
SALSA: Scalable and Low Synchronization NUMA-aware
Algorithm for Producer-Consumer Pools

Elad Gidron
CS Department

Technion, Haifa, Israel
eladgi@cs.technion.ac.il

Idit Keidar
EE Department

Technion, Haifa, Israel
idish@ee.technion.ac.il

Dmitri Perelman
EE Department

Technion, Haifa, Israel
dima39@tx.technion.ac.il

Yonathan Perez
EE Department

Technion, Haifa, Israel
yonathan0210@gmail.com

Abstract

We present a highly-scalable non-blocking producer-consumer task pool, designed with a special
emphasis on lightweight synchronization and data locality. The core building block of our pool is SALSA,
Scalable And Low Synchronization Algorithm for a single-consumer container with task stealing support.
Each consumer operates on its own SALSA container, stealing tasks from other containers if necessary.
We implement an elegant self-tuning policy for task insertion, which does not push tasks to overloaded
SALSA containers, thus decreasing the likelihood of stealing.

SALSA manages large chunks of tasks, which improves locality and facilitates stealing. SALSA
uses a novel approach for coordination among consumers, without strong atomic operations or memory
barriers in the fast path. It invokes only two CAS operations during a chunk steal.

Our evaluation demonstrates that a pool built using SALSA containers scales linearly with the num-
ber of threads and significantly outperforms other FIFO and non-FIFO alternatives.

1 Introduction

Emerging computer architectures pose many new challenges for software development. First, as the number
of computing elements constantly increases, the importance of scalability of parallel programs becomes
paramount. Second, accessing memory has become the principal bottleneck, while multi-CPU systems are
based on NUMA architectures, where memory access from different chips is asymmetric. Therefore, it is
instrumental to design software with local data access, cache-friendliness, and reduced contention on shared
memory locations, especially across chips. Furthermore, as systems get larger, their behavior becomes less
predictable, underscoring the importance of robust programs that can overcome unexpected thread stalls.

Our overarching goal is to devise a methodology for developing parallel algorithms addressing these
challenges. In this paper we focus on one of the fundamental building blocks of highly parallel software,
namely a producer-consumer task pool. Specifically, we present a scalable and highly-efficient non-blocking
pool, with lightweight synchronization-free operations in the common case. Its data allocation scheme is
cache-friendly and highly suitable for NUMA environments. Moreover, our pool is robust in the face of
imbalanced loads and unexpected thread stalls.

Our system is composed of two independent logical entities: 1) SALSA, Scalable and Low Synchroniza-
tion Algorithm, a single-consumer pool that exports a stealing operation, and 2) a work stealing framework
implementing a management policy that operates multiple SALSA pools.

In order to improve locality and facilitate stealing, SALSA keeps tasks in chunks, organized in per-
producer chunk lists. Only the producer mapped to a given list can insert tasks to chunks in this list, which
eliminates the need for synchronization among producers.

Though each consumer has its own task pool, inter-consumer synchronization is required in order to
allow stealing. The challenge is to do so without resorting to costly atomic operations (such as CAS or
memory fences) upon each task retrieval. We address this challenge via a novel chunk-based stealing al-
gorithm that allows consume operations to be synchronization-free in the common case, when no stealing
occurs, which we call the fast path. Moreover, SALSA reduces the stealing rate by moving entire chunks of
tasks in one steal operation, which requires only two CAS (compare-and-swap) operations.

In order to achieve locality of memory access on a NUMA architecture, SALSA chunks are kept in the
consumer’s local memory. The management policy matches producers and consumers according to their
proximity, which allows most task transfers to occur within a NUMA node.

In many-core machines running multiple applications, system behavior becomes less predictable. Unex-
pected thread stalls may lead to an asymmetric load on consumers, which may in turn lead to high stealing
rates, hampering performance. SALSA employs a novel auto-balancing mechanism that has producers insert
tasks to less loaded consumers, and is thus robust to spurious load fluctuations.

We have implemented SALSA in C++, and tested its performance on a 32-core NUMA machine. Our
experiments show that the SALSA-based work stealing pool scales linearly with the number of threads; it
is 20 times faster than other work-stealing alternatives, and shows a significant improvement over state-of-
the-art non-FIFO alternatives. SALSA-based pools scale well even in unbalanced scenarios.

This paper proceeds as follows. Section 2 describes related work. We give the system overview in Sec-
tion 4. The model and problem definitions are presented in Section 3 he SALSA single-consumer algorithm
is described in Section 5. We discuss our implementation and experimental results in Section 6, and the
correctness of our system in Section 7. And finally we present our conclusions in Section 8.

1

2 Related Work

Task pools. Consumer-producer pools are often implemented as FIFO queues. A widely used state-of-
the-art FIFO queue is Micheal and Scott’s queue [21]. This queue is implemented by a linked-list with head
and tail references. The put operation adds a new node to the list and then updates the tail reference. This
is done by two CAS operations; one for adding the new node and one for updating the tail reference. The
get operation removes a node by moving the head reference to point to the next node. This approach is not
scalable under high contention as only one contending operation may succeed.

Moir et al. [22] suggest using elimination to reduce the contention on the queue. Whereby put and get
operations can eliminate each other during the back-off after an unsuccessful operation. However, due to the
FIFO property, those eliminations can only be done when the queue is empty, making this approach useful
only when the queue is close to empty.

Hoffman et al. [17] try to reduce the contention of the put operation by allowing concurrent put opera-
tions to add tasks to the same “basket”. This is done by detecting contention on the tail, which is indicated
by a failed CAS operation when trying to update the tail. This reduces the contention on the tail, but not on
adding the node to the “basket”, which still requires a CAS operation. Therefore, this approach, while more
efficient than Micheal and Scott’s queue, is still not scalable under high contention.

Gidenstam et al. [13] use a similar approach to Micheal and Scott’s, but, in order to improve locality
and decrease the contention on the head and tail, the data is stored in chunks, and the head and tail points
to a chunk rather than single nodes. This allows updating these references only once per-chunk rather than
on every operation. However, this solution still requires at least one CAS per operation, rendering it non-
scalable under high contention.

A number of previous works have recognized this limitation of FIFO queues, and observed that strict
FIFO order is seldom needed in multi-core systems.

Afek et al. [2] implemented a non-FIFO pool using diffraction trees with elimination (ED-pools). An
ED-pool is a tree of queues, which contains elimination arrays that help reduce contention. While ED-pools
scale better than FIFO based solutions, they do not scale on multi-chip architectures [6].

Basin et al. [7] suggest a wait-free task-pool that allows relaxing FIFO. This pool is more scalable than
previous solutions, but, since it still has some ordering (fairness) requirements, there is contention among
both producers and consumers.

The closest non-FIFO pool to our work is the Concurrent Bags of Sundell et al. [24], which, like SALSA,
uses per-producer chunk lists. This work is optimized for the case that the same threads are both consumers
and producers, and typically consume from themselves, while SALSA improves the performance of such a
task pool in NUMA environments where producers and consumers are separate threads. Unlike our pool,
the Concurrent Bags algorithm uses strong atomic operations upon each consume. In addition, steals are
performed in the granularity of single tasks and not whole chunks as in SALSA. Overall, their throughput
does not scale linearly with the number of participating threads, as shown in [24] and in Section 6.

To the best of our knowledge, all previous solutions use strong atomic operations (like CAS), at least in
every consume operation. Moreover, most of them [2, 3, 7] do not partition the pool among processors, and
therefore do not achieve good locality and cache-friendliness, which has been shown to limit their scalability
on NUMA systems [6].

Techniques. Variations of techniques we employ were previously used in various contexts. Work steal-
ing [9] is a standard way to reduce contention by using individual per-consumer pools, where tasks may
be stolen from one pool to another. We improve the efficiency of stealing by transferring a chunk of tasks
upon every steal operation. Hendler et al. [15] have proposed stealing of multiple items by copying a range

2

of tasks from one dequeue to another, but this approach requires costly CAS operations on the fast-path
and introduces non-negligible overhead for item copying. In contrast, our approach of chunk-based stealing
coincides with our synchronization-free fast-path, and steals whole chunks in O(1) steps. Furthermore, our
use of page-size chunks allows for data migration in NUMA architectures to improve locality, as done in [8].

The principle of keeping NUMA-local data structures was previously used by Dice et al. for constructing
scalable NUMA locks [12]. Similarly to their work, our algorithm’s data allocation scheme is designed to
reduce inter-chip communication.

The concept of a synchronization-free fast-path previously appeared in works on scheduling queues,
e.g., [4, 14]. However, these works assume that the same process is both the producer and the consumer,
and hence the synchronization-free fast-path is actually used only when a process transfers data to itself.
Moreover, those work assume a sequentially consistent shared-memory multiprocessor system, which re-
quires insertion of some memory barrier instructions to the code when implemented on machine providing
a weaker memory model [5]. On the other hand, our pool is synchronization-free even when tasks are
transfered among multiple threads; our synchronization-free fast-path is used also when multiple producers
produce data for a single consumer. We do not know of any other work that supports synchronization-free
data transfer among different threads.

The idea of organizing data in chunks to preserve locality in dynamically-sized data structures was
previously used in [10, 13, 14, 24]. SALSA extends on the idea of chunk-based data structures by using
chunks also for efficient stealing.

3 Model and Problem Definitions

The problem we solve in this work is implementing a lock-free linearizable task-pool. In Section 3.1 we
describe the model and runtime environment. Then, in Section 3.2, we define the linearizability criterion for
concurrent data structures. In Section 3.3, we introduce a sequential specification for task pools. Finally, in
Section 3.4, define our progress guarantee, namely lock-freedom.

3.1 Implementation Environment

We consider a shared memory environment where execution threads have a shared heap, shared read only
code, and separate stack memory spaces. The scheduler can suspend a thread, for an arbitrary duration of
time, at any moment after termination of a basic processor instruction (read, write, CAS). Threads cannot
be suspended in the middle of a basic instruction. In modern architectures read and write operations may be
reordered unless explicitly using a fence operation. However, in our model we assume sequential execution
of instruction per-thread. The reordering problems are solved by using implicit fences when using CAS, or
by the technique explained in 6.1.

3.2 Concurrent Objects, Linearizability

Formally, a task pool is a concurrent object [16], which resides in a memory shared among multiple threads.
As a concurrent object, it has some state and supports a set of operations. Multiple threads can simultane-
ously perform operations on the same object. Such operations may update the state of the object. Operations
take time and have a moment of invocation and a moment of response. When threads concurrently perform
operations on concurrent objects, they generate a history [16], which is an ordered list of invocation and
response events of concurrent object operations. The order of events is according to the time line in which
they occurred. An operation invocation event is represented by the record O.methodT (args), where O is

3

the concurrent object, method is the invoked operation, args are the invocation arguments and T is the thread
that started the invocation. An operation response event is represented by the record O.methodT (args)
returns result, where result is the operation’s result. In a given history, we say that a response matches
a prior invocation if it has the same object O and thread T , and no other events of T on object O appear
between them. A sequential history is a history that has the following properties: 1) the first event in the
history is an invocation; 2) each invocation, except possibly the last, is immediately followed by a matching
response.

A sequential specification defines which sequential histories of an object are legal.
For defining the correctness of concurrent objects we consider the following definitions. An invocation is

pending in history H if no matching response follows the invocation. An extension of history H is a history
constructed by appending zero or more responses matching the pending invocations of H . Complete(H)
is the sub-sequence of H created by removing all pending invocations of H . H|T is a history consisting of
exactly the events of thread T in history H . Two histories H and H ′ are equivalent if for each thread T ,
H|T = H ′|T .

Given a sequential specification of a concurrent object, the linearizability [16] correctness criterion is
defined as follows: A history H is linearizable if it has an extension H ′ and there is a sequential history S
such that:

1. S is legal according to the sequential specification of the object.

2. Complete(H ′) is equivalent to S.

3. If method response m′ precedes method invocation m in H , then the same is true in S.

Concurrent objects that have only linearizable histories are called linearizable or atomic. Intuitively, con-
current object is linearizable if it requires each concurrent run of its method calls to be equivalent in some
sense to a correct serial run.

3.3 Task Pool Sequential Specification

A task pool supports put(T) and get() returns T operations, where T is a task or ⊥.
we assume that tasks inserted into the pool are unique. That is, if put(T), and put(T ′) are two different

invocations on a task pool, then t 6= t′. This assumption is made to simplify the definitions, and could
be easily enforced in practice by tagging tasks with process ids and sequence numbers. The sequential
specification of a task pool is as follows:

put(T) operation adds task T to the pool. get() returns and removes a task T from the pool or ⊥ if the
pool is empty.

3.4 Lock-freedom

Threads may invoke a concurrent object’s operations simultaneously. A concurrent object implementation
is lock-free if there is guaranteed system-wide progress, i.e., at least one thread always makes progress in
its operation execution, regardless of the execution speeds or failures of other threads. In this work, we
implement a lock-free shared object.

4

SCPool 1

Memory 1
CPU1

cons 1 prod 1 SCPool 3

Memory 2
CPU2

cons 3prod 3

interconnect

SCPool 2
cons 2 prod 2

SCPool 4
cons 4prod 4

d l lProd 2 access list:
cons2, cons1, cons3, cons4

Cons 4 access list:
cons3, cons1, cons2

Figure 1: Producer-consumer framework overview. In this example, there are two processors connected to two memory banks
(NUMA architecture). Two producers and two consumers running on each processor, and the data of each consumer is allocated at
the closest physical memory. A producer (consumer) has a sorted access list of consumers for task insertion (respectively stealing).

4 System Overview

In the current section we present our framework for scalable and NUMA-aware producer-consumer data
exchange. Our system follows the principle of separating mechanism and policy. We therefore consider two
independent logical entities:

1. A single consumer pool (SCPool) mechanism manages the tasks arriving to a given consumer and
allows tasks stealing by other consumers.

2. A management policy operates SCPools: it routes producer requests to the appropriate consumers and
initiates stealing between the pools. This way, the policy controls the system’s behavior according to
considerations of load-distribution, throughput, fairness, locality, etc. We are especially interested in
a management policy suitable for NUMA architectures (see Figure 1), where each CPU has its own
memory, and memories of other CPUs are accessed over an interconnect. As a high rate of remote
memory accesses can decrease the performance, it is desirable for the SCPool of a consumer to reside
close to its own CPU.

Algorithm 1 API for a Single Consumer Pool with stealing support.
1: boolean: produce(Task, SCPool) B Tries to insert the task to the pool, returns false if no space is

available.
2: void: produceForce(Task, SCPool) B Insert the task to the pool, expanding the pool if necessary.
3: {Task ∪⊥}: consume() B Retrieve a task from the pool, returns ⊥ if no tasks in the pool are detected.
4: {Task ∪⊥}: steal(SCPool from) B Try to steal a number of tasks from the given pool and move them

to the current pool. Return some stolen task or ⊥.
5: boolean: isEmpty() B Returns true if the SCPool contains tasks
6: void: setIndicator(SCPool p, int consumerId) B sets indicator in pool p of consumer consumerId
7: boolean: checkIndicator(SCPool p, int consumerId) B returns the state of the indicator in pool p of

consumer consumerId

SCPool abstraction. The SCPool API provides the abstraction of a single consumer task pool with steal-
ing support, see Algorithm 1. A producer invokes two operations: produce(), which attempts to insert a

5

task to the given pool and fails if the pool is full, and produceForce(), which always succeeds by expanding
the pool on demand. There are also two ways to retrieve a task from the pool: the owner of the pool (only)
can call the consume() function; while any other thread can invoke steal(), which tries to transfer a number
of tasks between two pools and return one of the stolen tasks. The other function are used for checking
emptiness and will be explained in

A straightforward way to implement the above API is using dynamic-size multi-producer multi-consumer
FIFO queue (e.g., Michael-Scott queue [21]). In this case, produce() enqueues a new task, while consume()
and steal() dequeue a task. In the next section we present SALSA, a much more efficient SCPool.

Algorithm 2 Work stealing framework pseudo-code.
8: Local variables:
9: SCPool myPool B The consumer’s pool

10: SCPool[] accessList B The consumer’s or producer’s access
list

11: Function get():
12: while(true)
13: B First try to get a task from the local pool
14: t← myPool.consume()
15: if (t 6= ⊥) return t
16: B Failed to get a task from the local pool – steal
17: foreach SCPool p in accessList in order do:
18: t← p.steal()
19: if (t 6= ⊥) return t
20: B No tasks found – validate emptiness
21: if (checkEmpty()) return ⊥

22: Function put(Task t):
23: B Produce to the pools by the order of the access list
24: foreach SCPool p in accessList in order do:
25: if (p.produce(t)) return
26: firstp← the first entry in accessList
27: B If all pools are full, expand the closest pool
28: produceForce(t,firstp)
29: return

30: Function checkEmpty():
31: for i in {1..|consumers|} do:
32: foreach SCPool p do:
33: if (i = 1) p.setIndicator(myId)
34: if (!p.isEmpty()) return false
35: if (!p.checkIndicator(myId)) return false
36: return true

Management policy. A management policy defines the way in which: 1) a producer chooses an SCPool
for task insertion; and 2) a consumer decides when to retrieve a task from its own pool or steal from other
pools. Note that the policy is independent of the underlying SCPool implementation. We believe that the
policy is a subject for engineering optimizations, based on specific workloads and demands.

In the current work, we present a NUMA-aware policy. If the individual SCPools themselves are lock-
free, then our policy preserves lock-freedom at the system level. Our policy is as follows:

• Access lists. Each process in the system (producer or consumer) is provided with an access list, an
ordered list of all the consumers in the system, sorted according to their distance from that process (see
Figure 1). Intuitively, our intention is to have a producer mostly interact with the closest consumer,
while stealing mainly happens inside the same processor node.

• Producer’s policy. The producer policy is implemented in the put() function in Algorithm 2. The op-
eration first calls the produce() of the first SCPool in its access list. Note that this operation might fail
if the pool is full, (which can be seen as evidence of that the corresponding consumer is overloaded).
In this case, the producer tries to insert the task into other pools, in the order defined by its access
list. If all insertions fail, the producer invokes produceForce() on the closest SCPool, which always
succeeds (expanding the pool if needed).

• Consumer’s policy. The consumer policy is implemented in the get() function in Algorithm 2. A
consumer takes tasks from its own SCPool. If its SCPool is empty, then the consumer tries to steal
tasks from other pools in the order defined by its access list. The checkEmpty() operation handles
the issue of when a consumer gives up and returns ⊥. This is subtle issue, and we discuss it in
Section 5.5. Stealing serves two purposes: first, it is important for distributing the load among all

6

available consumers. Second, it ensures that tasks are not lost in case they are inserted into the
SCPool of a crashed (or very slow) consumer.

5 Algorithm Description

In the current section we present the SALSA SCPool. We first show the data structures of SALSA in
Section 5.1, and then present the basic algorithm without stealing support in Section 5.2. The stealing
procedure is described in Section 5.3, finally, the role of chunk pools is presented in Section 5.4. For
the simplicity of presentation, in this section we assume that the the memory accesses satisfy sequential
consistency [19], we describe the ways to solve memory reordering issues in Section 6.1.

5.1 SALSA Structure

Algorithm 3 SALSA implementation of SCPool: Data Structures.
37: Chunk type
38: Task[CHUNK SIZE] tasks
39: int owner B owner’s consumer id
40: Node type
41: Chunk c; initially ⊥
42: int idx; initially -1
43: Node next;

44: SALSA per consumer data structure:
45: int consumerId
46: List〈Node〉[] chunkLists B one list per producer + extra list for

stealing (every list is single-writer multi-reader)
47: Queue〈Chunk〉 chunkPool B pool of spare chunks
48: Node currentNode, initially ⊥ B current node to work with

idx=2 idx=‐1idx=4prod0

TAKEN
TAKEN

Task
Taskidx=0

prod1

prod2

prod3kL
is
ts

owner=c1 owner=c1

0
1

0
1 TAKEN

TAKEN
Task
Task

Task
┴
┴
┴owner=c1

TAKEN

idx=0prod3

prod4

prod5

ch
un

k 1
2
3
4

1
2
3
4

0

Task
Task
┴
┴

steal 1
2
3
4

Figure 2: Chunk lists in SALSA single consumer pool implementation. Tasks are kept in chunks, which are organized in per-
producer lists; an additional list is reserved for stealing. Each list can be modified by the corresponding producer only. The only
process that is allowed to retrieve tasks from a chunk is the owner of that chunk (defined by the ownership flag). A Node’s index
corresponds to the latest task taken from the chunk or the task that is about to be taken by the current chunk owner.

The SALSA data structure of a consumer ci is described in Algorithm 3 and partially depicted in Fig-
ure 2. The tasks inserted to SALSA are kept in chunks, which are organized in per-producer chunk lists.

7

Only the producer mapped to a given list can insert a task to any chunk in that list. Every chunk is owned
by a single consumer whose id is kept in the owner field of the chunk. The owner is the only process that is
allowed to take tasks from the chunk; if another process wants to take a task from the chunk, it should first
steal the chunk and change its ownership. A task entry in a chunk is used at most once. Its value is ⊥ before
the task is inserted, and TAKEN after it has been consumed.

The per-producer chunk lists are kept in the array chunkLists (see Figure 2), where chunkLists[j] keeps a
list of chunks with tasks inserted by producer pj . In addition, the array has a special entry chunkLists[steal],
holding chunks stolen by ci. Every list has a single writer who can modify the list structure (add or remove
nodes): chunkLists[j]’s modifier is the producer pj , while chunkLists[steal]’s modifer is the SCPool’s owner.
The nodes of the used chunks are lazily reclaimed and removed by the list’s owner. For brevity, we omit the
linked list manipulation functions from the pseudo-code bellow. Our single-writer lists can be implemented
without synchronization primitives, similarly to the single-writer linked-list in [20]. In addition to holding
the chunk, a node keeps the index of the latest taken task in that chunk, this index is then used for chunk
stealing as we show in Section 5.3.

Safe memory reclamation is provided by using hazard pointers [20] both for nodes and for chunks. The
free (reclaimed) chunks in SALSA are kept at per-consumer chunkPools implemented by lock-free Michael-
Scott queues [21]. As we show in Section 5.4, the chunk pools serve two purposes: 1) efficient memory
reuse and 2) producer-based load balancing.

5.2 Basic Algorithm

5.2.1 SALSA producer

Algorithm 4 SALSA implementation of SCPool: Producer Functions.
49: Producer local variables:
50: int producerId
51: Chunk chunk; initially ⊥ B the chunk to insert to
52: int prodIdx; initially 0 B the prefix of inserted tasks

53: Function produce(Task t):
54: return insert(t, this, false)

55: Function insert(Task t, SCPool scPool, bool force):
56: if (chunk = ⊥) then B allocate new chunk
57: if (getChunk(scPool, force) = false) then return false
58: chunk.tasks[prodIdx]← t; prodIdx++
59: if(prodIdx = CHUNK SIZE) then
60: chunk← ⊥ B the chunk is full
61: return true

62: Function produceForce(Task t):
63: insert(t, this, true)

64: Function getChunk(SALSA scPool, bool force)
65: newChunk← dequeue chunk from scPool.chunkPool
66: if (chunk = ⊥) B no available chunks in this pool
67: if (force = false) then return false
68: newChunk← allocate a new chunk
69: newChunk.owner← scPool.consumerId
70: node← new node with idx = −1 and c = newChunk
71: scPool.chunkLists[producerId].append(node)
72: chunk← newChunk; prodIdx← 0
73: return true

The description of SALSA producer functions is presented in Algorithm 4. The insertion of a new task
consists of two stages: 1) finding a chunk for task insertion (if necessary), and 2) adding a task to the chunk.

Finding a chunk The chunk for task insertions is kept in the local producer variable chunk (line 51 in
Algorithm 4). Once a producer starts working with a chunk c, it continues inserting tasks to c until c is full
– the producer is oblivious to chunk stealing. If the chunk’s value is ⊥, then the producer should start a new
chunk (function getChunk). In this case, it tries to retrieve a chunk from the chunk pool and to append it to
the appropriate chunk list. If the chunk pool is empty then the producer either returns ⊥ (if force=false), or
allocates a new chunk by itself (otherwise) (lines 66–68).

8

Inserting a task to the chunk As previously described in Section 5.1, different producers insert tasks to
different chunks, which removes the need for synchronization among producers. The producer local variable
prodIdx indicates the next free slot in the chunk. All that is left for the insertion function to do, is to put a
task in that slot and to increment prodIdx (line 58). Once the index reaches the maximal value, the chunk
variable is set to ⊥, indicating that the next insertion operation should start a new chunk.

5.2.2 SALSA consumer without stealing

Algorithm 5 SALSA implementation of SCPool: Consumer Functions.
74: Function consume():
75: if (currentNode 6= ⊥) then B common case
76: t← takeTask(currentNode)
77: if (t 6= ⊥) then return t
78: foreach Node n in ChunkLists do: B fair traversal of chun-

kLists
79: if (n.c 6= ⊥ ∧ n.c.owner = consumerId) then
80: t← takeTask(n)
81: if (t 6= ⊥) then currentNode← n; return t
82: currentNode← ⊥; return ⊥

83: Function takeTask(Node n):
84: chunk← n.c
85: if (chunk = ⊥) then return ⊥ B this chunk has been stolen
86: task← chunk.tasks[n.idx + 1]
87: if (task = ⊥) then return ⊥ B no inserted tasks
88: if (chunk.owner 6= consumerId)
89: return ⊥
90: n.idx++ B tell the world you’re going to take a task from idx
91: if (chunk.owner = consumerId) then B common case
92: chunk.tasks[n.idx]← TAKEN
93: checkLast(n)
94: return task

B the chunk has been stolen, CAS the last task and go away
95: success← (task 6= TAKEN ∧

CAS(chunk.tasks[n.idx], task, TAKEN))
96: if(success) then checkLast(n)
97: currentNode← ⊥
98: return (success) ? task : ⊥

99: Function checkLast(Nconsumerode n):
100: if(n.idx + 1 = CHUNK SIZE) then B finished the chunk
101: n.c← ⊥; return chunk to chunkPool
102: currentNode← ⊥

103: Function isEmpty():
104: foreach Node n in chunkLists do:
105: if (n.c has tasks in slots greater than n.idx)
106: return true
107: return false

108: Function steal(SCPool p):
109: prevNode ← a node holding tasks, whose owner is p, from

some list in p’s pool B different policies possible
110: if (prevNode = ⊥) return ⊥ B No Chunk found
111: c← prevNode.c; if (c = ⊥) then return ⊥
112: prevIdx← prevNode.idx
113: if (prevIdx+1 = CHUNK SIZE ∨ c.tasks[prevIdx+1] = ⊥)
114: return ⊥
115: chunkLists[steal].append(prevNode) B make it stealable

from my list
116: if (CAS(c.owner, p.consumerId, consumerId) = false)
117: chunkLists[steal].remove(prevNode)
118: return ⊥ B failed to steal

119: idx← prevNode.idx
120: if (idx+1 = CHUNK SIZE) B Chunk is empty
121: chunkLists[steal].remove(prevNode)
122: return ⊥
123: task← c.tasks[idx+1]
124: if (task 6= ⊥) B Found task to take
125: if (c.owner 6= consumerId ∧ idx 6= prevIdx)
126: chunkLists[steal].remove(prevNode)
127: return ⊥
128: idx++
129: newNode← copy of prevNode
130: newNode.idx = idx
131: replace prevNode with newNode in chunkLists[steal]
132: prevNode.c← ⊥ B remove chunk from consumer’s list

B done stealing the chunk, take one task from it
133: if (task = ⊥) then return ⊥ B still no task at idx
134: if (task = TAKEN ∨

!CAS(c.tasks[idx], task, TAKEN)) then
135: task← ⊥
136: checkLast(newNode)
137: if (c.owner = consumerId) currentNode← newNode
138: return task

The consumer’s algorithm without stealing is given in the left column of Algorithm 5. The consumer
first finds a nonempty chunk it owns and then invokes takeTask() to retrieve a task.

Unlike producers, which have exclusive access to insertions in a given chunk, a consumer must take into
account the possibility of stealing. Therefore, it should notify other processes which task it is about to take.

To this end, each node in the chunk list keeps an index of the taken prefix of its chunk in the idx variable,
which is initiated to −1. A consumer that wants to take a task T , first increments the index, then checks the
chunk’s ownership, and finally changes the chunk entry from T to TAKEN (lines 90–92). By doing so, a
consumer guarantees that idx always points to the last taken task or to a task that is about to be taken. Hence,

9

a process that is stealing a chunk from a node with idx = i can assume that the tasks in the range [0 . . . i)
have already been taken. The logic for dealing with stolen chunks is described in the next section.

5.3 Stealing

The stealing algorithm is given in the function steal() in Algorithm 5. We refer to the stealing consumer as
cs, the victim process whose chunk is being stolen as cv, and the stolen chunk as C.

The idea is to turn cs in the exclusive owner of C, so that cs will be able to take tasks from the chunk
without synchronization. In order to do that, cs first adds the chunk to its list (line 115) then changes the
ownership of C from cv to cs using CAS (line 116) and removes the chunk from cv’s list (line 132). Once
cv notices the change in the ownership it can take at most one more task from C (lines 95–98) after failing
the second check of ownership in line 91 having passed the one in line 88.

When the steal() operation of cs occurs simultaneously with the takeTask() operation of cv, both cs
and cv might try to retrieve the same task. We now explain why this might happen. Recall that cv notifies
potential stealers of the task it is about to take by incrementing the idx value in C’s node (line 90). This
value is copied by cs in line 129 when creating a copy of C’s node for its steal list.

Consider, for example, a scenario in which the idx is incremented by cv from 10 to 11. If cv checks C’s
ownership before it is changed by cs, then cv takes the task at index 11 without synchronization (line 92).
Therefore, cs cannot be allowed to take the task pointed by idx at all. Hence, cv has to take the task at index
11 even if it does observe the ownership change. After stealing the chunk, cs will eventually try to take the
task pointed by idx+1. However, if cs copies the node before idx is incremented by cv, cs might think that
the value of idx + 1 is 11. In this case, both cs and cv will try to retrieve the task at index 11. To ensure
that the task is not retrieved twice, both functions invoke CAS in order to retrieve this task (line 134 for cs,
line 95 for cv).

The above schematic algorithm works correctly as long as the stealing consumer can observe the node
with the updated index value. This might not be the case in case the same chunk is concurrently stolen by
another consumer, rendering the idx of the original node obsolete. In order to prevent this situation, stealing
a chunk from the pool of consumer cv is allowed only if cv is the owner of this chunk (line 116). This
approach is prone to the ABA problem: consider a scenario where consumer ca is trying to steal from cb, but
before the execution of the CAS in line 116, the chunk is stolen by cc and then stolen back by cb. In this case,
ca’s CAS succeeds but ca has an old value of idx. To prevent this ABA problem, the owner field contains a
tag, which is incremented on every CAS operation. For brevity, tags are omitted from the pseudo-code.

A naı̈ve way for cs to steal the chunk from cv would be first to change the ownership and then to move
the chunk to the steal list. However, this approach may cause the chunk to disappear when cs stalls, because
the chunk is not yet accessible via the lists of cs and yet cs is its owner. Therefore, SALSA first adds the
original node to the steal list of cs, then changes the ownership, and only then replaces the original node
with a new one (lines 115–132).

An additional problem may occur if cs steals a chunk that does not contain tasks. This may happen if the
chunk is emptied after cs chooses it in line 109. In this case, cs may notice that the chunk does not contain
a task and return ⊥ in line 133. However, another task may be added later and then taken by cv, which may
have already started taking a task before the chunk was stolen. In this case, cv will take this task using a
CAS operation, while cs may try to take the same task later without using a CAS operation, and therefore
the task may be taken twice. To avoid this problem, we make sure that if a chunk is stolen, cv will not take
a task that cs might have missed because it was added after cs tried to read it. This is done by adding an
ownership check after cv reads the task on line 86 and before committing to take it by incrementing idx in
line 90. This makes sure that cv can only take tasks that existed before the chunk was stolen. For the same
reason, the ownership check is added in line 125. In this case however cv also checks if the idx has changed

10

since before it changed ownership. This is done by comparing the idx read before the ownership change in
line 112 to the idx read after the ownership change in line 119. If the idx hasn’t changed, it means that cs
is guaranteed to see the task pointed by idx, because due to the check in line 113 we know that task existed
before cv changed ownership, and therefore existed before cs changed ownership. In this case cv may safely
increase idx and take the task. Note that returning the task is necessary to avoid livelock.

Another issue we need to address is making sure that the idx value in nodes pointing to a given chunk
increases monotonically. To this end, we make sure that when cs creates a new node, this node’s idx is
greater than or equal to the idx of cv’s node. As noted before, cv may increase the idx at most once after its
chunk is stolen. Also, thanks to the ownerships checks that are done after the task was read and before the
idx is incremented, we know that the idx field of cv increases only if there is a task in the next slot after the
ownership change. To ensure that idx does not decrease in this case, cs sets the idx of the new node to be
the idx of cv plus one if the next task is not ⊥ (line 128).

5.4 Chunk Pools

As described in Section 5.1, each consumer keeps a pool of free chunks. When a producer needs a new
chunk for adding a task to consumer ci, it tries to get a chunk from ci’s chunk pool – if no free chunks are
available, the produce() operation fails.

As described in Section 4, our system-wide policy defines that if an insertion operation fails, then the
producer tries to insert a task to other pools. Thus, the producer avoids adding tasks to overloaded con-
sumers, which in turn decreases the amount of costly steal operations. We further refer to this technique as
producer-based balancing.

Another SALSA property is that a chunk is returned to the pool of a consumer that retrieves the latest
task of this chunk. Therefore, the size of the chunk pool of consumer ci is proportional to the rate of ci’s
task consumption. This property is especially appealing for heterogeneous systems – a faster consumer ci,
(e.g., one running on a stronger or less loaded core), will have a larger chunk pool, and so more produce()
operations will insert tasks to ci, automatically balancing the overall system load.

5.5 Checking Emptiness

produce t
b

in SCPool
b

produce t
c

in SCPool
c

consume:
return t

b

consume:

Check
SCPool

a

Check
SCPool

c

return
a:

b:

p:

Check
SCPool

b

Figure 3: An example where a single traversal may violate linearizability: consumer a is trying to get a task. It fails to take
a task from its own pool, and starts looking for chunks to steal in other pools. At this time there is a single non-empty chunk in
the system, which is in b’s pool; a checks c’s pool and finds it empty. At this point, a producer adds a task to c’s pool and then b
takes the last task from its pool before a checks it. Thus, a finds b’s pool empty, and returns ⊥. There is no way to linearize this
execution, because throughout the execution of a’s operation, the system contains at least one task.

11

For our system to be linearizable, we must ensure that it returns ⊥ only if it is empty (i.e., contains no
tasks) at some point during the get() operation. We describe a policy for doing so in a lock-free manner.

Let us examine why a naı̈ve approach, of simply traversing all task pools and returning ⊥ if no task is
found, violates correctness. First, a consumer might “miss” one task added during its traversal, and another
removed during the same traversal, as illustrated in Figure 3. In this case, a single traversal would have
returned ⊥ although the pool was not empty at any point during the get() operation. Second, a consumer
may miss a task that is moved from one pool to another due to stealing. In order to identify these two cases,
we add to each pool a special emptyIndicator, a bit array with a bit per-consumer, which is cleared every
time the pool may become empty. In SALSA, this occurs when the last task in a chunk is taken or when a
chunk is stolen. In addition, we implement a new function, checkEmpty(), which is called by the framework
whenever a consumer fails to retrieve tasks from its pool and all other pools. This function returns true only
if there is a time during its execution when there are no tasks in the system. If checkEmpty() returns false,
the consumer simply restarts its operation.

Denote by n the number of consumers in the system. The checkEmpty() function works as follows:
the consumer traverses all SCPools, to make sure that no tasks are present. After checking a pool for the
first time, the consumer sets its bit in emptyIndicator using CAS. The consumer repeats this traversal n
times, where in all traversals, it checks that its bit in emptyIndicator is set, i.e., that no chunks were emptied
or removed during the traversal. The n traversals are needed in order to account for the case that other
consumers have already stolen or removed tasks, but did not yet update emptyIndicator, and thus their
operations were not detected by the consumer. Since up to n − 1 pending operations by other consumers
may empty pools before any emptyIndicator changes, it is guaranteed that among n traversals in which
no chunks were seen and the emptyIndicator did not change, there is one during which the system indeed
contains no tasks, and therefore it is safe to return ⊥. This method is similar to the one used in Concurrent
Bags [24].

Algorithm 6 SALSA extensions for supporting checkEmpty()
139: Per consumer local:
140: boolean[] emptyIndicator B one entry per consumer

B replacement for the checkLast() function
141: Function checkLast(Node n, Task next):
142: if(n.idx + 1 = CHUNK SIZE) then B finished the chunk
143: n.c← ⊥; return chunk to chunkPool
144: currentNode← ⊥
145: clearIndicator()
146: if(next = ⊥) then B took last task
147: clearIndicator()

148: Function clearIndicator():
149: foreach(boolean b in emptyIndicator) do:
150: b← false

151: Function setIndicator(SCPool p, int consumerId):
152: emptyIndicator[consumerId]← true

153: Function checkIndicator(SCPool p, int consumerId):
154: return emptyIndicator[consumerId]

We now describe the extensions to the SALSA pool which are needed so that checkEmpty() will work.
Specifically, we need to make sure that operations that may cause a pool to become empty will clear emp-
tyIndicator.

We note that a pool may become empty in two cases: (1) When a chunk is stolen from a pool and this is
the only chunk that contains tasks, and (2) when a task is taken and that was the last task in the pool.

We alter the consumer code so it will clear it in those cases:

1. In case of a successful steal - the consumer clear the indicator before line 119.

2. If the task returned may be the last task in the chunk, the consumer clears emptyIndicator in the
checkLast() function. The updated function is described in Algorithm 6.

In the second case, the consumer checks that this is the last task by reading the next slot before changing the
current slot to TAKEN, and then checking if the next slot contained ⊥.

12

6 Implementation and Evaluation

In this section we evaluate the performance of our work-stealing framework built on SALSA pools. We
first present the implementation details on dealing with memory reordering issues in Section 6.1. The
experiment setup is described in Section 6.2, we show the overall system performance in Section 6.3, study
the influence of various SALSA techniques in Section 6.4 and check the impact of memory placement and
thread scheduling in Section 6.5.

0

50

100

150

200

250

300

350

400

450

500

8 12 16 20 24 28 32

Th
ro

ug
hp

ut
 (1

00
0

ta
sk

s/
m

se
c)

Num of threads

SALSA

SALSA+CAS

ConcBag

WS-MSQ

WS-LIFO

(a) System throughput – N producers, N consumers.

0

50

100

150

200

250

300

350

400

450

500

Th
ro

ug
hp

ut
 (1

00
0

ta
sk

s/
m

se
c)

Num of producers / Num of consumers

(b) System throughput – variable producers-consumers ratio.

Figure 4: System throughput for various ratios of producers and consumers. SALSA scales linearly with the number of threads
– in the 16/16 workload, it is ×20 faster than WS-MSQ and WS-LIFO, and ×3.5 faster than Concurrent Bags. In tests with
equal numbers of producers and consumers, the differences among work-stealing alternatives are mainly explained by the consume
operation efficiency, since stealing rate is low and hardly influences performance.

6.1 Dealing with Memory Reordering

The presentation of the SALSA algorithm in Section 5 assumes sequential consistency [19] as the memory
model. However, most existing systems relax sequential consistency to achieve better performance. Specif-
ically, according to x86-TSO [23], memory loads can be reordered with respect to older stores to different
locations. As shown by Attiya et al. [5], it is impossible to avoid both RAW and AWAR in work stealing
structures, which requires using a synchronization operation, such as a fence or CAS, to ensure correctness.
In SALSA, this reordering can cause an index increment to occur after the ownership validation (lines 90,
91 in Algorithm 5), which violates correctness as it may cause the same task to be taken twice, by both the
original consumer and the stealing thread.

The conventional way to ensure a correct execution in such cases is to use memory fences to force a
specific memory ordering. For example, adding an mfence instruction between lines 90 and 91 guarantees
SALSA’s correctness. However, memory fences are costly and their use in the common path degrades
performance. Therefore, we prefer to employ a synchronization technique that does not add substantial
overhead to the frequently used takeTask() operation. One example for such a technique is location-based
memory fences, recently proposed by Ladan-Mozes et al. [18], which is unfortunately not implemented in
current hardware.

In our implementation, we adopt the synchronization technique described by Dice et al. [11], where the
slow thread (namely, the stealer) binds directly to the processor on which the fast thread (namely, the con-
sumer) is currently running, preempting it from the processor, and then returns to run on its own processor.

13

Thread displacement serves as a full memory fence, hence, a stealer that invokes the displacement binding
right after updating the ownership (before line 119 in Algorithm 5) observes the updated consumer’s index.
On the other hand, the steal-free fast path is not affected by this change.

6.2 Experiment Setup

The implementation of the work-stealing framework used in our evaluation does not include the lineariz-
ability mechanism described in 5.5. We believe that this mechanism has negligible effect on performance;
moreover, in our experiment they would not have been invoked because the pool is never empty. We compare
the following task pool implementations:

• SALSA – our work-stealing framework with SCPools implemented by SALSA.

• SALSA+CAS – our work-stealing framework with SCPools implemented by a simplistic SALSA
variation, in which every consume() and steal() operation tries to take a single task using CAS. In
essence, SALSA+CAS removes the effects of SALSA’s low-synchronization fast-path and per-chunk
stealing. Note that disabling per-chunk stealing in SALSA annuls the idea of chunk ownership, hence,
disables its low-synchronization fast-path as well.

• ConcBag – an algorithm similar to the lock-free Concurrent Bags algorithm [24]. It is worth noting
that the original algorithm was optimized for the scenario where the same process is both a producer
and a consumer (in essence producing tasks to itself), which we do not consider in this work; in our
system no thread acts as both a producer and a consumer, therefore every consume operation steals a
task from some producer. We did not have access to the original code, and therefore reimplemented
the algorithm in our framework. Our implementation is faithful to the algorithm in the paper, except
in using a simpler and faster underlined linked list algorithm. All engineering decisions were made to
maximize performance.

• WS-MSQ – our work-stealing framework with SCPools implemented by Michael-Scott non-blocking
queue [21]. Both consume() and steal() operations invoke the dequeue() function.

• WS-LIFO – our work-stealing framework with SCPool implemented by Michael’s LIFO stack [20].

We did not experiment with additional FIFO and LIFO queue implementations, because, as shown
in [24], their performance is of the same order of magnitude as the Michael-Scott queue. Similarly, we did
not evaluate CAFÉ [7] pools because their performance is similar to that of WS-MSQ [6], or ED-Pools [2],
which have been shown to scale poorly in multi-processor architectures [6, 24].

All the pools are implemented in C++ and compiled with -O2 optimization level. In order to minimize
scalability issues related to allocations, we use jemalloc allocator, which has been shown to be highly
scalable in multi-threaded environments [1]. Chunks of SALSA and SALSA+CAS contain 1000 tasks, and
chunks of ConcBag contain 128 tasks, which were the respective optimal values for each algorithm (see
Section 6.6).

We use a synthetic benchmark where 1) each producer works in a loop of inserting dummy items; 2)
each consumer works in a loop of retrieving dummy items. Each data point shown is an average of 5 runs,
each with a duration of 20 seconds. The tests are run on a dedicated shared memory NUMA server with 8
Quad Core AMD 2.3GHz processors and 16GB of memory attached to each processor.

14

6.3 System Throughput

Figure 4(a) shows system throughput for workloads with equal number of producers and consumers. SALSA
scales linearly as the number of threads grows to 32 (the number of physical cores in the system), and it
clearly outperforms all other competitors. In the 16/16 workload, SALSA is ×20 faster than WS-MSQ and
WS-LIFO, and more than ×3.5 faster than Concurrent Bags.

We note that the performance trend of ConcBags in our measurements differs from the results presented
by Sundell et al. [24]. While in the original paper, their throughput drops by a factor of 3 when the number
of threads increases from 4 to 24, in our tests, the performance of ConcBags increases with the number of
threads. The reasons for the better scalability of our implementation can be related to the use of different
memory allocators, hardware architectures, and engineering optimizations.

All systems implemented by our work-stealing framework scale linearly because of the low contention
between consumers. Their performance differences are therefore due to the efficiency of the consume()
operation – for example, SALSA is ×1.7 faster than SALSA+CAS thanks to its fast-path consumption
technique.

In contrast, in ConcBags, which is not based on per-consumer pools, every consume() operation implies
stealing, which causes contention among consumers, leading to sub-linear scalability. The stealing policy
of ConcBags algorithm plays an important role. The stealing policy described in the original paper [24]
proposes to iterate over the lists using round robin. We found out that the approach in which each stealer
initiates stealing attempts from the predefined consumer improves ConcBags’ results by 53% in a balanced
workload.

Figure 4(b) shows system throughput of the algorithms for various ratios of producers and consumers.
SALSA outperforms other alternatives in all scenarios, achieving its maximal throughput with equal number
of producers and consumers, because neither of them is a system bottleneck.

0

5

10

15

20

25

30

35

40

1 4 8 12 16 20 24 28 31

Th
ro

ug
hp

ut
 (1

00
0

ta
sk

s/
m

se
c)

Num of consumers

SALSA

SALSA+CAS

ConcBag

WS-MSQ

WS-LIFO

(a) System throughput – 1 Producer, N consumers.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 4 8 12 16 20 24 28 31

CA
S

op
er

at
io

ns
 p

er
 ta

sk
 r

et
ri

ev
al

Num of consumers

SALSA

SALSA+CAS

ConcBag

WS-MSQ

(b) CAS operations per task retrieval – 1 Producer, N consumers.

Figure 5: System behavior in workloads with a single producer and multiple consumers. Both SALSA and SALSA+CAS
efficiency balance the load in this scenario. The throughput of other algorithms drops by a factor of 10 due to increased contention
among consumers trying to steal tasks from the same pool.

We next evaluate the behavior of the pools in scenarios with a single producer and multiple consumers.
Figure 5(a) shows that the performance of both SALSA and SALSA+CAS does not drop as more consumers
are added, while the throughput of other algorithms degrades by the factor of 10. The degradation can be
explained by high contention among stealing consumers, as evident from Figure 5(b), which shows the
average number of CAS operations per task transfer.

15

6.4 Evaluating SALSA techniques

0

5

10

15

20

25

30

35

40

1 4 8 12 16 20 24 28 31

Th
ro

ug
hp

ut
 (1

00
0

ta
sk

s/
m

se
c)

Num of consumers

SALSA
SALSA+CAS
SALSA no balancing
SALSA+CAS no balancing

Figure 6: System throughput – 1 Producer, N consumers. Producer-based balancing contributes to the robustness of the framework
by reducing stealing. With no balancing, chunk-based stealing becomes important.

In this section we study the influence of two of the techniques used in SALSA: 1) chunk-based-stealing
with a low-synchronization fast path (Section 5.3), and 2) producer-based balancing (Section 5.4). To this
end, we compare SALSA and SALSA+CAS both with and without producer-based balancing (in the latter
a producer always inserts tasks to the same consumer’s pool).

Figure 6 depicts the behavior of the four alternatives in single producer / multiple consumers work-
loads. We see that producer-based balancing is instrumental in redistributing the load: neither SALSA nor
SALSA+CAS suffers any degradation as the load increases. When producer-based balancing is disabled,
stealing becomes prevalent, and hence the stealing granularity becomes more important: SALSA’s chunk
based stealing clearly outperforms the naı̈ve task-based approach of SALSA+CAS.

6.5 Impact of Scheduling and Allocation

We now evaluate the impact of scheduling and allocation in our NUMA system. To this end, we compare
the following three alternatives: 1) the original SALSA algorithm; 2) SALSA with no affinity enforcement
for the threads s.t. producers do not necessarily work with the closest consumers; 3) SALSA with all the
memory pools preallocated on a single NUMA node.

Figure 7 depicts the behavior of all the variants in the balanced workload. The performance of SALSA
with no predefined affinities is almost identical to the performance of the standard SALSA, while the central
allocation alternative looses its scalability after 12 threads.

The main reason for performance degradation in NUMA systems is bandwidth saturation of the in-
terconnect. If all chunks are placed on a single node, every remote memory access is transfered via the
interconnect of that node, which causes severe performance degradation. In case of random affinities, re-
mote memory accesses are distributed among different memory nodes, hence their rate remains below the
maximum available bandwidth of each individual channel, and the program does not reach the scalability
limit.

16

0

50

100

150

200

250

300

350

400

450

500

2 4 8 12 16 20 24 28

Th
ro

ug
hp

ut
 (1

00
0

ta
sk

s/
m

se
c)

Num of threads

SALSA

SALSA (OS affinity)

SALSA (central alloc)

Figure 7: Impact of scheduling and allocation (equal number of producers and consumers). Performance decreases once the
interconnect becomes saturated.

6.6 Chunk size influence

0

50

100

150

200

250

300

350

400

450

16 32 64 128 256 512 1000 2000

Th
ro

ug
hp

ut
 (1

00
0

ta
sk

s/
m

se
c)

Num of tasks in a chunk

SALSA

SALSA+CAS

ConcBag

Figure 8: System throughput as a function of the chunk size.

Figure 8 shows the influence of chunk size on system throughput for the chunk-based algorithms SALSA,
SALSA+CAS and ConcBags in a 16/16 workload. SALSA variations achieve their best throughput for large
chunks with 1000 tasks (∼ 8KB size in 64-bit architectures). The optimal chunk for ConcBags includes 128
tasks. We believe that ConcBags is ineffective with large chunk sizes since its consumers linearly scan a
chunk when seeking a task to steal. In contrast, SALSA keeps the index of the latest consumed task in
the chunk node, and therefore its consume operations terminate in O(1) steps for every chunk size. In our
evaluation in section 6 we used optimal chunk sizes for each algorithm.

17

7 SALSA correctness

7.1 Definitions

First we define constants and definitions that are used in the section.

A — The system as describe in Section 4, when using SALSA pools as the SCPool.
n — The number of consumers in A.

Definition 1. (Referring Node) A node is the referring node of chunk C if that node points to C, and is in
a chunk list of C’s owner.

We now define what we shall call the commit points of A:

Definition 2. The commit points of A are as follows:

1. For a put() operation, the commit point is the assignment in line 58 of the put().

2. For a get() operation that returns a task, the commit point is the point where the idx of the referring
node is increased to include the returned task. More specifically:

• If the task T is returned by consume(), the commit point is line 90 of the consume() if the chunk
containing T is owned by the consumer executing this consume() operation, and otherwise,
it is line 131 executed by a stealing consumer before it removes the chunk from the current
consumer’s node in line 132

• If the task is returned by steal() and the new node added to the list has a higher idx than the
node it replaces, then the commit point is line 131.

• If the task is returned by steal() and the new node added to the list has the same idx as the node
it replaces in line 131, it means that the idx of the replaced node has been incremented between
lines 119 and 131. In this case then the commit point is at the time the idx was increased to its
current value. This may be either in line 90 or line 131, depending on the operation (consume()
or steal()) executed by the consumer that increments it.

Definition 3. (taken) A task T is taken at a given time if the idx of the referring node of the chunk containing
T is greater than or equal to the slot of this task.

Note that if a task T is returned, then the commit point of the get() operation that returns T is the point
where the task is taken.

Definition 4. (empty) A task pool is empty at a given time t, if all tasks that were added to the pool by put()
operations that passed their commit point before time t are taken at time t.

Definition 5. Let c be the consumer owning a SALSA SCPool, then c’s SCPool is non-empty if there is a
chunk owned by c that contains tasks which are not taken.

7.2 Lock-freedom

For the purpose of the proof, we refer to the first part of the steal() operation (lines 109 to 118) as part I of
the operation and to the second part (lines 119 to 138) as part II of the operation.

From Definition 5, Definition 4 and the fact the each chunk is owned by a consumer we can reach the
following observation:

18

Observation 1. If the task pool is not empty, then at least one SALSA SCPool is non-empty.

Lemma 1. If a chunk owned by a consumer c contains a task, then that chunk is accessible from one of the
lists in c’s SCPool.

Proof. If c is the first owner of this chunk than that chunk was inserted to c’s pool by a producer in line 71.
Otherwise, c stole this chunk, and before the changing ownership in line 116, c pointed to this chunk in
line 115 and later replaced to node pointing to that chunk in line 131. Therefore, this chunk is accessible via
c’s SCPool during the time c is the chunk’s owner.

Lemma 2. If a consumer successfully finishes part I of the steal() operation (i.e., succeeds in the CAS in
line 116) and later finishes the operation, then in the duration of this steal() operation, a task becomes taken.

Proof. First we note that before the consumer finishes part I, it first checkes that there is a task in the current
chunk, and stores the index of that task in prevIdx (line 113). If the idx as read in line 119 is bigger than
prevIdx, a task was taken in the duration of this operation and we are done. Otherwise, idx as read in
line 119 is equal to prevIdx and therefore the consumer will reach line 128. In this case the new node
replacing the old node will have idx greater than prevIdx, and so the task in prevIdx is taken and we are
done.

Lemma 3. If a consumer fails to finish part I of the steal() operation (i.e., fails the CAS in line 116) on a
SCPool that is non-empty when the operation begins n times, then there is another consumer that takes a
task from the task pool during the time interval spanning those n failed attempts.

Proof. Since we assume the SCPool is not empty when the operation begins, then by Lemma 1 there is a
list containing an non-empty chunk owner by the victim in the victim’s SCPool. Therefore if no chunk is
found in line 109 then either a concurrent consume() operation took a task in which case we are done, or a
another steal() operation successfully stole a chunk from this SCPool.

Otherwise a chunk is found and the consumer may fail to finish part I of the steal() operation on a
non-empty SCPool in the following cases:

1. The if statement in line 113 is true because the chunk does not contain a task. However since, a chunk
containing task was chosen in line 109, at least one task was taken from this chunk after it was chosen,
and we are done.

2. The if statement in line 111 is true. In this case, a stealable chunk was found, but another steal()
operation successfully stole the chunk before the chunk was read.

3. The if statement in line 116 is true. In this case, the steal() operation fails because another consumer
stole this chunk.

If a task was taken in the period spanning the n operations, we are done. Otherwise, there are n oper-
ations by other consumers that successfully stole a chunk, i.e., there are n operations that finished part I.
Since there are only n− 1 consumers other than the consumer that failed, we conclude that there is at least
one consumer that completed part II. Therefore, by Lemma 2, some task was taken during this time.

Lemma 4. If a consumer returns ⊥ in n steal() operations on a non-empty SALSA SCPool, then there is a
consumer that takes a task from the task pool during that time interval.

Proof. If the consumer returns⊥ because it fails to finish part I n times, then by Lemma 3, a task was taken
during that time period. Otherwise, at least one of its n steal operations successfully finishes part I of the
steal() and returns ⊥ in part II. By Lemma 2, a tasks was taken by some consumer.

19

Lemma 5. If a consumer returns ⊥ in n consume() operations on a non-empty SALSA SCPool, then there
is a consumer that takes a task from the task pool during that time interval.

Proof. A consume() operation may return ⊥ in two cases:

1. No chunk with a task was found and ⊥ was returned in line 82. In this case, no task was found in the
SCPool, but since we assume that there was a task in the SCPool when the operation started, we know
that the chunk containing this task was stolen by some other consumer.

2. If a chunk with a task was found, and takeTask() returned ⊥. This may happen only if another
consumer stole the chunk.

In both cases there was some other consumer that stole a chunk. If this occurs n times, then we know
that there are n operations that finished part I. Since there are only n−1 consumers other than this consumer,
we conclude that there is at least one consumer that finishes part II, i.e. returnes from its steal() operation.
Therefore, by Lemma 2, there is a consumer that takes a task.

Lemma 6. If checkEmpty() returns false because the if in line 35 is true 2n times, then there is a consumer
that takes a task during that time interval.

Proof. If checkEmpty() returns false because of the if in line 35, then some consumer has cleared emp-
tyIndicator during the execution of checkEmpty(). This can happen only when a consumer successfully
steals a chunk or takes a task from a chunk. By Lemma 4, if the first case occurs more than n − 1 times,
a task is taken and we are done. Otherwise, there are at least n operations that take a task and clear emp-
tyIndicator. At most n − 1 of these operations were invoked before checkEmpty() began. Therefore, at
least one of the n operations that take tasks began after the checkEmpty() operation began and cleared
emptyIndicator before it ended. Since this operation takes the task before it cleares emptyIndicator, it takes
the task before checkEmpty() ends, and the lemma follows.

Claim 1. If a get() operation runs for 5n iterations in A, then a task is taken by some consumer in the
system during those iterations.

Proof. The get() operation is a loop. In every iteration of the while loop in lines 13-21 it calls consume()
on the local SCPool, then steal() n− 1 on the other pools, and finally checkEmpty(). When consume() or
steal() return a task, this task is returned by the get() operation. If checkEmpty() returns true, then the get()
operation returns ⊥.

Consider a get() operation that does not return after 5n loop iterations. At the end of each iteration,
checkEmpty() returns false. If it returns false 2n times because of the if in line 35, then by Lemma 6 a
task is taken and we are done. Otherwise, the are at least 3n iterations in which the task pool contained a
task when checkEmpty() was called. In each of those iterations, there are three cases: (1) the consumer
found the task pool non-empty during a its corresponding steal() or consume(), (2) the task was taken from
this task pool by another consumer, (3) the chunk that included that task was stolen. If case (2) happens
we are done. Therefore, assume that all 3n iterations fall in cases (1) or (3). If (3) happens n times, then
at least one of the consumers finishes the steal() operation, and by Lemma 2, a task was taken and we
are done. Otherwise, then there are at least 2n iterations where the task pool is not empty, and therefore
by Observation 1 in those iterations there is at least one non-empty SCPool. Thus, in every iteration the
consumer performs consume() or steal() on a non-empty SALSA SCPool, and since at least n of those
operations are of the same type, then by Lemmas 5 and 4 a task will be taken by this consumer or by another
consumer during that time.

20

We now show the if (n+ 1)2 tasks are taken from the pool a task is returned during that time. Note that
while it is possible to show a tighter bound on the number of taken tasks, we chose to use a higher value for
proof clarity.

Lemma 7. If (n + 1)2 tasks are taken from the task pool in a certain time interval, then in the duration of
this interval a task is returned by some consumer.

Proof. First we show that if n + 1 tasks are taken, then at least one slot is changed to TAKEN during that
time. By Definition 3, a task is taken after the idx pointing to the chunk containing that task is increased
to include this task This may occur in line 90 or 131. After either of these lines is executed, the consumer
always reaches a line that changes the slot to TAKEN if it wasn’t already changed (lines 92 and 95 in
takeTask() and line 134 in steal()). The slot is not changed to TAKEN before the task is taken, since it is
only changed after incrementing of idx. Therefore, after a task is taken when the consumer incrementing
the idx pointing to this chunk finishes its takeTask() or steal() operation, the slot of this task is changed to
TAKEN. Since there are n consumers in the system, if n + 1 tasks are taken, then at least one consumer
finished takeTask() or steal() after executing line 92, 95, or 134, and therefore during the time when n + 1
tasks are taken a task is changed to TAKEN.

Therefore when (n+1)2 tasks are taken from the pool, we know that n+1 slots are changed to TAKEN.
We now note that when a slot is changed to TAKEN by a consumer, that consumer returns that task when
it completes its get() operation. Since we know that n + 1 slots were changed to TAKEN, and since there
are only n consumers in the system, we know that at least one consumer finished its get() operation after
changing a slot to taken, and therefore returns that task.

Theorem 1. A is lock-free.

Proof. According to Claim 1, if a get() operation runs for 5n iterations without taking a task, then a task
is taken by some consumer in the system. By Lemma 7 if (n + 1)2 tasks are taken a tasked is returned.
Therefore after (n+1)2× 5n iterations of get() a is be returned. Therefore, the get() operation is lock-free.
The put() operation is trivially wait-free.

7.3 Linearizability

Lemma 8. Let C be a task chunk and idxt1 , idxt2 be the idx of the referring node of C at times t1, t2
respectively, s.t. t1 < t2. Then idxt1 ≤ idxt2

Proof. First we note that an idx field of a node may only increase after it is created (line 90). It therefore
remains to consider the case that the new referring node pointing to C replaces an old referring node. When
the referring node pointing to C is replaced by a new referring node (line 131) the node is created with the
previous node’s idx or with its idx + 1 if the idx + 1’th slot in C is not ⊥. However, the previous node’s
owner may increase its idx after it is read by other consumers. Note that this may occur only if this chunk
did not contain⊥ in the idx’th slot before the chunk changed ownership, since the consumer checks that the
next slot in the chunk is not⊥ and that it is the owner before incrementing idx (lines 87 and 88 in takeTask()
and lines 124 and 125 in steal()). Therefore, we get that if the previous owner may have increased its idx,
then a consumer stealing the chunk will create a new node with idx + 1. And since after a chunk is stolen
the previous owner may increase the idx at most once before it notices that it was stolen and leaves this
chunk, the lemma follows.

We will now prove that A is linearizable. First we show that the commit points defined in Section 7.1
are well-defined and therefore can be used as the linearization points of A.

21

Claim 2. There is exactly one commit points in the duration of any put() operation or get() operation that
returns a task.

Proof. For a put() operation, it is easy to see that the function always reaches line 58.
For a get() that returns a task, the following cases are possible:

• If the task is taken by consume(), then line 90 is always executed before the task is returned. However,
this line may be executed after the chunk is stolen. In this case a concurrent steal() operation might
have removed the chunk from the consumer’s list (line 132) and before that, pointed to the chunk with
a new node that has higher idx (line 131). If this is the case, then the commit point is the time of the
node replacement in line 131. Note that the other consumer executed this line during the execution of
the consume() operation - before line 90 and after the chunk is selected in line 86

• If the task taken by steal(), by Lemma 8 there are two options:

– The new node added to the list in line 131 has a higher idx than the node it replaces. In this
case, it is obvious that line 131 is executed before the task is returned.

– The new node added to the list has the same idx as the node it replaces. This may occur only if
the idx of the original node is increased after the stealing consumer reads its value in line 119
and before the stealing consumer replaces the node in line 131. Therefore the incrementation of
idx is performed in the course of the stealer’s steal() call.

We will show that commit points as described above are valid linearization points for put() operations,
and for get() operations that return a task. For get() operations that returns ⊥, we will show that such a
linearization point exist without explicitly specifying it.

The following observation follows immediately from the code in Algorithm 6.

Observation 2. If a consumer operation that takes the last task in a pool returns a task, this operation
clears the emptyIndicator of this pool after taking the task and before starting a new operation.

Claim 3. If checkEmpty() returns true then there is a time between its invocation and its response when
the task pool is empty.

Proof. In every iteration of the loop in line 32 of checkEmpty(), the consumer checks that its bit in emp-
tyIndicator is set (line 35). If checkEmpty() returns true then the emptyIndicator was not reset by any
consumer after it was set in the first iteration. Note that an operation may take the last task in the pool and
then stall before clearing emptyIndicator. Since there are n− 1 consumers other than the consumer running
c
¯
heckEmpty(), there may be up to n − 1 such operations. Since only n − 1 consumers may take the last

task from a pool without clearing the emptyIndicator of that pool (by Observation 2), we can conclude that
there is at least one iteration during which no pool changes from non-empty to empty. During this iteration,
checkEmpty() does not find a task in line 106. Therefore, when that iteration began, the pool was empty
and the claim follows.

Lemma 9. Let σ be a run and t a time in σ such that all the pending operations that started before time t
complete in σ and, assume a consumer c increments the idx field of a node at time t. Then the task pointed by
this idx will be returned either by that consumer or another consumer running a concurrent get() operation
that started before c incremented the idx field.

22

Proof. First we note that operations that start after idx is incremented do not take the task pointed by that
idx, since they read the up-to-date idx, which by Lemma 8 never decreases. Therefore, if an operation takes
the task pointed by idx after it is incremented, it must be an operation that started before c’s operation.

The idx field can be incremented in the takeTask() or steal() functions.
If the idx was incremented in the taskTask() function in line 90 then there are three possible cases:

1. If c is still the owner of the chunk when it reaches line 91, then c will return this task in line 94.

2. Otherwise, if the chunk is stolen before c executes line 91, then c tries to CAS the slot from the task
to TAKEN in line 95, and if the CAS is successful, c returns it in line 98.

3. Otherwise, some other consumer c′ succeeds in changing the slot to TAKEN in line 134, and returns
this task in line 138.

If the idx field is incremented in steal() in line 131 by replacing the old node with a node with higher
idx, then c created this node with a higher idx and therefore must have executed line 128, which means
that the if in line 124 was true, and the slot did not contain ⊥. Therefore, c will reach line 134, and will try
to CAS the slot from the task to TAKEN. If it is successful it returns the task, and otherwise, some other
consumer succeeds, and that consumer returns the task.

Claim 4. Let σ be a run and t a time in σ such that all the pending operations that started before time
t complete in σ and the system is empty at time t. Then every task that was added to the pool by a put()
operation that passed its commit point before time t is returned by some get() operation whose commit point
is before time t.

Proof. If the system is empty, then by Definitions 4 and 3 the idx of every node is greater than or equal to
the the index of the last task in that chunk. By Lemma 9, if the idx is increased then the task in that idx is
either returned, or is about to be returned by an active get() operation. By the definition of the commit point
of get(), that operation has passed its commit point, since the idx of the node was increased. The claim
follows.

Claim 5. If a consumer c returns a task T , then there is a put(T) operation that passes its commit point
before c’s get() operation passes its commit point.

Proof. Before a consumer returns a task, the idx field of the node pointing to the task is incremented. Since
both takeTask() and steal() verify that the task is not ⊥ before incrementing idx, we know that the put()
operation already passed its commit point before the idx is incremented, and by the definition of the get()
commit points, the claim follows.

Lemma 10. If a consumer cs steals a chunk from a consumer cv and this chunk’s referring node’s idx value
is i when cs reads it in line 119. Then (1) cv does not take tasks from indexes greater than i+1 in this chunk
unless cv resteals the chunk. And (2) If cv attempts to take a task from slot i + 1 in this chunk it does so
using CAS.

Proof. First we note that in consume(), after a consumer increments the value of a node’s idx, it then checks
that it is still the owner of the chunk pointed by that node. If the consumer notices that it is not the case it
leaves it (line 97). Therefore, after a successful steal(), the previous consumer of the chunk can increase the
idx field by at most one. In consume(), the consumer takes tasks from the idx’th slot of the chunk (lines 92
and 95), and therefore it does not take tasks from slots larger than i+ 1.

23

Since cs reads the idx of cv’s node after changing ownership (line 119), if cv increases the idx in line 90
after cs steals the node, cv notices the ownership change (line 91) and therefore attempts to take the task
using a CAS operation in line 95.

If cv is executing steal(), cv either takes the i + 1’st task if idx is read by cs before cv increments it in
line 131 or it takes the i’th task if cs reads it after it is increased. In both cases, cv used CAS to take the task.
Moreover, since the ownership has changed, cv does not try to take tasks from this chunk before re-stealing
it, since this chunk is not chosen by this consumer if it is not the owner (line 79).

Lemma 11. Let cs be a consumer stealing a chunk from consumer cv, and let the idx value of the referring
node of that chunk be i when cs reads it in line 119. Then (1) cs only takes tasks from indexes greater than
i; and (2) if another consumer tries to take a task from index i + 1, then cs attempts to take that task using
CAS.

Proof. The first task cs attempts to take is the task at index i+1 (line 134). This is done by a CAS operation
if there is a task in that slot when cs reads the contents of the slot in line 123. If the slot is ⊥ when cs
reads it, cs may later take this task without a CAS operation if the chunk is not stolen. In the later case,
other consumers do not try to take this task unless they steal the chunk, since they may only see this task
after cs changes the ownership, and since after reading a slot, ownership is checked (lines 88 and 125). An
exception is in line 125 where the task might be taken in case the ownership changed. However, this is done
only if the task was there before the ownership change and therefore cs is guaranteed to also notice this task.
If the chunk is stolen from cs, then by Lemma 10 cs takes the i+ 1’st task using CAS.

After cs takes the first task, it increments idx in line 131 or line 90, and since subsequent consume()
operations will take tasks from slots i+ 1 and higher, the lemma follows.

Lemma 12. A task in A may be only returned once.

Proof. Consider a consumer cs that takes a task. If cs stole the chunk from another consumer cv, then by
Lemma 10 and Lemma 11, cs and cv do not take tasks from the same slot, and if they do, they use CAS.
Since only one consumer may succeed in a CAS operation we conclude that a task will be returned by at
most one consumer, and since a consumer will not attempt to take the same task twice, as it always takes
tasks from idx+ 1 and always increases idx, a task can be returned only once.

Theorem 2. A is linearizable.

Proof. We will now show that it is possible to choose the linearization points to be the commit point as
defined above. We only show correctness for complete histories. However, since our algorithm is lock-free
it is possible to complete pending operations of partial histories so they will be complete. Therefore our
proof also holds for partial histories.

From Claim 5 we know that the linearization point of a consumer executing get() that returns T always
follows the linearization point of put(T). From Claim 12 we know that for each put(T) operation, at most
one get() returns T . From Claim 3 we know that if a get() operation returns ⊥, then there is a point during
its execution in which the pool is empty. From Claim 4 we know that each put(T) operation that preceded
a point in which the pool was empty there is a a get(), which stats after he linearization point of put(T) that
returns T .

24

8 Conclusions

We presented a highly-scalable task pool framework, built upon our novel SALSA single-consumer pools
and work stealing. Our work has employed a number of novel techniques for improving performance: 1)
lightweight and synchronization-free produce and consume operations in the common case; 2) NUMA-
aware memory management, which keeps most data accesses inside NUMA nodes; 3) a chunk-based steal-
ing approach that decreases the stealing cost and suits NUMA migration schemes; and 4) elegant producer-
based balancing for decreasing the likelihood of stealing.

We have shown that our solution scales linearly with the number of threads. It outperforms other work-
stealing techniques by a factor of 20, and state-of-the art non-FIFO pools by a factor of 3.5. We have further
shown that it is highly robust to imbalances and unexpected thread stalls.

We believe that our general approach of partitioning data structures among threads, along with chunk-
based migration and an efficient synchronization-free fast-path, can be of benefit in building additional
scalable high-performance services in the future.

References

[1] www.facebook.com/notes/facebook-engineering/scalable-memory-
allocation-using-jemalloc/480222803919.

[2] Y. Afek, G. Korland, M. Natanzon, and N. Shavit. Scalable producer-consumer pools based on
elimination-diffraction trees. In Proceedings of the 16th international Euro-Par conference on Par-
allel processing: Part II, Euro-Par’10, pages 151–162, 2010.

[3] Y. Afek, G. Korland, and E. Yanovsky. Quasi-linearizability: Relaxed consistency for improved con-
currency. In Principles of Distributed Systems, Lecture Notes in Computer Science, pages 395–410.

[4] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multiprogrammed multiproces-
sors. In Proceedings of the tenth annual ACM symposium on Parallel algorithms and architectures,
SPAA ’98, pages 119–129, 1998.

[5] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. M. Michael, and M. Vechev. Laws of order:
expensive synchronization in concurrent algorithms cannot be eliminated. pages 487–498, 2011.

[6] D. Basin. Café: Scalable task pools with adjustable fairness and contention. Master’s thesis, Technion,
2011.

[7] D. Basin, R. Fan, I. Keidar, O. Kiselov, and D. Perelman. Café: scalable task pools with adjustable
fairness and contention. In Proceedings of the 25th international conference on Distributed computing,
DISC’11, pages 475–488, 2011.

[8] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova. A case for numa-aware contention man-
agement on multicore systems. In Proceedings of the 2011 USENIX conference on USENIX annual
technical conference, USENIXATC’11, 2011.

[9] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing. J. ACM,
46:720–748, September 1999.

[10] A. Braginsky and E. Petrank. Locality-conscious lock-free linked lists. In Proceedings of the 12th
international conference on Distributed computing and networking, ICDCN’11, pages 107–118, 2011.

25

[11] D. Dice, H. Huang, and H. Yang. Asymmetric dekker synchronization. Technical report, Sun Mi-
crosystems, 2001.

[12] D. Dice, V. J. Marathe, and N. Shavit. Flat-combining numa locks. In Proceedings of the 23rd ACM
symposium on Parallelism in algorithms and architectures, SPAA ’11, 2011.

[13] A. Gidenstam, H. Sundell, and P. Tsigas. Cache-aware lock-free queues for multiple produc-
ers/consumers and weak memory consistency. In Proceedings of the 14th international conference
on Principles of distributed systems, OPODIS’10, pages 302–317, 2010.

[14] D. Hendler, Y. Lev, M. Moir, and N. Shavit. A dynamic-sized nonblocking work stealing deque.
Technical report, 2005.

[15] D. Hendler and N. Shavit. Non-blocking steal-half work queues. In Proceedings of the twenty-first
annual symposium on Principles of distributed computing, PODC ’02, pages 280–289, 2002.

[16] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst., 12:463–492, July 1990.

[17] M. Hoffman, O. Shalev, and N. Shavit. The baskets queue. In Proceedings of the 11th international
conference on Principles of distributed systems, OPODIS’07, pages 401–414, 2007.

[18] E. Ladan-Mozes, I.-T. A. Lee, and D. Vyukov. Location-based memory fences. In Proceedings of the
23rd ACM symposium on Parallelism in algorithms and architectures, SPAA ’11, pages 75–84, 2011.

[19] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
Computers, IEEE Transactions on, pages 690–691, 1979.

[20] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE Trans. Parallel
Distrib. Syst., 15:491–504, June 2004.

[21] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and blocking concurrent
queue algorithms. In Proceedings of the fifteenth annual ACM symposium on Principles of distributed
computing, PODC ’96, pages 267–275, 1996.

[22] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. Using elimination to implement scalable and lock-
free fifo queues. In Proceedings of the seventeenth annual ACM symposium on Parallelism in algo-
rithms and architectures, SPAA ’05, pages 253–262, 2005.

[23] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen. x86-tso: a rigorous and usable
programmer’s model for x86 multiprocessors. Commun. ACM, pages 89–97, 2010.

[24] H. Sundell, A. Gidenstam, M. Papatriantafilou, and P. Tsigas. A lock-free algorithm for concurrent
bags. In Proceedings of the 23rd ACM symposium on Parallelism in algorithms and architectures,
SPAA ’11, pages 335–344, 2011.

26

