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Abstract

We advocate the use of high-level OS abstractions in
heterogeneous systems, such as CPU-GPU hybrids. We
suggest the idea of aninter-device shared file system
(IDFS) for such architectures. The file system pro-
vides a unified storage space for seamless data sharing
among processors and accelerators via a standard well-
understood interface. It hides the asymmetric nature
of CPU-accelerator interactions, as well as architecture-
specific inter-device communication models, thereby fa-
cilitating portability and usability. We explore the design
space for realizing IDFS as an in-memory inter-device
shared file system for hybrid CPU-GPU architectures.

1 The case for better abstractions

Recent years have seen increasinglyheterogeneoussys-
tem designs featuring multiple hardware accelerators.
These have become common in a wide variety of sys-
tems of different scales and purposes, ranging from em-
bedded SoC, through server processors (IBM PowerMP),
and desktops (GPUs) to supercomputers (GPUs, Clear-
Speed, IBM Cell). Furthermore, the “wheel of reincarna-
tion” [8] and economy-of-scale considerations are driving
toward fully programmableaccelerators withlarge mem-
ory capacity, such as today’s GPUs1.

Despite the growing programmability of accelerators,
developers still live in the “medieval” era of explicitly
asymmetric, low-level programming models. Emerging
development environments such as NVIDIA CUDA and
OpenCL [1] focus on the programming aspects of the
accelerator hardware, but largely overlook its interac-
tion with other accelerators and CPUs. In that context
they ignore the increasing self-sufficiency of accelerators
and lock the programmers in an asymmetric CPU-centric
model with accelerators treated as co-processors, second-
class citizens under CPU control.

We argue that this idiosyncratic asymmetric program-
ming model has destructive consequences on the pro-
grammability and efficiency of accelerator-based systems.
Below we list the main constraints induced by this asym-
metric approach.

1NVIDIA GPUs support up to 64GB of memory.

Problem: coupling with CPU process. An accelera-
tor needs ahostingCPU process to manage its (separate)
physical memory, and invoke computations; the accelera-
tor’s state is associated with that process.

Implication 1: no standalone applications.One can-
not build accelerator-only programs, thus making modu-
lar software development harder.

Implication 2: no portability. Both the CPU and the
accelerator have to match program’s target platform.

Implication 3: no fault-tolerance.Failure of the hosting
process causes also state loss of the accelerator program.

Implication 4: no intra-accelerator data sharing.Mul-
tiple applications using the same accelerator are isolated
and cannot access each others’ data in the accelerator’s
memory. Sharing is thus implemented via redundant stag-
ing of the data to a CPU.
Problem: lack of I/O capabilities. Accelerators cannot
initiate I/O operations, and have no direct access to the
CPU memory2. Thus, the data for accelerator programs
must be explicitly staged to and from its physical memory.

Implication 1: no dynamic working set.The hosting
process must pessimistically transfer all the data the ac-
celerator would potentially access, which is inefficient for
applications with the working sets determined at runtime.

Implication 2: no inter-device sharing support.Pro-
grams employing multiple accelerators need the host-
ing process to implement data sharing between them by
means of CPU memory.
Problem: no standard inter-device memory model.
Accelerators typically provide a relaxed consistency
model [1] for concurrent accesses by a CPU and an ac-
celerator to its local memory. Such a model essentially
forces memory consistency at the accelerator invocation
and termination boundaries only.

Implication: no long-running accelerator programs.
Accelerator programs have to be terminated and restarted
by a CPU before they can access newly staged data.

Implication: no forward compatibility. Programs using
explicit synchronization between data transfers and accel-
erator invocations will require significant programming
efforts to adapt to more flexible memory models likely
to become available in the future.

2NVIDIA GPUs enable dedicated write-shared memory regions in
the CPU memory, but with low bandwidth and high access latency.
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Despite its shortcomings, asymmetry appears to be es-
sential at the hardware level and will probably long re-
main so. But does that mean we are destined to strug-
gle with this restrictive programming model dictated by
the hardware? We argue to the contrary; we believe that
asymmetry is yet another low-level hardware property that
can be hidden behind higher-level OS abstractions. The
key to a solution is in providing efficient mechanisms for
data sharing among accelerators and CPUs.

We propose the abstraction of anInter-Device shared
File System (IDFS) with a single name space spanning all
accelerators and CPUs in a single computer. IDFS pro-
vides a standard open/read/write/close interface to all par-
ticipating devices, with well-defined data access seman-
tics. Any device can create new files, or read and write
files created by others. Thus, IDFS effectively eliminates
the accelerator’s dependence on a CPU hosting process
to organize and transfer data for accelerator applications.
Data location and structure are completely hidden, allow-
ing for system-wide data transfer optimizations, which is
impossible in today’s application-specific solutions.

To highlight the benefits of IDFS for programmers we
next consider a number of usage scenarios common in ac-
celerator systems today. We shall speculate about future
usage in Section 6.

2 Usage scenarios

We use a simple online system for image processing
as a running example. The system executes a typical
four-stage computing cycle which includes storing the up-
loaded data to a file, adding the processing task to a task
queue for deferred processing, execution on accelerator,
and reporting results back. This application can benefit
from IDFS in a number of ways.
Standard CPU tools for post-processing the output are
trivially enabled by mounting IDFS as any other VFS-
compliant file system. Moreover, NFS or SMB can be
used expose IDFS data to remote machines, avoiding ex-
plicit multi-hop data transfers, and allowing thrid-party
transfers between accelerators in different machines.
Simple I/O, such as event logging from accelerator pro-
grams, can be trivially implemented, unlike the state-of-
the-art today. Logs on IDFS can be read by standard mon-
itoring tools thus facilitating standalone accelerator pro-
gram integration into larger systems.
Legacy-accelerator program cooperation can be
achieved without requiring a CPU wrapper for data
staging. The web server simply writes the uploaded files
directly to IDFS. The accelerator program is invoked later
by the queuing system and uses IDFS I/O to read them
and write the results back.
Intra- and inter-accelerator sharing allows extend-
ing the existing processing pipeline with new modules,

such as accelerated encryption, without changing existing
modules or staging data to a CPU. Modules communicate
via files on IDFS, which automatically optimizes the data
transfers among the devices.
Persistent stateof accelerator programs can be main-
tained on IDFS across multiple invocations of processing
tasks. This may be required, e.g., for machine learning
algorithms that update the state and use it in later invoca-
tions. Without IDFS, the state would have to be moved
from and to a CPU for each accelerator invocation, or a
long-running CPU service would have to be implemented
to avoid loss of the accelerator’s state at the module’s
boundaries.

All of these scenarios illustrate the strong need for a data
sharing abstraction. In the following, we justify our par-
ticular choice of a file system to serve that purpose.

3 Why file system?

Our main goal is to break the hardware coupling be-
tween accelerators and CPUs by treating accelerators as
self-contained processors capable of producing and con-
suming data independently of other devices.

This goal is translated into the following design require-
ments:

• same name space, identical I/O interface and access
semantics for all devices;

• data persistence; and
• high performance parallel I/O operations.

A file system abstraction naturally meets these require-
ments. However we also considered several design alter-
natives:
SMP abstraction implies emulating a single homoge-
neous SMP virtual machine over all processors in the sys-
tem and presenting each accelerator as one or more stan-
dard CPUs [7]. This approach is currently infeasible in
accelerators because of their loose coupling with the main
CPU, low serial program performance, and lack of sup-
port for I/O and programmable virtual memory.
Shared memory abstraction is convenient for tightly
coupled parallel applications but is often too low level,
and cannot be seamlessly integrated with today’s accel-
erators. A fine grain symmetric shared memory imple-
mentation is impractical because of the slow communica-
tion and relaxed memory consistency model of today’s de-
vices. Recently anasymmetricCPU-centric shared mem-
ory for GPUs has been proposed [5], but its asymmetric
programming model is exactly what we want to avoid.
Unix pipes abstraction. Pipes facilitate data sharing in
streaming applications with multiple concurrent data fil-
ters, potentially enabling integration of accelerators inthe
flow [4]. Pipes, however, do not provide persistence or
random selective data access, nor do they enable temporal
decoupling of data generation and consumption.
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Our choice of a file system abstraction has also been
inspired by the UNIX everything-is-a-file principle, which
has proved extremely useful for providing a unified, well-
defined interface to a variety of heterogeneous systems.
Avoiding new interfaces enables all existing tools for file
I/O on a CPU to be used in conjunction with accelerators.

The file system’s high-level interface with explicit data
access enables a variety of implementation options. It can
be exposed to accelerator programs by the device drivers,
and to CPU applications via a standard interface such as
VFS layer implemented in the OS FS driver. Alterna-
tively, either one of these can be realized via a user-mode
library to allow gradual adoption.

Notably, a file system does not substitute and may com-
plement other solutions, including those above. However
the actual functionality, extensibility, performance and
programming appeal are greatly influenced by the chosen
data access semantics, which will be discussed next.

4 Access semantics

Data sharing designs with strongly consistent mono-
lithic data images are destined for extinction. Emerg-
ing software and hardware systems abandon this ap-
proach [3, 2]. IDFS is no exception.

IDFS providessession semantics[6, 10] (aka fork-
join [2]) across different devicesat the whole-file granu-
larity. Specifically, a session starts (ends) upon successful
termination of open (close) call. The result of concurrent
updates to the same file performed from different devices
is a full version of one of them (one writer wins). All the
writes performed by a process on a device become visi-
ble only whenthe file is openedon a reading deviceafter
being closed successfullyby the writing device.

There are several reasons for choosing such explicit,
coarse-grain semantics.
Usability. Accelerator applications with producers-
consumers, master-worker style workloads are naturally
supported. In fact, all the examples in Section 2 follow
this pattern. Such workloads are likely to dominate ac-
celerator applications as long as the accelerators remain
loosely coupled with CPUs.
Feasibility. Data sharing is practical even in the face of
weak inter-device consistency. Thus, session semantics
will also enable sharing in future systems comprising a
mixture of tightly and loosely-coupled devices.
Performance and fault tolerance.Coarse-grain seman-
tics lends itself to efficient implementation usingcaching
(or replication) of local operations to minimize the syn-
chronization overhead over slow communication chan-
nels. In fact, this has been one of the original motivations
for such semantics in AFS and Coda [6, 10]. Further-
more, using state replication inside a single machine, as
advocated by Barrelfish [3], contributes to scalability and

Figure 1: High level design of IDFS on CPU-GPU hybrids.

fault tolerance.
Determinism. Well-defined explicit session boundaries
allow one to reason about concurrent accesses, enabling
deterministic behavior as was demonstrated by Determi-
nator OS [2].

Our initial implementation of IDFS in a CPU-GPU sys-
tem illustrates its feasibility and relies heavily on replica-
tion, as we next discuss.

5 Implementing IDFS for GPUs

The focus of our ongoing work is the implementation of
IDFS in a real CPU-GPU hybrid system running Linux.
Here we briefly outline the main design choices. We also
discuss the limitations of current technology and how we
plan to cope with them.

A GPU is a massively parallel processor for executing
mostly SPMD-style parallel programs calledkernelswith
thousands of fine-grain threads. The program is executed
directly on the hardware and managed by the GPU driver.

Figure 1 presents the main components of IDFS. The file
system is replicated: replicas occupy a part of the physical
memory of each device. Such design is dictated by the
GPU’s inability to initiate I/O during the kernel execution,
and also avoids slow CPU-GPU communications by using
local replica for all I/O operations.

A replica comprises the file system data and metadata.
File system daemons (IDFSd) for all replicas run on a
CPU and synchronize the replicas to ensure IDFS’ ses-
sion semantics.

GPU programs that require file system access are in-
voked via execution daemon (Execd) and use IDFS API.
CPU programs use standard I/O API, as explained below.
Note that GPU does not (and cannot) run any daemon.

The IDFS implementation can be logically divided into
four layers (top-down):API layer for standard I/O func-
tions,OS layerfor managing open files,IDFS driver, and
data storefor internal memory management.

The CPU IDFS driver implements a standard VFS in-
terface. Thus, IDFS can be mounted to the user space as
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any other VFS-compliant file system, and take advantage
of the standard OS implementation of higher layers. In
contrast, for GPU all four layers have to be implemented.

5.1 IDFS I/O implementation on GPU

In GPUs thousands of concurrent threads, some running
in lock step, may open, read, write and close the same file.
Such massively parallel nature raises several issues.
Intra-device semantics. What should the semantics be
for the threads running on the same device? Even weak
session semantics may not always be feasible. Only re-
cent NVIDIA GPUs added support for memory fences to
make updates by one thread visible to others, and these
incur high overhead. So we opt to provide session seman-
tics only at the inter-device level and leave intra-device
semantics undefined.
Open. In our design, GPU threads share the same file
descriptor table. Intuitively, massive contention when the
same file is being opened by all threads could be avoided
by letting only one thread to actually open it. Unfortu-
nately, the execution order of the threads in a GPU is
non-deterministic, and no global barrier exists to synchro-
nize all the running threads. Thus, all threads intending to
work with a file must explicitly open it. We nevertheless
apply some techniques to reduce contention.
Close.According to the session semantics, the close func-
tion should push an update to other devices. However
if the file is concurrently opened in many threads, when
should this update be propagated? We choose to do so
once the file is no longer open on any of the GPU threads.
We maintain the number of threads holding the file open,
and when it reaches zero the update is propagated.
Parallel I/O. GPU applications will not do well to heav-
ily rely on standard read and write operations because of
the contention this would induce on the file pointer. To
alleviate this contention, we support readat and writeat
operations, allowing quick random access to the data.

5.2 State replication

The lack of I/O capabilities implies that an accelerator’s
local IDFS replica must be up-to-date by the time the file
is opened by the accelerator program. The CPU replica,
on the other hand, can be synchronized on demand. Thus,
the replica synchronization is performed by a CPU upon
its open and close operations. Namely, the changes in the
GPU’s replica are retrieved when the file is opened on a
CPU, and the updated data is pushed back to the GPU
when the file is closed. On the other hand, GPU open and
close involve no CPU-GPU communication.

In order to comply with the session semantics, closing
the file on the CPU must be delayed until the GPU com-
pletes the kernel execution. Otherwise, the GPU may have
an inconsistent view of its replica.

Note thatthe protocol is intrinsically asymmetric. But
this asymmetry is hidden by the IDFS implementation.
Also, it is the only placewhere the file system design dis-
tinguishes between accelerators and CPUs.

This design allows for various performance optimiza-
tions, such as caching read-only data, incremental up-
dates, and eliminating redundant transfers of data gener-
ated on the GPU and never accessed by a CPU.

The protocol works well with a single accelerator. How-
ever a straightforward multi-GPU extension is inefficient.
Lazy synchronization becomes impossible becauseall
GPUs must have their replicas synchronized before they
start executing their kernels. We are working on alleviat-
ing this limitation by updating only the files that will be
actually used. Such files can be determined through the
kernel code analysis or provided by the programmer.

The metadata for the GPU replica resides in the write-
shared region of the CPU memory, and is thus accessible
to both CPU and GPU. By placing it in the CPU memory
we speed up frequent CPU operations such as directory
listing that can thus be performed without high-latency
GPU memory transfers. On the other hand, the GPU per-
formance remains almost unaffected as the first open call
caches the file metadata in the GPU memory and updates
it only when the file is closed.

5.3 Data store

Files in IDFS can grow and shrink dynamically after
creation, making the use of contiguous memory chunks
for each file problematic. Instead, we use a block-
structured memory pool thus enabling files to span multi-
ple blocks.

Achieving fast data synchronization with other repli-
cas is quite challenging. If the blocks were allocated to
files without coordinating allocation between the repli-
cas, each block in a replica would have to be synchro-
nized separately. This would be detrimental to perfor-
mance because a CPU does not have scatter/gather ca-
pabilities for transferring data to a GPU. Larger blocks
would ease the overhead per data unit but would increase
fragmentation, which is particularly undesirable in small-
sized FS. On the other hand, coordinating each block al-
location between the replicas is not practical. Our choice
is to partition the blocks between the devices (statically
or dynamically), so that each device uses its own memory
allocation pool. Concurrent updates of the same block in
several replicas are overwritten by data from a single win-
ning replica. Files may grow on any device, hence they
may occupy blocks belonging to different devices. This
complicates the deletion process and file shrinking: we
do not commit freed blocks of other replicas until the next
replica synchronization.

The design could be simplified if only the device which
created a file would be allowed to update it. However, be-
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sides restricting the functionality, such design would en-
courage creation of small files thereby increasing space
fragmentation.
Memory mapped I/O. File I/O operations effectively
copy data between a user buffer and the IDFS mem-
ory space, which could be avoided by using memory
mapping. Unfortunately GPU does not expose any pro-
grammable virtual memory, thus requiring IDFS imple-
mentation to provide this functionality. Memory mapped
files are allocated a contiguous fixed set of blocks, reshuf-
fling other blocks if necessary.

5.4 Open questions

Access controlis imperative for any sharing mechanism
in a multiuser system. The VFS-compatible interface
of IDFS enables standard OS mechanisms for CPU pro-
cesses. Accelerators today have no programmable mem-
ory protection mechanisms, thus providing no way for
preventing unauthorized access to the FS data directly in
memory. It is not clear whether such mechanisms will
become available.
Large filescannot be stored on IDFS if their size exceeds
the physical memory of the devices. Similarly, scaling
to multiple accelerators is problematic because full IDFS
replica should fit the physical memory of every one of
them. This problem has no efficient solution today be-
cause accelerators cannot initiate I/O, but is likely to be
resolved in more tightly coupled systems when such be-
come available.

6 Discussion

The file system concept has been one of the cornerstones
of computer systems since the early sixties, and its sim-
plicity and versatility make it indispensable in a variety
of applications. We have shown the benefits it brings to
programmer for today’s hybrids by abstracting away their
asymmetric hardware. Butwill it hold promise for inter-
device data sharing in future hardware systems?

The answer, to a large extent, depends on the degree of
coupling between the devices. For the future systems-on-
chip with the accelerators and CPUs residing on the same
chip, IDFS may not be an ideal solution. Instead, it may
become easier to fully integrate accelerators into the OS,
thus providing standard I/O services to stand-alone accel-
erator programs. The advantage of IDFS in such case,
however, is that it can be implemented in a thin layer with
very modest requirements from the underlying hardware.

Furthermore, systems will likely feature both tightly-
and loosely-coupled devices. This is because CPU-
accelerator hybrid chip designs put significant power and
memory bandwidth constraints on accelerators, and thus
pay a non-negligible performance cost. Already today
there are systems featuring both integrated and stand-

alone powerful devices (e.g., NVIDIA Optimus technol-
ogy). At any moment the one with the best power-
performance balance is selected for a given workload, and
the other is powered off. IDFS may be particularly con-
venient to transparently share data between integrated and
stand-alone devices.

Finally, peripheral devices such as programmable NICs,
cameras and even persistent storage controllers may ben-
efit from direct I/O to accelerators, and such hardware is
becoming available (e.g., NVIDIA direct I/O with Infini-
band cards). IDFS may provide the missing glue software
layer to take advantage of this functionality.

A second question one may ask is:Will the choice of
session semantics remain unchanged?The above reason-
ing suggests an affirmative answer. Tighter coupling will
make more frequent data updates possible, but the advan-
tage of coarse-grain explicit consistency control is that it
leaves the decision about when to synchronize in the pro-
grammers’ hands. While the implementation will most
likely change, the interface will remain intact.

To conclude, we believe that the file system abstraction
for data sharing between devices in a single system holds
high potential to drastically simplify the programming in
heterogeneous systems by hiding their asymmetry. Also,
it may naturally serve a glue layer between different com-
ponents in the future system. Our proof-of-concept im-
plementation for CPU-GPU hybrids is under way.

References
[1] Open standard for parallel programming of heterogeneous sys-

tems.http://http://www.khronos.org/opencl.

[2] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient System-
Enforced Deterministic Parallelism. InOSDI ’10, 2010.

[3] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Pe-
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