

�

Abstract— In the current deep sub-micron age, interconnect

reliability is a subject of major concern, and is crucial for a

successful product. Coding is a widely-used method to achieve

communication reliability, which can be very useful in a

Network-on-Chip (NoC). A key challenge for NoC error

detection is to provide a defined detection level, while

minimizing the number of redundant parity bits, using small

encoder and decoder circuits, and ensuring shortest path

routing.

We present Parity Routing (PaR), a novel method to reduce the

number of redundant bits transmitted. PaR exploits NoC path

diversity to reduce the number of redundant parity bits. Our

analysis shows that, for example, on a 4x4 NoC with a demand

of one parity bit, PaR reduces the redundant information

transmitted by 75%, and the savings increase asymptotically to

100% with the size of the NoC. In addition, we show that PaR

can yield power savings due to the reduced number of bit

transmissions and simple decoding process. Furthermore, PaR

utilizes low complexity, small-area circuits.

I. INTRODUCTION

Modern device scaling results in deep sub micron noises,

which cause interconnect errors to be more dominant and

harder to predict [1,2,3,4,5,6,10,11], and also gives rise to

new error sources [2,3]. The need for efficient low-power

design techniques, along with aggressive voltage scaling and

higher integration make interconnects even more susceptible

to errors [1,6,11]. In this paper, we focus on efficient

solutions for interconnect reliability in the context of

Networks-on-Chip (NoCs).

Traditional designs enhance interconnect reliability at the

physical layer, using worst-case design margins such as

aggressive inter-wire spacing, insertion of repeaters, and

shielding of link wires [5,7,10]. Unfortunately, all these

techniques incur high area and power costs [3,9]. Moreover,

they require knowledge of the circuit layout, thus inflicting

design complexity [3,6]. Furthermore, in novel technologies,

the efficiency of these techniques decreases because

transient errors are becoming harder to predict [10].

A promising alternative to the traditional physical layer

solutions is to add reliability at the data-link layer of the

NoC, using error detection codes, as suggested in [6,11].

Whereas error protection at the physical layer involves

circuit design techniques that rely on specific device

parameters, data link solutions are technology-independent

[6].

Coding methods add redundant parity bits to the packet,

which increase the NoC's cost by requiring either additional

wires or extra transmissions. Our goal is to provide any

desired level of error detection, while reducing the number

of redundant bits, as we specify in Section 2.

In Section 3, we present Parity Routing (PaR), a novel

method for error protection in NoC. The main idea behind

our approach is to take advantage of the multiplicity of

routing paths between nodes. Path diversity was exploited in

the past in order to achieve load-balancing, by routing some

traffic XY and remaining traffic YX [8]. Here, we use it for

the first time for error detection, and achieve better load

balancing as a favorable side effect of this approach. For

example, if one bit error detection is required, then the

traditional approach is to add a single parity bit to the

packet. In PaR, we save the redundant bit by selecting the

routing path according to the parity of the data. As in [6],

errors are detected at every hop: routers along the path can

identify parity errors by observing that the packet is on the

wrong path. We illustrate this in Fig. 1, where a packet is

transferred from a source node, S, to a destination node, D,

on a regular mesh NoC. The data parity determines the

routing path: 0 for XY routing and 1 for YX. In Fig. 1, the

data is 0101, so the parity bit is 0, which indicates XY

routing. While transferring the packet from S to the adjacent

horizontal node (according to XY routing), one error occurs,

changing the data to 0111. At the receiving node, the

calculated parity bit is then 1 which indicates YX routing.

Since the edge the packet arrives on is not on the expected

path, an error is deduced.

A single parity bit can be saved whenever there are more

than two available paths between the source and destination

nodes. However, this may not always be the case if we wish

to employ shortest-path routing: if the source and the

destination nodes share one coordinate (either X or Y) there

is only one shortest routing path. In such cases, PaR adds an

extra parity bit to the packet.

In the general case, where the reliability demand is r

redundant parity bits, we expand this method for error

protection using the multiple routing paths between S and D.

Some of the paths share edges, and therefore we save

redundant bit transmissions on some of the edges within the

routing paths, but not all. We have verified the correctness

of PaR using exhaustive state exploration for all source and

destination pairs on NoC grids of up to 5x5 hops, and

reliability requirements of 1 to 10 parity bits.

In Section 4, we analyze and simulate the saving achieved

by PaR. Our analysis shows that for a reliability demand of

Low-Overhead Error Detection for Networks-on-Chip

Amit Berman and Idit Keidar

Department of Electrical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel

{bermanam@tx, idish@ee}.technion.ac.il

Fig. 1 – Example: bit flip detection.

one redundant parity bit, we save 50% of the redundant bit

transmissions on a 2x2 mesh NoC, and 75% on a 4x4 mesh

NoC. For a reliability demand of 2 parity bits, we save

~40% on 4x4 mesh NoC, and ~60% on an 8x8 mesh NoC.

For any number of desired parity bits, the savings increase

asymptotically to 100% with the size of the network. In

addition, PaR can yield power saving as it saves bit

transmissions and simplifies the error detection decoding

process.

II. GOAL AND DEFINITIONS

We tackle the problem of hop by hop error detection. The

required reliability level is expressed as the number r, of

redundant bits. An externally provided function (or circuit),

parity(data), returns r parity bits for protecting data. Any

parity function can be used, e.g., CRC [4]. We denote the r

redundant parity bits as � � � � � �1 , 2 ,...,p p p r .

A. Problem Definition

Our goal is to design an error detection algorithm, which

reduces the transmission of redundant bits, yet with low

encoder and decoder circuit overheads and a low design

complexity. Consider a packet sent from a source node S to

a destination node D, in a regular mesh NoC. We require

that the routing from S to D will be on one of the shortest

paths. A Coding solution consists of two components, an

encoder and a decoder. The encoder and decoder circuits are

placed at each node, providing hop-by-hop error detection.

We denote the current node where encoding/decoding

occurs as H. The encoder and decoder's functions are

defined as follows:

1. Encoder: Given H, S, D, and the packet's data, the

encoder decides which edge is next on the packet's

routing path, and whether there is a need to add

redundant parity bits to the packet.

2. Decoder: Given H, S, D, the packet, and the

incoming edge, the decoder determines whether an

error had occurred.

The flow of information among the different components is

shown in Fig. 2. We denote concatenation by commas, e.g.,

data,p[1] represents the data with one parity bit appeared at

the end. If pack=data,p[1] then we denote data=pack � p[1].

Fig. 2 – Information flow among encoder,

decoder and parity circuits.

Note that since the encoder determines the routing path,

this approach is applicable for transmission units that carry

the source and destination addresses. In case the NoC

employs wormhole routing [1], typically only the header flit

carries these addresses. In such cases, our scheme can be

used either for the entire packet (with checking at the

destination node) or only for the header flit, which is the

most important flit. For the remainder of this paper, we

simply refer to the protected transmission unit as a packet.

B. Definitions

We now introduce some notations that will be used

throughout the paper.

We denote � �,x yV V V� , where
xV and

yV are the

coordinates of node V in the NoC mesh, counting nodes

from left to right and from top to bottom. For example, the

top-left corner node is (0,0), see Fig. 3.

We use (,)xd U V to denote the vertical distance between

nodes U and V, i.e.,
x xV U� . Similarly, we use (,)yd U V

to denote the horizontal distance between U and V. For

example, in Fig. 3, (,) 1
x

d U V � and (,) 2yd U V � .

For an edge e, the orientation orient(e) is h if e is

horizontal, and v if it is vertical. We define the diagonal

distance, � � � � � �� 	, min , , , 1d x yd U V d U V d U V
� .

Encoder�

Parity

Channel�

data, S, D data, S, D,

data, S, D p[1],…,p[r]

next hop

p[1],…,p[j]

Decoder�

Parity

data, S, D, p[1],…,p[j]

data, S, D p[1],…,p[r]

data, S, D

or error

detection

S

D

Send 0101 Receive 0111

Detect error:

Incorrect routing.

Parity indicates

YX but the

routing is XY.

For example, in Fig. 3, � �, 2
d

d U V � .

Fig. 3 – Node coordinates in a regular mesh.

III. PARITY ROUTING ALGORITHM

In this section, we develop the PaR algorithm. For clarity

of the exposition, we first present the special case of a

reliability demand of one parity bit, called PaR-1, and then

expand the algorithm for r redundant parity bits.

A. PaR-1: One-bit Error Protection

Consider the case of a reliability demand of one bit error

detection. We use the given parity function to calculate the

parity bit of the packet. If the parity bit is 0, PaR-1 routes

the packet XY, and in case the parity bit is 1, the routing is

YX, as shown in Fig. 4. If S and D are located on the same

row or column, then the parity bit is sent along with the

packet.

The pseudo-code of PaR-1 encoder is shown in Fig. 5.

Fig. 4 – PaR-1 concept.

(1) PaR-1_Encode (H, S, D, data)

(2) if ()H D� then return data, no next hop

(3) next_hop � next hop on XY route to D

(4) packet � data

(5) p[1] � parity(data, S, D)

(6) if
x x

S D� or
y yS D� then packet � data,p[1]

(7) else if p[1] = 1 then next_hop�next hop on YX to D

(8) return packet, next_hop

Fig. 5 – PaR-1 encoder pseudo-code.

The pseudo-code of PaR-1 decoder is shown in Fig. 6.

(1) PaR-1_Decode (S, D, packet, incoming_edge)

(2) error_detected � false

(3) p[1] � extract p[1] from packet

(4) data � extract data from packet

(5) if [1]p �� then

 /* parity bit was received with the packet */

(6) newp[1] � parity(data, S, D)

(7) if newp[1]� p[1] or (
x xS D� and

y yS D�)

 then error_detected � true

(8) else

(9) expected_routing � parity(data, S, D)=0 ?

 XY : YX

(10) path � edges_on_path(S, D, expected_routing)

(11) if (incoming_edge
 path)

 or (
x xS D� or

y yS D�)

 then error_detected � true

Fig. 6 – PaR-1 decoder pseudo-code.

The property that allows us to detect the parity bits

according to the routing path is the fact that the XY and YX

paths between every S and D that do not share a coordinate

are edge-disjoint.

B. PaR-r: r-bit Error Protection

Generally speaking, in order to provide a detection level

of r-parity bits without sending redundant bits, we need to

distinguish between 2r edge-disjoint routing paths. Since

there are at most 2 edge-disjoint paths between every pair of

nodes, PaR-r strives to achieve disjointedness on as many

edges as possible, by choosing paths with minimal overlap.

For example, in Fig. 7, we see an example of the 2r
 routing

paths PaR-r uses between S and D for the different values of

the r parity bits.

First, note that there aren’t always 2r different shortest

paths: if S and D are close to each other, there are fewer

paths. In case S and D are sufficiently far from each other,

the 2r routing paths constructed according to the value of

the parity bits as a binary number, ParVal, as follows (see

Fig. 7): The paths for 0 and 2 1r � are XY and YX routing

from S to D respectively. All other paths go through U1, the

next node on the diagonal from S towards D. From there, if

ParVal equals to the distance on the y-axis from U1 to the

source, i.e. (1,)yd U S ParVal� , then the routing is XY to

the diagonal node of D at distance ParVal from D towards S,

V1. If ParVal equals the distance on the y-axis from U1 to

the destination, i.e. (1,)yd U D , then the routing is YX to V1.

Likewise, ParVal values of 2 and 2 2r � are routed through

U2 and the node V2, and so on.

Fig. 8 shows the PaR-r encoder's pseudo code.

Parity 0

XY Routing

Parity 1

YX Routing

S

D

U

V

 (1,1) (2,1)�

 (2,2)�

 (2,0)�

 (1,2)� (0,2)�

 (0,1)�

 (1,0)� (0,0)�

Fig. 7 – The 2r routing paths for r parity bits.

(1) PaR-r_Encode(H,S,D,data)

(2) p[1]…p[r] � parity(data,S,D)

(3) ParVal � bin2dec(p[1],...,p[r])

(4) packet � S,D,data

(5) if ()H D� then return data, no next hop

(6) if ((,))yd H S ParVal� or

 � (,)
x

d H D ParVal� and �(,) (,)
x x

d H D d H S�

 then next_hop � next hop on XY route to diagonal

 node with the same distance from D

(7) else if � �� �, 2 1r

x
d H S ParVal� � � or

 � �� , 2 1r

y
d H D ParVal� � � and

 �(,) (,)
y y

d H D d H S�

 then next_hop � next hop on YX route to diagonal

 node with the same distance from D

(8) else

(9) packet � S,D,data,p[2],p[3]…p[r]

(10) next_hop � next hop according to PaR-1_Encode

 placing D as the diagonal node from H to D

(11) return packet, next_hop

Fig. 8 – PaR-r encoder pseudo code.

Fig. 9 shows the PaR-r decoder's pseudo code.

If one parity bit is missing (i.e., r-1 are sent with the

packet), then H should be either on the same diagonal with

S, or one hop away from such a diagonal, or on the same

row or column with S or D. In the first case, the missing

parity bit is 0 in case a message arrives on a vertical edge,

and otherwise it is 1. In the second and third cases, it is 0 for

a horizontal edge, and 1 otherwise (see paths in Fig. 8). If

additional bits are missing, then they are deduced from the

(1) PaR-r_Decode(H,S,D,packet,incoming_edge)

 /* First get the parity bits arrived with the data */

(2) p[1]…p[r] � extract p[1]…p[r] from packet

(3) data � extract data from packet

 /* if one parity bit is missing */

(4) if � �p 1 �� then

(5) p[1] � decode p[1] according to PaR-1_decode

 placing S and D as the nearest main diagonal

 nodes between S and D

(6) else if � � � �p 1 p r� �� then

(7) if orient(incoming_edge)=h then

 p[1]…p[r]� dec2bin((,)yd H S)

(8) else p[1]…p[r]� dec2bin((,)xd H D)

(9) if parity(data, S, D) � p[1]…p[r] then return error

Fig. 9 – PaR-r decoder pseudo code.

distance on the Y axis to S for a horizontal edge, or from the

the distance on the X axis to D for a vertical edge. When

more then one parity bit is missing in the packet then the

missing parity bits are deduced according to the binary

representation of the distance from H or to S or the distance

from H to D, according to the orientation of the incoming

edge. When all parity bits had been decoded, we compare

them to the parity bits which are calculated from the

received data using the given parity(data) function. In case

of mismatch between the parity bits, we detect an error.

IV. ANALYSIS

PaR achieves savings in two elements: first, it saves

network traffic and interconnects dynamic power due to the

reduced redundant bit transmission, and second, it saves

dynamic power by avoiding the need to operate the original

error protection decoder block (which is likely to grow with

exponential complexity while the growth of the parity bits

number is linear). We now analyze the savings in redundant

bits transmission. We begin, in Section 4.1, by analyzing

PaR-1, and then generalize the analysis to PaR-r in Section

4.2. Finally, we present an example of the power reduction

archived by PaR-1 in Section 4.3.

For simplicity, our analysis assumes a uniform traffic

model, where an equal number of messages are transmitted

between all source-destination pairs. We measure the

percentage of redundant bit transmissions on an edge-by-

edge basis. For example, if a parity bit is sent on two edges

in a four-hop path, the savings on this path are 50%. We

analyze the average savings over all paths.

A. PaR-1 Analysis

Consider an NxM regular NoC mesh with NM nodes. The

number of potential source-destination (S-D) pairs in the

NoC is NM(NM-1). Each of the NM nodes has N-1

potential destinations that share the Y coordinate with it.

Thus, there are (N-1)NM S-D pairs that share this

S

D

U1

U2

V2

V1

0…0 path (0)

0…01 path (1)

1…1 path (2 1r �)

1…10 path (2 2r �)

0…010 path (2)

1…101 path (2 3r �)

coordinate. Similarly, there are (M-1)NM S-D pairs that

share the X coordinate. The number of S-D pairs between

which the transmission of the parity bit is saved is:

(1) (1) (1)NM NM N NM M NM� � � � � �

(1)NM N M NM� �

We next compute the percentage of savings in terms of

edges. The average path length when S and D share the Y

coordinate is
2

N . In a similar way, the average path length

when S and D share x coordinate is
2

M . When S and D are

not on same axis, the average path length is
2 2

N M

 . Denote

by � �1 ,CR N M the percentage of edges on the paths between

all the S-D pairs for which the redundant bit is not sent by

PaR-1, on an NxM NoC mesh. We get:

� � � �
� � � � � �� �1

1 1
(,) 1

1 1 1

N N M M
CR N M

N N M M NM N M N M

�
 �
� �

�
 �
 � �

In case the network is symmetric, i.e., N=M, we get:

� �
� � � �1 2

2 1 1
(,) 1

2 1 2 1

N N N
CR N N

NN N N N

� �
� � �

�
 �

For example, in case of a 4x4 network, the cost reduction

is 75% of the redundancy bits. We observe that as we

increase the network (in both dimensions equally) the
1CR

grows to 100%:

1lim (,) 1
N

CR N N
��

�

Similarly, for rectangles with any constant ratio, � ,

between the width and length, where M N�� this

observation is also valid.

In order to show this, we simplify the analysis and prove

that the percentage of paths on which no parity bits are sent

is asymptotically zero. Since these paths are, on average,

shorter than paths where parity bits are sent (as shown

above), this simpler result implies that the savings increase

asymptotically to 100%. We observe that the percentage

of pairs for which we save the redundant bit transmissions

is:

1lim (,) 1
N

CR N N�
��

�

B. PaR-r Analysis

We now analyze the general case of r parity bits, PaR-r.

Consider an NxM NoC, a reliability demand of r redundant

bits, and two given nodes S and D. Without using the PaR

algorithm, we have to transmit r redundant parity bits on all

edges in the path, that is, on � � � �, ,x yd S D d S D
 edges.

Assume that PaR-r can transmit the packet without the

redundant r parity bits, i.e., � �� �2log ,dd S D r� � �� �
. According

to the PaR-r algorithm, the amount of redundant parity bits

depends on the value of the parity bits (ParVal). There are 2

routing paths (0 and 2 1r �) on which no redundant bits are

sent on any edge. There are 2 routing paths (1 and 2 2r �)

on which there are r � 1 redundant bits sent on 4 edges. For

ParVals of 2 and 2 3r � , there are (r � 1) redundant parity

bits transmitted on 8 edges (first 4 from S and last 4 to D)

and so on, until (r � 1) redundant parity bits are transmitted

for a ParVal of � �2 1r � . Assuming that ParVal is distributed

uniformly, the average redundant parity bits transmitted

from S to D is therefore:

� �
� �

� � � �� �
2 0 4 ... 4 2 1

1
2 , ,

r

r

x y

r
d S D d S D

� �

 �� �� �

� �� �
� � � �

12 1 2 1

, ,

r

x y

r

d S D d S D

�� � �

It is easy to see, that as the NoC grows, the percentage

of S-D pairs for which PaR-r can choose 2r paths

asymptotically grows to 100%. For such pairs, the average

value of the denominator in the equation above (averaging

over all relevant S-D pairs) grows to infinity with the NoC

size, while the nominator remains constant. Hence, the

percentage of parity bits actually transmitted goes

asymptotically to zero. In other word, for any constant r, the

savings of PaR-r grow asymptotically to 100% with the size

of the NoC.

To compute the average savings percentage in a given

NoC, we ran a numeric computation, which iterates over all

S-D pairs, and sums the savings, and then divides them by

the number of pairs. The results for different r requirements

are shown in Fig. 10.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mesh length and width, N

%
 r

e
d

u
c

ti
o

n
 i

n
 p

a
ri

ty
 b

it
s

 t
ra

n
s

m
is

s
io

n
s

PaR-1

PaR-2

PaR-3

Fig. 10 – PaR cost reduction. If only one redundant bit is required, its

transmission is saved 80-90% of the time, even in small NoCs. For 2 parity

bits, savings are over 50%, (more than one bit), and for 3 bits, more than

30% on small NoCs.

C. Power Reduction Example

We demonstrate the power saving achieved by PaR-1

with NxN regular mesh NoC with 5mm long, 8-bit width

links. Hardware design is implemented on 0.18� TOWER

process, and synthesized by Synopsis's design compiler.

Interconnect power consumption is measured by SPICE

model, assume random data and traffic patterns.

Measurements of the redundant bits switching power,

along with the parity circuits' power and PaR circuits' power

are referred as power consumption and shown at Fig. 11.

The measurements were made on 2x2, 3x3 and 4x4 regular

mesh NoCs. We can observe increased power saving with

the size of the NoC. We expect the savings to grow as more

parity bits are used because of less redundant network traffic

as well as avoiding the need to use more complex error

protection decoders.

2 3 4
2

3

4

5

6

7

8

9

10

11

12

mesh length and width, N

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 [

u
W

]

without PaR

with PaR-1

Fig. 11 – Example: PaR-1 power reduction. For 2x2 NoC, the encoder and

decoder blocks overhead do not compensate for the power reduction

achieved by the reduced redundant bits traffic. For 3x3 NoC, savings are

over 25%, and for 3x3 NoC, more than 35%.

V. CONCLUSIONS

Achieving interconnect reliability is already a difficult

task facing chip designers and manufacturers today, and can

be anticipated to become an even more serious problem in

years to come. A key challenge in this context is providing

high reliability at a low power cost. While error detection

codes provide a promising approach towards achieving

reliability, they do expend additional power in redundant bit

transmissions. In this paper, we have tackled the problem of

ensuring error detection, while reducing the need for

redundant transmissions.

We presented PaR – parity routing, a low-overhead error

detection solution for networks on chip. PaR can be used to

provide any predefined error protection requirement.

It exploits NoC path diversity, and selects routing paths

based on parity bits. It thus saves actual transmissions of

these bits, along with the associated power penalty. PaR

uses simple, low-complexity encoding and decoding

circuits. We have analyzed the savings achieved by PaR,

and have shown that it yields significant savings even on

small NoCs, (for example, saving 75% of redundant bit

transmissions on a 4x4 NoC mesh), and its savings

asymptotically converge to 100% with the size of the NoC.

We showed that PaR can yield power savings (for example,

saving 35% of redundant power consumption on a 3x3 NoC

mesh NoC).

We believe that our novel parity routing approach opens

interesting opportunities that may be explored in future

work. One such interesting future direction is related to wire

(capacity) allocation. By eliminating the need to transmit

redundant parity bits most of the time, PaR may allow for

wire reductions in NoC design. For example, if a parity bit is

sent with every packet, the NoC designer is likely to add a

wire for parity bits to all the links in the NoC. On the other

hand, if less than 20% of transmissions carry redundant bits

(as occurs, e.g., with PaR-1 on a 6x6 NoC), then it might be

more cost-effective not to add a parity wire, and transmit the

parity bit after the data when needed. A study of the optimal

wire allocation for NoCs that use PaR is an interesting topic

for future research. Beyond this example, another interesting

question for future research is how to extend the PaR

approach to also allow for error correction. Though in

current day VLSI technology the bit error rates render error

detection and retransmission more power-efficient than error

correction [2], this situation may change in future

technologies, where one may therefore wish to employ error

correction.

REFERENCES

[1] A. Dutta and N. A. Touba, "Reliable Network-on-Chip Using a Low

Cost Unequal Error Protection Code", 22nd IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems, 2007,

pp. 3-11.

[2] G. Micheli, L. Benini, "Networks on Chips – Technology and Tools",

Morgan Kaufmann Publishers 2006, pp. 75-139.

[3] A. Mogenshtein, E. Bolotim, I. Cidon, A. Kolodny, R. Ginosar,

"Micro Modem – Reliability Solution For NoC Communications",

ICECS 2004, pp. 483-486.

[4] S. Murali, T. Theocharides, N. Vijaykrishnan, M.J Irwin, L. Benini, G.

Micheli, "Analysis of Error Recovery Schemes for Networks on

Chips", IEEE Design&Test of Computers 2005, pp. 434-442.

[5] M. Mutyam, "Selective shielding: A Crosstalk-Free Bus Encoding

Technique", IEEE ICCAD 2007, pp.618-621.

[6] J. Nurmi, H. Tenhunen, J. Isoaho, A. Jantsch, "Interconnect-Centric

Design for Advanced SOC and NOC", Kluwer Academic Publishers

2004, pp. 155-170.

[7] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, C.R. Das,

"Exploring Fault-Tolerant NoC Architectures", IEEE DSN 2006, pp.

93-104.

[8] B. Towles and W.J. Dally, "Worst-case Traffic for Oblivious Routing

Functions", Computer Architecture Letters, February 2002.

[9] A. Vitkovski, R. Haukilahti, A. Jantsch, E. Nilsson, "Low Power and

Error Coding for Network-on-Chip Traffic", Norchip Conference

Proc., 2004, pp. 20-23.

[10] P. Vellanki, N. Banerjee, K.S. Chatha, "Quality-of-Service and Error

Control Techniques for Mesh-Based Network-on-Chip Architectures",

Integration 2005, pp. 353-382.

[11] H. Zimmer, A. Jantsch, "Fault Model Notation and Error Control

Scheme for Switch to Switch buses on NoC", CODES ISSS 2003, pp.

188-193.

