Amnesic Distributed Storage

Gregory Chockler!, Rachid Guerraoui?*, and Idit Keidar?

! IBM Haifa Research Lab, Haifa, Israel,
chockler@il.ibm.com
2 School of Computer and Communication Sciences,
EPFL, CH-1015, Lausanne, Switzerland
rachid.guerraoui@epfl.ch
3 Department of Electrical Engineering,
The Technion — Israel Institute of Technology

Abstract. Distributed storage algorithms implement the abstraction of
a shared register over distributed base objects. We study a specific class
of storage algorithms, which we call amnesic: these have the pragmatic
property that old values written in the implemented register might be
eventually forgotten, i.e., they are not permanently kept in the storage
and might be overwritten in the base objects by more recent values. This
paper precisely captures this property and argues that most storage al-
gorithms are amnesic. We establish a fundamental impossibility of an
amnesic storage algorithm to implement a robust register abstraction
over a set of base objects of which at least one can fail arbitrarily, even
if only in a responsive manner, unless readers are allowed to write to the
base objects. Our impossibility helps justify the assumptions made by
practical robust storage algorithms. We also derive from this impossibil-
ity the first sharp distinction between safe and regular registers. Namely,
we show that, if readers do not write, then no amnesic algorithm can
implement a regular register using safe registers.

1 Introduction

Storage is a critical aspect of modern computing systems. Today, there is strong
interest in distributed storage architectures, either server-based or in the form
of storage area networks (SANs), which leverage the technological advances in
networks of attached commodity disks to provide increased storage space, avail-
ability, and disaster recovery. At the heart of a distributed storage architecture
lies an algorithm that implements the read and write operations of a register
abstraction over several underlying base objects, sometimes called servers. Such
distributed storage algorithms constitute an active area of research. A major
challenge addressed by these algorithms is to ensure that (high-level) read and
write implementations tolerate asynchrony, contention, and failures.

We study in this paper the fundamental limitations of a specific class of
storage algorithms, which we define precisely and call amnesic. As we explain

* Part of this work was conducted when the author was on sabbatical at MIT CSAIL.

later (Section 5), most previously suggested storage algorithms are amnesic,
e.g., [15,6,13,17,2,16,8,11,12,3], although the notion has never been specifically
highlighted. Roughly speaking, an amnesic storage algorithm is one that eventu-
ally forgets old values previously stored in the implemented register after some
sequence of new values is written. For instance, an algorithm that stores in base
objects the last k& values written in the implemented register, for some k£ > 0,
e.g., [6,13,2,3], is amnesic, because a sequence of k new writes erases all pre-
viously stored values. On the other hand, an algorithm that stores the entire
history of values written in the base objects, (where values are drawn from an
unbounded domain), e.g., [10], is not amnesic. In this sense, amnesia can be seen
as a restriction on an algorithm’s space consumption, although it is not explicitly
formulated this way. Instead, we capture the notion of amnesia in an abstract
way in terms of reachable configurations of a distributed storage algorithm (Sec-
tion 3).

Our motivation for refraining from an explicit space restriction is twofold.
First, we are interested in algorithms that manipulate potentially unbounded
value domains, such as integers, or files. Although in every execution, such an
algorithm’s space consumption is finite (and depends on the sizes of the written
values), it is inherently unbounded. Second, many practical algorithms employ
monotonically increasing timestamps [17,14,18,2,10,3,12], which are considered
pretty cheap in practice. Thus, the classical concept of bounded memory is in-
adequate for reasoning about many interesting algorithms. We further note that
the concept of bounded memory, by itself, does not capture “reasonable” space
restrictions. For example, it does not preclude an algorithm that manipulates
a large but finite domain (e.g., files of size 1KB), from storing all the (2819%)
values in its domain if they were all written at some point. Focusing on amnesic
algorithms with unbounded domains provides an abstract way to rule out such
algorithms, without precluding the use of increasing timestamps.

We establish in this paper (Section 4) a fundamental limitation on amnesic
storage algorithms. We prove that it is impossible for an amnesic storage al-
gorithm to robustly implement a register abstraction using a set of distributed
(failure-prone) base objects, when readers do not write to the base objects. Un-
derlying our impossibility lies the notion of robustness. In short, we consider
as robust an algorithm that implements a live regular register [15] in the pres-
ence of contention, asynchrony, and arbitrary (Byzantine) failures of base ob-
jects [13,5,4]. Our impossibility holds if at least one base object can fail in a
responsive yet arbitrary manner (R-Arbitrary failure [13]) among an arbitrarily
large set of atomic base objects. (A fortiori, the result also holds if a base object
may fail in a non-responsive arbitrary (NR-arbitrary) manner). Such arbitrary
failures capture software bugs or malicious intrusions, which cannot be ruled out
when the service is geographically disperse. We do not require that the algorithm
tolerate process failures, which also strengthens our impossibility result.

The assumption that readers do not write is important for large systems
with many readers. Whereas it is reasonable for storage servers to communicate
using an authenticated channel with a single trusted writer and to assume it

not to be malicious?, a storage that is accessible to a large population of readers
cannot typically trust all of them (authenticating all readers to prevent storage
corruption might be infeasible). Hence, a more feasible alternative is to disallow
the readers to modify the base object states, which is the assumption under
which our impossibility is proven.

Given the vast amount of work on practical robust storage, our impossibility
result may come as a surprise. In fact, our result does not imply that prac-
tical robust storage is unattainable, but rather justifies why previous solutions
have had to employ authentication [8,17,19], store unbounded histories [10], have
servers actively push updates to clients [18], give up on liveness in some situ-
ations [2], allow readers to write [3,11], or implement safe registers instead of
regular ones [13,17,2,12] (see Section 5).

Our impossibility indeed holds if the implemented register needs to be reg-
ular but not if it needs to be safe. In a sense, regularity conveys an important
aspect of robustness in the face of concurrency: no value can be returned if it was
not written. Since many amnesic robust storage solutions implement safe regis-
ters [13,17], we can use our impossibility to derive the first sharp line between
safe and regular semantics. We prove that there is no amnesic implementation
of a regular register with an unbounded domain from safe ones, if readers do
not write (Section 6). The line we draw between safety and regularity is anal-
ogous to the celebrated sharp line drawn by Lamport between atomicity and
regularity [15], which states that no bounded memory algorithm can implement
an atomic register using regular ones, if the readers do not write [15]. No such
separation between safety and regularity has ever been established. We identify
such a separation by replacing the notion of bounded algorithm in Lamport’s
formulation with our alternative notion of amnesic algorithm.

To summarize, this paper makes the following contributions:

— We define the notion of amnesia, capturing a pragmatic property of many
storage algorithms.

— We prove the impossibility of devising a storage algorithm that is robust and
amnesic without allowing readers to write.

— We derive the first sharp distinction between safe and regular register se-
mantics.

2 Model

2.1 Shared memory model

We consider an asynchronous shared memory system consisting of a finite col-
lection of processes interacting through n base objects O,...,0,. The term
base objects is used to distinguish these from the higher level object abstraction
implemented by the shared memory algorithm.

* With a compromised writer, the stored information is rendered meaningless anyway,
regardless of any distributed storage algorithm’s actions [17,19].

We consider storage algorithms that tolerate at least one arbitrary failure
of a base objects. We focus on a weak form of such failures, called responsive
arbitrary (R-Arbitrary) [13]. This means that the base objects always respond
to an invocation, but may respond with an arbitrary value. This assumption
strengthens our impossibility result, which directly applies to the more severe
non-responsive arbitrary (NR-Arbitrary) [13] failures.

Processes are sequential in their ways of invoking high-level operations. That
is, after invoking a high-level operation, and until it obtains a response, a process
does not invoke a new high-level operation. After invoking a high-level operation,
a process might invoke a sequence of low-level operations. We do not assume
these low-level invocations to be sequential. That is, a process might invoke
several operations on low-level base objects concurrently.

The solution must be live in the sense that every high-level operation must
eventually complete. We do not require the algorithm to terminate in the pres-
ence of process failures, i.e., it does not have to be wait-free.

2.2 Registers

We study more specifically storage algorithms that deterministically implement
the abstraction of a register, which is accessed using Read() and Write() oper-
ations. If the base objects are also registers, we denote their (low-level) oper-
ations as read() and write(), to avoid confusion with the high-level operations.
To strengthen our impossibility result, we restrict our attention to storage al-
gorithms that emulate a single-writer single-reader (SWSR) register: that is,
the emulated register is only writable by a single process (the writer), and is
read by a single process (the reader). The result a fortiori holds for multi-writer
multi-reader registers. We assume an infinite value domain V' from which the pa-
rameters of the Write() operation can be arbitrarily chosen by the writer. When
it completes, Write() simply returns an Ok indication. A Read() operation does
not have any input parameter, and returns a value from V upon completion.

The sequential specification of a register stipulates that a read should return
the last value written. When read and write operations may overlap, several
semantics have been defined [15]: A register is called safe if every read operation
that does not overlap any write operation returns the register’s value when the
read was invoked, i.e., the latest written value or the initial value of the register
if no value was written. A register is regular if it is safe and every read operation
that overlaps some write operations returns either one of the values written by
overlapping writes or the register’s value before the first overlapping write is
invoked. A register is atomic if it is regular and if, for any two write operations
W and W' with respective input values v and v’ such that W' is invoked after
W returns, and any two read operations R and R’ such that R' is invoked
after R returns, if R’ returns v, then R does not return »'. To strengthen our
impossibility result, we will allow base objects to be atomic.

2.3 Configurations

In this paper, we are only interested in the states of base objects, and not of
processes. Therefore, by slight abuse of terminology, we define a configuration
to be a set of states of all the correct base objects (and not the processes).
Basically, the system starts from an initial configuration and each atomic step of
the algorithm, e.g., a low-level write() on a base object, leads the system to a new
configuration. The execution of a high-level operation involves several atomic
steps that lead the system from a configuration C' to another configuration C'.
The assumption that the reader does not write means that C' = C in case no
Write() is invoked.

We say that a configuration C' is write-reachable from a configuration C
if there is a sequence S of Write() operations that, when executed without
overlapping with any other high-level operation, leads the system to C’. If all
input parameters of the Write() operations of sequence S are from a set V! C V,
we say that C' is write-reachable from C using V'.

3 Amnesic Storage Algorithms

We introduce in this section the notion of an amnesic storage algorithm. We
characterize this notion in terms of configurations and write-reachability.

Intuitively, a storage algorithm is amnesic if all but a finite number of config-
urations reached by the algorithm can be eventually erased if a sufficient number
of different. values are written after them. In short, erasing a configuration C’,
itself obtained from some configuration C', means reaching a new configuration
C" (after writing a sufficient number of different values) that makes it impossi-
ble to tell whether C' was indeed reached. That is, C" could be reached directly
from C without going through C’. The sequence that reaches C" from C’ is in a
sense an eraser sequence. An observer of C" does not know whether C' occurred
or not.

To preclude the trivial case where erasing a configuration is always performed
by the very same sequence, i.e., some sort or reset sequence, we require that the
configuration C" could be obtained from C' by using values from any infinite
subset of values. Notice that we do not require that any sufficiently long sequence
erases every configuration. Yet, our definition is rather weak because we simply
require that every configuration has an eraser sequence using any infinite subset
of values: such a weak definition strengthens our impossibility result. Formally,

Definition 1 (Amnesic Storage). A storage algorithm A is amnesic if in
every execution of A in which infinitely many different values are written, there
is a point t, so that for every configuration C reached from point t onward,
every configuration C'l write-reachable from C, and every infinite subset of values
V' C V, there is a configuration C2 that is write-reachable from both C and C1
using V'.

We say that (see Figure 1) ¢ is the amnesia point, C2 is an eraser configuration
of C1 from C using V'; the sequence of Writes() used to reach C2 from C1 is

an eraser sequence of C1 from C using V'; the sequence used to reach C2 from
C is a bypass sequence of C'1 from C using V'.

erased configuration eraser configuration
amnesia point C Cl C2
| | ‘ eraser sequence (only values from V’) }

| | e ——

bypass sequence (only values from V’)

Fig. 1. Amnesia.

Clearly, an algorithm that recalls the entire history of written values in the
base registers is not amnesic. On the other hand, an algorithm that stores in all
base registers the last k£ values written in the high-level register is amnesic. The
eraser sequence S2 simply needs to be of size k and from V’. The amnesia point
captures a situation where an algorithm initially stores some finite number of
values forever, but eventually, (at the amnesia point), its storage is “exhausted”
and it cannot store additional values forever. To be non-amnesic, an algorithm
with an infinite domain needs to be able to recall (in the sense that they cannot
be erased) infinitely many configurations that it visited.

It is important to notice here that storage algorithms can also record times-
tamps while being amnesic. Consider for instance an algorithm that stores in
the base registers the last k values written, as well as the total number of values
written. Consider a configuration C'l obtained after writing i values, starting
from an initial configuration C'. An eraser sequence using some infinite subset
V' consists of k new different Write() invocations with parameters from V', and
a bypass sequence counsists of i + k different Write() invocations with parameters
from V', the latter k being the same as for the eraser sequence.

Note that violating amnesia does not directly translate to excessive storage
requirements. An algorithm may be able to represent some property of an un-
bounded history in a bounded way, much like a finite-state automaton can recall
that an unbounded string belongs to some regular language®. Nevertheless, we
are unaware of any previous storage algorithm that employs such a succinct
representation, and so our impossibility result has broad applicability.

4 Impossibility of Amnesic Robust Storage

In this section, we establish the impossibility of devising a storage algorithm
that is at the same time amnesic and robust when readers do not write. Recall
that in our context, a storage algorithm is robust if (a) at least one base object

% We are grateful to Prasad Jayanti for pointing this out.

can suffer an (R-arbitrary) failure; (b) the implemented register is regular, i.e.,
tolerates contention; (c) every invoked high-level operation terminates, including
in the presence of contention.

4.1 Simplifications

As we assume that only the writer of the implemented register can modify the
base objects, these are also, without loss of generality, single-writer registers,
with the same writer as that of the implemented register. Still without loss of
generality, since we preclude the reader from writing, we can assume that:

I. Every high level Read() invocation translates into a finite series of concurrent
read invocations of all base objects Oy, Os, .., O,.

2. The set of configurations obtained after performing any sequence S of Write()
operations without any overlapping Read() is the same as if this sequence
was invoked concurrently with this Read(). Recall that our definition of con-
figurations only includes base object states.

4.2 Overview of the impossibility proof

To prove our impossibility, we proceed by contradiction. More specifically, we
assume that there is an amnesic robust storage algorithm A that implements a
register over an infinite domain V and we exhibit a scenario where A violates
the regularity of the register.

We show that A violates regularity by having the reader return a value that
was never written to the implemented register. Not surprisingly, this value is
obtained from a low-lever read of the faulty base register. Our scenario has the
reader unable to distinguish the response of the faulty base register from the
response of a correct one, precisely because A is amnesic, and readers do not
write. The proof then goes through three steps:

— Step 1. (Using the amnesia assumption.) We construct an execution E, which
we call an amnesic execution, where sequences of Write() operations erase

each other in turn, using n different subsets of value domains, Vi,...,V,.
We will argue that every amnesic storage algorithm can generate such an
execution.

— Step 2. (Using the assumption that readers do not write.) We next construct
a slight modification E’ of E, where the reader samples one base register
after each sequence above has erased the previous configuration. No matter
how many samples are taken, the reader still cannot obtain evidence of any
written value from more than one base register, because the evidence is
continuously erased. Finally, the reader returns some value v; from some
subset V;, for which it saw evidence in some base register O;.

— Step 3. (Using robustness.) Finally, we construct an execution E; in which
no value from V; is written, bypassing the configurations where values from
Vi are stored. In E], O; incurs an R-arbitrary failure, and returns the same
values as in E’. Since the reader cannot distinguish E} from E’, it returns
v;, which was never written.

4.3 Impossibility

Theorem 1. No storage algorithm can be amnesic and robust if a single base
register can suffer a responsive arbitrary failure and readers do not write.

Proof (Proof of Theorem 1.). We assume a storage algorithm A that determin-
istically implements the abstraction of a register with an infinite value domain
V', using a collection of n base objects Oy, ...,0,. We assume by contradiction
that A is robust and amnesic.

We partition V into n + 1 infinite subsets V5, Vi, ..., V,. (The intersection of
every two subsets is empty, and the union of all subsets is V).

Step 1. We construct an infinite execution of A, E, which we call an amnesic
execution (see Figure 2). E goes through the infinite sequence of configurations:

Cl,la---701,7“02,1’-'-702,na-'-70j,17-'-7Cj,n7-"

such that for every i € {1,..,n}, there is an execution E; such that (a) E; is the
subsequence of E obtained by omitting all the configurations Cy ;, k > 0. (That
is, configurations C},; for all k are skipped.) And (b) no value from V; is ever
written in F;.

C CL,1 Cl2 C13 Cln C21 2,2
A B £ N 0 T ST Vol VI | V2| V3 |

T I \ [T \ \ \
El bypass
using V2 coe ing e

E2 bypass
using V3

E2 bypass
using V3

En bypass
using V1

Fig. 2. Amnesic execution E; execution E2 (bypassing V5) highlighted.

We construct E recursively as follows. We perform a series of Writes() of
different values from V4 until the algorithm reaches an amnesia point at some
configuration C. Then we apply a Write() of a single value from V;. We denote
the resulting configuration C} ;. Then we use the assumption that the storage
algorithm is amnesic and apply to C1,; a sequence that erases C; from C us-
ing V5. We denote the resulting configuration by C; . Then we use again the
assumption that the storage algorithm is amnesic and apply to C 2 a sequence
that erases C} o from C;; using V3. We denote the resulting configuration by
C1,3. And so forth recursively. We apply to C; i a sequence that erases C; ; from
Cj k-1 using Vi1, where Cj 11 = Cj11,1 and V1 = Vi. The resulting execu-
tion F is infinite and can be generated from every amnesic storage algorithm.

In addition, for every 1 < i < n, execution E; is constructed, also recursively,

as follows (see Figure 2). Up to C ;—1, E; is exactly like E and hence no Write()
uses any value from V;. Configuration Cj ;41 is then (directly) reached from
C1,i—1 via the bypassing sequence of C;; from Cp;—; using values from V; ;.
Then we continue as in £ until Cs;—1, at which point we execute the bypass
sequence of Cs ; from C5 ;1. And so forth: we apply the same sequence as in E
to reach Cj; from Cj,—1 for k # i, and for ¢, we apply the bypass sequence of
Cj,i from Cj;_1 to reach Cj ;41 from Cj ;1. It is easy to see that properties (a)
and (b) above hold for every E;, for i € {1,..,n}.
Step 2. We now construct an execution E' interleaving a single Read() with the
sequences of Write() operations involved in E. Remember that, without loss of
generality, we assume that every Read() implementation consists of a sequence
of concurrent invocations of all base objects. The interleaving in execution E'
is constructed as follows. Read() is invoked when the base objects are in con-
figuration C} ;. The reader returns from the kth read() of base object O; when
the system is in configuration C} ;. For instance, the reader returns from the
first read() of the first base object, O, when the system is in configuration C 1,
then from the first read() of the second base object, O2, when the system is in
configuration C 2.

By the assumption that the reader does not write, execution E’ can also be
generated by every amnesic storage algorithm. By our liveness assumption, the
Read() eventually returns a value. Since the Read() is invoked after the first
write from Vj, by regularity, it returns a value v; from some V; for 0 < i < n.
Step 3. We now make use of our assumption of robustness to derive a contradic-
tion. We construct execution E!, which is the same as E;, with two exceptions:

1. For every j # i, as in E', we apply the kth read() of base object O; when
the system is in configuration Cf ;.

2. The kth read() of base object O; occurs during the kth bypass.

3. O; returns the same response to its kth read invocation in E} as in in exe-
cution E'.

Execution E] can also be generated by every amnesic storage algorithm with
base object O; failing in an arbitrary way. Executions E' and E} look the same
to the reader (by construction), which then returns a value v; from V; in E!. But
no value from V; is written in E}, contradicting regularity.

5 Amnesic Algorithms and Circumventing the
Impossibility

Our impossibility justifies certain assumptions and design decisions made by
existing storage algorithms. In this section, we illustrate the importance of the
notion of amnesia, by showing that the majority of reliable storage algorithms in
the literature are amnesic, and discuss how existing algorithms circumvent our
impossibility result.

First note that every bounded memory algorithm is by definition trivially am-
nesic, because no infinite sub-domains of its domain exist. Since our impossibility
result only applies to algorithms that can store values from unbounded domains,
it is more interesting to consider algorithms that can manipulate such domains.
Interestingly, most bounded memory algorithms in the literature can be easily
extended to support unbounded domains. For example, Jayanti et al. [13] present
an emulation of a safe register from ones that can suffer NR-Arbitrary faults.
Although originally described as a bounded memory algorithm, it does not make
any use of the domain size, and only stores values from the domain. Hence, this
algorithm can easily work with an unbounded domain, where in each execution,
it consumes storage as required for representing the values written in that execu-
tion. This algorithm circumvents our impossibility result by implementing only
safe storage.

Lamport [15] presents a bounded memory algorithm for implementing a wait-
free regular register from safe bits, with readers that do not write. Given the
existence of robust safe register emulations [13,17,2], had this algorithm manip-
ulated unbounded domains, it would have contradicted our impossibility. How-
ever, this algorithm is aware of its value domain and makes heavy use of this
knowledge- it stores one bit for each value in the value domain of the register.
The algorithm works as follows: a write operation of the ¢th value in the domain
changes the ¢th bit to 1, and subsequently writes 0 in bits ¢ — 1,2 —2,...,1. The
reader reads the bits 1,2,3,... until it encounters a 1 in some bit ¢, at which
point it stops reading and returns ¢. We observe that neither the reader nor the
writer ever accesses a bit higher than the one pertaining to the largest written
value. Therefore, this algorithm too can be extended to unbounded domains, e.g.,
integers, by allocating the ith bit the first time a value greater or equal to i is
written. Despite its exponential storage requirements, the resulting algorithm is
also amnesic, since writing a single value larger than all previously written ones
is an eraser sequence. So how does this algorithm circumvent our impossibility
result? We observe that the extended algorithm no longer ensures liveness, be-
cause if the writer writes an infinite monotonically increasing sequence of values
(an amnesic sequence), the reader can “trail” the writer, and never encounter a
1 in any register. Thus, even such exponential storage does not save us from the
impossibility.

Many algorithms that store unbounded timestamps are also amnesic, includ-
ing the classical ABD [6] algorithm, which tolerates only crash failures of base
objects, and the safe register emulations of [17,2,12]. Other amnesic algorithms
provide atomic semantics (which are stronger than regular) either by assuming a
stronger model where data is self-verifying (and hence cannot be forged by base
objects), or by having readers write [17,16,8,11,3].

It is also possible to circumvent our impossibility with amnesic algorithms
by providing weaker (non-terminating in case of contention) termination guar-
antees [2]. Specifically, Abraham et al. [2] propose a termination condition called
finite writes (FW), which guarantees progress only in executions with a finite

number of writes, and present a amnesic storage algorithm implementing a reg-
ular FW-terminating register.

A few algorithms circumvent our impossibility by forgoing amnesia. These
include the Pasis system [10], which achieves atomic semantics. It circumvents
our impossibility by having authenticated readers that are allowed to modify the
data stored at the base registers (storage nodes). The storage nodes also keep
all versions of data that have been written in the execution, and are therefore,
not amnesic. To prevent storage exhaustion, the system implements a garbage
collection mechanism, which works well in practice, but, as the authors point
out in [9], might fail to terminate in some scenarios.

Martin et al. [18], as well as Bazzi and Ding [7] also provide atomic seman-
tics. They assume storage servers (instead of base registers) that communicate
with each other, and a subscription model whereby storage servers push writer
updates to subscribed clients. Since theoretically, there is no bound on the num-
ber of messages in the reliable push channel in an asynchronous system, these
algorithms are also not amnesic. This approach nevertheless, is a viable design
alternative in the settings where servers are available and the number of clients
is limited.

6 Sharp Separation Between Regularity and Safety

Many amnesic robust storage solutions implement safe registers [13,17,2]. This
maybe surprising, as safe and regular semantics are commonly believed to be
“equivalent”, justified by the existence of known bounded memory reductions
from regular registers to safe ones. In particular, Lamport [15] presents a bounded
memory algorithm for emulating a regular register from safe ones, in which read-
ers do not write. The algorithm assumes a bounded value domain and its storage
requirements, as well as the number of memory accesses in the algorithm, are no-
toriously high (proportional to the number of possible values the regular register
can hold).

The following theorem is an immediate corollary of Theorem 1 and the ex-
istence of amnesic storage algorithms that implement a ¢-tolerant wait-free safe
register (with unbounded value domains) from a collection of n base registers
up to t of which can suffer arbitrary failures [13,17,2].

Theorem 2. If readers do not write, it is impossible to implement a live regular
register from safe omes with an amnesic algorithm and an infinite domain.

Interestingly, Lamport has proved the following [15] :

If readers do not write, it is impossible to implement an atomic register
from regular ones with a bounded algorithm.

Thus, Lamport has shown that in bounded memory implementations, disallowing
readers to write draws a sharp line between regularity and atomicity, but not
between safety and regularity.

Hence, our result shows that, when one considers amnesic with infinite value
domain instead of bounded memory, the same sharp line does exist between
regularity and safety.

7 Concluding Remarks

The observation that no existing storage algorithm with reasonable space re-
quirements that is regular, live in the presence of contention, and does not re-
quire readers to write, or preclude arbitrary faults of base registers was made
by Abraham et al. [1]. They conjectured that, roughly speaking, if readers do
not write, then the storage size grows linearly with the number of values written
over the execution’s time span. The difficulty in proving this conjecture stems
from the lack of appropriate definitions, since the classical notion of bounded
memory cannot capture “linear growth” in storage requirements. Qur notion of
amnesic memory is an attempt to capture practical limitations on the infor-
mation an algorithm recalls about its history, and gives an explanation to the
observation that led to this conjecture. An interesting direction for future work
may be providing a concrete lower bound on the space requirements of robust
storage algorithms that are not amnesic. In addition, we believe that more im-
possibilities and fine grained distinctions could be obtained if one reconsiders
bounded memory restrictions with our amnesic notion in mind.

Acknowledgments

We thank Ittai Abraham, Lorenzo Alvisi, Faith Ellen, Eli Gafni, Prasad Jayanti,
Nancy Lynch, Dahlia Malkhi, Jean-Philippe Martin, Michel Raynal, and Marko
Vukoli¢ for many fruitful discussions on robust storage algorithms.

References

1. I. Abraham, G. Chockler, I. Keidar, and D. Malkhi, 2002. Private communication.

2. I. Abraham, G. Chockler, I. Keidar, and D. Malkhi. Byzantine Disk Paxos: Optimal
resilience with byzantine shared memory. Distributed Computing, 18(5):387-408,
Apr. 2006. Earlier version in PODC 2004.

3. I. Abraham, G. Chockler, I. Keidar, and D. Malkhi. Wait-free regular storage from
byzantine components. Information Processing Letters (IPL), 101(2):60-65, Jan.
2007.

4. Y. Afek, D. S. Greenberg, M. Merritt, and G. Taubenfeld. Computing with faulty
shared objects. Journal of the ACM, 42(6):1231-1274, November 1995.

5. Y. Afek, M. Merritt, and G. Taubenfeld. Benign failures models for shared memory.
In 7th Intl. Workshop on Distributed Algorithms, pages 69-83. Springer Verlag,
September 1993. LNCS 725.

6. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing
systems. Journal of the ACM, 42(1):124-142, January 1995.

7. R. A. Bazzi and Y. Ding. Non-skipping Timestamps for Byzantine Data Storage
Systems. In 18th International Symposium on Distributed Computing (DISC’04),
LNCS 3274, pages 405419, Oct. 2004.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

C. Cachin and S. Tessaro. Optimal resilience for erasure-coded Byzantine dis-
tributed storage. In Intl. Conference on Dependable Systems and Networks (DSN
2006), pages 115-124, June 2006.

. G. Goodson, J. Wylie, G.Ganger, and M. Reiter. Efficient byzantine-tolerant

erasure-coded storage. Technical Report CMU-PDL-03-104, Parallel Data Lab-
oratory, CMU, December 2003.

G. Goodson, J. Wylie, G.Ganger, and M. Reiter. Efficient byzantine-tolerant
erasure-coded storage. In The International Conference on Dependable Systems
and Networks (DSN-2004), June 2004.

R. Guerraoui, R. R. Levy, and M. Vukolic. Lucky read/write access ¥o robust
atomic storage. In DSN, pages 125-136. IEEE Computer Society, 2006.

R. Guerraoui and M. Vukoli¢. How Fast Can a Very Robust Read Be? In 25th
ACM Symposium on Principles of Distributed Computing (PODC’06), 2006.

P. Jayanti, T. Chandra, , and S. Toueg. Fault-tolerant wait-free shared objects.
Journal of the ACM, 45(3):451-500, 1998.

S. Lakshmanan, M. Ahamad, and H. Venkateswaran. Responsive security for stored
data. IEEE Trans. on Parallel and Distributed Systems, 14(19):818-828, Sept.
2003.

L. Lamport. On interprocess communication — Part IT: Algorithms. Distributed
Computing, 1(2):86-101, 1986.

B. Liskov and R. Rodrigues. Byzantine clients rendered harmless. In 19th In-
ternational Symposium on Distributed Computing (DISC 2005), LNCS. Springer,
September 2005.

D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing,
11(4):203-213, 1998.

J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal byzantine storage. In Proceedings
of the 16th International Symposium on Distributed Computing (DISC), October
2002.

R. Rodrigues and B. Liskov. Rosebud: A Scalable Byzantine-Fault-Tolerant Stor-
age Architecture. Technical Report MIT-LCS-TR-932, MIT Laboratory for Com-
puter Science, 2004.

