediately sends a rejection message.

— Otherwise, p defers its acceptance until the end of the Recovery Procedure.

Note: If it is known to the members of the new configuration that All_Servers have
accepted prp, then the members of the new configuration totally order all of Msgs(prp)
before Step 3 of the Recovery Procedure.

e Each processor handles all the deferred order proposals before trying to establish a
new primary component, after Step 7 of the Recovery Procedure. A processor that
attempts to establish this primary component has already recovered all the messages
from the other servers; each processor must vote accept or reject on the proposal before
or with the attempt message.

If all the members of a newly formed primary component have accepted the last order
proposal, then they first order messages according to this proposal. In this case the
members do not immediately mark the proposed messages as green, the messages
become green only when the new primary component is established.

At the commit phase each processor already knows the votes of all the other members.
If the message was accepted by all the members of the current primary component, the
processor reorders messages in its M Q according to the proposal as part of the commit
phase. When committing to the new primary component, all the proposed messages
become yellow. When the primary component is established, all the messages become
green.

7.2 Dynamic Voting for Primary Components

The algorithm presented in Section 5 uses a quorum system to decide if a group of processors
may become a primary component. We give the user the flexibility of choosing the quorum
system. The predicate Quorum(S) is TRUE for a given subset of the processors S iff S is a
quorum. The requirement from this predicate is that for any two sets of processors S and
S such that SN S" =@, at most one of Quorum(S) and Quorum(S’) holds, i.e. every pair
of quorums intersect. Numerous quorum systems that fulfill these criteria were suggested.
An analysis of the availability of different quorum systems may be found in [26].

Many of the proposed algorithms for data replication use quorum systems of some kind,
e.g. the majority consensus algorithm [33], generalized to quorum consensus with weighted
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voting by Gifford [18]. Another example is the primary site/copy algorithms that use the
singleton quorum system, where a group is a quorum iff it contains the primary site.

The concept of quorums can be further generalized, to allow more flexibility yet. El
Abbadi et al. [14] suggest the dynamic voting paradigm for electing a primary component.
This paradigm defines quorums adaptively: when a partition occurs, if a majority of the
previous quorum is connected, a new and possibly smaller quorum is chosen. Thus, each
primary component must contain a majority of the previous one, but not necessarily a
majority of the processors. The drawback is that there can be situations where almost all of
the processors are connected, but cannot perform updates, because of the potential existence
of past surviving quorum at the processors that are down. To prevent this situation, a lower
bound may be defined on the size of primary components. Thus, majority consensus is a
private case of dynamic voting, with the minimum primary component size chosen to be -
[n/2]. In Section 7.2.1 we formally define the requirements from a dynamic quorum system,
and from a dynamic paradigm for choosing primary components. In Section 7.2.2 we show
how to modify the algorithm described in Section 5.6.1 to support dynamic quorums.

7.2.1 Requirements of a Dynamic Quorum System

A dynamic quorum system specifies for each possible group of processors, which of its subsets
can become sub-quorums. We assume a predicate Sub_Quorum(S,S’) that is TRUE for
St c S, iff S is a sub-quorum of S. We extend the definition for arbitrary sets, S and 7"
Sub_Quorum(S,T) is TRUE iff Sub_Quorum(S,T'N.S) is TRUE. Note that it is possible that
|T'| > |S], in this case the new quorum is larger than the previous one. Let Min_Quorum be
the minimum quorum size allowed in the system (determined by the user).

The requirements from this predicate are:

e For any two subsets S” and S of a set of processors S, such that SN S” = §§, at most
one of Sub_Quorum(S,S’) and Sub_Quorum(S,S") holds.

o If |T'| < Min_Quorum, then for every group S, Sub_Quorum(S,T) is FALSE.

For the algorithm to be correct, we require a total order on all the committed primary
components. When using a static quorum system, this was guaranteed by the intersec-
tion property: “every two primary components intersect”. Unfortunately, dynamic quorum
systems do not possess this property. Instead, we totally order the committed primary
components by extending the partial order defined on components that do intersect.

Let PM and PM' be two primary components. If j € PM N PM’, and j commits to
both of these primary components, then at site j one of PM and PM' is committed before
the other, w.l.o.g, PM is committed to first. We denote this relation by: PM < PM’. This
relationship is a partial order on the set of committed primary components in the system.
The requirement from a dynamic paradigm for choosing primary components is that the
transitive closure of < will be a total order. In the next section we explain how an algorithm
that satisfies this requirement may be constructed.
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7.2.2 Using a Dynamic Quorum System for Primary Components

It is possible to adjust the algorithm for establishing a primary component described in
Section 5.6.1 for dynamic quorum systems. In this version of the algorithm, each processor
needs to maintain not only the number of the latest primary component known to it, but
also the membership of this primary component. This is required because a new configura-
tion C' can become a primary component only if it contains a sub quorum of the previous
configuration. This requirement involves a delicate point: If a member p of the configuration
PM commits to PM and fails before establishing it, it cannot know if another member has
established it before disconnecting or not. Therefore, it must take both possibilities into
account when trying to establish the next primary component. To this end, if p incurs a
failure after the commit phase of the establishment protocol, it maintains two “last primary
components”: the last established primary (Last_Primary) that was valid before this run of
the protocol, and the Pending.Committed, that p committed to but did not establish. If
consecutive failures occur, Pending_Committed may include more than one configuration.

Note: Pending_Committed is non-empty for a processor p only if p receives a configuration
change message after committing to a new primary component, but before establishing it.
We expect this situation to be very rare.

Before trying to establish the new primary component, all the members must agree on
the Last_Primary and Pending_Committed that need to be considered. This should be done
in the course of the Recovery Procedure, and we do not elaborate on it in this paper.

A configuration C' may be installed as the new primary component only if:

o Sub_Quorum(Last_Primary,C).

and
o (VS € Pending_-Committed)Sub_-Quorum(S,C).

We do not go into details, nor do we prove the correctness of this algorithm in this
paper. We simply describe the concept. We intend to provide a detailed presentation of this
algorithm in the future.

8 Using COReL to Replicate Databases

The design of replicated databases involves a great deal of communication. Database servers
at different sites need to communicate constantly to reach common decisions in order to
maintain the consistency of all replica. Efficient communication services are, therefore, the
key to designing efficient replicated database systems. COReL may supply a variety of
services that require communication:

e Each transaction is initiated at one site and must be disseminated to all other sites. In
existing systems, this is mostly done per operation, each operation in the transaction
is disseminated as part of its execution.
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e In distributed databases when a transaction spans several sites the database servers at
all sites have to reach a common decision whether the transaction should be committed
or not. To this end they run an atomic commitment protocol (ACP) such as two phase
commit (2PC'). Usually, the ACP is invoked for each transaction separately.

e Replicated databases are generally considered correct if their schedules maintain one
copy serializability (1SR), this means that transactions execute at all sites in an order
equivalent to a serial execution on one copy. In order to ensure 1SR the servers at
different sites need to agree on a common order of the transactions.

Usually these tasks are performed separately, thus, several messages need to be passed
for each transaction. First, the transaction needs to be disseminated, this involves several
messages when different operations of one transaction are transmitted separately. Later an
ACP is invoked. 2PC requires two rounds of communication, and a total of O(n) messages,
where n is the number of participating sites.

It is possible to perform these tasks together, since agreement on the order of transactions
is sufficient for atomic commitment in a replicated database. The database schedulers may
be designed in such a way to guarantee that all the sites execute the same transactions in the
same order, and all have the same information for decision whether a transaction should be
committed or not. Similarly, agreeing on the order of transactions may be used to guarantee
1SR. We explicitly assume that the local database servers at the different sites are identical
deterministic state machines. Furthermore, in our approach, read only transactions execute
locally at the site they are initiated. Therefore, the database schedulers must never abort
update transactions because of conflicting read only transactions. With these assumptions,
the order imposed on transactions is sufficient to guarantee atomic commitment and 1SR, and
an ACP does not need to be invoked. In Section 8.1 we present an algorithm for replicating
database servers that fulfill these assumptions. If these assumption cannot be fulfilled, an
ACP is indeed required. In Section 8.3 we show how an ACP can be constructed on top of
CORelL.

We use COReL to disseminate transactions and agree on their order. Thus, each transac-
tion need only be multicast once. All the information needed for decisions is piggybacked on
regular messages. The volume of the communication is significantly decreased when the same
messages are used for all tasks. Furthermore, transactions may be pipelined using COReL to
achieve greater transaction throughput. COReL supports a highly available, fault tolerant
replicated database.

8.1 Replicating Database Servers

Transactions may be initiated at all sites. Transactions that update the database are rep-
resented as messages and are disseminated using COReL. A transaction may be executed
when it is totally ordered with respect to other transactions. COReL guarantees that all
transactions will reach all the processors, and will be executed in the same order.
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Read only transactions may be executed locally, immediately when they are submitted,
to increase data availability. The increased availability is achieved at the expense of slightly
limiting the correctness: Users may see a not up-to-date view of the database, e.g. if a
user issues an update transaction and later queries the database, the query may actually be
executed in the local database before the update transaction. Thus, the database will not
reflect the new update, and the user will see an old (but consistent) database state. Many
applications will prefer to tolerate this limitation on the semantics in order to increase the
availability. If this level of inconsistency is not acceptable, the application builder may chose
to disseminate the read only transactions along with the update transactions via COReL,
and execute them only when they become totally ordered. With the latter approach, no
inconsistencies are introduced, but members of minority components in the network are not
able to query the database. In the sequel, we do not elaborate on the latter approach; we
restrict our discussion to the former.

The local server at the initiating site handles the transaction as follows:

1. If the transaction is read only execute it.

2. Otherwise, pass a message with the transaction to the COReL. Do not execute it yet.
CORelL will disseminate it to all sites.

3. When COReL marks the message as green, it delivers it to the server for execution.

4. The local servers may use any one copy concurrency control mechanism to interleave
local transactions, as long as they guarantee an execution equivalent to execution of
the transactions in the order determined by COReL. In case of deadlocks, the local
servers must all make the same decision in choosing the transaction to be aborted.
These conditions are fulfilled if the local servers are deterministic state machines.

5. The local schedulers should never abort an update transaction because it conflicts with
a read only transaction.

This scheme requires transactions to be represented by messages. A common represen-
tation of transactions is as series of database operations (read/write). If the transaction
involves computation in order to decide what database operations should be executed, then
the message may contain the computing program. Often in replicated databases the appli-
cation code is also replicated, in this case a transaction may be represented by a program
name (or several programs) that need to be run, and a list of parameters. Each site runs
the program locally. Modern database systems support this option with a mechanism called
stored procedures. A stored procedure is an implementation of application logic that is run
by the database server. Stored procedures support an object-oriented design of database
systems: the methods for each object are stored procedures. The objects are accessed only
through the defined methods.

Viewing each transaction as a single message is not actually necessary. The same mech-
anism may be used for dissemination of single operations, or parts of transactions. As
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mentioned before, if the local servers are deterministic state machines, consistency will be
maintained. This way, interactive systems may be well supported: if a user wishes to lock
an item, an attempt for lock acquisition can be represented as one message. Since all the
messages are totally ordered, lock requests will be handled in the same order at all sites, and
therefore if a transaction succeeds to acquire a lock at one site, it succeeds to acquire it at
all the sites. The drawback of this approach is that if failures occur, sites may be blocked in
the middle of a transaction.

8.2 Synchronous or Asynchronous ?

The above algorithm best supports an asynchronous design of database systems. The trans-
action is not executed immediately, but only after it is totally ordered with respect to other
transactions. The user does not get immediate response as to whether his transaction was
committed or not, and the database is not modified yet to reflect the transaction.

The same algorithm may be used to design a synchronous application, by blocking the
user until the transaction (or the operation in case the message contains an individual oper-
ation) is totally ordered. This is generally the approach of atomic commitment protocols.

The advantage of the asynchronous approach is that users are never blocked, they can
continue to initiate transactions even in a minority configuration, where they may not execute
transactions. The disadvantage is that the user gets no response as to whether his transaction
is committed or not, and the database does not immediately reflect the change.

We can bridge the two approaches by giving the user an answer when possible, and
otherwise giving him the answer maybe.

o If the local site is a member of a primary component it is possible to reply whether the
transaction was committed or aborted within a reasonable time limit (not longer than
the delay in 2PC), and the database will immediately reflect the change. Similarly,
a user wishing to edit an item will get a response whether the lock acquisition was
successful within a reasonable time limit.

o If the server is a not member of the primary component then the user will get the
response maybe. The transaction will be executed only after the partition will be
repaired, and then it will be known whether it will commit or not. Meanwhile, the
database remains unchanged. Lock acquisitions will be blocked (or aborted).

e The members of a minority partition may construct a local partially correct view of
the database with the maybe transactions, by applying unordered (red) transactions.

This approach greatly increases the database availability especially if network partitions
are frequent. Transactions may eventually become totally ordered (green) even if their
initiator is never a member of a primary component. To decrease the blocking induced
by lock acquisitions, it is preferable to use this scheme with timestamp based concurrency
control, rather than two phase locking, as described in [33]. A description of timestamp
based concurrency control may be found in Chapter 4 in [6].
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8.3 A Distributed Commitment Protocol Based on COReL

In this section we show that total order is sufficient for atomic commitment. We show how
to construct an atomic commitment protocol (ACP) that uses COReL as a building block.
In the protocol we present a majority of connected processors is never blocked, regardless of
past failures. We know of no other ACP with this feature.

The ACP we present is constructed like 2PC, but uses totally ordered multicast instead
of point-to-point messages. The total order allows us to safely continue when partitions
occur. If two different coordinators will be elected in separate network components, and will
disseminate different suggestions for a decision (7.e. COMMIT and ABORT), these suggestions
will be received by all the sites in the same order. All the sites will decide on the first
suggestion they will receive.

In a distributed database system, each transaction, T', may span several sites. We denote
by Sites(T) the set of sites in which 7" is executed. For the sake of simplicity, we assume that
Sites(T) = All_Servers, i.e. that the COReL group consists exactly of Sites(T)!°. Every
member p of Sites(T') starts running the ACP for 7' when it receives T' for execution (or
when it receives a request to prepare to commit 7' from the initiator of 7'). Each member
votes Yes if it may commit 7', or No if 7" should be aborted. The votes are multicast to all
the members (using CORel).

If no failures occur, all the processors receive each other’s votes. The decision may be
derived from these votes (COMMIT if all the processors voted Yes, and otherwise — ABORT).
The member of Sites(T') with the smallest process id is elected as the transaction coordinator,
when it receives all the votes it disseminates a suggestion for decision using totally ordered
multicast. Every member that receives this suggestion, COMMITS or ABORTS according to
it.

If a processor receives a configuration change message (for configuration C') before re-
ceiving all the votes, a termination protocol is started. The member of Sites(T') with the
smallest process id in C is elected as the new coordinator (for this network component).
Unless cascading membership changes occur, all of the members receive the configuration
change. Each member knows if it is the new coordinator or not, so no special messages need
to be exchanged. The new coordinator disseminates a new suggestion for decision. If it
knows that all the members of Sites(1') voted Yes, the suggestion is COMMIT, and otherwise
— ABORT.

Suggestions are disseminated using totally ordered multicast, ¢.e. the green service level.
Each processor COMMITS or ABORTS according to the first suggestion that it receives. COReL
ordered multicast incurs a delay of one communication round before ordering a message. The
votes, however, do not need to be totally ordered, the red service level is sufficient. Thus, the
presented algorithm involves three communication rounds before reaching a decision. The
algorithm is described in Figure 4.

It is easy to see that this protocol fulfills the requirements of atomic commitment (as

10We do not address the case of a partially replicated database with separate replication groups for different
items in this work.
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The Atomic Commitment Protocol for processor p:
Assume that p is a member of the configuration C'.

e When the transaction 7" (or its last operation) is green and delivered by COReL, send
your vote on it.

e When votes were received from Sites(1) N C, if p is the member with the smallest
process id in the current configuration, p sends a suggestion for a decision to all the
other members. The suggestion is determined as follows:

— If votes were received from Sites(1') and if all the sites voted Yes, the suggestion
is COMMIT.

— Otherwise, the suggestion is ABORT.

o When a suggestion arrives, if it is the first suggestion received for this transaction,
decide according to it. Otherwise, ignore it.

Figure 4: The Atomic Commitment Protocol

defined in Chapter 7 of [6]):

e All the processors that reach a decision reach the same one. This is achieved by the
total order we impose on suggestions: all the sites receive the suggestions in the same
order, and decide according to the first one.

e A process cannot reverse its decision after it has reached one.
e The coMMIT decision can only be reached if all processes voted Yes.
o If there are no failures and all processes voted Yes, then the decision will be to COMMIT.

e At any point in the execution of the protocol, if all existing failures are repaired and
no new failures occur for sufficiently long, then all processes will eventually reach a
decision.

8.4 General Database Approach

We presented a novel approach for database replication based on efficient communication.
Two paradigms were suggested. The first is a paradigm for replicating deterministic state
machines, based on message ordering. With this approach, no atomic commitment protocol
is needed, and the replication is achieved efficiently.

In Section 8.3 we presented a protocol for atomic commitment based on total order. This
protocol is suitable for distributed and partially replicated database settings.

Our approach has the following advantages:

e Efficient communication, taking advantage of hardware broadcast capabilities.
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Transactions are pipelined.

The protocol incurs a low overhead.

The protocol may be implemented using a simple database server, free of communica-
tion trouble.

The delay using our algorithm is no longer than with 2PC, because we only need to
wait until all processors acknowledge the message once. (Or if an ACP is needed, it is
no longer than the delay in three phase commit).

When communication or site failures occur, a primary component of connected pro-
cessors will not be blocked.

It was shown (see [32]) that in any ACP that tolerates network partitions, there is a
time during the execution of the protocol when occurrence of communication failure
causes some sites to block. Furthermore, in 2PC up to n — 1 connected sites may be
blocked, if only the coordinator failed. With our algorithm, the primary component
service may be designed to guarantee that a majority ([n/2] connected processors) is
never blocked. This is always the case, even if in the history of the system there was
a time when a primary component did not exist. To our knowledge, no ACP with this
blocking level was previously suggested.

e When CORelL is used for transaction dissemination and ordering as well as for atomic
commitment, the processors that succeed to resolve the transaction, are also allowed
to totally order new messages (i.e. to perform updates to the database). Thus, the
database is always available to a quorum of connected processors. We know of no
previous replica control protocol with this feature.

9 Conclusions

We presented an efficient algorithm for totally ordered multicast in an asynchronous envi-
ronment, that is resilient to network partitions and communication link failures. The novelty
of the algorithm is that it always allows a majority (quorum) of connected members to to-
tally order messages. It allows members of minority components to initiate messages. These
messages may diffuse through the system and become totally ordered even if their initiator
is never a member of a majority component.

We suggested a replication service utility, COReL, implementing this algorithm, to sup-
port object replication in dynamic environments. COReL is constructed as a high-level
communication layer over a transport layer that supplies group multicast and membership
services among members of a connected network component.

We have described how COReL may be used in a replicated database setting, and how
an atomic commitment protocol (ACP) may be constructed using COReL. COReL always
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allows members of a primary component in the network to update the database, and the ACP

based on COReL always allows members of a primary component to resolve a transaction,
regardless of past events. We know of no other ACP with this feature.
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