Dynamic Voting for Consistent Primary Components!

Danny Dolev Idit Keidar Esti Yeger Lotem

Email: {dolev,idish,esti}@cs.huji.ac.il
Url: http://www.cs.huji.ac.il/{~dolev,~idish,~esti}

Institute of Computer Science
The Hebrew University of Jerusalem
Jerusalem, Israel

Technical Report CS96-7

June, 1996

!This work was supported by the United States - Israel Binational Science Foundation, Grant No. 92-
00189

Abstract

Distributed applications often use quorums in order to guarantee consistency. With emerging
world-wide communication technology, many new applications (e.g. conferencing applications and
interactive games) wish to allow users to freely join and leave, without restarting the entire system.
The dynamic voting paradigm allows such systems to define quorums adaptively, accounting for
the changes in the set of participants. Furthermore, dynamic voting was proven to be the most
available paradigm for maintaining quorums in unreliable networks. However, the subtleties of
implementing dynamic voting were not well understood, in fact many of the suggested protocols
may lead to inconsistencies in case of failures. Other protocols severely limit the availability in
case failures occur during the protocol. In this paper we present a robust and efficient dynamic
voting protocol for unreliable asynchronous networks. The protocol consistently maintains the
primary component in a distributed system. Our protocol allows the system to make progress in
cases of repetitive failures in which previously suggested protocols block. The protocol is simple to
implement, and its communication requirements are small.

1 Introduction

Numerous fault tolerant distributed systems, e.g. ISIS [5], use the primary component® paradigm
to allow a subset of the processes to function when failures occur. A majority (or quorum) of the
processes is usually chosen to be the primary component in the system. In unreliable networks this
can be problematic: Repeated failures may cause connected majorities to further split up, leaving
the system without a primary component. To overcome this problem, the dynamic voling paradigm
was suggested.

The dynamic voting paradigm defines quorums adaptively: When a partition occurs, if a major-
ity of the previous quorum is connected, a new and possibly smaller quorum is chosen. Thus, each
newly formed quorum must contain a majority of the previous one, but not necessarily a majority
of the sites. Stochastic models analysis [14], simulations [18], and empirical results [4] show that
dynamic voting increases system availability, by increasing the probability that a primary compo-
nent exists. In fact, the results in [4] show that dynamic voting is more available than any other
paradigm for maintaining a primary component.

Another important benefit of the dynamic voting paradigm is in its flexibility to support a
dynamically changing set of processes. With emerging world-wide communication technology, many
new applications (e.g. conferencing applications and interactive games) wish to allow users to freely
join and leave, without restarting the entire system. Using dynamic voting, such systems can
dynamically account for the changes in the set of participants.

In this paper we present a robust and eflicient protocol for maintaining a primary component
using dynamic voting in an asynchronous environment, where processes and communication links
may fail. By recording historical information, our protocol allows the system to make progress
where previously suggested protocols either block or require a cold start of the entire system, or
lead to inconsistencies. Our protocol’s communication and memory requirements are small and it is
simple to implement. It may be incorporated in many distributed applications that make progress
in a primary component, e.g. replication algorithms [16, 9], transaction management [15], and even
infrastructure systems like the ISIS toolkit [5].

If a failure occurs in the course of the protocol, some previously suggested protocols (e.g. [14, 1])
block until all the members of the last quorum become reconnected, while our protocol requires
only a majority of the members that attempted to form the last quorum to become reconnected
in order to make progress. Blocking until all the members reconnect significantly reduces the
availability offered by the dynamic voting paradigm, especially in failure-prone environments for
which dynamic voting is most suitable. Furthermore, the analyses of the availability of dynamic
voting do not take the possibility of blocking into consideration, and therefore the actual availability
of these protocols is lower than expected, and possibly even worse than the availability of static
quorums. This approach is even more problematic in applications in which the set of participants
is dynamic: one process that voluntarily leaves the system may cause all the other participants to
block.

Unlike some previous protocols (e.g. the protocols implemented in ISIS and Horus [19]), our
protocol recovers from situations in which the primary component was lost (e.¢g. when the primary
component partitions into three minority groups) without requiring a cold start of the entire system.

! A component is sometimes called a partition. In our terminology, a partition splits the network into several
components.

The challenge in designing consistent dynamic voting protocols is in coping with failures that
occur while the processes are trying to form a new primary component (i.e. form a new quorum).
Uncareful handling of such cases may lead to inconsistencies when there are different knowledge
levels at different sites. When partitions occur, such knowledge differences are inevitable: Once a
site detaches, it is impossible for other sites to know whether it received a specific message before
its detachment, or not. Some past protocols (e.g. [8, 18, 9]) lead to inconsistent results in such
cases, as demonstrated by the following typical scenario:

e The systems consists of five processes: a,b,c,d and e. The system partitions into two com-
ponents: a,b,c and d, e.

e a,band ¢ try to form a new quorum. To this end, they exchange messages.

e a and b form the quorum {a,b, ¢}, assuming that process ¢ does so too. However, ¢ detaches
before receiving the last message, and therefore is not aware of the fact that this quorum is
formed.

e a and b notice that ¢ detached, therefore form a new quorum {a,b} which is a majority of

{a,b,c}.
e Concurrently, ¢ connects with d and e, and they form the quorum {¢,d,e}.

The system now contains two live quorums, which may lead to inconsistencies.

Our protocol overcomes the difficulty demonstrated in the scenario above by maintaining an-
other level of knowledge. The protocol guarantees that if @ and b succeed in forming {a, b, ¢}, then
¢ is aware of this possibility. From ¢’s point of view, the quorum {a,b, c} is ambiguous: It might
have or might have not been formed by @ and b. In general, every process records, along with
the last quorum it formed, later quorums that it attempted to form but detached before actually
forming them. These ambiguous quorums are taken into account in later attempts to form a quo-
rum. Some previously suggested protocols avoid inconsistencies by running Two Phase Commit
([14, 11]), or similar mechanisms ([1]) that cause processes to block when their latest quorum is
ambiguous. These protocols do not record historical information, and therefore, in case of failures,
must consider all possible histories. This imposes severe limitations on the system’s ability to make
progress.

Our protocol uses ideas similar to those used in the majority based Three Phase Commit
(3PC) [21, 15] protocols to allow a majority in the system to make progress. However, explicitly
running the 3PC recovery protocol to resolve the status of past quorums before forming new ones
would induce a high overhead that would make the protocol infeasible for use in practice, and also
increase the chance of failure during the protocol. A similar idea was suggested in [17], where
Chandra and Toueg’s three phase consensus protocol [7] is employed. The status of past quorums
is resolved before the installation of new ones. When a majority of the previous quorum reconnects,
at least five communication rounds are needed in order to form a new quorum. In order to avoid
such excessive communication, our protocol does not explicitly run a three phase recovery protocol
for past ambiguous quorums; Their status is resolved during the installation of new quorums. Thus,
when a majority of the previous quorum reconnects, only two communication rounds are required
in order to form a new quorum.

Unfortunately, recording all ambiguous quorums is not feasible: The number of ambiguous
quorums a process might need to record may be exponential, as demonstrated in Section 4.7.
Furthermore, taking a huge number of quorums into consideration limits the possibility of progress
in the system, and may cause the system to block. In Section 5 we present a simple “garbage
collection” mechanism for reducing the number of quorums that a process needs to record to n,
where n is the number of processes in the system, using local computation only; This mechanism
does not require additional communication. Practically, the number of quorums a process may need
to consider is expected to be very small. The resulting protocol achieves a good balance between
the historical data it stores, the restrictions on the ability to make progress in the system and the
number of communication rounds.

The main criticism on the dynamic voting paradigm is that there can be situations where
almost all of the processes in the system are connected, but cannot form a new quorum because
of the potential existence of a past surviving quorum held by a small set of processes, or even by
a single process. To prevent such situations, our protocol sets a lower bound, z, on the size of
quorums. This way, every component containing more than n —z members (where n is the number
of processes in the system) can always form a quorum, regardless of past events in the system.
In our protocol, we incorporate a novel mechanism for providing this feature, in environments
which allow new processes to join on the fly. Jajodia and Mutchler [13] suggest a similar idea
in their hybrid algorithm. The hybrid algorithm combines dynamic voting in large quorums with
static voting in quorums of size three, ruling out quorums consisting of a single process. Neither
algorithm is strictly better than the other: There are situations in which our algorithm allows the
system to make progress while the algorithm in [13] does not, and vice versa.

2 Problem Definition

In this paper we present a primary component maintenance service, that allows a group of processes
to form a primary component in a consistent way. Such a service is required to impose a total order
on all the primary components formed in the system. When using a static (majority) quorum
system, the order is easily provided using the following property: “every two primary components
intersect”. Unfortunately, dynamic quorum systems do not possess this property. Instead, a total
order on primary components is defined by extending the causal order on components that do
intersect.

Formally: Let P and P’ be two primary components. If 7 € PN P’, and j participates in both
of these primary components, i.e. attempts to form both, then j participates in one of P and P’
before the other. If j participates in P first, we denote the transitive closure of this relation by:
P < P'. The requirement from a dynamic paradigm for maintaining primary components is that
< is a total order.

3 The Model

We assume the existence of a core set of processes, Wy, that is fixed and known to all the processes
in Wy. The set of all the processes that may run the protocol, is unknown to any of the processes
in advance. Processes that do not belong to Wy are aware of the fact that they are not members
of the core group.

The processes are connected by an underlying asynchronous communication network. The
system model allows for the following communication network changes: failures may partition
the network into disjoint components, and previously disjoint components may re-merge. Sites
may crash and recover; recovered processes come up with their stable storage intact 2. Failures are
detected using a (possibly unreliable) membership mechanism, as described in Section 3.1. Messages
are not corrupted or spontaneously created. While no failures occur, processes communicate via
reliable FIFO channels: Messages can be delayed arbitrarily, but are not lost3.

3.1 Membership and Failure Detection

Maintaining the primary component is typically decoupled into two separate problems: first, de-
termining the set of connected processes, and second, deciding whether a set of processes is the
primary component. Dynamic voting protocols solve the latter problem, assuming a separate mech-
anism that solves the former. We assume a membership mechanism no stronger than those assumed
in [8, 12, 18, 14, 9, 1].

Each process is equipped with an underlying membership module, e.g. [2, 3, 10]. When this
module senses failures or recoveries, it reports to the process of the new membership, i.e. the set
of processes that are currently assumed to be connected. Membership changes are reported to the
process via special membership messages. The membership reports do not necessarily reflect the
network situation, nor is the membership reported atomically to all the processes. We only require
that if a set of processes, G, is connected and no subsequent failures occur for sufficiently long,
then eventually, all the members of G receive the same membership message indicating that G is
the current membership, and do not receive other membership messages while they are connected.

As shown in [6], it is impossible to reach agreement upon the current membership in an asyn-
chronous system without failure detection. Consequently, agreement on the primary component in
the network is also impossible. Therefore, any protocol for this problem must assume some (not
necessarily perfect) failure detection mechanism. In our protocol, the failure detector is encap-
sulated in the membership module. The protocol we present is correct regardless of whether the
membership mechanism is accurate or not. The liveness of the protocol (its ability to form new
primary components when the network situation changes) depends on the accuracy and liveness of
this membership mechanism.

The membership module preserves causal dependencies between membership messages and the
rest of the messages: If a process p sends a message m after receiving a membership message m/,
and m’ is the last membership message that p received before sending m, then every process that
receives m, receives m’ before it. Note that this requirement is easily fulfilled, and is provided by
typical membership protocoals.

4 The Primary Component Protocol

We describe a protocol for maintaining the primary component in an asynchronous system. Initially,
the primary component in the system is the core group, Wy. Whenever a membership change is

21f the stable storage is destroyed, because of a severe disk error, the protocol remains correct, but its availability
is reduced.
*We assume that the underlying communication discovers the loss and either recovers it, or reports of a failure.

reported, the notified members invoke a new session of the protocol, trying to form a new primary
component. If they succeed, then at the end of the session they form a new primary component P,
which persists until the next membership change. Each process independently invokes the protocol
once it receives the membership message.

The protocol we present resembles Three Phase Commit (3PC) protocols [20, 21, 15]. Each
session of the protocol is conducted in three steps: In the first step the connected processes exchange
information about quorums in past sessions. In case the membership protocol involves message
exchange among the members, this information can be piggybacked onto the membership protocol
messages, thus no extra communication round is needed. The second step is the Attempt Step. In
this step, each process uses the information it received in the first step to make an independent
decision whether the current membership is an eligible quorum, and if it is, the member attempts
to form the session: it computes the session number, records the session and sends an attempt
message to the other members. If it is not an eligible quorum, the session is aborted. In the last
step, the processes form the new quorum. If a process receives a membership message in the course
of a session, it aborts the session and invokes a new session.

Intuitively, the purpose of the attempt step is to guarantee that if a process p forms G, then all
the other members of G recorded G as an attempt to form a quorum. Thus, if some of the members
of G detach before the last step, they will take G into account in future attempts to form a quorum.

4.1 Dynamic Quorums

Originally, dynamic voting was implemented by always allowing a majority of the previous primary
component to become the new primary component. Dynamic linear voting, first presented in
[12], optimizes the above with the following mechanism to break ties between groups of equal
size: A linear order, £, is imposed on all the potential processes in the system, e.g. £ can be the
lexicographical order over an infinite name space. In case a quorum @) divides into two subsets of
equal size, the subset containing the process with the highest rank in @ is chosen.

In order to avoid situations where almost all of the processes are connected but cannot form a
quorum, because of the potential existence of a past surviving quorum at processes that are down,
we provide the ability to impose a minimum quorum size on quorums allowed in the system. The
minimum quorum size restriction, Min_Quorum, implies that every eligible quorum in the system
must contain at least Min_Quorum members of the core group, Wy. With this restriction, every
quorum containing a subset of Wy of size bigger than n — Min_Quorum is an eligible quorum, where
n is the size of Wj.

We define a predicate Sub_Quorum(S,T'), that is TRUE iff 7' can become the new quorum in
the system, given that the previous quorum was 5. Formally, Sub_Quorum(S,7T) is TRUE iff:

1. |T'nWy| > Min_Quorum, and

2. e |T'NS|>|5/2,0r
o |T'NS|=15|/2and 3p € TN S such that Vg € S\ T L(p) > L(q), or
o |T'NWy| >n— Min_Quorum.

It is easy to see that the dynamic linear voting scheme has the following properties:

1. If Sub_Quorum(S,T) then SNT # 0.

2. If Sub_Quorum(S,T) and Sub_Quorum(S,T’) then TNT' # (.

Note that in the protocol we present here, the members of the core group, Wy, have a special
status: every quorum in the system must contain at least Min_Quorum members of Wy. This
requirement restricts the availability if some members of Wy leave the system. In Section 6 we
show how to relax this restriction, and require, instead, that a quorum will contain Min_Quorum
processes.

4.2 Variables

Each process p maintains the following variables:

Is_Primary, A boolean variable that is TRUE iff the current membership is the primary component
in the system. If p € Wy, then it is initialized to TRUE, and otherwise to FALSE.

Session_Number, The current session number. This variable is initialized to 0, and is updated in
the Attempt Step (Step 2) of the protocol.

Last_Primary, The last primary component that process p formed (i.e. the last session that p
ended successfully). It is a structure consisting of:

1. Last_Primary.M The membership of the session in which this primary component was
formed. If p € Wy, then it is initialized to Wy, and otherwise to oo. We extend the
definition of the Sub_Quorum predicate so that Sub_Quorum(co,T') is FALSE for every
set T'.

2. Last_Primary.N The Session_Number of the session in which this primary component
was formed. If p € Wy, then it is initialized to 0, and otherwise to -1.

The structure is updated in Step 3 of the protocol.

Ambiguous_Sessions, The set of (ambiguous) sessions process p attempted to form after p formed
Last_Primary,. Bach ambiguous session (or attempt) S in this set is a structure consisting

of:

1. 5.M The membership of 5.
2. 5.N The Session_Number of 5.

This set is initially empty.

4.3 Notation

We use the following notation:

o M is the membership as reported in the membership message that invoked the current session
of the protocol. The membership is a list of processes. We denote by ir(g) the index of
process ¢ in this list.

o Maz_Session is max,em(Session_Numbery).

e Maxz_Primary is Last_Primary, s.l. Last_Primary, N = manGM(Last_Prz'maryq.N).
o Maz_Ambiguous_Sessions is U,e pm(A € Ambiguous_Sessions,|A.N > Maz_Primary.N).

In order to simplify notations, we extend the definition of the Sub_Quorum predicate to at-
tempts. For a pair of attempts A1, A2, Sub_Quorum(Al, A2)is defined to be: Sub_Quorum(Al.M,A2.M).

4.4 The Protocol

In each session, each process invokes the protocol described in Figure 1 upon receiving a membership
message.

A session S of the protocol is identified by its membership, S.M, and session number, S.N.
A formed session is a session that at least one of its members has formed. An attempted session
(attempt) is a session that at least one of its members has attempted to form (i.e. recorded the
session during the Attempt Step). Note that every formed session is in particular attempted.
The initial primary component (W, 0) is considered both a formed and an attempted session. In
Section 4.8 we claim that every formed session is uniquely identified by its session number.

1. Set Is_Primary to FALSE.
Send your Session_Number, Last_Primary, and Ambiguous_Sessions to all the members of

M.
2. Attempt Step: Upon receiving such a message from all members of M:

o Compute Maz_Session, Maz_Primary, and Maz_Ambiguous_Sessions.

o if (Sub_Quorum(Maxz_Primary.M, M) and
((VAttempt € Max_Ambiguous_Sessions) Sub_Quorum(Attempt. M, M)))
then “attempt the session”:

— Set Session_Number to Max_Session + 1.

— Add (M, Session_Number) to Ambiguous_Sessions.
If Ambiguous_Sessions already contains an attempt with the same membership,
overwrite it.

— Send an attempt message to every member of M.

else abort this session.
3. Form Slep: Upon receiving an attempt message from all members of M set:

e Last_Primary to (M, Session_Number), and

o Ambiguous_Sessions to (J, and

e Is_Primary to TRUE.

Figure 1: A Session of the Protocol

In each step of the protocol, when a process changes any of its private variables, it must write

the change to a stable storage before responding to the message that caused the change?. The
primary component formed in Step 3 remains the primary component in the system until another
membership change occurs. Notice that when a process forms a primary component, it no longer
stores previous ambiguous sessions. If a process attempts to form two sessions with identical
memberships it stores only the one with the greater session number, i.e. the later attempt.

The protocol presented here is symmetric; Every process performs exactly the same set of
commands. It is straightforward to convert it to work in a centralized fashion by appointing a
coordinator for each session. In every step the coordinator receives messages from all processes
in a session, does local computation, and sends every process its decision. The centralized version
requires less point to point messages. However, with hardware multicast capabilities, the symmetric
version is more efficient.

4.5 The Typical Problematic Scenario

We now show how the suggested protocol overcomes the problematic scenario described in Section 1.
e The systems consists of five processes a,b,c,d,e.
e a,b,and ¢ try to form a new quorum. To this end, they exchange messages.

e ¢ and b form the quorum {a,b,c}, assuming process ¢ does so too. However, ¢ detaches
before receiving the last message, and therefore does not form this quorum. Yet, ¢ records
this session in Ambiguous_Sessions,.

e a and b notice that ¢ detached, therefore form a new quorum {a, b} which is a sub-quorum of

{a,b,c}.

e Concurrently ¢ connects with d and e. {¢,d, e} is not a sub-quorum of {a, b, ¢} that ¢ records,
therefore ¢, d, and e cannot form a new quorum.

The system contains only one live quorum {a,b}.

4.6 Ruling Out a Trivial Approach

The scenario depicted above aroused the need to consider attempts to form a quorum, even though
they didn’t succeed. Still it might seem that it is enough that each member records only the
last attempt it failed to form, instead of recording a list of attempts. The following example
demonstrates that this approach does not work:

e The core group Wy consists of processes a,b, ¢, d, e.

e For each process, Last_Primary= (Wy,0), and Ambiguous_Sessions = .

*If the storage is destroyed because of a severe disk crash, the process may recover with its Last_Primary =
(00, —1). This limits the availability, but does not affect the correctness.

Session a b c d e
S1=({a,b,c},1) || Form | Attempt | Attempt -
S2=({b, ¢, d},2) - - Attempt | Attempt -

S3=({a,0},2) Form Form - . 3
S3'=({c,d,€},3) - - Form Form Form

e In session 51, a forms S1. Processes b and ¢ attempt to form 51 and detach before forming
it.

e In session S2 (which is a sub-quorum of both Wy and S1), ¢ and d attempt to form 52. b
detaches before performing the attempt step. If now ¢ records only the last attempt it made
then ¢ no longer takes 51 into account.

e Now it is possible to form concurrently two different primary components: Session 53, that
consists of @ and b, is a sub-quorum of 51 which is Maz_Primary (hence a sub-quorum of Wy
is not needed). Therefore it is a legal new quorum, and a and b form it successfully.

Session §3', that consists of ¢,d and e, is a sub-quorum of both Wy and S2. Therefore this
session too is a legal new quorum, and ¢, d and e form it successfully.

Similarly, it is easy to show that recording only a constant number of the most recent attempts
can lead to inconsistencies.
4.7 An Exponential Example

In this section we show that without any garbage collection mechanism, the number of attempts a
process records concurrently can be exponential in the size of the initial configuration n.

e The core group Wy consists of processes {p1,...,pn}.
o Min_Quorum < [(n+1)/2].
e Vi Last_Primary, = (Wy,0) and Ambiguous_Sessions, = (.

7

Let G be a subset of Wy, such that |G| = [(n + 1)/2]. The power set of Wy \ G consists of 2ln/2]
groups: G,...,Gyn2). We now describe an execution comprised of sessions Sy, 5%,...,5;n/2),
such that Vi, 1 <7 < 217/2] gession S; is conducted as follows:

e 5;’s session number is i.
e 5;’s membership is G U G;

e Maz_Primary of S; is (W, 0)

Conditions: Sub_Quorum(Wy, 5;.M) holds, and Vj < ¢ Sub_Quorum(S5;, 5;) holds too.

Actions: p; appends 5; to Ambiguous_Sessions, . All other members of \5; detach before
receiving p;’s attempt message, therefore do not append S; to their Ambiguous_Sessions sets.

After this series of sessions process p; records 21"/2] different sessions, which it has to consider
in its future attempts to form a new quorum. Notice that the number of attempts a process records
concurrently is at most 2", the size of the power set of Wy, since every different membership appears
only once in the process’ Ambiguous_Sessions set.

4.8 Correctness

The full correctness proof of the protocol appears in Appendix A. In this section we describe the
proof’s outline. In order to show that the protocol is correct, we have to show that the transitive
closure of the order between intersecting® formed sessions is a total order.

The correctness proof is based on the following claims:

1. Every two intersecting formed sessions have different session numbers.

2. If two attempted sessions have a common attempt in Maz_Ambiguous_Sessions U Maz_Primary
then these sessions intersect.

3. Let 5 be a formed session, and let Maxz_Primary computed in S be F. Let Fgy, F1, ..., F}
be a sequence of formed sessions (ordered by session numbers) s.t. F = Fp, and for every
0<i<k,F.N < F,.N <S.N,and F;_; and F; intersect. Then, Sub_Quorum(Fy, 5) holds.

Proved by induction on k, using the fact that all the members of a formed session have
recorded it and take it into account.

4. Let S be an attempted session, and let F be a formed session, s.t. F.N is the maximal value
among formed sessions with a sessions number smaller than S.N. Then, F is the only formed
session with this session number, and Sub_Quorum(F,S) holds.

Proved by (sparse) induction on F.N, using the above Claims.

It is derived from the fourth claim that every formed session has a unique session number, and
that two successive formed sessions intersect. We conclude that the transitive closure of the order
between intersecting formed sessions is a total order.

5 The Optimization

In this section we present an optimized version of the basic protocol, described in Section 4. We
present a “garbage collection” mechanism that allows a process to reduce the number of ambiguous
sessions it records concurrently from an exponential number to a linear number in the worst case.

The optimization (garbage collection) is achieved by local manipulations that each process
performs on its Ambiguous_Sessions and Last_Primary data structures. The manipulations are
performed in Step 2 of the protocol, according to the information exchanged in Step 1 of the
protocol.

The underlying concept of the optimization is the resolution of ambiguous sessions: Each process
tries to determine the status of each ambiguous session, ¢.e. whether the session was formed by
one of its members or not. If an ambiguous session was not formed by any of its members, then

*By intersecting sessions we mean sessions with common members.

10

it is safe to delete it from Ambiguous_Sessions. In particular, if some process did not attempt to
form the session, then it is safe to delete it. On the other hand, if the session was formed by some
member, then the other members behave as if they also formed this session. The processes gather
information that helps them resolve the status of ambiguous sessions.

The Resolution Rules:

e Process p sets Last_Primary, to F during session S, where 5.N > F.N, when the following
holds:

1. pe F.M and Last_Primary,.N < F.N, and

2. p learns that session F was formed by one of its members.

If process p sets Last_Primary, to F then for every process ¢ € 7. M p sets Last_Formed,(q)
to F.

e Process p deletes an ambiguous session 5 from Ambiguous_Sessions, when one of the follow-

ing holds:

1. p learns that S was not formed by any of its members, or

2. p learns that a session F, where F.N > S.N and p € F.M, was formed by one of its
members.

Figure 2: The Resolution Rules

The data structures used to gather information are described in Section 5.1 below, and the rules
of how a process learns about the session status at other members are defined in Section 5.2. In
Section 5.3 we show that at any given time, at each process, at most n ambiguous sessions remain
unresolved. The resolution rules are specified in Figure 2. These rules are applied in Step 2 of the
protocol described in Figure 3.

5.1 Data Structures

The optimized protocol maintains the following additional data structures in which it gathers
information that help resolve past ambiguous sessions:

o Ambiguous_Sessions,, the set of ambiguous sessions process p attempted to form after p
participated in Lasi_Primary,, is augmented with an array 5.4 of size S.M, such that for

every ¢ € S.M:
— S.Alim(q)] = 1iff p knows that ¢ formed 5.
— S.Alim(q)] = —1 iff p knows that ¢ did not form 5.

— S.Alim(q)] = 0 otherwise.

This array is updated in Step 2 of the optimized protocol, according to the learning rule
described in the next section.

11

1. Set Is_Primary to FALSE.
Send your Session_Number, Ambiguous_Sessions, Last_Primaryand Last_Formed, to all the
members of M.

2. Attempl step: Upon receiving such a message from all members of M:

e Update Ambiguous_Sessions according to the learning rules.

Apply the resolution rules if possible.
Compute Maz_Session, Mazx_Primary, and Max_Ambiguous_Sessions.

if (Sub_Quorum(Maz_Primary.M, M) and
(VS € Maz_Ambiguous_Sessions) Sub_Quorum(S.M,M)))

then “attempt the session:”

— Set Session_Number to Maz_Session+1.

— Append to Ambiguous_Sessions the following ambiguous session structure, 5
* SSM =M,
* S.N = Session_Number,
* S.A[ipm(q)] = 0 for every g € S.M s.t. ¢ # p, and S. A[im(p)] = —1.

— Send attempt message to every member of M.

else abort this session.
3. Form step: Upon receiving an attempt message from all members of M set:

o Last_Primary = (M, Session_Number), and

Ambiguous_Sessions = (), and

Is_Primary=TRUE, and
Vg € M Last_Formed,(q) = Last_Primary.

Figure 3: A Session of the Optimized Protocol Executed by Process p

o Last_Formed, is an associative array. For each ¢ that p participated in a session with,
Last_Formed,(q) is the last session that p formed and ¢ was a member of. It is a struc-
ture consisting of:

— The membership: Last_Formed,(q).M.

— The session number: Last_Formed,(q).N.

Initially, Last_Formed,(q) contains Fy for every process ¢ € Wy. Last_Formed,, is updated in
Steps 2 and 3 of the optimized protocol.

5.2 Gaining knowledge

In order to apply the optimization rules to an ambiguous session, a process p needs to learn whether
the session was formed by one of its members. This is achieved by collecting the session status from

12

other session members during the first step of future sessions of the protocol. Process p applies the
information it gathered to its data structure in the second step of the optimized protocol. Formally,
the rules of learning are the following:

Process p learns that process ¢ established session S during a session S’, where S.N < §'.N
and p,q € S.M N S'.M, if during 5"

o Last_Formed,(p).N = S.N, and

e p executes Step 2 of the optimized protocol.

Process p learns that process ¢ did not form session S during a session S’, where S.N <
S'.N and p,q e S.M N S".M, if during S":

o Last_Formed,(p).N < S.N, and

e p executes Step 2 of the optimized protocol.

A process p can deduce that a session S was not formed by any of its members in one of two
ways: First, by learning as specified above from every member of 5. Second, upon learning that
another session member ¢ does not consider 5 to be ambiguous although ¢ did not form 5 or any
other session with a session number greater than S5; This can occur either because ¢ did not even
attempt to form 5, or because ¢ already learned that none of S members formed 5. Formally:

Process p learns that session S was not formed by any of its members if:

e p doesn’t form 5, and learns from all the other session members that they did not form
session S either, or

e There exist a session S’ and a process ¢, where S.N < S’.N and p,q € S.MNS’'.M, such
that during 5’

— Last_Primary,.N < S5.N or
(Last_Primary,.N = S.N and Last_Primary,.M # S.M), and

— 5 & Ambiguous_Sessions,, and

— p executes Step 2 of the optimized protocol during 5’.

5.3 Evaluating the Efficiency

In this section we evaluate the efficiency of the optimization: we show that a process records
concurrently at most n ambiguous sessions, where n is the number of processes in the system.
First, we prove that if a process p attempts to form® two ambiguous sessions with a process ¢, then
during the later session p can learn ¢’s status w.r.l. the former session. After p learns a session’s
status as recorded by every session member, p can resolve the status of a session. Therefore, in
case p cannot resolve a session’s status, there is at least one session member with which p does not
share a later attempt. This property linearly bounds the number of unresolved ambiguous sessions
a process records concurrently.

5Process p attempts to form a session S if p appends S to Ambiguous_Sessions,,.

13

Lemma 1 Al each process p, the value of Session_Number is monotonously increasing.

Proof: According to the protocol, Session_Number is chosen to be greater than the maximum of
previous Session_Number each process records. O

Lemma 2 Let p be a process and Ay, Ay two ambiguous sessions, such that A{.N < A3.N and
Ay, Ay € Ambiguous_Sessions,,. If there exisls a process q such that ¢ € A;.M N Az .M, then p
learned whether q formed session Ay before p attempted to form session A,.

Proof: By induction on the difference A3.N — A{.N.

e Base case: A;.N — A;.N = 1. According to the protocol, a process attempts to form a
session in Step 2 of the protocol, after the process received Last_Formed lists from all session
members and applied the learning rules before attempting to form A,, as follows:

1. If Last_Formed,(p).N < A;.N then p learned that ¢ did not form A;.
2. If Last_Formed,(p).N = A;.N then p learned that ¢ formed A;.

Notice that the case Last_Formed,(p).N > A;.N is impossible because otherwise, process
q formed Last_Formed,(p), and therefore, process p attempted to form it. This implies,
according to Lemma 1, that A;.N < Last_Formed,(p).N < A;.N, in contradiction with
Session_Number being an integer.

o General case: We assume the induction hypothesis holds for
A.N — A;.N < k, and prove for A3.N — A;.N = k. Since Ay € Ambiguous_Sessions,,, p
received Last_Formed,(p) during session A;, and learned as follows:

1. If Last_Formed,(p).N < A;.N then, as in the base case, p learned whether ¢ formed A;.

2. Otherwise, Last_Formed,(p).N > A;.N. Hence, as above, there exists a formed session
F; such that:
— AN < F,.N < AQ.ZV, and
- p,q € F;.M, and
— ¢ formed F;.
According to the protocol, since q formed F;, F; € Ambiguous_Sessions, upon ending
F;. Moreover, F;.N — A;.N < k. Hence from the induction hypothesis process p learned

whether ¢ formed A; before attempting to form F;, and hence before attempting to form

Ay, O

Theorem 1 Process p records concurrently at most n — Min_Quorum + 1 ambiguous sessions,
where n is the number of processes that participate in an execution of the protocol.

Proof: Assume, in contradiction, that p records concurrently n — Min_Quorum + 2 ambiguous
sessions, Ay, ..., Ay Min_Quorum+2, such that (V1 < ¢ < n— Min_Quorum +2)A;. N < A;11.N. (By
Lemma 1 the order requirement is always fulfilled). Since A; is still ambiguous, p did not learn

14

whether some member of A; formed it or not. Hence, by Lemma 2, there is at least one member of
A; that is not a member of any session A; € Ambiguous_Sessions, for j > i. Consequently, for each
t, there are at least ¢ processes that do not participate in any session A; where 5 > 7. In particular,
after recording sessions Aq,..., An_Min_Quorum+1, there are at least n — Min_Quorum 4+ 1 mem-
bers that are not members of A,_ pin_Quorum+2. Therefore |A,_ pin_Quorum+2.-M| < Min_Quorum,
and hence A,_pin_Quorum+2 is not a legal session and hence is not recorded by any process, a
contradiction. O

6 Dynamically Changing Quorum Requirements

In the protocols presented so far, the members of the core group, Wy, have a special status: Every
quorum in the system must contain at least Min_Quorum members of Wy. This requirement
restricts the availability if some members of Wy leave the system. In this section we show how to
relax this restriction, and thus increase the flexibility to dynamically change the set of participants.

The purpose of the Min_Quorum requirement is to prevent a set of processes smaller than
Min_Quorum from blocking the rest of the system, i.e. to always allow a group of more than
n — Min_Quorum processes to make progress. In Section 4.1, n was fixed to be the size of the core
group of processes, Wy. We now show how to provide this feature while allowing n to increase
dynamically, thus eliminating the special status of the members of Wj.

Allowing n to change dynamically is subtle because the truth value of the Sub_Quorum predi-
cate changes with time. For example, Sub_Quorum(S,T) may be initially TRUE because 1" contains
more than |Wy| — Min_Quorum members of Wy, but later, as the set of participants increases,
Sub_Quorum(S,T) may become FALSE. Therefore, n must be increased with care, and new pro-
cesses may not immediately be taken into account. New processes are inserted into the “set of
participants” as described below:

Every process maintains two new variables:

W is the set of participants taken into account in the new Min_Quorum requirement.)V is initial-
ized to Wy, and new processes are inserted into this group when they participate in a formed
session.

A is the set of processes that have not been admitted into W yet. A is initialized to the empty set
if p € Wy, and otherwise to contain p itself.

These variables are used to evaluate the Sub_Quorum predicate. Below we describe how these
variables are maintained in the course of the primary component protocol; they can be incorporated
in either the basic version of the protocol (cf. Section 4) or in the optimized one (cf. Section 5).
At the beginning of each step in a session S of the protocol, every process p executes the following
operations:

1. p sends W, and A, to every member of 5.

2. The Attempt Step: Upon receiving responses from every member of S, p updates W, and A,
as follows:

[] Set Wp to UqES.M Wq.

15

o Set A, to (quS.M A)\ Wy

The Min_Quorum requirement is evaluated as follows:

e S is an eligible quorum only if |S.M N W,| > Min_Quorum.

o If S MN(W,UA,)| > [W,UA,| — Min_Quorum then S is an eligible quorum, regardless
of past quorums, i.e. for every session S’ that p records, Sub_Quorum(S’,) is TRUE.

3. The Form Step: Upon receiving an attempt message from every member of 5

o Set W, to W, U (A, N S.M).
e Set A, to A, \ S.M.

This mechanism allows the system to adjust the quorum requirements in the protocol to the
dynamically changing set of process. We prove the correctness of the resulting protocol in Ap-
pendix A.

References

[1] Y. Amir. Replication Using Group Communication QOver a Dynamic Network. PhD thesis,
Institute of Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel, 1995.

[2] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Membership Algorithms for Multicast Communi-
cation Groups. In Intl. Workshop on Distributed Algorithms proceedings (WDAG-6), (LNCS,
647), number 6, pages 292-312, November 1992.

[3] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella. Fast Message
Ordering and Membership using a Logical Token-Passing Ring. In International Conference
on Distributed Computing Systems, number 13, pages 551-560, May 1993.

[4] Y. Amir and A. Wool. Evaluating Quorum Systems over the Internet. In The Fault-Tolerant
Computing Symposium(FTCS), pages 26-35, June 1996.

[5] K. Birman and R. V. Renesse. Reliable Distributed Computing with the Isis Toolkit. IEEE
Computer Society Press, 1994.

[6] T. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the Impossibility of Group
Membership. In ACM Symp. on Prin. of Distributed Computing (PODC), pages 322-330, May
1996.

[7] T. D. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed Systems.
Journal of ACM, 43(2):225-267, Mar. 1996.

[8] D. Davcev and W. Burkhard. Consistency and Recovery Control for Replicated Files. In ACM
Symp. on Operating Systems Principles, number 10, pages 87-96, 1985.

[9] A. El Abbadi and S. Dani. A Dynamic Accessibility Protocol for Replicated Databases. Data
and Knowledge Engineering, (6):319-332, 1991.

16

[10] P. D. Ezhilchelvan, A. Macedo, and S. K. Shrivastava. Newtop: a Fault Tolerant Group
Communication Protocol. In International Conference on Distributed Computing Systems,
number 15, pages 296-306. IEEE Computer Society Press, June 1995.

[11] M. Herlihy. A Quorum-Consensus Replication Method for Abstract Data Types. ACM Trans.
Comp. Syst., 4(1):32-53, Feb. 1986.

[12] S. Jajodia. Managing Replicated Files in Partitioned Distributed Database Systems. In IEEFE
Int’l. Conf. on Data Engineering, number 3, pages 412-418, 1987.

[13] S. Jajodia and D. Mutchler. A Hybrid Replica Control Algorithm Combining Static and
Dynamic Voting. IEEE Transactions on Knowledge and Data Engineering, 1(4), Dec. 1989.

[14] S. Jajodia and D. Mutchler. Dynamic Voting Algorithms for Maintaining the Consistency of
a Replicated Database. ACM Trans. Database Systems, 15(2):230-280, 1990.

[15] I. Keidar and D. Dolev. Increasing the Resilience of Atomic Commit, at No Additional Cost.
In ACM Symp. on Prin. of Database Systems (PODS), pages 245-254, May 1995. Previous
version available as Technical Report CS94-18, The Hebrew University, Jerusalem, Isreal.

[16] 1. Keidar and D. Dolev. Efficient Message Ordering in Dynamic Networks. In ACM Symp. on
Prin. of Distributed Computing (PODC), number 15, pages 68-76, May 1996.

[17] C. Malloth and A. Schiper. View Synchronous Communication in large scale networks. In
Proceedings 2nd Open Workshop of the ESPRIT project BROADCAST (number 6360), July
1995 (also available as a Technical Report Nr. 94/84 at Ecole Polytechnique Fédérale de
Lausanne (Switzerland), October 1994).

[18] J. Paris and D. Long. Efficient Dynamic Voting Algorithms. Proceedings 13th Int’l. Conf. on
Very Large Data Bases, pages 268-275, 1988.

[19] A. M. Ricciardi and K. P. Birman. Using Process Groups to Implement Failure Detection
in Asynchronous Environments. In ACM Symp. on Prin. of Distributed Computing (PODC),
pages 341-352, August 1991.

[20] D. Skeen. Nonblocking Commit Protocols. In SIGMOD Intl. Conf. Management of Data,
pages 133-142, 1981.

[21] D. Skeen. A Quorum-Based Commit Protocol. In Berkeley Workshop on Distributed Data
Management and Computer Networks, number 6, pages 69-80, Feb. 1982.

17

A Correctness Proof of the Protocols

The basic requirement from a dynamic paradigm for maintaining a primary component is to impose
a total order on all the primary components formed in the system. Total order on primary com-
ponents is defined by extending the causal order on components that intersect. This requirement
is formally postulated in Section 2. We now prove the correctness of our protocols, i.e. that the
total order requirement is fulfilled. The proof of the basic protocol is detailed in Section A.1. The
proof of the optimized protocol closely resembles the proof of the basic protocol, hence only the
differences are discussed in Section A.2. Section A.3 contains the correctness proof of the protocol
that allows the quorum requirements to change dynamically.

A.1 Proof of the Basic Protocol
Notations and Definitions

e The variables: Session_Number, Maz_Session, Maz_Ambiguous_Sessions, and Max_Primary
computed during a session 5, are denoted: Session_Number(S), Maz_Session(S),
Maz_Ambiguous_Sessions(S), and Maz_Primary(S).

o Quorums_List(5) is defined as: Maz_Ambiguous_Sessions(.S)U Maxz_Primary(S).
e The initial primary component (W, 0) is denoted: Fj.

e In general, we shall denote a session by 5, and a formed session by F.

Lemmas

Lemma 3 Whenever a process p modifies the value of Session_Number,,, the value is incremented.

Proof: Process p modifies the value of Session_Number, at most once during a session S, where
p € S5.M, in Step 2 of the protocol, and never modifies Session_Number, outside a session. In
addition, p is a member of at most one session at a time, since upon noticing a membership change
p immediately ends the current session it was a member of, and joins the new session at Step 1.
When p modifies the value of Session_Number, it sets it to Maz_Session(S)+ 1, and writes the
result to stable storage. The value of Maz _Session(.5)is computed as max,eg apr(Session_Number,),
hence Max_Session(S) > Session_Number,. Consequently, whenever p modifies the value of
Session_Number, it increments it at least by 1. O

Lemma 4 If lwo members p,q of a session S altempt lo form S, then p and q increment their
Session_Number during session S, and Session_Number, = Session_Number, upon ending the
session.

Proof: A process p attempts to form session S in Step 2 of the protocol, only if p received
Session_Number, from all members r of S during Step 1 of the protocol. During Step 2 of session .5
p increments Session_Number, to Maz_Session(S)+1. Since Maxz_Session(5) is computed over the
same set of values at all sites ¢ that also attempt to form 5, Session_Number, = Session_Number,
upon ending the session. O

18

Lemma 5 If a member p of a formed session F sets Last_Primary, to F during session F, then
all members q of F appended F lo Ambiguous_Sessions, during this session.

Proof: Process p sets Last_Primary, to F during session F in Step 3 of the protocol, only if
p received attempt messages from all members ¢ of F indicating that they successfully executed
Step 2 of the protocol during this session, i.e. appended F to Ambiguous_Sessions,. O

Corollary 1 During every formed session F every member p of F increments Session_Number,
to F.N.

Proof: Immediate from Lemmas 4 and 5. O

Lemma 6 If two formed sessions, Fy, Fy, intersect then Fy.N # F5.N.

Proof: Let process p € (F;1.M A F,.M). By Corollary 1, p increments Session_Number, in both
Fi, Fy, w.lo.g. p participates in Fj first. Hence F1.N < F3.N. O

Lemma 7 Let A be an attempt, such that there is no formed session F fulfilling Fy.N < F.N <
A.N. Then A and Fy intersect, and A.N > Fy.N.

Proof: For every process p in the system, Session_Number, is initialized to zero. By Lemma 3
AN >0,ie AN > Fy.N.

Since A is an attempt, there exists a formed session F s.t. F' € Quorums_List(A), and
Sub_Quorum(F,A) is TRUE. If F' = Fj then, by the Sub_Quorum requirements, A and Fy inter-
sect. Otherwise, F' # Fy: Since F' is in particular an attempt, F.N > F;.N. Moreover, there
exists a process p s.t. p € FFM N A.M. By Corollary 1 and Lemma 3, in Step 1 of session A
Session_Number, > F.N. Thus Session_Number(A) > F.N > Fy.N, in contradiction to the
definition of A. Hence F' = Fy and A and Fy intersect. O

Lemma 8 [f Last_Primary, = F then for every member q of F either
o 1A € Ambiguous_Sessions,, such that A.M = F.M and A.N > F.N, OR
e Last_Primary, = F, OR

e Last_Primary, N > F.N.

Proof: By Lemma 5 all members ¢ of 7 appended F to Ambiguous_Sessions,. Process ¢ erases

F from Ambiguous_Sessions, in two cases:

o When ¢ forms a session J' after ¢ appended F to Ambiguous Sessions,. If F' = F, then
Last_Primary, = F. Otherwise, ¢ participated in F' after it ended session F. By Corollary 1,
Session_Number, is incremented during session ', hence F'.N > F.N.

19

e When ¢ appends to Ambiguous_Sessions, a session A, such that A.M = F.M and A.N >

F.N.

q

Process ¢ erases F from Last_Primary, in case q forms at least one session, F', after forming F.
By Corollary 1 /.N > F.N. O

Lemma 9 For every sequence of sessions Fi,...,Fx and a formed session S, such thal
o Vi F; is a formed session, and
o Vi< k F,.N<Fiy1.N, and
o Vi <k Sub_Quorum(F;,Fit1) is TRUE, and
o S.N > Fp.N
if 71 € Quorums_List(S) then Sub_Quorum(Fy,S) is TRUE.

Proof : By induction on k.

e Base case, k = 1 Since S is a formed session and F; € Quorums_List(9) then, according to
the protocol, Sub_Quorum(Fy,S) is TRUE.

e General case, k£ > 1 By the induction hypothesis, Sub_Quorum(Fy_1,5) is TRUE. By the

sequence definition, Sub_Quorum(Fy_1,Fy) is also TRUE. Therefore, by the properties of
Sub_Quorum, Fr,.M N S.-M # (.

Let p € Frp.M A S.M. Since by our assumption, S.N > F;.N, and 5 is a formed session, p
participated in Fj.N before participating in S.N. By Lemma &8, when S begins, there are
two possibilities:

1. p has Last_Primary,.N > Fj.N. This case is not possible since F; € Quorums_List(5),
therefore when session S begins, p has Last_Primary, N < F1.N < F.N.

2. 3F € Ambiguous_Sessz'onsp such that /.M = F,.M and F'.N > F;.N. This implies
that Sub_Quorum(F’,S)is TRUE, and therefore Sub_Quorum(Fy,5) is also TRUE.

O

Lemma 10 Let A be an altempt other than Fy. Let F be a formed session such that F.N =
maxz(F.N|F is a formed session and F.N < A.N). Then the value of F.N is unique among formed
sessions, and Sub_Quorum(F,A) is TRUE.

Proof: The proof is by induction on F.N.

e Base case /.N = 0. By Lemma 3, and since for every process p Session_Number, is
initialized to zero, F = Fy. By Lemma 7, the value of Fy.N is unique among attempts, and
A and Fy intersect.

20

It remains to show that Sub_Quorum(Fy, A)is TRUE. Vp € W, the initial value of Last_Primary,
is Fy. By Lemma 8 either Fy € Quorums_List(A) and hence Sub_Quorum(F;, A)is TRUE, or
else there exist a process p and a formed session F’ such that: p € .M N A.M, and during
A Last_Primary, = F', and F'.N > Fy.N. By Lemma 3 A.N > F'.N, in contradiction to
Fy.N being maximal. Therefore, 7’ does not exist and hence Sub_Quorum(F;,A) is TRUE.

e General case F.N >0

Let F™* be a formed session such that 7*.N = maxz(F.N|F is a formed session and F.N <
F.N). Then, by the induction hypothesis, the value of 7*.N is unique among formed sessions,
and Sub_Quorum(F*,F) is TRUE. Assume, for the sake of contradiction, that F.N is not
unique among formed sessions, then there exists a formed session F’ such that F'.N =
F.N. By the induction hypothesis Sub_Quorum(F*,F') is also TRUE. By the properties of
Sub_Quorum, F and F' intersect, hence by Lemma 6 F'.N # F.N, a contradiction. Therefore
F.N is unique among formed sessions.

Let Maz_Primary(A) = F', if 7' = F, then Sub_Quorum(F,A) is TRUE and we are done.
Otherwise, by the definition of F and the uniqueness of 7.N among formed sessions, 7'.N <

F.N. By the induction hypothesis there exists a unique sequence of sessions, Fi, ..., Fx such
that:

— F1 = F', and

— Fr=F, and

— Vi F; is a formed session, and

- Ye<k F.N < Fiy1.N, and

— Vi< k Sub_Quorum(F;, Fit1) is TRUE, and
- AN > Fi.N

Furthermore, 7' € Quorums_List(A), hence by Lemma 9 Sub_Quorum(F,A) is TRUE.

O

Theorem 2 The transitive closure of the causal order between intersecting formed sessions, de-
noted <, is a total order.

Proof: By Lemma 10, each formed session has a unique session number, hence we can define a
total order on formed sessions as follows: F' < F' if FF.N < F'.N. We now show that F < F' iff
F < F', implying that < is a total on formed sessions. If F' < F’, then by Lemma 3 F.N < F'.N.
If PN < F'.N, then by Lemma 10, there exists a unique sequence of sessions, Fi,..., g such
that:

o 1 =F, and
o 7= F' and

o Vi F, is a formed session, and

21

o Vi< k F;.N < F;41.N,and

o Vi < k Sub_Quorum(F;, F;y1) is TRUE, and therefore, by the properties of Sub_Quorum,
Fin Fiya 75 .

Therefore, ' < F'. O

A.2 Proof of the Optimized Protocol

The basic protocol and the optimized protocol closely resemble one another. There are two main
differences between the two:

1. In the optimized protocol, a process can delete an ambiguous session upon discovering that
none of the members formed the session. Notice that in the correctness proof of the basic
protocol, we only reason about formed sessions. Sessions that are not formed by any member
are not mentioned, and therefore do not affect the correctness.

2. In the optimized protocol a process can form session F during a later session S. There are
two issues to consider:

e In the proof of the basic protocol, the proof of the properties of formed sessions relies
on the fact that a formed session F was formed by one of its members during F. In
Lemma 11 below, we show that if some process forms F in a later session 5, then there
exists at least one member of F that formed F during F. Hence the lemmas regarding
formed sessions remain correct for the optimized protocol.

o When a process p forms F, p deletes from its Quorums_List all the sessions A s.t.
A.N < F.N. Since p is a member of each such A and also of F, p participated in the
attempt to form F after participating in every such session A. Since some member of F
formed F during F, the conditions for forming F were fulfilled during session F (i.e. all
the members have sent attempt messages), and therefore it is safe for p to delete these
sessions (as would have happened had p formed F during F).

Due to the above, the proof of the basic protocol is also correct for the optimized protocol. It
remains to prove the following:

Lemma 11 Process p sels Last_Primary, to a session F during a session S, if either F =5, or
there exisls a process q such thal q set Last_Primary, to F during F.
Proof: According to the protocol, a process p sets Last_Primary, to F in one of two cases:

1. In Step 3 of the protocol.

2. In Step 2 of the protocol, upon learning that a process r set Last_Formed,(p) to F.

In the first case p forms F during F. Henceforth we assume p set Last_Primary,, to F during Step 2
of the protocol in session 5. Note it implies that during Step 1 of session 5 Ambiguous_Sessions,
contains a session A such that A.M = F.M and A.N = F.N, i.e. p attempted to form session F.

22

According to the protocol, a process g changes Last_Formed,(r) to F' upon setting Last_Primary,
to a session F’ such that ¢,» € F.M. To the contrary, assume that none of F members formed
F during F. Therefore, at the end of session F, Vq,r € F.M Last_Primary, # F, and
Last_Formed,(r) # F. Hence no process p € F.M can learn that a process r € F.M set its
Last_Formed,(p) to F during in Step 2 of a session, unless there exists a member ¢ of F such that:

o ¢ formed a session F’ during session F’, in which ¢ participated after it ended session F, and
o F!'.M = F.M and F'.N = F.N.

Since F' is a formed session, from Lemma 5 p attempted to form F’. Since p attempted to form
F too, then from Lemma 3 and Lemma 4 F'.N > F.N,in contradiction. Hence F was formed by
one of its members during session F. O

A.3 Proving the Correctness of the Dynamically Changing Quorum System

Lemma 12 At each process p, W, and W, U A, are monotonically increasing.

Proof: According to the protocol, processes are never removed from W,. Processes are removed
from A, only after they were added to W,. O

Lemma 13 All the members that attempt to form a session S, set their W and A variables to the
same value in the Altempt Step.

Proof: Processes attempt to form a session after receiving information messages from all other
members of the session. They compute W and A using only the information in these messages. All
the members receive the same set of messages, and therefore the result of the computation is the
same. O

Henceforth we denote by W(.S) and A(S) the values of W and A computed in the Attempt
Step during session S. We denote by W.A(S) the union W(.5) U A(S9).

Lemma 14 If a process p forms a session S, then al the end of the session W, U A, = WA(S).

Proof: Upon forming a session, process p may only move members from A, to W, and this is
the only change made to these variables after p attempted the session. Hence, the union remains
the same, and, by Lemma 13, is equal to WA(S). O

Lemma 15 If two formed sessions F;, F; intersect and F;.N < F;.N, then WA(F;) C WA(F;).

Proof: There exists a process p s.t. p € F;.M N F;.M. From Lemmas 13 and 14, at the end
of session F;, W, U A, = WA(F;), while at the end of session F;, W, U A, = WA(F;). From
Lemma 12, WA(F;) C WA(F;). O

Lemma 16 If for two formed sessions F;, F;, F; € Quorums_List(F;), then F; and F; inlersect.

23

Proof: Since F; in Quorums_List(F;), there is a member p of F; s.t. during F;, F; is in

Last_Primary, U Ambiguous_Sessions,. Since a process records only sessions in which it partici-

-
pated, process p participated in session F;, implying F; and F; intersect.O

Lemma 17 For every process p and for every process ¢ € W,, q has participated in some formed
session F.

Proof: For every process p, W, is initialized to Wy = Fy.M. W, incorporates a process ¢ € Wy
during a session S in one of two cases:

e During the Attempt Step, if there exists a member r of S such that ¢ € W,.

e During the Form Step, if ¢ € S.M.

Hence if ¢ is not a member of any formed session yet, then there is no process p such that ¢ € W,,.
|

Definition 1 Formed Sequence is a sel of formed sessions {Fy,..., Fr}, such thal
o F1=Fy, and
o Vi< k F,.N<Fiy1.N, and
o Vi< k F; € Quorums_List(F;y1), and
o for every formed session F', such that F'.N < Fy.N, F' is in the formed sequence.

F; denotes the i’th session in the sequence.

Lemma 18 Let a formed sequence, denoted FS, be of length k. Then for every formed session
F; € FS, where i < k, the following is TRUE:

o WA(F;,) CWA(Fitq), and
« W(Fis1) C WA(F).

Proof: By the definition of S, F; € Quorums_List(F;+1). By Lemma 16 F; and F;; intersect,
and by Lemma 15 WA(F;) C WA(Fiz1).

In addition, every formed session in the system that is formed before session F; is attempted,
denoted Fj, fulfills: F; € FS and j < i. Hence, by Lemma 17, W(Fi1) C Uz ers,j<i F5-M.
Since for every formed session F, F.M C W(F)U A(F), then by the first part of this lemma,
W(Fiy1) CWA(F;).O

Lemma 19 Let S be a formed session. Let a formed sequence, FS, fulfill the following w.r.t. S':

o FS contains every formed session F', where F'.N < S.N, and

o FS§ is of length k, and

24

o Fr..N < S.N.
Then Fi, € Quorums_List()5).

Proof : By induction on k.
e Base case, k£ = 1 From the definition of S and FS§, F; € Quorums_List(.5).

e General case, £ > 1

By Lemma 17 and the definition of 7S, W(S5) C Ur,ers Fj-M. Let F; be a formed session
with the minimal index in S, s.t. S M NW(S) C F,. M.

The minimality of F; implies that there exists a process p € S.M N F,.M. Since F; is
a formed session and F;.N < S.M, by Lemma 8 during 5 there exists a formed session
F in Ambiguous_Sessions, U Last_Primary,, s.t. F.N > F;.N. Since Session_Number, is
monotonically increasing, F.N < S.N, and hence F' € FS. All this implies that there exists a
formed session F; € Quorums_List(S)NFS s.t. j > 4. If j =k then Fy, € Quorums_List(S5),
and we are done. Otherwise, j < k.

Since F; € Quorums_List(S), then Sub_Quorum(F;,S)is TRUE. From the definition of FS,
Sub_Quorum(F;, Fj+1) is also TRUE during F;4q. From Lemma 18, W(F;11) C WA(F;),
and WA(F;) C WA(F;41). From Lemma 15 WA(F;) C WA(S). There are two cases:

— Both F;4; and 5 contain a majority of F;. Hence, F;4; and 5 intersect.

— One of F;41,5 does not contain a majority of F;, w.l.o.g. it is 5. Both F;;; and
S contain at least Min_Quorum members of WA(F;). Moreover, |S.M N WA(F;)| >
IWA(F;)| — Min_Quorum. Thus |S.M N WA(F;)| + |Fj+1 N WA(F;)| > [IWA(F;)|.

Hence, F;41 and S intersect.

In both cases, ;41 and 5 intersect. Let process ¢ be in ;1. M NS.M. By Lemma 8, during
S one of the following cases exists:

— Fjy1 € Ambiguous_Sessions, U Last_Primary,, and therefore ¥,y € Quorums_List(S5).

— Last_Primary, = F" where '.N > F;41.N. This is impossible since F; € Quorums_List(5),
and therefore when S begins Last_Primary, N < F;.N < F'.N, a contradiction.

If F;41 = Fi, then we are done. Otherwise, the above arguments can be iterated by replacing
F; with F;4q. Since in every iteration we prove that F; € Quorums_List(S)NFS(S5) implies
that F;41 € Quorums_List(S)N FS(5), and since FS(S) is finite, we are bound to reach
Fi1 = Fr, ylelding Fi, € Quorums_List(.5).

O

Lemma 20 Let A be an altempt other than Fy. Let F be a formed session such that F.N =
maz(F.N|F is a formed session and F.N < A.N). Then the value of F.N is unique among formed
sessions, and F € Quorums_List(A).

Proof: The proof is by induction on F.N.

25

e Base case F.N = 0. The proof is identical to the proof of the base case in Lemma 10,
specified in Section A.1.

e General case F.N >0

Let F™* be a formed session such that 7*.N = maxz(F.N|F is a formed session and F.N <
F.N). Then, by the induction hypothesis, the value of 7*.N is unique among formed sessions,
and F* € Quorums_List(F). Moreover, there exists a formed sequence of length &, denoted

FSr,s.t. Fr=F.

Assume, for the sake of contradiction, that F.N is not unique among formed sessions,
then there exists a formed session F’ such that F'.N = F.N. This implies that F* €
Quorums_List(F'), and that there exists a formed sequence of length k, denoted FSz, s.t.
Fr=F".

Since both F,F’ are formed sessions, according to the protocol, Sub_Quorum(F*,F) and
Sub_Quorum(F*, F') are TRUE. By Lemma 18, W(F)U W(F') C WA(F*), and WA(F*) C
WA(F)NWA(F'). Now there are two possibilities:

1. Both F,F’ contain a majority of F*. Hence F and F' intersect.

2. One of F,F’ does not contain a majority of F*, w.lo.g. it is F. Both F,F’ con-
tain Min_Quorum members of WA(F*). Moreover, |F.M N WA(F*)| > [IWA(F*)| —
Min_Quorum. By adding the two equations we get | F.MNWA(F*)|+|F . MOWA(F*)| >
IWA(F*)|. Hence F and F' intersect.

Since F and F' intersect, by Lemma 6, F'.N # F.N, a contradiction. Therefore F.N is
unique among formed sessions.

The existence of FSx implies, by Lemma 19, that F € Quorums_List(5).

O

Theorem 3 The lransitive closure of < on formed sessions is a tolal order.

Proof: Lemma 20 implies that there exists a formed sequence FS§ containing all formed sessions
in the system. For every two successive formed sessions, F;, Fiy1 € FS, F; € Quorums_List(F;11),
thus F; and F;; intersect. Hence if F.N < F'.N, then F' < F'. O

26

