
Theory Comput Syst
DOI 10.1007/s00224-015-9607-7

On Avoiding Spare Aborts in Transactional Memory

Idit Keidar · Dmitri Perelman

© Springer Science+Business Media New York 2015

Abstract This paper takes a step toward developing a theory for understanding
aborts in transactional memory systems (TMs). Existing TMs may abort many
transactions that could, in fact, commit without violating correctness. We call such
unnecessary aborts spare aborts. We classify what kinds of spare aborts can be elim-
inated, and which cannot. We further study what kinds of spare aborts can be avoided
efficiently. Specifically, we show that some spare aborts cannot be avoided, and that
there is an inherent tradeoff between the overhead of a TM and the extent to which
it reduces the number of spare aborts. We also present an efficient example TM
algorithm that avoids certain kinds of spare aborts, and analyze its properties and
performance.

Keywords Transactional memory

1 Introduction

The emergence of multi-core architectures raises the problem of efficient synchro-
nization in multithreaded programs. Conventional locking solutions introduce a host
of well-known problems: coarse-grained locks are not scalable, while fine-grained
locks are error-prone and hard to design. Transactional memory [10, 16] has gained
popularity in recent years as a new synchronization abstraction for multithreaded
systems, which has the potential to overcome the pitfalls of traditional locking
schemes. A transactional memory toolkit, or TM for short, allows threads to bundle

I. Keidar · D. Perelman (�)
Department of Electrical Engineering, Technion, Haifa 32000, Israel
e-mail: dmitri.perelman@gmail.com

I. Keidar
e-mail: idish@ee.technion.ac.il

mailto:dmitri.perelman@gmail.com
mailto:idish@ee.technion.ac.il

Theory Comput Syst

multiple operations on memory objects into one transaction. Similarly to database
transactions [17], transactions are executed atomically: either all of the transaction’s
operations appear to take effect simultaneously (in this case, we say that the trans-
action commits), or none of transaction’s operations are seen (in this case, we say
that transaction aborts). We formally define the model and correctness criterion in
Section 3.

A transaction’s abort may be initiated by a programmer or may be the result of a
TM decision. In the latter case, we say that the transaction is forcefully aborted by the
TM. For example, when one transaction reads some object A and then writes to some
object B, while another transaction reads the old value of B and then attempts to write
A, one of the transactions must be aborted in order to ensure atomicity. Most exist-
ing TMs perform unnecessary (spare) aborts, i.e., aborts of transactions that could
have committed without violating correctness; see Section 2. Spare aborts have sev-
eral drawbacks: work done by the aborted transaction is lost, computer resources are
wasted, and the overall throughput decreases. Moreover, after the aborted transac-
tions restart, they may conflict again, leading to livelock and degrading performance
even further.

The aim of this paper is to advance the theoretical understanding of TM aborts,
by studying what kinds of spare aborts can or cannot be eliminated, and what kinds
of spare aborts can or cannot be avoided efficiently. Specifically, we show that some
unnecessary aborts cannot be avoided, and that there is an inherent tradeoff between
the overhead of a TM and the extent to which it avoids spare aborts.

Previous work introduced two related notions: commit-abort ratio [6] and per-
missiveness [7]. The latter stipulates that if it is possible to proceed without aborts
and still not violate correctness, no aborts should happen. However, while shedding
insight on the inherent limitations of online TMs, these notions do not provide an
interesting yardstick for comparing TMs. This is because under these measures, all
online TMs inherently perform poorly for some worst-case workloads, as we show
in Section 4.

In Section 5, we define measures of spare aborts that are appropriate for online
TMs. Intuitively, our strict online permissiveness property allows a TM to abort some
transaction only if not aborting any transaction would violate correctness. Unlike
earlier notions, strict online permissiveness does not prevent the TM from taking an
action that might lead to an abort in the future. Thus, the information available to
the TM at every given moment suffices to implement strict online permissiveness.
Clearly, this property depends on the correctness criterion the TM needs to satisfy.
In this paper, we consider opacity [8] or slight variants thereof (see Section 3). In
this context, strict online permissiveness prohibits aborting a transaction whenever
the execution history is equivalent to some sequential one. We prove that strict online
permissiveness cannot be satisfied efficiently by showing a reduction from the NP-
hard view serializability [14] problem. We then define a more relaxed property, online
permissiveness, which allows the TM to abort transactions if otherwise it would have
to change the serialization order between already committed transactions. We show
that online permissiveness also has inherent costs — it cannot be satisfied by a TM
using invisible reads. Moreover, the information about a read should be exposed in
shared memory immediately after the read operation returns.

Theory Comput Syst

In Section 6, we show a polynomial time TM protocol satisfying online permis-
siveness. The protocol maintains a precedence graph of transactions and keeps it
acyclic. Unfortunately, we show that the graph must contain some committed trans-
actions. But without removing any committed transactions, detecting cycles in the
precedence graph would be impractical as it would induce a high runtime complex-
ity. Hence, we define precise garbage collection rules for removing transactions from
the graph. Even so, a naı̈ve traversal of the graph would be costly; we further intro-
duce optimization techniques that decrease the number of nodes traversed during the
acyclity check.

Finally, we note that our goal is not to build a better TM, but rather to under-
stand what can and what cannot be achieved, and at what cost. Future work may
further explore the practical aspects of the complexity vs. spare-aborts tradeoffs; our
conclusions appear in Section 7.

2 Related Work

Most existing TM implementations (e.g., [3–5, 9]) abort one transaction whenever
two overlapping transactions access the same object and at least one access is a write.
While easy to implement, this approach may lead to high abort rates, especially in
situations with long-running transactions and contended shared objects. Aydonat and
Abdelrahman [2] referred to this problem and proposed a solution based on a con-
flict serializability graph and multi-versioned objects in order to reduce the number
of unnecessary aborts. However, their solution still induces spare aborts, and does
not characterize exactly when such aborts are avoided. Moreover, they implement
a stricter correctness criterion than opacity, which inherently requires more aborts.
Riegel et al. [15] looked at the problem of spare aborts from a different angle, and
introduced weaker correctness criteria, which allow TMs to reduce the number of
aborts.

Napper and Alvisi [13] described a serializable TM, based upon multi-versioned
objects, which used cycle detection in the precedence graph when validating the cor-
rectness criterion. The focus of the paper was providing a lock-free solution. The
authors did not refer to the aspect of spare aborts and, in fact, their TM did lead to
spare aborts due to a limitation on write operations, which must insert the new ver-
sion after the latest one. In addition, Napper and Alvisi did not refer to the problems
of garbage collection and computational complexity of operations.

Gramoli et al. [6] referred to the problem of spare aborts and introduced the notion
of commit-abort ratio, which is the ratio between the number of committed trans-
actions and the overall number of transactions in the run. Clearly, the commit-abort
ratio depends on the choice of the transaction that should be aborted in case of a con-
flict. This decision is the prerogative of a contention manager [9]. Attiya et al. [1]
showed a �(s) lower bound for the competitive ratio for transactions’ makespan
of any online deterministic contention manager, where s is the number of shared
objects. Their proof, however, does not apply to our model, because it is based upon
the assumption that whenever multiple transactions need exclusive access to the same
shared object, only one of these transactions may continue, while others should be

Theory Comput Syst

immediately aborted. In contrast, our model allows the TM to postpone the deci-
sion regarding which transaction should be aborted till the commit, thus introducing
additional knowledge and improving the competitive ratio. In this paper, we show
that no TM can obtain a commit-abort ratio achieved by an optimal offline algo-
rithm. This result suggests that it is not interesting to compare (online) TMs by their
commit-abort ratio, as the distance from the optimal result turns out to be an artifact
of the workload rather than the algorithm, and every TM has a workload on which it
performs poorly by this measure.

Input acceptance is also a notion presented by Gramoli et al. [6] — a TM accepts
a certain input pattern (sequence of operational invocations) if it commits all of its
transactions. The authors compared different TMs according to their input accep-
tance patterns. Guerraoui et al. [7] introduced the related notion of π -permissiveness.
Informally, a TM satisfies π -permissiveness for a correctness criterion π , if every
history that does not violate π is accepted by the TM. Thus, π -permissiveness can
be seen as optimal input acceptance. However, Guerraoui et al. focused on a model
with single-version objects, and their correctness criterion was based upon conflict
serializability, which is stronger than opacity and thus allows more aborts. They
ruled out the idea of ensuring permissiveness deterministically, and instead pro-
vide a randomized solution, which is always correct and avoids spare aborts with
some positive probability. In contrast, we do not limit the model to include single-
version objects only, our correctness criterion is a generalization of opacity [8], and
we focus on deterministic guarantees. Although permissiveness does not try to reg-
ulate the decisions of the contention manager, we show that no online TM may
achieve permissiveness. Intuitively, this results from the freedom of choice for return-
ing the object value during the read operation — returning the wrong value might
cause an abort in subsequent operations, which is avoided by a clairvoyant (offline)
algorithm.

3 Preliminaries and System Model

Our model definitions are based on [11].

Transactions A transaction consists of a sequence of transactional operations, where
each operation is comprised of an invocation step and a subsequent matching
response step, collectively called transactional steps. The system contains a set of
transactional objects. Each transactional operation either accesses a transactional
object, or tries to commit or abort the transaction. More precisely, let Ti be a trans-
action, o be a transactional object, and v be a value. Then a transactional operation
is one of the following: (1) An invocation step start(Ti), followed by response S,
meaning T is started. (2) An invocation step read(Ti, o), followed by a response
step that either gives the current value of o, or responds A, meaning that the trans-
action is aborted. (3) An invocation write(Ti, o, v), followed by a response either
acknowledging the write, or responding A. For simplicity, we assume that all the
written values are unique. (4) An invocation tryAbort(Ti), followed by response A

Theory Comput Syst

(abort operation). (5) An invocation tryCommit(Ti), followed either by response C,
meaning T committed, or A. We say the read set (resp. write set) of a transaction
is the set of transactional objects read by (resp. written to) T , they are not known in
advance.

Transaction histories A transactional history H is a sequence of transactional steps,
interleaved in an arbitrary order (in the rest of the paper we use the notion of run as a
synonym to a transactional history). A transaction is active in H if it is neither com-
mitted nor aborted, it is complete otherwise. A transaction can perform operations as
long as it is active. Each transaction has a unique identifier (id). Retrying an aborted
transaction is interpreted as creating a new transaction with a new id.

Two histories H1 and H2 are equivalent if they contain the same transactions
and each transaction Ti issues the same operations in the same order with the same
responses in both. A history H is complete if it does not contain active transactions.
If history H is not complete, we may build from it a complete history Complete(H)
by adding an abort operation for every active transaction. We define committed(H)
to be the subsequence of H consisting of all the operations of all the committed
transactions in H .

The real-time order on transactions is as follows: if the first operation of transac-
tion Ti is issued after the last response of a complete transaction Tj in H , then Tj

precedes Ti in H , denoted Tj ≺H Ti . Transactions Ti and Tj are concurrent if neither
Tj ≺H Ti , nor Ti ≺H Tj . A history S is sequential if it has no concurrent transac-
tions. A sequential history S is legal if it respects the sequential specification of each
object accessed in S. Transaction Ti is legal in S if the largest subsequence S′ of S,
such that for every transaction Tk ∈ S′, either (1) k = i, or (2) Tk is committed and
Tk ≺S Ti , is a legal history.

Transactional memory A transactional memory (TM) is an algorithm for running
transactions. We do not consider any kind of transactional nesting. In this paper, we
assume the algorithm consists of a set of threads. The threads communicate with
each other using shared memory. Each transaction is run by a thread, and each thread
runs at most one transaction at a time. To run a transaction T , a thread runs each of
T ’s transactional operations, as follows. (1) Take as input an invocation step of T . (2)
Perform a sequence of shared memory steps, which are determined by the input and
the memory. (3) Return as output a response step to T . A transactional memory can
forcefully abort transaction Tj as a result of invocation step of another transaction Ti .
In this case we say that Tj is aborted and the next operation invocation of Tj returns
A.

We call the memory objects accessed by the threads base objects. Note that these
are conceptually distinct from the transactional objects accessed by the transactions.
We also call the steps performed by the threads base steps. We assume that all the
base steps for running a transactional step appear to execute atomically. The means
by which such linearizability of transactional steps is achieved lies beyond the focus
of our paper. In practice, it can be achieved using locks (like the two-phase locking
mechanism used in commit operations by TL2 [3]), or by lock-free algorithms [5].

Theory Comput Syst

Due to the assumption of atomicity of transactional steps we consider only the well-
formed histories in which an invocation of transactional operation is followed by the
corresponding response.

We say that an STM is responsive if it guarantees that each operation invocation
eventually gets a response, even if all other threads do not invoke new transactional
operations. This limits the responsive STM’s behavior upon operation invocation, so
that it may either return an operation response, or abort a transaction, but cannot wait
for other transactions to invoke new transactional operations. Note that we do allow
for a responsive STM to wait for concurrent transactional operations to complete,
for example TL2 [3] is responsive in spite of its use of locks. One may say that a
responsive STM provides lock-freedom at the level of transactional operations. In
this paper all the results are applied for responsive STMs only.

Correctness Our correctness criterion resembles the opacity condition of Guerraoui
and Kapalka [8]. For a history H , and a partial order P on the transactions that appear
in H , we say that H satisfies P -opacity if there exists a sequential history S such that:

• S is equivalent to Complete(H).
• Every transaction Ti ∈ S is legal in S.
• If (Ti, Tj) ∈ P , then Ti ≺S Tj .

Given a function � that maps histories to partial orders of transactions that appear in
those histories, we say a TM satisfies �-opacity if every history H generated by the
TM satisfies �(H)-opacity.

When �(H) is the real-time order on all the ordered pairs of non-concurrent trans-
actions in H , the history S should preserve the real-time order of H as in the original
definition of opacity. On the other hand, when �(H) is empty, the correctness cri-
terion is a serializability with consideration of aborted transactions. The use of �

makes it possible to require a transactional ordering that lies between serializability
and strict serializability according to any arbitrary rule (e.g., Riegel et al. [15] consid-
ered demanding real-time order only from transactions belonging to the same thread).
We define a more general criterion in order to broaden the scope of our results. In
the rest of this paper, we will assume that �(H) is a subset of the real-time order on
transactions, unless stated otherwise.

4 Limitations of Previous Measures

4.1 Commit-Abort Ratio

The commit-abort ratio, τ , [6] is the ratio between the number of committed trans-
actions and the overall number of transactions in the history. Unfortunately, we now
show that no online TM may guarantee an optimal commit-abort ratio.

We use the style of [15] to depict transactional runs. Objects are represented as
horizontal lines o1, o2, etc. Transactions are drawn as polylines with circles corre-
sponding to accesses to the objects. Filled circles indicate writes, and empty circles
indicate reads. Commit is indicated by the letter C, and abort by the letter A. If the

Theory Comput Syst

TM implements the access to the object as if it had appeared in past, the dashed arrow
indicates the point in time at which the access to the object appears according to the
TM serialization.

As we said earlier, a TM does not know read and write accesses in advance, i.e., a
TM is online. As opposed to this, we say that an offline algorithm knows the sequence
of accesses of the transaction beforehand.

Lemma 1 No TM can achieve the commit-abort ratio of an optimal offline algo-
rithm.

Proof Consider the scenarios depicted in Fig. 1. We show that no TM can achieve
commit-abort ratio better than 1

3 in both runs, while an optimal offline algorithm
achieves τ = 2

3 . Transactions T1 and T2 cannot both commit because they both write
to o1 after reading its previous value. There are three possible scenarios for a TM
algorithm: 1) abort T1, 2) abort T2, or 3) abort both T1 and T2. Clearly, in the third
case τ cannot be better than 1

3 .
In run r1 (Fig. 1a), the TM commits T2 and T1 is aborted. Then the adversary

causes transaction T3 to read o3 — it must be aborted because it conflicts with T2,
resulting in τ = 1

3 .
In run r2 (Fig. 1b), the TM commits T1 and T2 is aborted. In this case the adversary

causes T3 to read o2, T3 must be aborted because of its conflict with T1, resulting
again in τ = 1

3 .
Note that the optimal offline TM in these cases would abort only one transaction,

yielding τ = 2
3 .

4.2 Permissiveness

Since requiring an optimal commit-abort ratio is too restrictive, we consider a
weaker notion that limits aborts only in runs where none are necessary. Recall that
a TM accepts a certain history if it commits all of its transactions. A TM provides
π -permissiveness [7] if it accepts every history satisfying π (a TM provides �-
opacity-permissiveness if it accepts every history satisfying �-opacity). Gramoli et

(a) (b)

Fig. 1 No online TM may know whether to abort T1 or T2 in order to obtain an optimal commit-abort ratio

Theory Comput Syst

al. showed that existing TM implementations do not accept all inputs they could have,
and hence are not π -permissive. We show that this is an inherent limitation.

The formal impossibility illustrated in Fig. 2 is captured in the following lemma:

Lemma 2 For any �, there is no online TM implementation providing �-opacity-
permissiveness.

Proof Consider the scenario depicted in Fig. 2. All the objects have initial values,
v0. All the transactions start at the same time, and are therefore not ordered according
to the real-time order, thus the third condition of our correctness criterion holds for
any � because we assume that �(H) is a subset of the real-time order of H .

T1 writes values v1 to o1 and v2 to o2. At time t0, there is a read operation of T2
and the TM should decide what value should be returned. In general, the TM has four
possibilities: (1) return v1, (2) return v0, (3) return some value v′ different from v0
and v1, and (4) abort T2. If the TM chooses to abort, then �-opacity-permissiveness
is violated and we are done. (3) is not possible, for returning such a value would
produce a history, for which any equivalent sequential history S would violate the
sequential specification of o1 and thus would not be legal.

Consider case (1): the TM returns v1 for T2 at time t0. This serializes T2 after T1.
Consider run r1 depicted in Fig. 2a, where T3 tries to write to o3 and commit. In this
run, the TM has to forcefully abort T3, because not doing so would produce a history
H with no equivalent sequential history: T1 ≺ T2 ≺ T3 ≺ T1. However, if T2 would
read v0 in run r1, then T2, T1 and T3 would be legal, and no transaction would have
to be forcefully aborted. So �-opacity-permissiveness is violated.

In case (2), the TM returns v0 for transaction T2 at time t0, serializing T2 before
T1. Consider run r2 depicted in Fig. 2b. Transaction T4 writes to o2, and afterwards
reads and writes to o3. Transaction T4 has to be serialized after T1, because T1 has
read v0 from o2. When T2 tries to read and write to o3 and commit, T2 has to be
serialized after T4 because they both read and write to o3. Therefore, the TM will
have to forcefully abort some transaction, because not doing so would produce a
history with no equivalent sequential history: T2 ≺ T1 ≺ T4 ≺ T2. But if T2 would
read v1 in run r2, then no transaction would have to be forcefully aborted. So again,
�-opacity-permissiveness is violated.

Runs r1 and r2 are indistinguishable to the TM at time t0. Therefore, no online
TM can accept both of the patterns, while an offline optimal TM can accept both of
them.

5 Online Permissiveness: Limitations and Costs

5.1 Strict Online Opacity-Permissiveness

Definition 1 Consider a history H , in which a transaction T receives an abort
response A to one of its operations op. We say that H ′ is a live-T modification of H

if H ′ is the same as H except that T receives a non-abort response to op in H ′.

Theory Comput Syst

We now define a property that prohibits unnecessary aborts, and yet is possible to
implement.

Definition 2 A responsive TM satisfies strict online �-opacity-permissiveness for a
given � if the TM forcefully aborts a transaction T in a history H only if there exists
no live-T modification of H that satisfies �(H)-opacity.

Note that this property does not define which transaction should be aborted if abort
happens, and does not prohibit returning a value that will cause aborts in the future.
For example, in the scenarios depicted in Fig. 2, at time t0, a TM satisfying this
property may return either value, even though this might cause an abort in the future.

An algorithm satisfying strict online opacity-permissiveness should be able to
detect whether returning a given value creates a history satisfying �-opacity. We
show that this cannot be detected efficiently. To this end, we recall a well-known
result about checking the serializability of the given history, which was proven by
Papadimitriou [14].

Given history H , the augmented history H̄ is the history that is identical to H ,
except two additional transactions: Tinit that initializes all variables without reading
any, and Tread that is the last transaction of H̄ , reading all variables without changing
them. The set of live transactions in H is defined recursively in the following way:
(1) Tread is live in H , (2) If for some live transaction Tj , Tj reads a variable from Ti

(every written value is unique according to our model), then Ti is also live in H . Note
that aborted transaction cannot be live since no transaction may read a value written
by an aborted one. A transaction is dead if it is not live. Two histories H and H ′ are
view equivalent if and only if (1) they have the same sets of live transactions and (2)
Ti reads from Tj in H if and only if Ti reads from Tj in H ′. Note that a definition
of view equivalence differs from a history equivalence defined in this paper, which
demands the same order of operations for each transaction in equivalent histories.
History H is view serializable, if for every prefix H ′ of H , complete(H ′) is view
equivalent to some serial history S. The following is proven in [14]:

(a) (b)

Fig. 2 At time t0, no online TM knows which value should be returned to T2 when reading o1 in order to
allow for commit in the future

Theory Comput Syst

Theorem 1 (Papadimitriou) Testing whether the history H is view-serializable is
NP-complete in the size of the history, even if H has no dead transactions.

Lemma 3 For any �, detecting whether the history H satisfies �-opacity is NP-
complete in the size of the history.

Proof We first note that the problem of detecting view serializability has a trivial
reduction to the problem of identifying whether a given history H is view equivalent
to some serial history S. Hence, in order to prove the claim, we need to show a
reduction from the problem of detecting whether a history H is view-equivalent to
some serial history S to the problem of detecting whether some history H ′ satisfies
�-opacity. Consider history H with no dead transactions. Given the assumption of
unique write values and in the absence of aborted transactions, the definition of view
equivalence differs from the definition of opacity only in the fact that opacity refers
to the partial order �, which is a subset of a real-time order. We construct history H ′,
which is identical to history H except the following addition: for each Ti in H , we
add start(Ti) at the beginning of H ′. We will show that H is view equivalent to some
serial history S if and only if H ′ satisfies �-opacity.

All the transactions in H ′ are concurrent (start(Ti) happens before any other oper-
ation of Tj for every Ti and Tj), therefore the third condition of �-opacity vacuously
holds for any �. In the absence of aborts in H ′, H ′ satisfies �-opacity if and only
if there exists a legal sequential history S′, so that every transaction in H ′ issues the
same invocation events and receives the same response events as in S′. Therefore, H ′
satisfies �-opacity if and only if H ′ is view-equivalent to some serial history S′.

5.2 Online Opacity-Permissiveness

Intuitively, the problem with strict online opacity-permissiveness lies in the fact that
the order of committed transactions may be undefined and may change in the future.
Consider, for example, the scenario depicted in Fig. 3. Transactions T1 and T2 are
not ordered according to real-time order, therefore they are not ordered by �. At
time t0, the serialization order is T1 → T2, as o1 holds the value written by T2.
When T3 commits, the serialization order of T1 and T2 becomes undefined, since

Fig. 3 The order of transactions
T1 and T2 is changed after their
commit time

Theory Comput Syst

T3 overwrites o1 before any transaction reads the value written by T2. And when
T4 commits, the serialization order becomes T2 → T4 → T1 → T3. If the partial
serialization order induced by the run cannot change after being defined, the problem
becomes much easier. To capture this restriction, we extend the TM’s interface so as
to make the serialization decisions explicit: every commit operation returns a partial
order on all committed transactions with conflicting writes. Specifically, we assume
that a successful tryCommit(Ti) operation returns, instead of C, a partial order Ri on
previously committed transactions.

We denote by R(t) the value returned in the last commit occurring by point t in
H ; R(t) is empty if no commit occurs by time t in H .

Note that this interface is only intended to expose the internal state of the TM,
in order to facilitate reasoning, and can be filtered out before actually providing a
response to the application. Using this interface, we now define the persistent order-
ing property, which prevents a TM from “changing its mind” about the serialization
order of already committed conflicting transactions.

Definition 3 (Persistent Ordering) A history H (with the modified interface) satis-
fies persistent ordering if it satisfies all of the following: 1) R(t) orders all pairs of
transactions Ti and Tj that have committed by point t with intersecting write-sets. 2)
For all t ′ and t such that t ′ < t, R(t ′) ⊆ R(t). 3) H satisfies R(t)-opacity for all t .

In other words, if committed transactions Ti and Tj both write to the same object
in H , then they are explicitly ordered by the time both of them commit and their order
persists thereafter. We say that a TM satisfies Persistent Ordering if every history
generated by the TM satisfies Persistent Ordering. We now define our more relaxed
property, online �-opacity-permissiveness, which may be satisfied at a polynomial
cost.

Definition 4 A responsive TM satisfies online �-opacity-permissiveness for a given
� if:

1. The TM satisfies Persistent Ordering.
2. The TM forcefully aborts a transaction T in a history H only if there exists no

live-T modification of H that satisfies persistent ordering and �(H)-opacity.

Note that Definition 4 implies that each committing transactions should define its
serialization order with regard to all other committed transactions that have written
to the same objects. To the best of our knowing, all existing TMs do in fact define
the order on two transactions that write to the object by the time the latter transac-
tion commits. We note that this requirement might be limiting for TMs that wish to
exploit the benefits of commutative or write-only operations (see [12]), and do not
necessarily define the serialization point of the committed transactions. However, this
limitation is essential for an effective check of the opacity criterion.

In the following sections we show a polynomial-time TM satisfying online
opacity-permissiveness. We now prove that such an implementation, nevertheless,
has some inherent costs.

Theory Comput Syst

Impossibility of invisible reads One of the basic decisions that needs to be made
during the design of a TM is whether to expose the fact that transaction Ti has
read the object o, i.e., make a change in shared memory as a result of the read,
making the read visible. In case we expose the read, there arises another question,
regarding whether we can postpone exposing the read until the commit. One of the
central problems with exposing the read is that it requires writing metadata in shared
memory. One typically tries to avoid writes to shared memory, because writing data
that is read by different cores has a high cache penalty. Postponing exposing the
read until the commit may save redundant writes in case the transaction eventually
aborts.

Unfortunately, we shall now show that if the serialization order can violate the
real-time order of transactions, then online opacity permissiveness requires all reads
to be exposed in shared memory immediately after a read happens. To this end, we
first need to rule out trivial TMs, for example, ones that always return an object’s
initial value in response to a read. We formally define our non-triviality requirement
as follows:

Definition 5 For a given �, a TM is non-trivial if a read operation of object o by
transaction Ti does not return an older value than the last one written to o by a com-
mitted transaction before Ti began, unless returning the last value written before Ti

began generates a history H that is not �(H)-opaque.

In other words, read may return an old value only if there is a good reason to
do so (avoiding an abort). We now show that every non-trivial TM satisfying online
opacity-permissiveness with no respect to real-time order must expose all its read
operations immediately as they happen:

Lemma 4 Let �∅ be a function from histories to partial transactional orders
such that �∅(H) = ∅. If a non-trivial responsive TM satisfies online �∅-opacity-
permissiveness, then any active transaction Ti that has read n ≥ 2 distinct objects
must keep all its reads visible.

Proof Assume by contradiction that there exists a non-trivial TM satisfying online
�-opacity-permissiveness and there exists an active transaction Tr that reads non-
initial values of objects o1 and o2 (and perhaps some additional objects) until time t0
and does not expose the read of some object o1, as depicted in the left part of Fig. 4a.

We now continue the run from t0 onward as described below. We invoke transac-
tion T1 reading object o3, and then transaction T2 that reads o3, writes to o3 and reads
o2. By non-triviality, T1 and T2 read the same version of o3, hence once T2 writes to
o3, T2 is serialized after T1. Moreover, T2 must read the version of o2 written by Tw2
— the same one as read by Tr . We next invoke transaction T3, which reads o4. We
then continue transaction T1 so that it writes to o2, then reads o4, writes to o4 and
commits. As mentioned earlier, T1 is serialized before T2 and T2 reads the object ver-
sion written by Tw2, therefore T1 must be serialized before Tw2 (and before Tr). Note
that T1 can be serialized before Tw2 because �∅ does not impose a real-time order

Theory Comput Syst

on transactions. By non-triviality, T1 and T3 read the same version of o4, hence T3 is
serialized before T1 (and before Tr).

Finally, we continue transaction T3 so that it reads o1, writes to o1 and tries to
commit. By non-triviality, T3 reads the version of o1 written by Tw1. The commit
operation of T3 cannot succeed: on the one hand, T3 must be serialized after Tw1, and
on the other hand T3 must be serialized before Tr , but T3 cannot be serialized between
Tw1 and Tr because Tr reads the version of o1 written by Tw1. Hence T3 aborts in r1.

Consider run r2 depicted in Fig. 4b. This run is identical to r1 except that Tr ’s read
of o1 is removed. T3 can commit successfully in r2, with the following serialization
order: {Tw1, T3, T1, Tw2, Tr , T2}. Since we assume the TM satisfies online �-opacity-
permissiveness, T3 commits. However, since Tr does not expose its read of o1, T3
cannot distinguish between r1 and r2, a contradiction.

6 The AbortsAvoider Algorithm

We now present AbortsAvoider, a TM algorithm implementing online opacity-
permissiveness for any given �. The basic idea behind AbortsAvoider is to maintain
a precedence graph of transactions, and keep it acyclic, as explained in Section 6.1. A
simplified version of the protocol based on this graph is then presented in Section 6.2.
A key challenge AbortsAvoider faces is that completed transactions cannot always
be removed from the graph, whereas keeping all transactions forever is clearly
impractical. We address this challenge in Section 6.3, presenting a garbage collection
mechanism for removing terminated transactions from the graph. In Section 6.4 we
present another optimization, which shortens paths in the graph to reduce the num-
ber of terminated transactions traversed during the acyclity check. Our complexity
analysis appears in the same section.

6.1 Basic Concept: Precedence Graph

Information bookkeeping Our protocol maintains object version lists. We now
explain what such a TM does: (1) each object o is associated with a totally ordered

(a) (b)

Fig. 4 T3 does not distinguish between r1 and r2 at time t0 if Tr does not expose its read

Theory Comput Syst

set of versions, (2) a read of o returns the value of one of o’s versions, and (3) a write
to o adds a new version of o upon commit. For simplicity, at any given moment, we
number the versions of the object in increasing order. (Note that the numbering is
for analysis purposes only, and the numbers of the versions change during the run as
the versions are inserted and removed from the versions list). The object version o.vn

includes the data, o.vn.data, the writer transaction, o.vn.writer, and a set of readers,
o.vn.readers. Each transaction has a readList and a writeList. An entry in a readList
points to the version that has been read by the transaction. A writeList entry points to
the object that should be updated after commit, the new data, and the place to insert
the new version, (which may be undefined till the commit). For the sake of simplicity
we assume that the values written to transactional objects are unique.

Precedence graph Transactions may point to one another, forming a directed
labelled precedence graph, PG. PG reflects the dependencies among transactions
as created during the run. We denote a precedence graph of history H as PGH . The
vertices of PG are transactions, the edges of PG are as follows (Fig. 5):

If (Tj , Ti) ∈ �(H), then PG contains (Tj , Ti) labelled L� (� order). If Ti reads
o.vn and Tj writes o.vn, then PG contains (Tj , Ti) labelled LRaW (Read after Write).
If transaction Ti writes o.vn and Tj writes o.vn−1, then PG contains (Tj , Ti) (Write
after Write) labelled LWaW . If transaction Ti writes o.vn and Tj reads o.vn−1, then
PG contains (Tj , Ti) labelled LWaR (Write after Read).

Below we present lemmas that link maintaining acyclity in PG and satisfying
online-permissiveness. To this end, we restrict our discussion to non-local histories,
which we now define. We say that a read operation of Ti readi(o) in H is local if it is
preceded in H |Ti by a write operation writei(o, v). A write operation writei(o, v) is
local if it is followed in H |Ti by another write operation writei(o,v’). The non-local
history of H is the longest subsequence of H not containing local operations [8].
Note that the precedence graph does not refer to local operations.

We denote PG(t) to be the graph at time t . We define λPG to be the following
binary relation: if PG contains a path from Ti to Tj consisting of LWaW edges, then
Ti ≺λPG

Tj . Note that if PG is acyclic, then λPG is reflexive, antisymmetric and
transitive, and therefore λPG is a partial order.

Fig. 5 Object versions and the precedence graph, PG

Theory Comput Syst

Lemma 5 Consider a TM maintaining object version lists. If PG is acyclic through-
out some run, then the non-local history H of the run satisfies � ∪ λPG-opacity.

Proof Let H be a history over transactions {T1 . . . Tn}. Let HC = Complete(H), i.e.
H with Ai added for every active Ti ∈ H .

Since PG is acyclic, it can be topologically sorted. Let Ti1, . . . , Tin be a topo-
logical sort of PG, and let S be the sequential history Ti1, . . . , Tin. Clearly, S is
equivalent to HC because both of the histories contain the same transactions and each
transaction issues the same operations and receives the same responses in both of
them.

We now prove that every Ti ∈ S is legal. Assume by contradiction that there
are non-legal transactions in S. Let Ti be the first such transaction. If Ti is non-
legal, Ti reads a value of object o that is not the latest value written to o in S by a
committed transaction. (Recall that by definition of object version lists, only values
written by committed transactions can be read). S contains only non-local operations,
and therefore Ti reads the version o.vn written by another transaction Tj . Therefore,
there is an edge from Tj to Ti in PG. It follows that Tj is committed in S and ordered
before Ti according to the topological sort. If the value of o.vn is not the latest value
written in S before Ti , then there exists another committed transaction T ′

j that writes
to o and is ordered between Tj and Ti in S. If T ′

j writes to a version earlier than o.vn,
then there is a path from T ′

j to Tj in PG, and therefore T ′
j is ordered before Tj in S.

If T ′
j writes to a version later than o.vn, then there is a path from Ti to T ′

j in PG, and
therefore T ′

j is ordered after Ti in S. In any case, T ′
j cannot be ordered between Tj

and Ti in S, a contradiction.
For each pair Ti ≺� Tj , PG contains an edge from Ti to Tj . Therefore, according

to the topological sort, S preserves the partial order �. By definition S also preserves
the order defined by λPG.

Summing up, Complete(H) is equivalent to a legal sequential history S, and S

preserves partial order � ∪ λPG. Therefore H is � ∪ λPG-opaque.

Lemma 6 Every TM that maintains object version lists and keeps PG acyclic
satisfies persistent ordering.

Proof In order to prove that a TM satisfies persistent ordering we need to show the
following: 1) define a partial order Ri returned by a successfully committed trans-
action (in other words, define the way a TM exports an ordering interface); 2) show
that Ri orders all pairs of committed transactions with a non-empty intersection of
their write-sets; 3) show that R(t) monotonically increases with t and 4) prove that
H |t satisfies R(t)-opacity at any t .

1) We define Ri returned by a successfully committed transaction at time t to be
λPG(t); in other words Ri orders Ti and Tj if they are connected in PG by LWaW

edges.
2) Consider two committed transactions Tk and Tm that have a common object o in

their write-sets such that Tk has written to the version o.vi and Tm has written to

Theory Comput Syst

the version o.vj , wherei < j . In this case PG contains a path from Tk to Tm

consisting of LWaW edges and therefore λPG contains a pair (Tk, Tm). Hence,
Ri orders all pairs of committed transactions with a non-empty intersection of
their write-sets.

3) According to the rules for updating PG, LWaW edges are never removed and
R(t ′) ⊆ R(t) for every t ′ < t .

4) According to Lemma 5, H |t satisfies λPG(t)-opacity and therefore H |t satisfies
R(t)-opacity.

Lemma 7 Consider a responsive TM maintaining object version lists and keeping
PG acyclic. Consider that this TM forcefully aborts a transaction T in a history H

only if there exists no live-T H ’s modification H ′, such that PG′
H contains no cycles.

Then this TM satisfies online �-opacity-permissiveness.

Proof As shown in Lemma 6, the TM satisfies persistent ordering. We need to show
that if there is a cycle in PG, then the run violates (� ∪ λPG)-opacity.

We show first that if there is an edge (Ti, Tj) in PG, then every legal sequen-
tial history S preserving � ∪ λPG and equivalent to Complete(H) orders Ti before
Tj . Consider two transactions Ti and Tj such that there is an edge (Ti, Tj) in PG.
If the edge is labeled L� , then (Ti, Tj) ∈ �, and S orders Ti before Tj . If the
edge is labeled LRaW , then Tj reads a value written by Ti and S also orders Ti

before Tj . If the edge is labeled LWaW , then Ti < Tj according to λPG, hence
S also orders Ti before Tj . If the edge is labeled LWaR , then Ti reads o.vn while
Tj writes o.vn+1. On the one hand, Tj should be ordered after o.vn.writer in S

(there is an edge from o.vn.writer to Tj labeled LWaW). On the other hand, Tj

cannot be ordered between o.vn.writer and Ti , because Ti must read the value
written by o.vn.writer in S. Therefore, Tj is ordered after Ti in S in this case as
well.

Summing up, an edge (Ti, Tj) in the precedence graph induces the order of Ti

before Tj in any legal sequential history S preserving � ∪ λPG and equivalent to
Complete(H). Therefore, if PG contains a cycle, no such sequential history exists,
and the TM cannot satisfy � ∪ λ-opacity.

Corollary 1 Consider a TM maintaining object version lists that keeps PG acyclic.
Consider that this TM forcefully aborts a transaction T in a history H only if there
exists no live-T H ’s modification H ′, such that PG′

H contains no cycles. Then this
TM satisfies �-opacity and online �-opacity-permissiveness.

6.2 Simplified �-AbortsAvoider Algorithm

AbortsAvoider algorithm maintains object version lists as explained above, keeps
PG acyclic and forcefully aborts a transaction only if not aborting any transaction
would create a cycle in PG. Read and write operations are straightforward, they are

Theory Comput Syst

depicted in Algorithm 1. A read operation (line 4) looks for the latest possible object
version to read without creating a cycle in PG. Write operations (line 13) postpone
the actual work till the commit.

Algorithm 1 -AbortsAvoider for Ti - Read/Write.

1: procedure START()
2:
3:

4: procedure READ(Object o)
5: if .writeList then return Ti .writeList[o].data
6: if .readList then return Ti .readList[o].data
7: the latest version that can be read without creating a cycle in PG
8: if then return abort event A i

9:
10:
11: Ti .readList.ADD()
12: return .data

13: procedure WRITE(Object o, ObjectData val)
14: if o Ti .writeList then
15: Ti .writeList[o].data val; return
16: if o Ti .readList then
17: non-blind write, victim version is read version
18: writeNode o,readList[o].version, val
19: else
20: blind write, victim version is not known
21: writeNode o, ,val
22: Ti .writeList.ADD(writeNode)

The commit operation is more complicated. Intuitively, for each object written during
transaction, the algorithm should find a place in the object’s version list to insert
the new version without creating a cycle. Unfortunately, checking the objects one
after another in a greedy way can lead to spare aborts, as we illustrate in Fig. 6a.
Committing T3 first seeks for a place to install the new version of o1 and decides to
install it after the last one (serializing T3 after T2). When T3 considers o2, it discovers
that the new version cannot be installed after the last one, because T3 should precede
T1, but it also cannot be installed before the last one, because that would make T3
precede T2, so T3 is aborted. However, installing the new version of o1 before the last

(a) (b)

Fig. 6 Checking the written objects in a greedy way during the commit may lead to a spare abort

Theory Comput Syst

one would have allowed T3 to commit, as depicted in Fig. 6b, that is why aborting T3
violates online �-opacity-permissiveness.

Algorithm 2 -AbortsAvoider for Ti - Commit.

23: procedure COMMIT

24: newEdges edges added upon commit
25: blinds the set of blind writes
26: Phase I — install the non-blind writes
27: for each n in Ti.writeList do
28: if n.victim then
29: (v,edgs) VALIDATEWRITE(newEdges,n.victim)
30: if v = FALSE then return abort event A i

31: newEdges newEdges edgs
32: else
33: blinds blinds { n}
34: Phase II — install the blind writes
35: repeat
36: foundOutEdges FALSE

37: inEdges
38: for each n in blinds do
39: find the latest possible victim
40: (victim,edges) FINDVICTIM(newEdges,n)
41: if victim then return abort event A i

42: for each e in edges do
43: if e is incoming to Ti then
44: inEdges inEdges e
45: else if e newEdges then
46: newEdges newEdges { e}
47: foundOutEdges TRUE

48: until foundOutEdges FALSE

49: commit point
50: for each n in Ti .writeList do
51: install the new version right after n.victim
52: PG .ADDEDGES(newEdges inEdges)

53: procedure FINDVICTIM(List Edge newEdges, WriteNode wn) : (ObjectVersion, List Edge)
54: find the latest possible victim
55: if wn.victim then vctm wn.latestVersion
56: else vctm wn.victim
57: while vctm do
58: check installing the new version after vctm
59: (valid, edges) VALIDATEWRITE(newEdges,vctm)
60: if valid TRUE then return (vctm,edges)
61: go to the previous version
62: return no suitable victim found

63: procedure
64: added {
65: valid acyclity of PG after adding edges added
66: return (valid, added)

Our commit operation (Algorithm 2, line 23) is divided into two phases. We call
the object version after which the new version is to be installed a victim version.
The victim version is known only for the non-blind writes (that is version, which has
been read before the write, line 18). In the first phase the algorithm tries to install
the non-blind writes (lines 27–33). In the second phase (lines 35–48) the algorithm
tries to find the vicim versions for the blind writes in iterations. Initially, the victim
is the object’s latest version. In each iteration, the algorithm traverses the objects and
for each one searches for the latest possible victim to install the new version with-
out creating a cycle in PG (line 40). When victim o.vn is found, an edge from Ti

to the writer of o.vn+1 is added to PG (line 46). We add only the outgoing edges

Theory Comput Syst

at this point, because changing the victim from o.vn to o.vn−1 may remove some
incoming edges to Ti but cannot remove outgoing ones. Meanwhile, incoming edges
are kept in inEdges. After each iteration, there are possibly new outgoing edges
added to PG, that would mean that the previously found victim versions might not
suit anymore and a new iteration should be run. Once there is an iteration when no
new edges are added, the algorithm commits — it installs the new versions after
their victims and adds all the edges, including inEdges from the latest iteration, to
the PG.

The following lemma immediately follows from the protocol.

Lemma 8 �-AbortsAvoider maintains PG acyclic.

Proof The edges added to the graph are defined in functions READ (line 7) and VAL-
IDATEWRITE (line 63). Both functions validate that adding the new edges preserves
PG acyclicity.

We now want to show that the algorithm does not introduce unnecessary aborts.

Theorem 2 �-AbortsAvoider forcefully aborts a transaction T in a history H only
if there exists no live-T H ’s modification H ′, such that PG′

H contains no cycles.

Proof We first note that in �-AbortsAvoider no transaction can abort other trans-
actions — the only transaction that can be aborted as a result of Ti’s operation
invocation is Ti by itself. Hence, if �-AbortsAvoider aborts a set S of transactions,
then |S| = 1. Therefore, it is sufficient to prove the following: �-AbortsAvoider
forcefully aborts a transaction only if not aborting any transaction would create a
cycle in PG.

The read operation of object o (line 4) returns Ai only if there is no object version
to read without introducing a cycle in PG. The write operation (line 13) does not
abort any transaction — it postpones all the work till the commit.

The commit operation (line 23) tries to write the new versions of all the objects
written during the transaction. If the object is written in the non-blind way, then the
victim version is known beforehand and the new version has to be installed after
the version that has been read (line 29). In this case the validation is done by vali-
dateWrite function (line 63), which fails if and only if adding the appropriate edges
to PG creates a cycle.

It remains to show that commit function does not succeed to execute the blind
writes only if that creates a cycle in PG. We will show now that if there exists a way
to execute the blind writes without creating a cycle in PG, the algorithm will find it.

First of all, we will analyze the variable newEdges (line 24), which keeps the set
of the edges added to PG upon successful commit of T . Edge (Ti, Tj) ∈ newEdges

is compulsory, if PG must have a path from Ti to Tj after successful commit (to that
end, the edge represents a real, compulsory dependency).

Lemma 9 During COMMIT() function of AbortsAvoider algorithm, the newEdges
set contains compulsory edges only.

Theory Comput Syst

Proof In the first phase of COMMIT(), AbortsAvoider proceeds the non-blind writes
(lines 27–33). There is a single possible victim version for the non-blind write, and
therefore the edges added to newEdges set during the first phase are compulsory.

Consider the second phase of COMMIT(), when AbortsAvoider proceeds the blind
writes (lines 35–48). We will show by induction that all the edges added to newEdges
in the second phase are compulsory.

Induction basis. At the beginning of the second phase newEdges set contains only
the edges added by the non-blind writes, which are compulsory, as shown before.

Induction step. Assume that all the edges added to newEdges by the algorithm
so far are compulsory. Consider new edge (Ti, o.vk+1.writer) added to newEdges by
the algorithm in line 46. This happens if o.vk is chosen to be a victim version for
writing to object o. According to the algorithm, o.vk is chosen to be the victim version
only if all the versions o.vk′ for k′ > k did not suit to be the victim versions for a
given newEdges set. According to the induction assumption, newEdges set contains
compulsory edges only, therefore all the versions o.vk′ for k′ > k cannot be victim
versions for the write operation. According to the algorithm, choosing any object
version o.vk′ for k′ ≤ k (i.e., object version that is earlier than o.vk) yields a path
from Ti to o.vk+1.writer in PG, finishing the proof.

For each object written in a blind way the algorithm checks the victim versions
starting from the latest one. Victim version validation is executed in the following
way: PG is checked for acyclity after inserting the edges from newEdges set together
with the edges corresponding to adding the new version after o.vk . As stated in
Lemma 9, newEdges set contains compulsory edges only, therefore validation fail for
o.vk means that neither o.vk , nor any version later than o.vk can be the victim version
of o. The algorithm traverses the objects in iterations, till it finds a combination of
victim versions that does not create a cycle in PG (and then commits), or discovers
object o such that none of o’s versions can be the victim version (and then aborts).

Corollary 2 �-AbortsAvoider satisfies �-opacity and online �-opacity-
permissiveness.

We have shown that �-AbortsAvoider protocol is correct and avoids unneces-
sary aborts. In the rest of the paper we will show the garbage collection rules and
optimization techniques for the protocol.

6.3 Garbage Collection

A TM should garbage collect unused metadata. In our case, metadata consists of
the objects’ previous versions as well as terminated transactions. In this section, we
describe how those may be garbage collected.

Read operations Consider transaction Ti reading object o. The following lemma stip-
ulates that some of the edges added to the precedence graph in the simplified protocol
are redundant, and in fact, the only edges that need to be added by the protocol during
read operations are incoming ones.

Theory Comput Syst

Lemma 10 When Ti reads o.vn, it suffices to add one edge from o.vn.writer to Ti in
PG.

Proof We say that adding an edge (v1, v2) is unnecessary, if PG already contains a
path from v1 to v2, thus adding this edge does not influence on the cycle detection.
We will show that adding the outgoing edge from Ti to o.vn.writer during a read is
unnecessary. Therefore the only edge that need to be added by the protocol is the
edge from o.vn−1.writer to Ti .

The protocol adds outgoing edge from Ti to o.vn.writer if Ti reads version o.vn−1.
According to the algorithm, Ti tries first to read the latest version o.vn+k , if this
read creates a cycle, it tries to read o.vn+k−1, o.vn+k−2 and so on till it arrives to
o.vn−1. Note, that before starting the read, the graph PG was acyclic. If Ti does not
succeed to read o.vn+k , it means that adding an edge from o.vn+k .writer to Ti would
create a cycle, hence there is a path from Ti to o.vn+k .writer before the start of the
read. When Ti tries to read o.vn+k−1 and does not succeed, it means that adding the
edges {(o.vn+k−1.writer, Ti), (Ti , o.vn+k .writer)} creates a cycle in PG. As we have
concluded, before the read, PG contained a path from Ti to o.vn+k .writer and was
acyclic, therefore adding the single edge (o.vn+k−1.writer, Ti) creates a cycle in PG,
i.e. there was a path from Ti to o.vn+k−1.writer before the read. Continuing in the
same way, we conclude that before the read there was a path from Ti to o.vn.writer.
Therefore, adding an edge from Ti to o.vn.writer is unnecessary.

Using the optimization above, no incoming edge is ever added to a terminated
transaction as a result of a read operation.

Write operations We would like to know whether the new incoming edges may be
added to a terminated transaction as a result of write operation. Consider committed
transaction Ti that has written to o. If the new version o.vn has been written in a non-
blind way (i.e. transaction Ti has read the version o.vn−1 and then installed o.vn),
then no other transaction Tj will be able to install a new version between o.vn−1
and o.vn, for that would cause a cycle between Ti and Tj . Blind writes, however, are
more problematic. Consider, for example, the scenario depicted in Fig. 7. At time
t0, T1 has no incoming edges, but we are still not allowed to garbage collect it as we
now explain. There is a transaction T2 that read object o1 with an active preceding
transaction T3. At the time of T3’s commit, it discovers that it cannot install the last
version of o1, and tries to install the preceding version. Had we removed T1 from PG,
this would have caused a consistency violation, because we would miss the cycle
between T1 and T3.

The example above demonstrates the importance of knowing that from some point
onward, Ti may have no new incoming edges. The lemma below shows that some
edge additions can be saved:

Lemma 11 If Ti is a terminated transaction, then no incoming edges need to be
added to Ti in PG as long as for each o.vn written blindly by Ti there is no reader
with an active preceding transaction.

Theory Comput Syst

Proof Consider a terminated transaction Ti satisfying conditions of the lemma.
According to Lemma 10 no transaction may add incoming edges to Ti as a result of
read operation. It remains to check the writes. According to the protocol, the incom-
ing edge to Ti may be added only if transaction Tj installs the version prior to the
version o.vn written by Ti . First of all we should notice that o.vn should be written
in a blind way in order to make this scenario happen. Secondly, if Tj tries to insert
a new version before o.vn, it means that Tj failed to insert its version after o.vn, i.e.
adding the edges from Ti and from the readers of o.vn to Tj created a cycle. But we
know that Tj cannot precede the readers of o.vn according to the condition of the
lemma, that is why there was a path from Tj to Ti before the write operation of Tj .
Therefore there is no need to add the edge from Tj to Ti when installing the new
version.

Garbage collection conditions We say that a transaction is stabilized if no incoming
edges may be added to it in the future. At the moment when Ti has no incoming edges
and it is stabilized, we know that Ti will not participate in any cycle, and thus may
be garbage collected.

Theorem 3 The terminated transaction Ti is stabilized at time t0 if either (1) Ti has
not written blindly any object version o.vn, or (2) all active transactions at time t0
and all the transactions beginning after t0 follow Ti according to �.

Proof According to Lemma 11, no incoming edges need to be added to terminated
Ti in PG if Ti has no blind writes. If transaction Tj follows Ti according to �,
then according to AbortsAvoider algorithm, PG will contain a path from Ti to Tj

after START() operation of Tj . Therefore, Tj may not add incoming edge to Ti if
Ti ≺� Tj . Hence, if all active transactions at t0 and all the transactions beginning after
t0 follow Ti according to �, then no new incoming edges will be added to Ti .

For this, we deduce that terminated transactions with no incoming edges satis-
fying one of the conditions of Theorem 3 may be garbage collected. Note that in
the runs with no blind writes, every terminated transaction is stabilized and thus the
transaction may be garbage collected at the moment it has no incoming edges.

Fig. 7 The blind write of
transaction T1 does not allow us
to garbage collect it at time t0

Theory Comput Syst

6.4 Path Shortening and Runtime Analysis

AbortsAvoider protocol allows adding new edges to PG only if they do not introduce
cycles in PG. The straightforward cycle detection algorithm runs DFS starting from
Ti , traversing a set of nodes we refer to as ingressi . We now present an optimization
that reduces the number of nodes in ingressi .

Consider stabilized terminated Tj . The idea is to connect the ingress nodes to the
egress nodes of Tj directly, thus preventing DFS from traversing Tj . This becomes
possible because Tj is stabilized and thus may not have new ingress nodes, hence
the egress nodes do not miss the precedence info when they lose their edges from
Tj . Once a terminated transaction Tj satisfies the conditions of Lemma 11 and
it can no longer have additional incoming edges, (e.g., any transaction with no
blind writes), we remove all of its outgoing edges by connecting its ingress nodes
directly to its egress nodes as described above, and indicate that Tj is a sink,
i.e., cannot have outgoing edges in the future. Once a transaction is marked as a
sink, any outgoing edge that should be added from it is instead added from its
ingress nodes. Note that our path shortening only bypasses stabilized nodes. Had
we bypassed also non-stabilized ones, we would have had to later deal with adding
new incoming nodes to their egress nodes, which could require a quadratic number
of operations in the number of terminated transactions. Hence, we chose not to do
that.

Runtime complexity of the operations Running DFS on ingressi takes O(V 2), where
V is the number of transactions preceding Ti , whose nodes have not been garbage
collected. In the general case, V = #terminated+#active. But if all the transactions
preceding Dsci had no blind writes, V = #active.

The read operation seeks the proper version to read in the version list. Unfortu-
nately, the number of versions that need to be kept is limited only by the number
of terminated transactions. Consider the scenario depicted in Fig. 8. Here, the only
version of o2 that may be read by T1 is the first, all other versions are writ-
ten by transactions that T1 precedes. In order to find a latest suitable version, the
read operation may use a binary search – O(log(#terminated)) versions should be
checked. Adding the edges takes O(#active). So altogether, the read complexity is

Fig. 8 All object versions must
be kept, as their writers have an
active preceding transaction T2

Theory Comput Syst

O(log(#terminated) · max{#active2, #terminated2}), and O(log(#terminated) ·
#active2) when there are no blind writes.

The write operation postpones all the work till the commit. The number of
iterations in the commit phase is O(#writes · #terminated), and in each itera-
tion O(#writes) validate operations should be run. So the overall write cost is
O(#writes2·#terminated ·max{#active2, #terminated2}), and O(#active2) when
there are no blind writes.

Finally, we would like to emphasize that although in the worst-case, these costs
may seem high, transactions without blind writes are garbage collected immediately
upon commit. Moreover, the only nodes in ingressi where cycles are checked are
transactions that conflict with Ti . Typically, in practice, the number of such conflicts
is low, suggesting that our algorithm’s common-case complexity is expected to be
good. On the other hand, if the number of conflicts is high, then most TMs exist-
ing today would abort one of the transactions in each of these cases, which is not
necessarily a better alternative.

7 Conclusions

The paper took a step towards providing a theory for understanding TM aborts, by
investigating what kinds of spare aborts can or cannot be eliminated, and what kinds
can or cannot be avoided efficiently. We have shown that some unnecessary aborts
cannot be avoided, and that there is an inherent tradeoff between the overhead of
a TM and the extent to which it reduces the number of spare aborts: while strict
online opacity-permissiveness is NP-hard, we presented a polynomial time algorithm
AbortsAvoider, satisfying the weaker online opacity-permissiveness property. Under-
standing the properties of spare aborts is still far from being complete. For example,
relaxations of the online opacity-permissiveness property or restrictions of the work-
load may be amenable to more efficient solutions. Moreover, the implications of the
inherent “spare aborts versus time complexity” tradeoff we have shown are yet to be
studied.

Acknowledgments We would like to thank Hagit Attiya, Eshcar Hillel, Alessia Minali and Rui Fan, as
well as the anonymous reviewers for their helpful comments. This work was partially supported by the
Israeli Ministry of Science Knowledge Center on Chip Multiprocessors and Hasso Plattner Institute.

References

1. Attiya, H., Epstein, L., Shachnai, H., Tamir, T.: Transactional contention management as a non-
clairvoyant scheduling problem. In: PODC ’06: Proceedings of the 25th annual ACM symposium on
principles of distributed computing, pp. 308–315. ACM, New York (2006)

2. Aydonat, U., Abdelrahman, T.: Serializability of transactions in software transactional memory. In:
2nd ACM SIGPLAN workshop on transactional computing (2008)

3. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Proceedings of the 20th international
symposium on distributed computing, pp. 194–208 (2006)

4. Ennals, R.: Cache sensitive software transactional memory. Technical report
5. Fraser, K.: Practical lock freedom. PhD thesis. Cambridge University Computer Laboratory (2003)

Theory Comput Syst

6. Gramoli, V., Harmanci, D., Felber, P.: Toward a theory of input acceptance for transactional memories.
Technical report (2008)

7. Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in transactional memories. In: Proceedings
of the 22th international symposium on distributed computing (2008)

8. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Proceedings of the 13th
ACM SIGPLAN symposium on principles and practice of parallel programming, pp. 175–184 (2008)

9. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional memory for dynamic-
sized data structures. In: Proceedings of the 22nd annual symposium on principles of distributed
computing, pp. 92–101 (2003)

10. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data structures.
SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

11. Keidar, I., Perelman, D.: On maintaining multiple versions in transactional memory (work in
progress). Technical report, Technion (2010)

12. Moss, J.E.B.: Open nested transactions: semantics and support. In: WMPI, p. 2006, Austin
13. Napper, J., Alvisi, L.: Lock-free serializable transactions. Technical report, The University of Texas

at Austin (2005)
14. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM (1979)
15. Riegel, T., Fetzer, C., Sturzrehm, H., Felber, P.: From causal to z-linearizable transactional memory.

In: Proceedings of the 26th annual ACM symposium on principles of distributed computing, pp. 340–
341 (2007)

16. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the 12th annual ACM
symposium on principles of distributed computing (PODC), pp. 204–213 (1995)

17. Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algorithms, and the Practice of
Concurrency Control and Recovery. Morgan Kaufmann, San Mateo (2002)

	On Avoiding Spare Aborts in Transactional Memory
	Abstract
	Introduction
	Related Work
	Preliminaries and System Model
	Transactions
	Transaction histories
	Transactional memory
	Correctness

	Limitations of Previous Measures
	Commit-Abort Ratio
	Permissiveness

	Online Permissiveness: Limitations and Costs
	Strict Online Opacity-Permissiveness
	Online Opacity-Permissiveness
	Impossibility of invisible reads

	The AbortsAvoider Algorithm
	Basic Concept: Precedence Graph
	Information bookkeeping
	Precedence graph

	Simplified -AbortsAvoider Algorithm
	Garbage Collection
	Read operations
	Write operations
	Garbage collection conditions

	Path Shortening and Runtime Analysis
	Runtime complexity of the operations

	Conclusions
	Acknowledgments
	References

