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1 Introduction

Theoretical evaluation of performance, availability, and reliability of distributed algorithms is always based
on models and metrics that make some simplifying assumptions. Making such assumptions is necessary in
order to have simple abstractions for reasoning about algorithms. However, such assumptions often lead to
models, metrics, and analyses that fail to capture important aspects of actual system behavior. Formulating
realistic system models and metrics is important, since distributed algorithms and systems are often designed
to optimize over such metrics.

One example is time complexity metrics. The typical theoretical metric used to analyze the running time
of distributed algorithms is the number of communication rounds the algorithm performs, or the number of
message exchange steps in case of a non-synchronous system (e.g., [20, 14, 15]). In Section 3, we illustrate
the weakness of this metric.

Another example is reliability metrics. In [13], we highlight the fact that fault tolerant algorithms are
often designed under the assumption that no more than t out of n processes or components can fail. This
characterization of failures implicitly assumes that the probability of a component failing while a protocol is
in progress is independent of the duration of the protocol; that all components that can fail have an identical
probability of failure; and that failure probabilities of different components are mutually independent. These
assumptions do not adequately reflect the nature of real-world network environments. In practice, the
likelihood of t failures occurring while a protocol is running is highly dependent on the protocol’s duration.
Thus, while consensus protocols that execute more rounds can tolerate more faults, the occurrence of more
faults with such protocols is also more likely, which can lead to reduced system availability or reliability, as
observed, e.g., in [3, 11].

2 Research Goals

Our goal in the Dalgeval (distributed algorithm evaluation) project is to develop realistic ways to evaluate
distributed algorithms. We hope that focusing on the “right” metrics will lead to the design of more
effective distributed algorithms and systems. Our research approach combines a range of research techniques:
gathering of data [4], empirical evaluation [4, 15], and simulation [11, 17], as well as theoretical modeling and
analysis [5, 6]. We believe that these techniques complement each other, and when used together can lead
to more effective results. E.g., obtaining data on how real environments behave can lead to more realistic
theoretical system models and more accurate simulations. However, the transition from data to models is
not easy; having gathered data about real systems, it is still challenging to find ways to model this data so
it will be easy to reason about.

Another important research effort focuses on obtaining data about how distributed algorithms behave in
realistic environments, and then analyzing the data to identify the factors that affect distributed algorithms’
performance and availability, and how these factors come into play. Such experiments can teach us which
aspects of system behavior are important and ought to be captured in a theoretical system model or metric,
and which aspects have little impact and therefore can be simplified out. We give one example of such a
research effort in the Section 3.
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3 Example: Evaluating the Running Time of a Communication

Round over the Internet

It is challenging to predict the end-to-end performance a distributed algorithm would achieve when run over
TCP/IP in a wide-area setting. It is also not obvious to determine which algorithm would work best in a given
setting. E.g., would a decentralized algorithm outperform a leader-based one? Answering such questions
is difficult for a number of reasons. Firstly, performance prediction is difficult because end-to-end Internet
performance itself is extremely hard to analyze, predict, and simulate [8]. Secondly, end-to-end performance
observed on the Internet exhibits great diversity [18, 22], and thus different algorithms can prove more
effective for different topologies, and also for different time periods on the same topology. Finally, different
performance metrics can be considered.

In [4], we look at the running time of a communication round over the Internet. We consider a fixed set of
hosts engaged in a distributed algorithm. A communication round is essentially a black box that propagates
information from potentially every host to every other host. Every round is initiated at some host, called
the initiator. We consider the following four common implementations of a communication round:

• all-to-all , where the initiator sends a message to all other hosts, and each host that learns that the
algorithm has been initiated sends messages to all the other hosts. This algorithm is structured like
decentralized two-phase commit, some group membership algorithms (e.g., [15]), and the first phases
in decentralized three-phase commit algorithms, (e.g., [21, 10]).

• leader , where the initiator acts as the leader. In this algorithm, the initiator sends a message to
all hosts, and all other hosts respond by sending messages to the leader. The leader aggregates the
information from all the hosts, and sends a message summarizing all the inputs to all the hosts. This
algorithm is structured like two-phase commit [9], and like the first two of three communication phases
in three-phase commit algorithms, e.g., [21, 12].

• secondary leader , where a designated host (different from the initiator) acts as the leader. The initiator
sends a message to the leader, which then initiates the leader-based algorithm. This algorithm structure
is essentially a spanning tree of depth one, with the secondary leader being the root and all other hosts
being leaves.

• logical ring , where messages propagate along the edges of a logical ring. This algorithm structure
occurs in several group communication systems, e.g., [1].

Using the typical theoretical metric that counts message exchange steps, we get the following overall running
times: 2 communication steps for the all-to-all algorithm; 3 for the leader algorithm; 4 for secondary leader;
and 2n − 1 steps for the ring algorithm in a system with n hosts.

In [4] we evaluate these four algorithms over the Internet. Our experiments span ten hosts, at geograph-
ically disperse locations – in Korea, Taiwan, the Netherlands, and several hosts across the US, some at
academic institutions and others on commercial ISP networks. The hosts communicate using TCP/IP. In
contrast to what the communication step metric suggests, we observe that in certain settings the secondary
leader algorithm achieves the best overall running time, while all-to-all often has the worst performance.
The running time of ring was usually less than double the running times of the other algorithms.

Why does the communication step metric fail to capture the actual algorithm behavior over the Internet?
Firstly, not all communication steps have the same cost, e.g., a message from MIT to Cornell can arrive
within 20 ms., while a message from MIT to Taiwan may take 125 ms. Secondly, the latency on TCP links
depends not only on the underlying message latency, but also on the loss rate. If a message sent over a
TCP link is lost, the message is retransmitted after a timeout which is larger than the average round-trip
time on the link. Therefore, if one message sent by an algorithm is lost, the algorithm’s overall running time
can be more than doubled. Since algorithms that exchange less messages are less susceptible to message
loss, they are more likely to perform well when loss rates are high. This explains why the overall running
time of all-to-all is miserable in the presence of lossy links. Additionally, message latencies and loss rates
on different communication paths on the Internet often do not preserve the triangle inequality [19, 15, 2],
because routing policies at Internet routers often do not choose the best possible path between two sites.
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This explains why secondary leader can achieve better performance by refraining from sending messages on
very lossy or slow paths.

One general lesson from our study is that some communication steps are more costly than others. E.g.,
it is evident that propagating information from only one host to all other hosts is faster than propagating
information from every host to each of the other hosts.

We suggest to refine the communication step metric as to encompass different kinds of steps. One cost
parameter, ∆1, can be associated with the overall running time of a step that propagates information from
all hosts to all hosts. This step can be implemented using the most appropriate algorithm for the particular
setting where the algorithm is deployed; the results of the study in [4] can help choose the most appropriate
algorithm. A different (assumed smaller) cost parameter, ∆2, can be associated with a step that propagates
information from one host to all other hosts. Another cost parameter, ∆3 can be associated with propagating
information from a quorum of the hosts to all the hosts1, etc.

This more refined metric can then be used to revisit known lower and upper bound results. E.g., [14]
presents a tight lower bound of two communication steps for failure-free executions of consensus in practical
models. Under the more refined metric, the lower bound is 2∆1, whereas known algorithms (e.g., [16, 7])
achieve running times of ∆2 +∆3.

4 Conclusions

Gathering data about Internet characteristics in general, and the behavior of distributed algorithms over the
Internet in particular, is extremely important. Such data can be at the basis of more realistic theoretical
complexity metrics, and can lead to more effective design of distributed algorithms and systems. We have
described a research effort that studies one aspect of distributed algorithm behavior over the Internet; others
are yet to be explored.
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