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Abstract. We address the problem of in-network analytics for data that
is generated by sensors at the edge of the network. Specifically, we con-
sider the problem of summarizing a continuous physical phenomenon,
such as temperature or pollution, over a geographic region like a road
network. Samples are collected by sensors placed alongside roads as well
as in cars driving along them. We divide the region into sectors and find
a summary for each sector, so that their union is a continuous function
that minimizes some global error function. We designate a node (either
virtual or physical) that is responsible for estimating the function in each
sector. Each node computes its estimate based on the samples taken in
its sector and information from adjacent nodes.
The algorithm works in networks with bounded, yet unknown, latencies.
It accommodates the addition and removal of samples and the arrival and
departure of nodes, and it converges to a globally optimal solution using
only pairwise message exchanges between neighbors. The algorithm relies
on a weakly-fair scheduler to implement these pairwise exchanges, and
we present an implementation of such a scheduler. Our scheduler, which
may be of independent interest, is locally quiescent, meaning that it only
sends messages when required by the algorithm. It achieves quiescence
on every link where the algorithm ceases to schedule pairwise exchanges;
in particular, if the algorithm converges, it globally quiesces.

1 Introduction

As we enter the era of ubiquitous sensing, we have the opportunity to monitor the
world around us with unprecedented resolution and to leverage this vast wealth
of data to make our environment smarter. On-board sensors and computers in
new vehicles can sense road and traffic conditions and use this information in
route planning, smart meters enable fine-grained power usage monitoring and
can assist in demand-response in the smart grid, and cheap wireless motes that
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measure noise, light, and air pollution can be used as input into urban planning
and public health decisions.

To fully realize this vision, we must be able to process this massive amount
of data and generate meaningful summaries that can be used in planning and re-
sponse. The field of machine learning offers a range of tools for such data analyt-
ics, but these tools typically assume all data is present at a centralized location.
As this data is generated at the edge of the network at an ever-increasing rate,
transmitting the data over a long distance to a central facility is both expensive
and energy consuming, especially in wireless networks [1]. Moreover, the high
latency incurred by these long-distance transmissions may prove problematic
to time-sensitive applications. Finally, even after collecting all data, processing
it requires costly and time-consuming computation. Thus, we need distributed
solutions for in-network data analytics.

A few very recent works in the field of control theory and machine learning
have proposed distributed algorithms for data analytics, however, these works
use a näıve model of the distributed system and thus do not offer a realistic
solution for our setting. On the other hand, brute force distribution does not
work. To develop realistic distributed data-analytics tools requires both an un-
derstanding of machine learning and distributed computing.

In this extended abstract, we present a distributed data analytics technique
using a novel combined approach and illustrate it using a specific application
of in-network analytics, motivated by our work with a major automotive cor-
poration on vehicular sensor networks. The objective is to generate a compact
estimate of a continuous physical phenomenon from samples measured through-
out a region, for example, the road network in Western Europe. These samples
are collected by vehicles driving through the region as well as by fixed infras-
tructure (e.g., roadside units) with compute, storage, and local communication
capabilities. We leverage this fixed infrastructure as nodes in a distributed com-
puting platform. This infrastructure may be unreliable, and so our solution must
accommodate the arrival and departure of nodes. Moreover, the measured phe-
nomenon changes over time, hence the estimate is generated from a dynamic set
of samples. We detail our system model in Section 2.

From these requirements, we generate a formal problem definition for this ap-
plication setting. We describe how we architect this formal problem in Section 3.
Our approach is based on machine learning fundamentals, namely linear regres-
sion. Since the data is geographically distributed, care must be taken to ensure
that this formalization is amenable to a distributed solution. To achieve this, we
employ selective learning; each node learns an estimate for its local area, or sec-
tor, based on its samples and communication with its neighbors. (The division of
the region and assignment of nodes can be done with known techniques [2,3,4,5]
and is outside the scope of this paper.) We thus define an optimization problem
where each node’s estimate has to minimize some convex error function related
to collected samples, while requiring that the union of these estimates is con-
tinuous over the entire region. The continuity requirement stems from the fact
the sampled phenomenon is known to be continuous. Generating the global esti-



mate is a convex optimization problem whose objective is to minimize the sum of
the local error functions, with equality constraints that match the structure of
the network. The nodes’ estimates should converge to a global optimal estimate
once changes cease. Note that since nodes do not know when changes stop, they
must make a best effort to converge at all times. This problem structure opens
the door to a solution based on local communication. However, it still requires
multi-way coordination between all nodes sharing a sector boundary (for details
see the technical report [6]). To eliminate such costly coordination, we transform
the problem to its dual form to obtain a decomposable (unconstrained) problem
that can be solved using only pairwise coordination between neighbors. While
transforming to the dual is a common optimization technique, we have not seen
it used for this purpose before.

We then present, in Section 4, a novel, distributed optimization algorithm
for our formal problem based on the method of coordinate ascent. In general,
coordinate ascent is not amenable to distribution, and a näıve implementation
requires global synchronization and does not accommodate dynamic behavior
(see related work below). In contrast, our distributed coordinate ascent algo-
rithm deals with dynamic inputs and requires neither global information nor
synchronization.

The algorithm progresses in steps, and to schedule these steps in the dis-
tributed environment we implement a locally quiescent weakly-fair scheduler.
This scheduler executes pairwise message exchanges in a weakly-fair manner and
only when they are required by the algorithm. Unlike with standard synchronizer-
based approaches, if the algorithm ceases to schedule pairwise exchanges (i.e.,
it reaches the optimum), the scheduler achieves quiescence. This scheduler, de-
scribed in Section 5, may be important in and of itself where communication is
expensive and relaxed scheduling is sufficient.

We believe that our approach to distributed, in-network analytics without
global communication or synchronization can prove useful in many additional
settings. Section 6 concludes the paper and touches on some directions for future
research. Some formal details and more elaborate examples are given in the
technical report [6]. While, in the sequel, we consider estimation over a road
network, our approach can also be applied to estimation over a two-dimensional
region, as detailed in the technical report.

Related work. Previous work on distributed convex optimization can be di-
vided into two categories: averaging-based algorithms (based on the framework
of [7]), and sequential algorithms. Averaging-based algorithms have been pro-
posed for unconstrained convex optimization problems [7,8,9], and for constrained
convex optimization problems where all constraints are known globally [10,11]
or where constraints are purely local [11]. To satisfy the continuity constraints
in our problem formulation, these algorithms would require that all nodes know
the continuity constraints for the entire network, which induces a prohibitive
per node storage cost and a need for global information. In sequential algo-
rithms [12,13], there is a single copy of the optimization variables, and every
node has its own objective function and constraints. Both approaches require
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Fig. 1: Piecewise linear estimation in a road system. We see a junction of three roads.
(a) The roads are divided into sectors (e.g., 1, 2 and 3), each with its node. The sectors
meet at vertices (triangles). (b) The samples are shown as dots, and a curtain above
the roads shows the continuous piecewise linear estimate f .

storage for all variables at every node, which is infeasible for large networks of
the type we consider (e.g., a road network of an entire country). Furthermore,
none of these algorithms can tolerate node arrivals and departures.

In this work, we present a distributed optimization algorithm based on the
method of coordinate ascent. Coordinate ascent is an iterative method where,
in each step, a single variable is updated. The algorithm converges to the opti-
mal solution only if the order in which the variables are updated obeys certain
properties. A few recent works have proposed parallel implementations of coor-
dinate descent for solving large optimization problems [14,15]. While the update
operations occur in parallel, these implementations still require that updates
are executed in globally specified order, thus requiring centralized coordination.
They also require that the set of participating nodes does not change during the
algorithm execution. In contrast, our distributed coordinate ascent algorithm
requires no global information or coordination, and it operates correctly even if
the set of participating nodes changes.

2 System Model

We consider a finite region, for example, a road network. Sensors collect samples
in the region, each comprised of a geographic location and a value. There is
also a computing network in the region consisting of a dynamic set of nodes.
Each node may be part of a physical infrastructure, for example, a base station,
or it may be a virtual node implemented by a dynamic set of mobile agents.
Neighboring nodes are connected with bidirectional, reliable FIFO links.

We take a hierarchical approach and divide the region into a fixed set of non-
overlapping sectors. In the road network, a sector is a segment of a road, and its
end points are two vertices, as shown in Figure 1a; a single vertex may be shared
by several adjacent sectors. Each vertex has a unique ID. Each sector also has
a unique ID, and these IDs are totally ordered. Each sector is assigned at most



one node at any given time, and this node maintains a dynamic set of samples
that have been taken in its sector. Each node has a unique ID and it knows the
ID of the sector for which it is responsible. We assume a fail-stop model, i.e., a
node that fails does not recover, and its neighbors are notified of the failure. A
new node may arrive and take responsibility for the failed node’s sector. When
a node becomes active, its sample set is initially empty. Following its activation,
a node is notified of all its neighbors, and they all receive notifications of its
arrival.
Notation. We employ the following notation throughout this work:

– The set of vertices for sector i is denoted Vi, and the set of vertices for all
sectors is denoted V.

– The dynamic set3 of active (non-failed) nodes is denoted N .

– The set of active nodes whose sectors share a vertex v is called the member set
of v, denotedM(v). We say that nodes i and j are neighbors if there exists a
vertex v such that both i and j are elements of M(v).

– Each sample is represented by a tuple (x, z) where x is the distance along the
segment from the vertex with the smaller ID, and z is the value of the sample
at that location.

– The set of samples at node i is denoted Si. The dynamic set of all samples,
denoted S , is the union of the sample sets belonging to the nodes in N .

Stabilization. For the sake of analysis, we assume that the system eventually
stabilizes.

Definition 1 (Global Stabilization Time). The global stabilization time
(GST) is the earliest time after which the following properties hold: (1) no nodes
are informed of neighbor changes, (2) samples are neither added nor deleted,
and (3) the message latency of all outstanding and future messages is bounded
between δ and ∆. Nodes do not know when GST has been reached, nor do they
know δ or ∆.

Before GST (if it exists), there are no time bounds on message latency or on
notifications of neighbor set changes or sample set changes.

3 Architecting the Problem

In this section, we develop a formal problem definition that is compatible with
the system model, generates a meaningful summary of the collected samples,
and is amenable to a distributed solution that scales to the size of an immense
road network. Each node generates an estimate for its sector that is optimal with
respect to its samples, while also ensuring that the union of these local estimates
is a piecewise continuous function over the region. The global estimation prob-
lem is defined by a convex optimization problem whose objective is to minimize

3 The dynamic sets N , M(v), Si, and S are all functions of time. Since the time can
always be deduced from the context, we omit the superscript t.



the sum of the local error functions, with equality constraints that match the
structure of the network. This convex optimization problem is detailed in Sec-
tion 3.1. A distributed algorithm that addresses the problem directly requires
expensive coordination among all nodes that share a sector boundary (for ex-
ample, at an intersection). In Section 3.2 we transform the problem to its dual
form and obtain a decomposable problem that can be solved using only pairwise
communication between neighbors.

3.1 Formal Problem Definition

We define the estimate for sector i to be a real-valued function fi over the sector.
The global estimate f is the union of these individual estimates. We illustrate
our algorithm for the case where each fi is a linear function defined over a single-
dimensional road segment. Such a function is shown in Figure 1b; the estimate
f is drawn as a curtain above the roads. It is straightforward to extend our
approach to estimation with higher order polynomials, as shown in the technical
report [6].

Let u and v be the IDs of the vertices of the sector belonging to node i, with
u < v. The function fi is parameterized by the values at its vertices, denoted
θi,u and θi,v, and is given by,

fi(x; θi,u, θi,v)
∆
= (1− x/di) θu + (x/di) θv.

Here, di is the length of sector i. Define θi
∆
= [θi,u θi,v]

T, and let θ denote the
vector of all θi,u variables, i ∈ N , u ∈ Vi. Each node must generate an optimal
estimate of its sector from its samples. Specifically, each node i must determine
the values θi that minimize a convex error function. As an example, we consider
the least squares error,

Ci(θi;Si)
∆
=

∑
(x,z)∈Si

(fi(x; θi)− z)2 .

We also require that the estimates fi are continuous at the sector boundaries.
This requirement means that nodes must collaborate to perform the estimation
so that they agree on the values for shared vertices.

The problem of learning the function f after GST can be formulated as a
convex optimization problem with a global, separable objective function and
linear constraints that capture the continuity requirements,

minimize
θ

C(θ;S )
∆
=
∑
i∈N

Ci(θi;Si) (1)

subject to θi,v = θj,v, for v ∈ V, i, j ∈M(v), i 6= j. (2)

The constraints (2) state that every pair of nodes in M(v) has the same value
for vertex v, or equivalently, all nodes inM(v) learn the same value for vertex v.



These constraints ensure that the estimate is continuous within each connected
component of the network of nodes in N .

Our goal is to design a distributed algorithm for finding the values of the
parameters θ that solve the optimization problem defined above. A node i knows
only its own sample set Si and communicates only with its neighbors. Each node
is responsible for obtaining an estimate of its sector by learning values for θi.
After GST, these estimates must converge to a globally optimal estimate.

In the problem (1)–(2), all members of a vertex must agree on the value of θ
for that vertex. An algorithm that addresses the problem directly would require
that all members coordinate to maintain this constraint. In the next section, we
show that by transforming to the dual, we obtain a problem formulation that
only requires coordination between pairs of neighboring nodes.

3.2 Problem Decomposition

We now show how to transform the constrained convex optimization into its
unconstrained dual form. We note that, typically, one transforms a problem
to its dual because the dual can be solved in a more computationally efficient
manner in a centralized setting. Our use of the dual is unconventional; we use the
dual problem because it opens the door to a distributed solution with reduced
communication costs.

Given a constrained optimization problem, the dual problem is formed by
defining the Lagrangian, where the constraints are incorporated into the objec-
tive function. The Lagrangian for (1)–(2) is,

L(θ, λ;S ) =
∑
i∈N

Ci(θi;Si) +
∑
v∈V

∑
i,j∈M(v),i6=j

λvi,j (θi,v − θj,v) . (3)

Here, each equality constraint θi,v = θj,v in (2) is assigned a Lagrange multiplier
λvi,j ∈ R. The dual function is then defined as follows,

q(λ;S )
∆
= inf

θ
L(θ, λ;S ), (4)

where λ denotes the vector of all Lagrange multipliers.
In our case, (4) can be decomposed as a sum over the nodes in N . Let λi

denote the vector of Lagrange multipliers associated with a constraint involving
a component of θi. We can rewrite q as q(λ;S ) =

∑
i∈N qi(λi;Si), where each

function qi is

qi(λi;Si)
∆
= inf

θi
Ci(θi;Si) +

∑
v∈Vi

 ∑
j∈M(v),j 6=i

sgn(j − i)λvi,j

 θi,v. (5)

The function sgn(j− i) returns 1 if i < j and returns -1 otherwise. The function
qi depends only on information local to node i, specifically, Si and the location
of of the vertices of sector i. Therefore, given λi, each node i can solve for



qi independently. For the least squares error cost function, (5) is a quadratic
minimization problem (over θi) and thus can be solved analytically. The full
expression for qi is given in the technical report [6].

The dual problem is

maximize
λ

q(λ;S ) =
∑
i∈N qi(λi;Si). (6)

For a square error minimization of the form (1)–(2), strong duality holds (see
[16]). Therefore, the solution to (6) gives the solution to the primal problem,

θ̂ = argminθ L(θ, λ̂;S ).
We note that each Lagrange multiplier λvi,j appears in both λi and λj since

node i and node j share the vertex v. Therefore, the objective in (6) is not
separable over the nodes in N . While the nodes can solve (5) independently
for a given vector λi, the dual problem contains pairwise dependences between
neighbors, and so the nodes must collaborate to find the optimal λ̂.

4 Distributed Algorithm

We now present our distributed algorithm for generating the optimal estimate
defined in the previous section. Our algorithm is based on the coordinate ascent
method for nonlinear optimization [17,18]. We briefly review this method in
Section 4.1. We then describe the details of our algorithm in Section 4.2 and
sketch its correctness in Section 4.3. Formal proofs are given in the technical
report [6].

4.1 Preliminaries - The Method of Coordinate Ascent

Consider an unconstrained optimization problem

x̂ = argmax
x∈Rm

h(x1, x2, . . . , xm).

The method of coordinate ascent is an iterative optimization algorithm that
proceeds as follows. Let x(k) = [x1(k) . . . xm(k)] be the vector of the values in
iteration k. The algorithm begins with an initial x(1). In each step k, a coordinate
i is selected, and xi(k) is updated by finding its maximum while all other values
of x(k) are fixed. The update step is,

xi = argmax
ξ∈R

h(x1(k), . . . xi−1(k), ξ, xi+1(k), . . . , xm(k)) (7)

x(k + 1) = [x1(k) . . . xi−1(k) xi xi+1(k) . . . xm(k)]. (8)

We note that it is possible that the execution of an update step may not result
in any change to x (i.e., x(k + 1) = x(k)) if the selected coordinate is already
optimal with respect to the rest of x(k).

The convergence of the above algorithm depends on the properties of h and
the order in which the coordinates are evaluated: an arbitrary update order may
not converge. In this paper, we consider the essentially cyclic policy [19], which



states that there exists a constant integer T > 0, such that every coordinate i ∈
{1, . . . ,m} is chosen at least once between the rth iteration and the (r+T −1)th

iteration, for all r. The following theorem gives the relevant convergence result
for the method of coordinate ascent with an essentially cyclic policy (see [17,19]).

Theorem 1. Let h(x1, . . . , xm) be a concave function that is strictly concave
in each xi when the other variables xj , j 6= i are held constant, and let h have
continuous first partial derivatives. If the coordinate update policy follows an
essentially cyclic order, then the algorithm (7)–(8) converges to an optimal so-
lution. Furthermore, if the algorithm executes a cycle of updates, where each
coordinate is evaluated at least once, and no evaluation results in a change to x,
then the algorithm has found an optimal solution.

The objective in (6) is concave, has continuous first partial derivatives, and
is strictly concave in each λvi,j when the other values of λ are fixed. So, we can
solve this problem using the method of coordinate ascent. We next present a dis-
tributed algorithm, based on coordinate ascent, that solves the dual problem (6).

4.2 Distributed Optimization Algorithm

In our distributed algorithm, each node i stores its set of samples Si, a list of
its current neighbors, and its Lagrange multipliers λi. Per the problem decom-
position, a coordinate λvi,j appears in two vectors, λi and λj . Here, each λvi,j is a
shared variable, and in the distributed algorithm, and nodes i and j each store
a copy of λvi,j . The goal is for nodes to converge to the optimal values for their
shared variables, thus solving the dual problem (6).

To implement a distributed version of coordinate ascent for this dual problem,
every pair of nodes i and j that share a coordinate λvi,j must collaborate to update
their shared variables for λvi,j , and the distributed algorithm must execute these
pairwise updates in an order that guarantees convergence. We now show that a
coordinate update can be performed with a pairwise message exchange, where
each message contains two coefficients.

Distributed Coordinate Update For an update of the shared variable λvi,j ,
its new value γ depends only on the dual functions for nodes i and j,

γ = argmax
λv
i,j

q(λ;S ) = argmax
λv
i,j

(
qi(λi;Si) + qj(λj ;Sj)

)
.

The value of γ is the root of the equation
∂

∂λv
i,j

(qi + qj) = ∂
∂λv

i,j
qi + ∂

∂λv
i,j
qj = 0.

To find this value, each node sends information about its partial derivative to
the other. For the least square error cost function, this information can be encap-
sulated in two coefficients αvi and βvi . The values of these coefficients are given
in the technical report [6]. After exchanging these coefficients, each node then
independently computes γ = −(βvi +βvj )/(αvi +αvj ) and updates its copy of λvi,j .

The values of the αvi and βvi are determined by the node’s samples and the
values of its other shared variables. These shared variables, in turn, depend on



additional shared variables with other nodes. For the coordinate update step to
be performed correctly, both nodes involved in the update must compute their
coefficients using a consistent shared state.

Scheduler Each node determines which coordinates should be updated by de-
tecting which of its shared variables are not optimal with respect its current
state, and it schedules pairwise exchanges on the corresponding links. Our al-
gorithm relies on a weakly-fair scheduler (implemented in Section 5) as a black
box to implement the pairwise message exchange on scheduled links. We give the
specification for the scheduler below, followed by the details of our distributed
algorithm execution.

The scheduler provides a notify(j) function by which a node i schedules a
pairwise message exchange on a link (i, j) to update the shared variable λvi,j .
It provides functions addNeighbor(j) and delNeighbor(j) for indicating when a
neighbor has been added or removed, and it provides a getLink() function by
which a node requests a neighbor for a pairwise message exchange. The node
sends messages directly to its neighbor, and the scheduler receives incoming
messages. The scheduler provides the function deliver(j) by which a calling
node delivers a message from node j. If j fails, the scheduler delivers the token
fail.

We assume that the algorithm is notified on the addition or removal of a
neighbor and invokes the appropriate function on the scheduler, addNeighbor or
delNeighbor. We also assume that the algorithm executes the following infinite
loop, with only non-blocking operations interleaved (as in our algorithm):

while true do
j ← scheduler.getLink()
send(j,msg1)
msg2 ← scheduler.deliver(j)

In this loop, a node requests the ID of neighbor, and it then exchanges
messages with that neighbor. The scheduler must execute this message exchange
atomically and provide some weak degree of “fairness” in executing scheduled
exchanges. We now make these requirements precise.

We define a step of the distributed algorithm to be the delivery of a message
at a single node. Without loss of generality, we assume that no two steps are
executed concurrently. An execution of the distributed algorithm is a sequence
of steps. We associate the invocation scheduler.notify(j) by a node i with the
most recent step s that resulted in a message delivery at node i. In this case we
say that the update of link (i, j) was scheduled in step s.

Definition 2 (Weakly-fair scheduler). A scheduler is a weakly-fair sched-
uler if it guarantees the following for an algorithm that respects the above as-
sumptions:

1. Every message is returned by scheduler.deliver at most once.

2. If scheduler.deliver(j) returns message m at time t then, if m is fail, j
is failed at time t. If m is not fail, then m was previously sent by j.



3. If node i invokes scheduler.notify(j), and neither i nor j fail, then eventu-
ally i completes scheduler.deliver(j) and j completes scheduler.deliver(i).

4. Let s be the last step before GST. There exists a bound B such that, if a
node i invokes scheduler.notify(j) at step s, then if i does not fail, i com-
pletes scheduler.deliver(j) by step max(s, s) +B, and if j does not fail, j
completes scheduler.deliver(i) by step max(s, s) +B.

Algorithm Execution Each node is responsible for detecting when one of
its shared variables is not optimal with respect to its sample set and other
shared variables. A shared variable requires an update whenever a sample is
added or deleted, a shared variable is added or removed, or any other shared
variable is updated by pairwise exchange with another node. When one of these
events occurs, the node schedules an update for that shared variable by invoking
scheduler.notify.

A separate thread at each node handles the scheduled updates of shared vari-
ables, one at a time. In an infinite loop, the process requests a node ID from
the scheduler by invoking scheduler.getLink, and it performs a pairwise mes-
sage exchange with that node, e.g., node j. It sends its coefficients (as specified
above) to j, and it delivers coefficients from j with scheduler.deliver. The
node then updates its shared variable with j using the coefficients contained in
the messages. If j fails before sending its coefficients, then the scheduler even-
tually delivers fail, and the node does not update the shared variable. The
pseudocode for the distributed algorithm is given in the the technical report [6].

4.3 Proof Sketch of Algorithm Convergence

We now sketch the convergence proof for our distributed algorithm with a
weakly-fair scheduler. The lemmas and theorem stated here are proven in the
technical report [6].

We first show that, after GST, the distributed algorithm with a weakly-fair
scheduler simulates the execution of the centralized coordinate ascent algorithm
on the dual problem in (6). We define a mapping F between the state of the
distributed algorithm and the state of the centralized algorithm; for a given state
of the distributed algorithm at step t, F returns a state where the value of each
coordinate λvi,j in λ is the value at the first node to update the shared variable
for λvi,j in the most recent (possibly incomplete) pairwise exchange.

Lemma 1. After GST, the algorithm simulates the centralized coordinate ascent
algorithm, under the mapping F .

Next we show that any execution C of the centralized algorithm that is generated
under the mapping F from an execution of the distributed algorithm is equivalent
to an essentially cyclic execution of the centralized coordinate ascent algorithm.
The key to this result is the observation that, at a step s in the distributed
execution, if a shared variable is not scheduled for update at any node, then its
value is optimal with respect to the values of the other shared variables at step



s. This means that in the mapped step of centralized execution, the value of
the corresponding value of λvi,j is also optimal with respect to the rest of λ. The
weakly-fair scheduler guarantees that, after GST, all shared variables that are
scheduled for update in step s of the distributed algorithm will be updated by
in at most B steps after s (in both the distributed and the mapped centralized
executions). Therefore, we can create an equivalent, essentially cyclic centralized
execution (whose cycle length depends on B) by adding empty update steps for
unscheduled shared variables. This result is formally stated in the following
lemma.

Lemma 2. Let D be an execution of the distributed algorithm starting after

GST, consisting of the steps {d1, d2, d3, . . .}, and let C
∆
= {c1 = F(d1), c2 =

F(d2), c3 = F(d3), . . .} be the corresponding execution of the centralized algo-
rithm. Then, there exists an essentially cyclic centralized execution C, that is
equivalent to C, i.e., C contains exactly the same non-empty updates as C, and
these updates are executed in the same order.

Lemmas 1 and 2 show that the shared variables mapped under F converge
to an optimal solution. What remains is to show that the other shared variables
converge to the same solution. This result follows directly from the definition of
a weakly-fair scheduler (Definition 2). We therefore conclude that the algorithm,
run with a weakly-fair scheduler, solves the dual problem.

Theorem 2. If the scheduler is weakly-fair, then, after GST, the algorithm con-
verges to an optimal solution of the dual problem in (6).

Since we have convergence in the dual, each node’s estimate of θi converges to
the optimal solution of the primal problem in (1)–(2). We note that, if at a time
t after GST, no shared variable is scheduled for update, then every coordinate
is optimal with respect to the values of the other coordinates, and thus, the
algorithm has found an optimal solution.

5 Locally Quiescent Scheduler

Our algorithm, described above, requires a weakly-fair scheduler to order com-
munication. A naturally appealing approach for such a scheduler is to use a self-
stabilizing edge-coloring [20] or other synchronizer-based methods. However, this
kind of approach would require the continuous exchange of messages to maintain
the synchronization pulses, and these control messages would be sent regardless
of whether the algorithm needed to exchange information over the links (unless
some external mechanism were used to terminate the synchronizer). Further-
more, before GST, when the network is changing, the resulting schedule might
lead to deadlock, which would also require an external mechanism to break.

To complement our novel optimization algorithm described above, we propose
here a weakly fair scheduler implementation that we call a locally quiescent
scheduler. This scheduler is deadlock-free, even before GST, and it only sends
messages on a link if the algorithm schedules an exchange for that link. After
the algorithm stops scheduling updates, no messages are sent on any link.



Algorithm 1: Locally quiescent scheduler at node i.

1 state
2 requestQueue, initially empty
3 notificationQueue, initially empty
4 msgBuffer : N→ msg ∪ {⊥, fail}
5 notified, initially ∅

6 function notify(j)
7 if min(i, j) /∈ notified then
8 notified← notified∪ {min(i, j)}
9 if i < j then

10 push(notificationQueue, j)
11 else
12 send(j, notify)

13 function getLink()
14 while true do
15 if requestQueue not empty

then (slave)
16 return pop(requestQueue)
17 else if notificationQueue not

empty then
18 return

pop(notificationQueue)

19 function deliver(j)
20 wait until msgBuffer(j) 6= ⊥
21 msg← msgBuffer(j)
22 msgBuffer(j)← ⊥
23 return msg

24 function addNeighbori(j)
25 no op

26 function delNeighbori(j)
27 notified← notified \ {j}
28 msgBuffer(j)← fail

29 on recvi(j,msg)
30 msgBuffer(j)← msg
31 if j < i then (j is the master)
32 notified← notified \ {j}
33 push(requestQueue, j)

34 on recvi(j, 〈notify〉)
35 push(notificationQueue, j)

The scheduler assigns a master node and slave node to each link; the node
with the smaller ID is the master. Note that each node may act as a slave for
some links and as a master for others. Whenever the algorithm schedules an
exchange on a link, it calls the scheduler’s notify function, which either places
the link in the node’s notificationQueue (if it is the master), or sends a notify
message to the master of that link (if it is the slave). In this case, when the
master receives the notify message, it places the link in its notificationQueue.

We now explain how the scheduler executes a pairwise message exchange for
a scheduled link. Consider a link (i, j), where i is the master and j is the slave.
When the master asks for a link with getLink, its scheduler processes the next
entry in its notificationQueue and returns a neighbor j. The master proceeds
by sending a message to the slave, invoking deliver(j), and blocking until the
message from j is delivered. While the master is blocked, its scheduler queues
incoming notifications and requests from masters on other links. When the slave
receives the message from the master, its scheduler buffers the message in its
msgBuffer and registers it in its requestQueue. Once getLink returns the ID of
the master, the slave sends its message to the master and delivers the master’s
message to it. The slave’s call to deliver returns instantly since the message
from the master is already in its scheduler’s buffer. Once the slave’s message
arrives, the deliver call at the master returns the message, and the pairwise
exchange is complete. The scheduler is given in Algorithm 1.

The following theorem states that the scheduler is weakly-fair. The result
follows from the fact that scheduled updates are handled in the order that the



notifications arrive at the master and nodes only wait on their slaves. The master-
slave relationship assignments follow the total order of node IDs, prohibiting a
deadlock due to cycles. A formal proof is given in the technical report [6].

Theorem 3. The locally quiescent scheduler is a weakly-fair scheduler.

We note that our locally quiescent scheduler only sends messages on a link
in response to an invocation of notify for that link by the algorithm. After the
algorithm stops scheduling updates, no messages are sent on any link.

Observation 1 If a link is not scheduled by the algorithm, the scheduler sends
no messages on the link. Therefore, if the algorithm ceases to schedule links, the
scheduler achieves quiescence.

6 Conclusion

We have presented a distributed algorithm for estimating a continuous phe-
nomenon over a geographic region based on samples taken by sensors inside the
region. While a straightforward solution to this problem would require expen-
sive coordination among groups of nodes, we have shown how to decompose the
problem so that the algorithm requires only pairwise communication between
neighbors. We have then provided a novel, distributed implementation of coor-
dinate ascent optimization that solves this estimation problem. Our algorithm
accommodates the addition and removal of samples and the arrival and depar-
ture of nodes, and it converges to a globally optimal solution without any global
coordination or synchronization. The algorithm relies on a weakly-fair scheduler
to implement pairwise exchanges, and we have presented an implementation of
such a scheduler. Our scheduler only sends message when the algorithm indi-
cates that there are updates to perform, and if the algorithm finds the optimal
solution, the scheduler achieves quiescence.

This work demonstrates the benefits and power of distributed selective learn-
ing, where agents cooperate to calculate a global optimum, while each of them
learns only a part of the solution. These results call for future work, studying
the possibility of relaxing the communication patterns even further and extend-
ing the algorithm to other optimization problems with different objective func-
tions and constraints, for example, estimation of non-continuous phenomena and
tracking of phenomena that change over time.
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