
Evaluating the Running Time of
a Communication Round over the Internet∗

Omar Bakr
MIT

ombakr@mit.edu

Idit Keidar
The Technion and MIT
idish@ee.technion.ac.il

ABSTRACT
We study the running time of distributed algorithms de-
ployed in a widely distributed setting over the Internet using
TCP. We consider a simple primitive that corresponds to a
communication round in which every host sends information
to every other host; this primitive occurs in numerous dis-
tributed algorithms. We experiment with four algorithms
that typically implement this primitive. We run our experi-
ments on ten hosts at geographically disperse locations over
the Internet. We observe that message loss has a large im-
pact on algorithm running times, which causes leader-based
algorithms to usually outperform decentralized ones.

1. INTRODUCTION
It is challenging to predict the end-to-end running time

of a distributed algorithm running over TCP/IP in a wide-
area setting. It is also often not obvious which algorithm
would work best in a given setting. E.g., would a decentral-
ized algorithm outperform a leader-based one? Answering
such questions is difficult for a number of reasons. Firstly,
because end-to-end Internet performance itself is extremely
hard to analyze, predict, and simulate [7]. Secondly, end-
to-end performance observed on the Internet exhibits great
diversity [17, 26], and thus different algorithms can prove
more effective for different topologies, and also for different
time periods on the same topology. Finally, different algo-
rithms can prove better under different performance metrics.
In this paper, we study the running time of distributed al-

gorithms over the Internet. Our experiments span ten hosts,
widely distributed over the Internet – in Korea, Taiwan, the
Netherlands, and several hosts across the US, some at aca-
demic institutions and others on commercial ISP networks.
We present data that was gathered over several weeks. The
hosts communicate using TCP/IP. TCP is a commonly used

∗This work was supported by Air Force Aerospace Research
(OSR) contract F49620-00-1-0097 and MURI award F49620-
00-1-0327, and Nippon Telegraph and Telephone (NTT)
grant MIT9904-12.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

protocol on the Internet, and therefore evaluating systems
that use it is of interest. Moreover, it was feasible for us to
deploy a TCP-based system because TCP does not generate
excessive traffic at times of congestion, and because firewalls
at some of the hosts we use block UDP traffic.
We consider a fixed set of hosts engaged in a distributed

algorithm. We evaluate a simple primitive that propagates
a small amount of information from every host to all other
hosts that are connected to it. This primitive corresponds
to a communication round executed by a distributed algo-
rithm. The primitive can be initiated by any one of the
hosts, called the initiator, and it terminates once informa-
tion from every host has propagated to all of the hosts. Com-
munication rounds of this sort are employed by many differ-
ent algorithms and systems, e.g., Byzantine agreement [16],
atomic commit [8, 23, 11], state-machine replication [15],
group membership [13], and updates of routing tables. Thus,
our study has broad applicability. We evaluate the following
commonly used algorithms implementing the primitive.

• all-to-all , where the initiator sends a message to all
other hosts, and each host that learns that the al-
gorithm has been initiated sends messages to all the
other hosts. This algorithm is structured like decen-
tralized two-phase commit, some group membership
algorithms (e.g., [13]), and the first phases in decen-
tralized three-phase commit algorithms, (e.g., [23, 9]).
The algorithm flow is depicted in Figure 1(a).

• leader , where the initiator acts as the leader. After
the initiator sends a message to all other hosts, the
hosts respond by sending messages to the leader. The
leader aggregates the information from all the hosts,
and sends a message summarizing all the inputs to all
the hosts. This algorithm is structured like two-phase
commit [8], and like the first two of three communica-
tion phases in three-phase commit algorithms, e.g., [23,
11]. The algorithm flow is depicted in Figure 1(b).

• secondary leader , where a designated host (different
from the initiator) acts as the leader. The initiator
sends a message to the leader, which then initiates the
leader-based algorithm. The algorithm flow is depicted
in Figure 1(c). This algorithm structure is essentially a
spanning tree of depth one, with the secondary leader
being the root and all other hosts being leaves. Since
our system consists of ten hosts, we did not see the
need for a deeper spanning tree.

• logical ring , where messages propagate along the edges
of a logical ring. This algorithm structure occurs in

Stage 1
 Stage 2

(a) The all-to-all algorithm.

Stage 1
 Stage 2
 Stage 3

(b) The leader algorithm.

Stage 1
 Stage 2
 Stage 3
 Stage 4

(c) The secondary leader algorithm.

Round 1

Round 2

(d) The ring algorithm.

Figure 1: The message flow of the four algorithms. Initiator shown in gray.

several group communication systems, e.g., [1]. The
algorithm flow is depicted in Figure 1(d).

We run a single process at each geographical location. We
do not address issues related to scaling the number of pro-
cesses, as we believe that such issues are orthogonal to our
study. Using a 2-level hierarchy, algorithms of the sort we
consider can be made to work effectively with several hun-
dreds of processes. Such a hierarchy is used, e.g., in [13, 10],
where the top level of the hierarchy consists of 5–20 repre-
sentatives (servers) at disperse geographical locations. Each
representative gathers information from and propagates in-
formation to processes that are proximate to it. Algorithms
like those considered here are typically run among the rep-
resentatives. Thus, our study is applicable to systems that
implement scalability in this manner. Our study is however
not applicable to systems that implement massive scalabil-
ity, e.g., using gossip-based algorithms.
We measure the overall running time of an algorithm from

the time it starts at some host until it terminates at all hosts,
as well as the local running time at a given host.
The typical theoretical metric used to analyze the running

time of distributed algorithms is the number of message ex-
change rounds the algorithm performs, or the number of
communication steps in case of a non-synchronous system
(e.g., [21, 12, 13]). According to this metric, we get the fol-
lowing overall running times: 2 communication steps for the
all-to-all algorithm; 3 communication steps for the leader
algorithm; 4 communication steps for secondary leader; and
2n−1 steps for the ring algorithm in a system with n hosts.
In contrast to what this metric suggests, in Section 5 we ob-
serve that in certain settings the secondary leader algorithm
achieves the best overall running time, whereas all-to-all of-
ten performs the worst. The running time of ring was usually
less than double the running times of the other algorithms.
Why does the communication step metric fail to capture

actual algorithm behavior over the Internet? First, not all
communication steps have the same cost, e.g., a message
from MIT to Cornell can arrive within 20 ms., while a mes-
sage from MIT to Taiwan may take 125 ms. Second, the
latency on TCP links depends not only on the underlying
message latency, but also on the loss rate. If a message sent
over a TCP link is lost, the message is retransmitted after
a timeout which is larger than the average round-trip time
(RTT) on the link. Therefore, if one algorithm message is
lost, the algorithm’s overall running time can be more than
doubled. Since algorithms that exchange less messages are
less susceptible to message loss, they are more likely to per-
form well when loss rates are high. This explains why the
overall running time of all-to-all is miserable in the presence
of lossy links. Additionally, message latencies and loss rates
on different communication paths on the Internet often do
not preserve the triangle inequality [20, 13, 3] because the
routing policies of Internet routers often do not choose an
optimal path between two hosts. This explains why sec-
ondary leader can achieve better performance by refraining
from sending messages on very lossy or slow paths.
We analyze our experimental results, and explain the ob-

served algorithm running times in terms of the underlying
network characteristics – latency and loss rates. Due to
the great variability of running times, the average running
time is not indicative of an algorithm’s typical behavior. We
therefore focus on the distribution of running times.
The communication step metric is widely used due to its

ease-of-use. Several other performance models, e.g., [6, 25,
18], have been used to analyze distributed or parallel algo-
rithms (cf. Section 2). However, these do not realistically
model algorithm behavior over the Internet. At the end of
this paper, we suggest a refinement to the standard met-
ric, which gives a more realistic account of an algorithm’s
efficiency, and at the same time is easy to work with.

The rest of this paper is organized as follows: Section 2
discusses related work. Section 3 describes the experiment
setup and methodology. Section 4 presents the mathemati-
cal model we use to analyze our results. The following two
sections present and analyze experimental results: Section 5
discusses the impact of message loss on the running times
of the all-to-all, leader, and secondary leader algorithms.
Section 6 discusses the impact of latency; it studies the all-
to-all, leader, and ring algorithms. Section 7 concludes the
paper and suggests an alternative performance metric.

2. RELATED WORK
Obtaining data on different aspects of Internet commu-

nication is an emerging research direction. Some active re-
search in this area focuses on measuring and analyzing the
constancy of Internet path characteristics such as routing,
loss, and throughput [26, 17]. Such research focuses primar-
ily on point-to-point communication, and not on the perfor-
mance of distributed algorithms. Another related project,
pursued by Chandra et al. [4], studies the nature of com-
munication failures – duration and location – and how they
effect the end-to-end availability of wide-area services. An-
other study, by Amir and Wool [2], evaluates the availabil-
ity of different quorum systems over the Internet. These
research efforts are orthogonal and complementary to ours.
The fact that Internet routing often does not select opti-

mal paths was previously observed by a number of projects
– Detour [20, 19], Moshe [13], and RON [3]. These projects
construct overlay networks and improve performance by rout-
ing messages over these overlays on better paths than would
be chosen by Internet routing. In contrast, we neither as-
sume an overlay infrastructure, nor route messages through
hosts that are not participating in the current instance of
the algorithm. Moreover, the aforementioned projects use
overlays in order to find better paths for point-to-point com-
munication only. When an overlay is used at the routing
level, as in these projects, messages from the same source
that are routed through the same host to different destina-
tions are not merged into a single message. E.g., consider the
all-to-all algorithm running over an overlay that routes mes-
sages from Taiwan to the Netherlands via Cornell. Taiwan
would send identical messages to Cornell and the Nether-
lands, which would be sent as two separate messages on the
link from Taiwan to Cornell. Likewise, the overlay would
not combine the information sent from Taiwan and Cornell
to the Netherlands into a single message. Such sending of
multiple messages increases the probability of some message
being lost, which increases the average running time.
Another line of research focuses on providing a theoretical

framework for predicting and evaluating the performance of
parallel and distributed algorithms. A number of papers,
e.g. [6, 25, 18, 22], focus on settings where message pro-
cessing overhead is significant, and show that this favors
algorithms that send fewer messages. While our results also
illustrate the advantage of sending fewer messages, the rea-
sons for this are different: in our setting, it is due to high
variability of message latency (due to loss) rather than pro-
cessing overhead, which is negligible in our setting. The
conclusions from such studies do not, in general, apply to
our setting. E.g., leader has a high processing overhead (at
the leader), but this does not hamper it’s performance in our
setting. Moreover, these analyses assume that the evaluated
algorithm is the only source of overhead in the system. In

contrast, over the Internet, the evaluated algorithms have
little impact on the total overhead of the system.

3. METHODOLOGY
We use the following hosts in our experiments. Universi-

ties in the US: MIT, at the Massachusetts Institute of Tech-
nology, Cambridge, MA; UCSD, at the University of Cali-
fornia San Diego; CU, at Cornell University, NY; NYU, at
New York University, NY; and Emulab, at the University of
Utah. Hosts at US commercial ISP networks: CA in Califor-
nia and UT1 and UT2 in Utah. International hosts: KR in
Korea, TW, at National Taiwan University in Taiwan; and
NL, at Vrije University in the Netherlands. All the hosts
run either FreeBSD or Linux operating systems.

3.1 Server Implementation
At every host we run a server, implemented in Java, op-

timized with the GCJ compiler. Each server has knowledge
of the IP addresses and ports of all the potential servers in
the system. Every server keeps an active TCP connection to
every other server that it can communicate with. We disable
TCP’s default waiting before sending small packets (cf. Na-
gle algorithm, [24, Ch. 19]). The system implements asyn-
chronous I/O using threads. Every 5 minutes, each server
attempts to set up connections with other servers to which
it is not currently connected. A crontab monitors the sta-
tus of the server, and restarts it if it is down. Thus, when
either a server or communication failure is repaired, connec-
tion is promptly reestablished. In case the communication is
not transitive, different hosts can have different views of the
current set of participants. Here, we present performance
results only for periods during which all the hosts had iden-
tical perceptions of the set of connected hosts. In case of
host or communication failures, an instance of the algorithm
may fail to terminate. This situation can be detected by the
failure of a TCP connection or by a timeout.
Each server has code implementing the four algorithms.

The server periodically invokes each algorithm: it sleeps for
a random period, and then invokes one of the algorithms,
in round-robin order. Each invocation of an algorithm is
called a session. We use randomness in order to reduce the
probability of different sessions running at the same time
and delaying each other; this is easier than synchronizing the
invocations, as the hosts do not have synchronized clocks.
We constantly run ping from each host to each of the other

hosts, sending a ping probe once a minute, in order to track
the latency and loss rate of the underlying network. The
ping process is also monitored by a crontab.

3.2 Running Times and Clock Skews
We use two measures of running time:

• The local running time of a session at a particular host
is the clock time elapsing from when this host begins
this session and until the same host terminates the
session. Where we present performance measurements,
we give local running times at the initiator only.

• The overall running time of a session is the time elaps-
ing from when the initiator begins this session until all
the hosts terminate this session.

Each host writes to log its starting time and termination
time for each session, according to its local clock. Since

we do not own the hosts used in our experiments, we were
not able to synchronize their clocks. Therefore, in order to
deduce the overall running time from the log files, we need
to know the skews between different hosts’ clocks.
We now explain how we estimate the clock differences.

Whenever a host A sends a message to host B, it includes
in the message its local clock time. When host B receives
the message, it computes the difference between its local
clock time and the time in the message, and writes this
value to log. Denote this value by ∆AB . Assume that B’s
clock is dAB time ahead of A’s, and assume that the average
message latency from A to B and from B to A is lAB . Then
on average, ∆AB = lAB + dAB and symmetrically, ∆BA =
lAB − dAB . Therefore, ∆AB − ∆BA is, on average, 2dAB .
We approximate the clock difference between A and B as:

(average(∆AB)− average(∆BA))/2

This approximation method has some limitations: since
messages are exchanged over TCP, the latency can vary sub-
stantially in case of message loss. Therefore, if a pair of hosts
communicate over a lossy link, this method can give a bad
approximation for the clock difference. Moreover, we dis-
covered that when the average clock skew is computed over
a long interval, results can be inconsistent, because some
hosts experience clock drifts. So instead of taking the aver-
age over all samples, we compute the average over samples
obtained in shorter intervals (15 minutes long).
The next step is to fix a host h, and compute the clock dif-

ferences between h and every other host per every 15 minute
time interval. Then, all logged running times in this inter-
val are adjusted to h’s clock, and the overall running time is
inferred from the adjusted initiation and termination times.
In order to minimize the effect of TCP retransmission de-
lays, it is preferable to chose a host that has reliable links
to every other host. In order to check the consistency of
our results, we computed the overall running times using
three different hosts: MIT, Emulab, and Cornell. We chose
these hosts since the links to them from all hosts were fairly
reliable and exhibited a low variation of latency.
Having computed the running times three different ways,

we found the results to be fairly consistent: The distribu-

tions of overall running times as computed with each of the
three hosts were similar. Moreover, for over 90% of the ses-
sions with overall running times up to 2 seconds, the three
computed running times were within 20 ms. of each other.

4. THE MATH: RUNNING TIME DISTRI-
BUTION OVER TCP/IP

We now explain the mathematical model that underlies
the analysis of the experimental results in this paper.
After TCP sends a message, it waits for an acknowledge-

ment. If an acknowledgement does not arrive for a desig-
nated retransmission time-out, TCP retransmits the mes-
sage. TCP’s initial retransmission time-out is the estimated
average RTT on the link plus four times the mean deviation
of the RTT, where both the average and the mean deviation
are computed over recent values. If the second copy is also
lost, TCP waits twice the amount of time it waited before
retransmitting the first lost copy, and this continues to grow
exponentially with number of lost copies. [24, Ch. 21]
We estimate the distribution of the TCP latency based on

the underlying link latency d and loss probability p. Assume

first that d is half the RTT, that losses are independent, and
that the latency does not vary, so the RTT’s mean deviation
is 0. Then the TCP latency is d with probability 1 − p, 3d
with probability p(1 − p), 7d with probability p2(1 − p),
and so on. This is a rough estimate, as it does not address
variations in latency and loss. Correlated loss causes the
first peak (at latency d) to occur with higher probability,
and causes the tail of the distribution to be sparser; this
will be most significant on links with high loss rates. A high
variation of latency will shift all the peaks except the first.
We use this estimate to analyze the distribution of the

running time of a stage of an algorithm. Let pi be the prob-
ability that the latency of a message sent on link i is at most
D (as computed above). Then the probability that an al-
gorithm stage takes at most D time is the product of the
probabilities pi for all the links traversed in this stage. More
generally, the running time of a stage is a random variable
representing the maximum value of the random variables
representing the TCP link latencies, with distributions de-
fined by the RTT and loss rate as explained above. As
the number of random variables over which the maximum
is computed grows, the expected maximum value increases.
This explains why all-to-all, which sends O(n2) messages in
each stage performs much worse than leader, which sends
O(n). A similar observation was made in [18].

5. THE EFFECT OF MESSAGE LOSS
This section presents two experiments, each of which lasted

three and a half days. Ring was not tested in these exper-
iments. Each of the other three algorithms was initiated
by each of the hosts every 7.5 minutes on average, and in
total, roughly 650 times. Section 5.1, presents Experiment
I, in which the TW host had two links with very high loss
rates. We then excluded the TW host, and ran Experiment
II, which we present in Section 5.2.

5.1 Experiment I
The NL and UT1 hosts were excluded from this experi-

ment. Table 1 presents the average RTT and loss rate from
every host to every other host during the experiment, as ob-
served by ping. The loss rates from TW to UT2 and CA are
very high (37% and 42%, resp.), and all the other loss rates
are up to 8%. Losses sometimes occur in bursts, where for
a period of several minutes all the messages sent on a par-
ticular link are lost. The latencies generally vary less, but
occasionally we observe periods during which the latency is
significantly higher than average.
In this experiment MIT serves as the secondary leader for

TW, KR, CU, UT2, NYU, and Emulab. Emulab is the sec-
ondary leader for the rest. We chose secondary leaders that
had relatively reliable links to all hosts. We used secondary
leaders for all hosts in order to have a meaningful compar-
ison. In practice, secondary leaders would only be used for
hosts that have poor links.
Due to occasional loss bursts and TCP’s exponential back-

off, some running times are very high (several minutes long).
Thus, the average running time is not representative. In Ta-
ble 2, we present statistical data about the running times,
both overall and local, of the three algorithms. We present
the average running time (in milliseconds) taken over runs
that complete within 2 seconds. Most runs that experience
no more than 2 consecutive losses are included in this aver-
age. In Figure 2, we present histograms of the distribution

From To KR TW MIT UCSD CU NYU CA UT2 Emulab
KR Avg. RTT 387 291 272 265 267 168 479 258

Loss Rate — 6% 7% 2% 0% 0% 1% 1% 2%
TW Avg. RTT 388 243 177 211 220 221 267 186

Loss Rate 5% — 8% 3% 3% 4% 41% 37% 4%
MIT Avg. RTT 300 253 115 40 34 112 99 80

Loss Rate 6% 8% — 5% 6% 6% 6% 5% 5%
UCSD Avg. RTT 289 195 125 91 102 42 105 61

Loss Rate 2% 4% 5% — 0% 0% 0% 0% 0%
CU Avg. RTT 266 211 47 73 9 88 101 47

Loss Rate 0% 4% 5% 0% — 0% 1% 0% 0%
NYU Avg. RTT 267 220 39 83 9 70 78 56

Loss Rate 0% 4% 5% 0% 0% — 0% 0% 0%
CA Avg. RTT 168 223 121 32 88 75 54 78

Loss Rate 1% 42% 5% 0% 1% 0% — 0% 0%
UT2 Avg. RTT 479 266 97 88 100 78 50 13

Loss Rate 1% 37% 5% 0% 0% 0% 0% — 3%
Emulab Avg. RTT 258 186 76 48 47 57 74 14

Loss Rate 2% 4% 5% 0% 0% 0% 0% 3% —

Table 1: Network characteristics during experiment I.

of overall running times under 1.3 seconds observed at three
of the hosts – MIT which has no lossy links, UT2 which has
one lossy link, and TW which has two. The first peak in
each histogram represents the overall running time of loss-
free runs. The size of the peak illustrates the percentage
of the runs of that particular algorithm that were loss-free.
The running times over 1 second were sparsely distributed.
To illustrate this, we give the percentage of runs that exceed
2, 4, and 6 seconds in Table 2.

Leader
 Secondary leader
 All-to-All

MIT

0

50

100

150

200

250

300

350

400

0

10

0

20

0

30

0

40

0

50

0

60

0

70

0

80

0

90

0

10
00

11
00

12
00

13
00

milliseconds

nu
m

be
r

of
 r

un
s

Taiwan

0

50

100

150

200

250

300

350

400

0

10

0

20

0

30

0

40

0

50

0

60

0

70

0

80

0

90

0

10
00

11
00

12
00

13
00

milliseconds

nu
m

be
r

of
 r

un
s

Utah ISP2

0

50

100

150

200

250

300

350

400

0

10

0

20

0

30

0

40

0

50

0

60

0

70

0

80

0

90

0

10
00

11
00

12
00

13
00

milliseconds

nu
m

be
r

of
 r

un
s

Figure 2: Histograms of overall running times, Ex-

periment I, runs up to 1.3 seconds.

The overall running time of all-to-all is poor: less than
half the runs are under 2 seconds. This is because every in-
stance of all-to-all sends two messages over each lossy link,
regardless of the initiator. Thus, most instances experience
multiple consecutive losses. Leader has a better overall run-
ning time except in TW. This is because each instance of
leader initiated at TW traverses each lossy link three times.
Instances of leader running from other hosts traverse either
one or no lossy links. At the three hosts that have lossy
links (TW, UT2, and CA), secondary leader achieves the
best overall performance by bypassing the lossy links.
All-to-all has the best local running time at hosts that do

not have lossy links. It has a better local running time than
leader due to cases in which the triangle inequality does not
hold. E.g., when UT2 initiates all-to-all, CA receives the
first message, on average, after 25 ms., and sends a response
to all hosts. KR receives this response, on average, after 84
ms., that is, 109 ms. after UT2 sent the first message. This
is earlier than the average time it takes UT2’s message to get
to KR (240 ms.). Therefore, KR engages in all-to-all from
UT2 earlier than in leader from UT2. Similarly, when the
first stage message to some host is lost, all-to-all in essence
sends it also by a number of alternate paths, one which can
prove more effective. This is why the local running time of
all-to-all at TW is dramatically better than that of leader.
In the absence of packet loss, the overall running time of

leader should be roughly three times the one-way latency on
the longest link from the leader, or 1.5 times the RTT. From
MIT, the longest link, to KR, has an average RTT of 300
ms. Indeed, the first peak is centered around 400–450 ms.
Since all links to MIT other than from TW and KR have
significantly shorter latencies (up to 115 ms.), this running
time should be experienced whenever there are no losses on
the TW and KR links, and at most one or two on each of
the other links. Since three messages are sent on each link,
and the loss rates of the longest links are 6% and 8%, the
probability of no loss occurring on either of the long links
is: .943 ∗ .923 ≈ .65. Indeed, running times up to 450 ms.
occur in 429 out of 659 runs, i.e., 65%.
The longest link from TW is to KR, and its average RTT

is 388 ms. Therefore, as expected, the first peak of leader

Algorithm All-to-all Leader Secondary
Initiator Overall Local Overall Local Overall Local
KR Avg. (runs under 2 sec) 922 550 873 592 695 613

% runs over 2 sec 55% 6% 15% 8% 12% 6%
% runs over 4 sec 42% 3% 9% 4% 7% 3%
% runs over 6 sec 37% 3% 7% 3% 5% 3%

TW Avg. (runs under 2 sec) 866 645 1120 844 679 607
% runs over 2 sec 54% 24% 64% 43% 13% 7%
% runs over 4 sec 40% 19% 43% 30% 7% 4%
% runs over 6 sec 36% 18% 37% 25% 6% 3%

MIT Avg. (runs under 2 sec) 811 295 541 335 585 408
% runs over 2 sec 55% 3% 13% 6% 9% 3%
% runs over 4 sec 42% 3% 8% 4% 5% 2%
% runs over 6 sec 37% 3% 6% 3% 4% 2%

UCSD Avg. (runs under 2 sec) 860 328 473 332 602 420
% runs over 2 sec 51% 2% 6% 2% 8% 3%
% runs over 4 sec 41% 2% 5% 2% 5% 1%
% runs over 6 sec 35% 2% 4% 2% 4% 1%

CU Avg. (runs under 2 sec) 831 320 577 357 578 392
% runs over 2 sec 53% 1% 6% 1% 12% 5%
% runs over 4 sec 40% 2% 4% 1% 8% 4%
% runs over 6 sec 35% 2% 4% 1% 6% 3%

NYU Avg. (runs under 2 sec) 860 319 562 348 598 408
% runs over 2 sec 54% 2% 8% 3% 12% 6%
% runs over 4 sec 41% 3% 6% 2% 8% 3%
% runs over 6 sec 35% 2% 5% 2% 6% 3%

CA Avg. (runs under 2 sec) 850 450 777 553 618 450
% runs over 2 sec 51% 17% 30% 24% 9% 3%
% runs over 4 sec 40% 13% 21% 16% 6% 2%
% runs over 6 sec 35% 11% 19% 15% 5% 2%

UT2 Avg. (runs under 2 sec) 872 513 1031 689 636 452
% runs over 2 sec 52% 25% 45% 36% 13% 6%
% runs over 4 sec 42% 21% 34% 28% 8% 4%
% runs over 6 sec 36% 17% 29% 23% 6% 3%

Emulab Avg. (runs under 2 sec) 844 320 544 356 633 448
% runs over 2 sec 52% 2% 8% 3% 10% 5%
% runs over 4 sec 41% 2% 5% 2% 6% 3%
% runs over 6 sec 37% 2% 4% 2% 5% 2%

Table 2: Measured running times, milliseconds, experiment I.

from TW is centered around roughly 1.5 times this RTT, at
the 550–600 ms. range. This peak includes only 65 of 643
runs (10%). We now explain why. First, observe that if any
of the three messages sent on the link to KR or to UT2 is
lost, the running time exceeds the peak. The probability
of no loss on the KR link is .953 ≈ .86 and the probability
of no loss on the UT2 link is .633 ≈ .25. Next, consider
the link to CA. In the absence of losses, the response from
CA to TW in the second stage arrives after about 221 ms.
(the RTT), and the response from KR to TW arrives after
about 388 ms. Once TW sends the final stage message to all
hosts, the algorithm terminates at all hosts within half the
RTT on the longest link, or roughly 194 ms. If either the
first message from TW to CA or CA’s response is lost once,
then the response arrives roughly after 450 ms., assuming
low mean deviation of RTTs. This is sufficiently close to
the 388 ms. TW has to wait for KR’s message, so it falls in
the first peak. However, if the final stage message from TW
to CA is lost, then CA terminates 332 ms. after TW sends
the last message, which adds 138 ms. to the overall running
time, and pushes it out of the first peak. Two losses on the
link to CA always push this session away from the peak.
The last message to CA is not lost with probability 58%.
The probability that at most one of the previous messages

is lost, and if it is lost, the retransmission is not lost, is:
.582+2∗ .42∗ .582 ≈ .62. So the probability of the first peak
should be .86 ∗ .25 ∗ .58 ∗ .62 ≈ .08. This is slightly lower
than the observed 10%; we hypothesize that this is due to
correlated loss, which is significant here due to the high loss
rates involved.
The longest link from UT2 is to KR, with an average RTT

of 479 ms. Therefore, the peak is around 700–850. We now
try to explain why 36% of the runs (230 of 640) are in this
range. The probability of having no losses on the KR link is
97%. The link from UT2 to TW is quite erratic. Although
the average RTT is 266 ms., the RTT occasionally jumps
as high as 800 ms., and standard deviation of RTTs for the
entire experiment period is 139 ms. In periods with low RTT
variations, when the mean deviation computed by TCP is
low, a run with a single loss to TW in one of the first two
stages of the algorithm will fall in the first peak. A loss
during a period with a high mean deviation or a loss in the
last stage of the algorithm pushes the running time out of
the peak. The probability that the last message on this link
is not lost is 63%. We hypothesize that the mean deviation
is low enough to keep us in the peak approximately half the
time. With this assumption, we get that the probability of
a loss in one of the first two stages not pushing us out of

the peak is 54%, and the probability of the peak should be:
.97 ∗ .63 ∗ .54 ≈ .33, which is close to the observed 36%.

Leader
 Secondary leader
 All-to-All

milliseconds

Taiwan

0

10

0

20

0

30

0

40

0

50

0

60

0

70

0

80

0

90

0

10
00

11
00

12
00

13
00

milliseconds

0

100

200

300

400

500

600

700

nu
m

be
r

of
 r

un
s

Utah ISP2

0

10

0

20

0

30

0

40

0

50

0

60

0

70

0

80

0

90

0

10
00

11
00

12
00

13
00

milliseconds

0

100

200

300

400

500

600

700

nu
m

be
r

of
 r

un
s

MIT

0

10

0

20

0

30

0

40

0

50

0

60

0

70

0

80

0

90

0

10
00

11
00

12
00

13
00

0

100

200

300

400

500

600

700

nu
m

be
r

of
 r

un
s

Figure 3: Histograms of local running times, Exper-

iment I, runs up to 1.3 seconds.

Since TW uses MIT as a secondary leader, we expect sec-
ondary leader from TW to behave the same as leader ini-
tiated at MIT, with an additional delay of 120 ms. (half
the RTT between TW and MIT). Indeed, the first peak is
centered around 500–550, and includes roughly the same
percentage of the runs as leader at MIT (440/643 = 68%).
All-to-all’s peak exhibits the lowest overall running time,
but the percentage of runs in the first peak is very low, and
is the same for all initiators.
Figure 3 shows the local running times at the same hosts.

The local running time for all-to-all initiated by MIT has a
higher peak, as it does not involve any lossy links.

5.2 Experiment II: Excluding the Lossiest Host
We repeated the experiment above without the TW host,

which was an end-point on both lossy links. We also ex-
cluded UCSD because it was overloaded at the time of the
experiment, and we added UT1. The network characteris-
tics are presented in Table 3.
The running times observed in this experiment are sum-

marized in Table 4. In this experiment at least 88% of the
runs are under 2 seconds, for all algorithms and all initia-
tors. Even in this setting, all-to-all does not have the best
overall running time for any initiator, because even the rel-
atively low loss rates get amplified by the fact that so many
messages are sent. Secondary leader works best for most
hosts, except for those that are themselves optimal leaders.

When one considers the metric of local running time, we
observe that the local running time of all-to-all is always
superior to that of leader, regardless of the quality of links.
Although they both traverse the same links the same number
of times, all-to-all has the advantage that its communication
stages may overlap. E.g., when the message from the ini-
tiator to one of the hosts is delayed due to loss, that host
can hear from another host that the algorithm has initiated
before receiving the initiator’s late message. In the presence
of very lossy links, secondary leader outperforms the other
two algorithms both locally and globally since it is the only
one that avoids the lossy links altogether.

6. THE IMPACT OF LATENCY
We now present results from Experiment III. In this ex-

periment, we evaluated the all-to-all, leader, and ring al-
gorithms. All the hosts except UT1 participated in this
experiment. Each host ran about 510 sessions of each algo-
rithm. Table 5 shows the network characteristics during the
experiment. Table 6 summarizes the overall and local run-
ning times of the three algorithms. Table 6 gives the average
running time for runs under 3 seconds, and the percentage
of runs under 3 seconds. We use a threshold of 3 seconds
because link latencies in this experiment are higher than in
the previous two. In analyzing the results, we highlight the
impact of latency on algorithm performance. In Section 6.1,
we discuss the running time of the ring algorithm. In Sec-
tion 6.2, we show how the highest latency link in the system
affects the running time of all-to-all. In Section 6.3, we dis-
cuss the impact of a link’s latency on the significance of loss
on that link. Section 6.4 discusses the fact that the triangle
inequality does not hold and the impact this has.

6.1 The Running Time of Ring
The message flow in the ring-based algorithm follows the

following sequence where each host precedes its neighbor and
the first host is the neighbor of the last: NL, Emulab, UT2,
CU, NYU, KR, MIT, TW, UCSD, CA. This above ring was
chosen based on latency and loss rate measurements from a
previous experiment. The chosen ring is nearly optimal and
the loss rates on all the ring links are low.
Ring has the highest average running time in the absence

of message loss. However, ring has some nice properties:
First, the ring algorithm is least affected by message loss.
From the network characteristics depicted in Table 5, we
observe that in the absence of message loss, the total time it
takes a message to circulate around the ring twice is about
1900 ms. Unlike leader and all-to-all, the average overall
running time for ring is close to this expectation. The rea-
son for this is that ring sends the fewest messages and uses
the most reliable links. Second, the choice of initiator does
not have a big impact on the performance of ring, since mes-
sages travel over the same links. The only difference between
initiating ring from different hosts is that the initiator only
receives a message once. This explains why ring sessions
initiated at KR have a slightly better overall running time
since KR has the longest link. Finally, notice that ring’s
overall running time is not exactly twice the local running
time since the second round is shorter than the first.

6.2 Latency Changes over Time
The longest links in the system were between KR and

TW and KR and the NL. The latency of these two links

From To KR MIT Cornell NYU CA UT2 Emulab UT1
KR Avg. RTT 294 261 257 165 452 275 500

Loss Rate — 3% 1% 3% 0% 1% 3% 1%
MIT Avg. RTT 298 43 38 117 117 82 86

Loss Rate 2% — 1% 1% 1% 2% 3% 2%
Cornell Avg. RTT 269 46 16 89 101 47 87

Loss Rate 1% 1% — 0% 1% 1% 3% 1%
NYU Avg. RTT 257 38 16 69 76 60 60

Loss Rate 3% 1% 0% — 0% 0% 2% 1%
CA Avg. RTT 165 115 92 75 47 79 85

Loss Rate 0% 2% 1% 0% — 1% 2% 1%
UT2 Avg. RTT 454 109 101 77 47 14 31

Loss Rate 1% 2% 1% 0% 0% — 6% 1%
Emulab Avg. RTT 275 83 47 60 74 15 50

Loss Rate 4% 4% 2% 2% 2% 6% — 4%
UT1 Avg. RTT 503 82 82 60 86 30 52

Loss Rate 1% 1% 1% 1% 1% 1% 5% —

Table 3: Network characteristics during experiment II.

Algorithm: All-to-all Leader Secondary
Initiator Overall Local Overall Local Overall Local
KR Avg. (runs under 2 sec) 588 509 758 551 407 388

% runs over 2 sec 12% 7% 11% 6% 9% 4%
MIT Avg. (runs under 2 sec) 524 278 465 296 442 311

% runs over 2 sec 11% 4% 10% 5% 10% 6%
CU Avg. (runs under 2 sec) 532 277 440 277 471 315

% over 2 sec 11% 4% 9% 5% 10% 5%
NYU Avg. (runs under 2 sec) 519 291 449 291 446 296

% over 2 sec 12% 5% 10% 5% 10% 5%
CA Avg. (runs under 2 sec) 535 222 378 219 486 367

% over 2 sec 11% 5% 10% 5% 9% 6%
UT2 Avg. (runs under 2 sec) 500 265 866 498 494 383

% over 2 sec 10% 5% 11% 6% 9% 5%
Emulab Avg. (runs under 2 sec) 526 287 506 316 480 338

% over 2 sec 12% 5% 9% 6% 8% 4%
UT1 Avg. (runs under 2 sec) 495 295 982 571 481 367

% runs over 2 sec 11% 4% 11% 5% 10% 6%

Table 4: Measured overall and local running times, experiment II.

varied dramatically in the course of the experiment. We
now divide the data gathered in this experiment into two
periods. In the first period, the link from KR to the NL had
an average RTT of 754 ms., and the link from KR to TW
had an average RTT of 683 ms. In the second period, the
average RTTs from KR to the NL and to TW dropped to
355 ms. and 385 ms., resp. So the average one-way message
latency on the longest link dropped by 185 ms. This was
the only notable difference between the two periods.
In Figure 4, we show histograms of the measured overall

running times of all-to-all from all initiators during each of
the two periods. The histograms show runs up to 2 seconds;
this includes 23% of the runs during the longer latency pe-
riod, and 60% of the runs during the shorter latency period.
We observe that in the period with high latencies, the best
running times are around 500 ms. In the period of low la-
tencies, the first peak occurs at 300 ms., or roughly 200 ms.
earlier, which is close to the decrease in the one-way latency
on the longest link. As we see, the all-to-all algorithm from
all initiators is affected by the increase in latency. In con-
trast, the only instances of the leader algorithm that were
affected by this latency change were those initiated at TW,
KR, or the NL. Other instances of the leader algorithm were

unaffected. E.g., the first peak of the leader algorithm ini-
tiated at Emulab occurs at 300–350 ms. for both periods.

6.3 Latency and Loss
The loss rates from TW to CA and UT2 are 43% and

49% resp. This causes the running times of leader from
these hosts to be very high (at least 44% of the runs exceed
3 seconds). The loss rates from CU to CA and UT2 are also
fairly high (49% and 31% resp.). In spite of this, only 8% of
the runs of leader from CU last over 3 seconds. We see that
the lossy links from CU do not impact the overall running
time as do the lossy links from TW. This is because the
latencies of the lossy links from CU are only about one sixth
the longest link latency. Therefore, even two consecutive
losses on these links do not impact the overall running time.

6.4 The Triangle Inequality
The average RTT from UCSD to KR is 526 ms. and the

average RTT from UCSD to CA is 49 ms., while the average
RTT from CA to KR is 152 ms. Although UCSD and CA
are geographically close, the average RTT from UCSD to
KR is more than 3 times the average RTT from CA to KR.
The latency from UCSD to KR can be reduced to less than

From To KR TW MIT UCSD CU NYU CA UT2 Emulab NL
KR Avg. RTT 643 547 526 587 588 152 446 521 701

Loss Rate — 9% 6% 6% 4% 4% 1% 3% 7% 8%
TW Avg. RTT 639 235 178 212 222 219 258 187 322

Loss Rate 10% — 4% 3% 4% 3% 43% 49% 4% 4%
MIT Avg. RTT 549 236 97 32 28 98 78 71 150

Loss Rate 8% 3% — 0% 0% 0% 1% 2% 1% 0%
UCSD Avg. RTT 526 179 96 73 84 49 91 48 172

Loss Rate 6% 3% 0% — 0% 0% 0% 2% 1% 0%
CU Avg. RTT 588 211 32 73 9 85 88 47 138

Loss Rate 4% 4% 0% 0% — 0% 49% 31% 1% 0%
NYU Avg. RTT 587 222 28 83 9 70 70 57 138

Loss Rate 4% 4% 0% 0% 0% — 0% 2% 1% 0%
CA Avg. RTT 152 219 102 31 94 78 54 81 161

Loss Rate 0% 42% 1% 0% 31% 0% — 2% 4% 1%
UT2 Avg. RTT 446 262 77 91 88 71 50 13 154

Loss Rate 3% 48% 2% 2% 31% 2% 2% — 6% 2%
Emulab Avg. RTT 522 187 70 48 47 57 75 14 145

Loss Rate 8% 5% 1% 1% 1% 1% 4% 6% — 1%
NL Avg. RTT 697 324 155 175 141 143 165 157 49

Loss Rate 7% 3% 0% 0% 1% 0% 1% 2% 1% —

Table 5: Network characteristics during experiment III.

All-to-All: high latency period

10

30

50

70

90

0

10

0

20

0

30

0

40

0

50

0

60

0

70

0

80

0

90

0

10

00

11
00

12

00

13
00

14

00

15
00

16

00

17
00

18

00

19
00

20

00

milliseconds

nu
m

be
r o

f r
un

s

All-to-All: low latency period

0

10

20

30

40

50

0

10

0

20

0

30

0

40

0

50

0

60

0

70

0

80

0

90

0

10

00

11
00

12

00

13
00

14

00

15
00

16

00

17
00

18

00

19
00

20

00

milliseconds

nu
m

be
r o

f r
un

s

Figure 4: Histograms of overall running times, runs

up to 2 seconds, experiment III.

a half by routing messages indirectly through CA.

7. CONCLUSIONS
We measured and analyzed the performance of four com-

mon information propagation algorithms over the Internet.
We explained the distribution of the algorithms’ running
times in terms of underlying link latencies and loss rates.
One important lesson one can learn from our observations

is that loss rates over the Internet are not negligible. Con-
sequently, algorithms that send many messages often have
a high running time, even if the messages are sent in par-
allel in one communication step. More generally, we learn
that some communication steps are more costly than oth-
ers. E.g., it is evident that propagating information from
only one host to all other hosts is faster than propagating
information from every host to each of the other hosts.
We suggest to refine the communication step metric as

to encompass different kinds of steps. One cost parame-

ter, ∆1, can be associated with the overall running time of a
step that propagates information from all hosts to all hosts1.
This step can be implemented using any of the algorithms
analyzed in this paper. A different (assumed smaller) cost
parameter, ∆2, can be associated with a step that propa-
gates information from one host to all other hosts. Another
cost parameter, ∆3 can be associated with propagating in-
formation from a quorum of the hosts to all the hosts2, etc.
This more refined metric can then be used to revisit known

lower and upper bound results. E.g., [12] presents a tight
lower bound of two communication steps for failure-free ex-
ecutions of consensus in practical models. Under the more
refined metric, the lower bound is 2∆1, whereas known al-
gorithms (e.g., [14, 5]) achieve running times of ∆2 +∆3.

Acknowledgements
We thank all those who are hosting our experiments on their
machines. Many of the machines we use belong to the RON
project [3] at MIT, which is funded by DARPA; we are es-
pecially thankful to Dave Andersen for technical assistance
with these machines. The Emulab machine is part of em-
ulab.net, the Utah Network Emulation Testbed, which is
primarily supported by NSF grant ANI-00-82493 and Cisco
Systems. We thank Geoff Voelker for letting us use his ma-
chine in UCSD, and Yuh-Jzer Joung for letting us use his
machine in TW. We also thank Sergio Rajsbaum, Roger
Khazan, and the referees for helpful comments.

8. REFERENCES
[1] Agarwal, D. A., Moser, L. E., Melliar-Smith, P. M.,

and Budhia, R. K. The Totem multiple-ring ordering and
topology maintenance protocol. ACM Trans. Comput.
Syst. 16, 2 (May 1998), 93–132.

[2] Amir, Y., and Wool, A. Evaluating quorum systems over
the internet. In IEEE Fault-Tolerant Computing
Symposium (FTCS) (June 1996), pp. 26–35.

1Local running times cannot be composed in this manner.
2In future experiments we intend to evaluate a primitive
that waits for responses from a quorum of hosts.

Algorithm All-to-all Leader Ring
Initiator Overall Local Overall Local Overall Local
KR Avg. (runs under 3 sec) 1197 692 1340 954 1853 1158

% runs over 3 sec 66% 9% 25% 13% 18% 5%
TW Avg. (runs under 3 sec) 1139 809 1644 1227 2014 1137

% runs over 3 sec 64% 28% 84% 69% 22% 4%
MIT Avg. (runs under 3 sec) 1168 515 896 589 1912 1117

% runs over 3 sec 67% 3% 13% 6% 18% 6%
UCSD Avg. (runs under 3 sec) 1172 497 833 558 2040 1115

% runs over 3 sec 61% 2% 14% 7% 24% 6%
CU Avg. (runs under 3 sec) 1133 494 1179 703 2076 1120

% over 3 sec 58% 3% 9% 2% 21% 4%
NYU Avg. (runs under 3 sec) 1156 516 1183 715 2092 1134

% over 3 sec 62% 3% 8% 3% 27% 5%
CA Avg. (runs under 3 sec) 1127 563 992 670 2073 1141

% over 3 sec 66% 33% 44% 37% 27% 5%
UT2 Avg. (runs under 3 sec) 1120 558 1190 637 2121 1165

% over 3 sec 64% 51% 60% 53% 30% 8%
Emulab Avg. (runs under 3 sec) 1108 474 884 594 2066 1133

% over 3 sec 67% 5% 15% 8% 24% 5%
NL Avg. (runs under 3 sec) 1161 585 1146 772 2035 1143

% over 3 sec 65% 3% 16% 7% 25% 5%

Table 6: Measured running times, milliseconds, experiment III.

[3] Andersen, D. G., Balakrishnan, H., Kaashoek, F., and
Morris, R. Resilient overlay networks. In SOSP (Oct.
2001).

[4] Chandra, B., Dahlin, M., Gao, L., and Nayate, A.
End-to-end WAN service availability. In Third Usenix
Symposium on Internet Technologies and Systems
(USITS01) (Mar. 2001).

[5] Chandra, T. D., and Toueg, S. Unreliable failure
detectors for reliable distributed systems. J. ACM 43, 2
(Mar. 1996), 225–267.

[6] Culler, D., Karp, R., Patterson, D., Sahay, A.,
Schauser, K., Santos, E., Subramonian, R., and von
Eicken, T. LogP: Towards a realistic model of parallel
computation. In 4th ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming (May 1993).

[7] Floyd, S., and Paxson, V. Difficulties in simulating the
internet. IEEE/ACM Transactions on Networking 9, 4
(August 2001), 392–403.

[8] Gray, J. N. Notes on database operating systems. In
Operating Systems: An Advanced Course, Lecture Notes in
Computer Science, vol. 60. Springer Verlag, Berlin, 1978,
pp. 393–481.

[9] Guerraoui, R., and Schiper, A. The decentralized
non-blocking atomic commitment protocol. In IEEE
International Symposium on Parallel and Distributed
Processing (SPDP) (October 1995).

[10] Guo, K., Vogels, W., and van Renesse, R. Structured
virtual synchrony: Exploring the bounds of virtual
synchronous group communication. In 7th ACM SIGOPS
European Workshop (September 1996).

[11] Keidar, I., and Dolev, D. Increasing the resilience of
distributed and replicated database systems. J. Comput.
Syst. Sci. 57, 3 (Dec. 1998), 309–324.

[12] Keidar, I., and Rajsbaum, S. On the cost of fault-tolerant
consensus when there are no faults – a tutorial. Tech. Rep.
MIT-LCS-TR-821, MIT Laboratory for Computer Science,
May 2001. Preliminary version in SIGACT News 32(2),
pages 45–63, June 2001 (published May 15th 2001).

[13] Keidar, I., Sussman, J., Marzullo, K., and Dolev, D.
Moshe: A group membership service for WANs. ACM
Trans. Comput. Syst. (2002). To appear.

[14] Lamport, L. The part-time parliament. ACM Trans.
Comput. Syst. 16, 2 (May 1998), 133–169.

[15] Lamport, L. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM 21, 7 (July 78),
558–565.

[16] Lamport, L., Shostak, R., and Pease, M. The Byzantine
generals problem. ACM Transactions on Programming
Languages and Systems 4, 3 (July 1982), 382–401.

[17] Paxson, V. End-to-end Internet packet dynamics. In ACM
SIGCOMM (September 1997).

[18] Rajsbaum, S., and Sidi, M. On the performance of
synchronized programs in distributed networks with
random processing times and transmission delays. IEEE
Transactions on Parallel and Distributed Systems 5, 9
(1994), 939–950.

[19] Savage, S., Anderson, T., Aggarwal, A., Becker, D.,
Cardwell, N., Collins, A., Hoffman, E., Snell, J.,
Vahdat, A., Voelker, G., and Zahorjan, J. Detour: a
case for informed internet routing and transport. IEEE
Micro 19, 1 (January 1999), 50–59.

[20] Savage, S., Collins, A., Hoffman, E., Snell, J., and
Anderson, T. The end-to-end effects of Internet path
selection. In ACM SIGCOMM (September 1999),
pp. 289–299.

[21] Schiper, A. Early consensus in an asynchronous system
with a weak failure detector. Distributed Computing 10, 3
(1997), 149–157.

[22] Sergent, N. Evaluating latency of distributed algorithms
using Petri nets. In 5th Euromicro Workshop on Parallel
and Distributed Processing (London, UK, Jan. 1997),
pp. 437–442.

[23] Skeen, D. Nonblocking commit protocols. In ACM
SIGMOD International Symposium on Management of
Data (1981), pp. 133–142.

[24] Stevens, R. TCP/IP Illustrated, vol. 1. Addison-Wesley,
1994.

[25] Urbán, P., Défago, X., and Schiper, A.
Contention-aware metrics for distributed algorithms:
Comparison of atomic broadcast algorithms. In 9th IEEE
International Conference on Computer Communications
and Networks (IC3N 2000) (Oct. 2000).

[26] Zhang, Y., Duffield, N., Paxson, V., and Shenker, S.
On the constancy of internet path properties. In ACM
SIGCOMM Internet Measurement Workshop (November
2001).

