
  

� 

Abstract— In the current deep sub-micron age, interconnect 

reliability is a subject of major concern, and is crucial for a 

successful product. Coding is a widely-used method to achieve 

communication reliability, which can be very useful in a 

Network-on-Chip (NoC). A key challenge for NoC error 

detection is to provide a defined detection level, while 

minimizing the number of redundant parity bits, using small 

encoder and decoder circuits, and ensuring shortest path 

routing. 

We present Parity Routing (PaR), a novel method to reduce the 

number of redundant bits transmitted. PaR exploits NoC path 

diversity to reduce the number of redundant parity bits. Our 

analysis shows that, for example, on a 4x4 NoC with a demand 

of one parity bit, PaR reduces the redundant information 

transmitted by 75%, and the savings increase asymptotically to 

100% with the size of the NoC. In addition, we show that PaR 

can yield power savings due to the reduced number of bit 

transmissions and simple decoding process. Furthermore, PaR 

utilizes low complexity, small-area circuits. 

I. INTRODUCTION 

Modern device scaling results in deep sub micron noises, 

which cause interconnect errors to be more dominant and 

harder to predict [1,2,3,4,5,6,10,11], and also gives rise to 

new  error sources [2,3]. The need for efficient low-power 

design techniques, along with aggressive voltage scaling and 

higher integration make interconnects even more susceptible 

to errors [1,6,11]. In this paper, we focus on efficient 

solutions for interconnect reliability in the context of 

Networks-on-Chip (NoCs). 

Traditional designs enhance interconnect reliability at the 

physical layer, using worst-case design margins such as 

aggressive inter-wire spacing, insertion of repeaters, and 

shielding of link wires [5,7,10]. Unfortunately, all these 

techniques incur high area and power costs [3,9]. Moreover, 

they require knowledge of the circuit layout, thus inflicting 

design complexity [3,6]. Furthermore, in novel technologies, 

the efficiency of these techniques decreases because 

transient errors are becoming harder to predict [10]. 

A promising alternative to the traditional physical layer 

solutions is to add reliability at the data-link layer of the 

NoC, using error detection codes, as suggested in [6,11]. 

Whereas error protection at the physical layer involves 

circuit design techniques that rely on specific device 

parameters, data link solutions are technology-independent 

[6]. 

Coding methods add redundant parity bits to the packet, 

which increase the NoC's cost by requiring either additional 

wires or extra transmissions. Our goal is to provide any 

desired level of error detection, while reducing the number 

of redundant bits, as we specify in Section 2. 

In Section 3, we present Parity Routing (PaR), a novel 

method for error protection in NoC. The main idea behind 

our approach is to take advantage of the multiplicity of 

routing paths between nodes. Path diversity was exploited in 

the past in order to achieve load-balancing, by routing some 

traffic XY and remaining traffic YX [8]. Here, we use it for 

the first time for error detection, and achieve better load 

balancing as a favorable side effect of this approach.  For 

example, if one bit error detection is required, then the 

traditional approach is to add a single parity bit to the 

packet. In PaR, we save the redundant bit by selecting the 

routing path according to the parity of the data. As in [6], 

errors are detected at every hop: routers along the path can 

identify parity errors by observing that the packet is on the 

wrong path. We illustrate this in Fig. 1, where a packet is 

transferred from a source node, S, to a destination node, D, 

on a regular mesh NoC. The data parity determines the 

routing path: 0 for XY routing and 1 for YX. In Fig. 1, the 

data is 0101, so the parity bit is 0, which indicates XY 

routing. While transferring the packet from S to the adjacent 

horizontal node (according to XY routing), one error occurs, 

changing the data to 0111. At the receiving node, the 

calculated parity bit is then 1 which indicates YX routing. 

Since the edge the packet arrives on is not on the expected 

path, an error is deduced.  

A single parity bit can be saved whenever there are more 

than two available paths between the source and destination 

nodes. However, this may not always be the case if we wish 

to employ shortest-path routing: if the source and the 

destination nodes share one coordinate (either X or Y) there 

is only one shortest routing path. In such cases, PaR adds an 

extra parity bit to the packet. 

In the general case, where the reliability demand is r 

redundant parity bits, we expand this method for error 

protection using the multiple routing paths between S and D. 

Some of the paths share edges, and therefore we save 

redundant bit transmissions on some of the edges within the 

routing paths, but not all. We have verified the correctness 

of PaR using exhaustive state exploration for all source and 

destination pairs on NoC grids of up to 5x5 hops, and 

reliability requirements of 1 to 10 parity bits. 

In Section 4, we analyze and simulate the saving achieved 

by PaR. Our analysis shows that for a reliability demand of  
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Fig. 1 – Example: bit flip detection. 

 

one redundant parity bit, we save 50% of the redundant bit 

transmissions on a 2x2 mesh NoC, and 75% on a 4x4 mesh 

NoC. For a reliability demand of 2 parity bits, we save 

~40% on 4x4 mesh NoC, and ~60% on an 8x8 mesh NoC. 

For any number of desired parity bits, the savings increase 

asymptotically to 100% with the size of the network. In 

addition, PaR can yield power saving as it saves bit 

transmissions and simplifies the error detection decoding 

process. 

II. GOAL AND DEFINITIONS 

We tackle the problem of hop by hop error detection. The 

required reliability level is expressed as the number r, of 

redundant bits. An externally provided function (or circuit), 

parity(data), returns r parity bits for protecting data. Any 

parity function can be used, e.g., CRC [4]. We denote the r 

redundant parity bits as � � � � � �1 , 2 ,...,p p p r . 

A. Problem Definition 

Our goal is to design an error detection algorithm, which 

reduces the transmission of redundant bits, yet with low 

encoder and decoder circuit overheads and a low design 

complexity. Consider a packet sent from a source node S to 

a destination node D, in a regular mesh NoC. We require 

that the routing from S to D will be on one of the shortest 

paths. A Coding solution consists of two components, an 

encoder and a decoder. The encoder and decoder circuits are 

placed at each node, providing hop-by-hop error detection. 

We denote the current node where encoding/decoding 

occurs as H. The encoder and decoder's functions are 

defined as follows: 

1. Encoder: Given H, S, D, and the packet's data, the 

encoder decides which edge is next on the packet's 

routing path, and whether there is a need to add 

redundant parity bits to the packet. 

2. Decoder: Given H, S, D, the packet, and the 

incoming edge, the decoder determines whether an 

error had occurred. 

The flow of information among the different components is 

shown in Fig. 2. We denote concatenation by commas, e.g., 

data,p[1] represents the data with one parity bit appeared at 

the end. If pack=data,p[1] then we denote data=pack � p[1]. 

 

 
Fig. 2 – Information flow among encoder, 

decoder and parity circuits. 

 

Note that since the encoder determines the routing path, 

this approach is applicable for transmission units that carry 

the source and destination addresses. In case the NoC 

employs wormhole routing [1], typically only the header flit 

carries these addresses. In such cases, our scheme can be 

used either for the entire packet (with checking at the 

destination node) or only for the header flit, which is the 

most important flit. For the remainder of this paper, we 

simply refer to the protected transmission unit as a packet. 

B. Definitions 

We now introduce some notations that will be used 

throughout the paper. 

We denote � �,x yV V V� , where 
xV  and 

yV  are the 

coordinates of node V in the NoC mesh, counting nodes 

from left to right and from top to bottom. For example, the 

top-left corner node is (0,0), see Fig. 3. 

We use ( , )xd U V  to denote the vertical distance between 

nodes U and V, i.e., 
x xV U� . Similarly, we use ( , )yd U V  

to denote the horizontal distance between U and V. For 

example, in Fig. 3, ( , ) 1
x

d U V �  and ( , ) 2yd U V � . 

For an edge e, the orientation orient(e) is h if e is 

horizontal, and v if it is vertical. We define the diagonal 

distance, � � � � � �� 	, min , , , 1d x yd U V d U V d U V 
� . 

Encoder� 

Parity 

Channel� 

data, S, D data, S, D, 

data, S, D p[1],…,p[r] 

 

next hop 

p[1],…,p[j] 

 

Decoder� 

Parity 

data, S, D, p[1],…,p[j] 

 

data, S, D p[1],…,p[r] 

 

data, S, D 

or error 

detection 

S 

 

D 

Send 0101  Receive 0111    

Detect error: 

Incorrect routing. 

Parity indicates 

YX but the 

routing is XY. 



  

For example, in Fig. 3, � �, 2
d

d U V � . 

 
Fig. 3 – Node coordinates in a regular mesh. 

III. PARITY ROUTING ALGORITHM 

In this section, we develop the PaR algorithm. For clarity 

of the exposition, we first present the special case of a 

reliability demand of one parity bit, called PaR-1, and then 

expand the algorithm for r redundant parity bits. 

A. PaR-1: One-bit Error Protection 

Consider the case of a reliability demand of one bit error 

detection. We use the given parity function to calculate the 

parity bit of the packet. If the parity bit is 0, PaR-1 routes 

the packet XY, and in case the parity bit is 1, the routing is 

YX, as shown in Fig. 4. If S and D are located on the same 

row or column, then the parity bit is sent along with the 

packet.  

The pseudo-code of PaR-1 encoder is shown in Fig. 5. 

 
Fig. 4 – PaR-1 concept. 

 

(1) PaR-1_Encode (H, S, D, data) 

(2)   if ( )H D�  then return data, no next hop 

(3)   next_hop � next hop on XY route to D 

(4)   packet � data 

(5)   p[1] � parity(data, S, D) 

(6)   if 
x x

S D�  or 
y yS D�  then packet � data,p[1] 

(7)   else if p[1] = 1 then next_hop�next hop on YX to D 

(8)   return packet, next_hop 
 

Fig. 5 – PaR-1 encoder pseudo-code. 

The pseudo-code of PaR-1 decoder is shown in Fig. 6. 

 

(1) PaR-1_Decode (S, D, packet, incoming_edge) 

(2)   error_detected � false 

(3)   p[1] � extract p[1] from packet 

(4)   data � extract data from packet 

(5)   if [1]p ��  then  

                 /* parity bit was received with the packet */ 

(6)             newp[1] � parity(data, S, D)  

(7)             if newp[1]� p[1] or (
x xS D�  and 

y yS D� ) 

                     then error_detected � true 

(8)   else 

(9)            expected_routing � parity(data, S, D)=0 ? 

                                                  XY : YX 

(10)          path � edges_on_path(S, D, expected_routing) 

(11)          if (incoming_edge 
  path)  

               or (
x xS D�  or 

y yS D� )  

                     then error_detected � true 
 

Fig. 6 – PaR-1 decoder pseudo-code. 

 

The property that allows us to detect the parity bits 

according to the routing path is the fact that the XY and YX 

paths between every S and D that do not share a coordinate 

are edge-disjoint.  

B. PaR-r: r-bit Error Protection 

Generally speaking, in order to provide a detection level 

of r-parity bits without sending redundant bits, we need to 

distinguish between 2r  edge-disjoint routing paths. Since 

there are at most 2 edge-disjoint paths between every pair of 

nodes, PaR-r strives to achieve disjointedness on as many 

edges as possible, by choosing paths with minimal overlap. 

For example, in Fig. 7, we see an example of the 2r
 routing 

paths PaR-r uses between S and D for the different values of 

the r parity bits. 

First, note that there aren’t always 2r  different shortest 

paths: if S and D are close to each other, there are fewer 

paths. In case S and D are sufficiently far from each other, 

the 2r  routing paths constructed according to the value of 

the parity bits as a binary number, ParVal, as follows (see 

Fig. 7): The paths for 0 and 2 1r �  are XY and YX routing 

from S to D respectively. All other paths go through U1, the 

next node on the diagonal from S towards D. From there, if 

ParVal equals to the distance on the y-axis from U1 to the 

source, i.e. ( 1, )yd U S ParVal� , then the routing is XY to 

the diagonal node of D at distance ParVal from D towards S, 

V1. If ParVal equals the distance on the y-axis from U1 to 

the destination, i.e. ( 1, )yd U D , then the routing is YX to V1. 

Likewise, ParVal values of 2 and 2 2r �  are routed through 

U2 and the node V2, and so on. 

Fig. 8 shows the PaR-r encoder's pseudo code.  
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Fig. 7 – The 2r  routing paths for r parity bits. 

 

(1) PaR-r_Encode(H,S,D,data) 

(2)   p[1]…p[r] � parity(data,S,D) 

(3)   ParVal � bin2dec(p[1],...,p[r]) 

(4)   packet � S,D,data 

(5)   if ( )H D�  then return data, no next hop 

(6)   if  ( ( , ) )yd H S ParVal�  or     

  � ( , )
x

d H D ParVal�  and �( , ) ( , )
x x

d H D d H S�  

    then next_hop � next hop on XY route to diagonal  

          node with the same distance from D 

(7)   else if � �� �, 2 1r

x
d H S ParVal� � �  or  

  � �� , 2 1r

y
d H D ParVal� � �  and  

   �( , ) ( , )
y y

d H D d H S�  

    then next_hop � next hop on YX route to diagonal  

 node with the same distance from D 

(8)   else  

(9)     packet � S,D,data,p[2],p[3]…p[r] 

(10)   next_hop � next hop according to PaR-1_Encode   

       placing D as the diagonal node from H to D 

(11)   return packet, next_hop 
 

Fig. 8 – PaR-r encoder pseudo code. 

 

Fig. 9 shows the PaR-r decoder's pseudo code.  

If one parity bit is missing (i.e., r-1 are sent with the 

packet), then H should be either on the same diagonal with 

S, or one hop away from such a diagonal, or on the same 

row or column with S or D. In the first case, the missing 

parity bit is 0 in case a message arrives on a vertical edge, 

and otherwise it is 1. In the second and third cases, it is 0 for 

a horizontal edge, and 1 otherwise (see paths in Fig. 8). If 

additional bits are missing, then they are deduced from the  

(1) PaR-r_Decode(H,S,D,packet,incoming_edge) 

        /* First get the parity bits arrived with the data */  

(2)   p[1]…p[r] � extract p[1]…p[r] from packet 

(3)   data � extract data from packet  

    /* if one parity bit is missing */ 

(4)   if � �p 1 ��  then  

(5)     p[1] � decode p[1] according to PaR-1_decode  

  placing S and D as the nearest main diagonal  

  nodes between S and D 

(6)   else if � � � �p 1 p r� ��  then   

(7)     if orient(incoming_edge)=h then  

            p[1]…p[r]� dec2bin( ( , )yd H S ) 

(8)     else p[1]…p[r]� dec2bin( ( , )xd H D ) 

(9)   if parity(data, S, D) � p[1]…p[r] then return error 
 

Fig. 9 – PaR-r decoder pseudo code. 

 

distance on the Y axis to S for a horizontal edge, or from the 

the distance on the X axis to D for a vertical edge. When 

more then one parity bit is missing in the packet then the 

missing parity bits are deduced according to the binary 

representation of the distance from H or to S or the distance 

from H to D, according to the orientation of the incoming 

edge. When all parity bits had been decoded, we compare 

them to the parity bits which are calculated from the 

received data using the given parity(data) function. In case 

of mismatch between the parity bits, we detect an error. 

IV. ANALYSIS 

PaR achieves savings in two elements: first, it saves 

network traffic and interconnects dynamic power due to the 

reduced redundant bit transmission, and second, it saves 

dynamic power by avoiding the need to operate the original 

error protection decoder block (which is likely to grow with 

exponential complexity while the growth of the parity bits 

number is linear). We now analyze the savings in redundant 

bits transmission. We begin, in Section 4.1, by analyzing 

PaR-1, and then generalize the analysis to PaR-r in Section 

4.2. Finally, we present an example of the power reduction 

archived by PaR-1 in Section 4.3. 

For simplicity, our analysis assumes a uniform traffic 

model, where an equal number of messages are transmitted 

between all source-destination pairs. We measure the 

percentage of redundant bit transmissions on an edge-by-

edge basis. For example, if a parity bit is sent on two edges 

in a four-hop path, the savings on this path are 50%. We 

analyze the average savings over all paths. 

A. PaR-1 Analysis 

Consider an NxM regular NoC mesh with NM nodes. The 

number of potential source-destination (S-D) pairs in the 

NoC is NM(NM-1). Each of the NM nodes has N-1 

potential destinations that share the Y coordinate with it. 

Thus, there are (N-1)NM S-D pairs that share this 

S 

D 

U1 

U2 

V2 

V1 

0…0 path (0) 

0…01 path (1) 

1…1 path ( 2 1r � ) 

1…10 path ( 2 2r � ) 

0…010 path (2) 

1…101 path ( 2 3r � ) 

 



  

coordinate. Similarly, there are (M-1)NM S-D pairs that 

share the X coordinate. The number of S-D pairs between 

which the transmission of the parity bit is saved is: 

 

( 1) ( 1) ( 1)NM NM N NM M NM� � � � � �  

( 1)NM N M NM� � 
  

 

We next compute the percentage of savings in terms of 

edges. The average path length when S and D share the Y 

coordinate is 
2

N . In a similar way, the average path length 

when S and D share x coordinate is 
2

M . When S and D are 

not on same axis, the average path length is 
2 2

N M

 . Denote 

by � �1 ,CR N M  the percentage of edges on the paths between 

all the S-D pairs for which the redundant bit is not sent by 

PaR-1, on an NxM NoC mesh. We get:  

 

� � � �
� � � � � �� �1

1 1
( , ) 1

1 1 1

N N M M
CR N M

N N M M NM N M N M

� 
 �
� �

� 
 � 
 � � 
 

 

 

In case the network is symmetric, i.e., N=M, we get: 

 

� �
� � � �1 2

2 1 1
( , ) 1

2 1 2 1

N N N
CR N N

NN N N N

� �
� � �

� 
 �
 

 

For example, in case of a 4x4 network, the cost reduction 

is 75% of the redundancy bits. We observe that as we 

increase the network (in both dimensions equally) the 
1CR  

grows to 100%: 

 

1lim ( , ) 1
N

CR N N
��

�  

 

Similarly, for rectangles with any constant ratio, � , 

between the width and length, where M N��  this 

observation is also valid.  

In order to show this, we simplify the analysis and prove 

that the percentage of paths on which no parity bits are sent 

is asymptotically zero. Since these paths are, on average, 

shorter than paths where parity bits are sent (as shown 

above), this simpler result implies that the savings increase 

asymptotically to 100%. We observe that the percentage 

of pairs for which we save the redundant bit transmissions 

is: 

1lim ( , ) 1
N

CR N N�
��

�  

B. PaR-r Analysis 

We now analyze the general case of r parity bits, PaR-r. 

Consider an NxM NoC, a reliability demand of r redundant 

bits, and two given nodes S and D. Without using the PaR 

algorithm, we have to transmit r redundant parity bits on all 

edges in the path, that is, on  � � � �, ,x yd S D d S D
  edges. 

Assume that PaR-r can transmit the packet without the 

redundant r parity bits, i.e., � �� �2log ,dd S D r� � �� �
. According 

to the PaR-r algorithm, the amount of redundant parity bits 

depends on the value of the parity bits (ParVal). There are 2 

routing paths (0 and 2 1r � ) on which no redundant bits are 

sent on any edge. There are 2 routing paths (1 and 2 2r � ) 

on which there are r � 1 redundant bits sent on 4 edges. For 

ParVals of 2 and 2 3r � , there are (r � 1) redundant parity 

bits transmitted on 8 edges (first 4 from S and last 4 to D) 

and so on, until (r � 1) redundant parity bits are transmitted 

for a ParVal of � �2 1r � . Assuming that ParVal is distributed 

uniformly, the average redundant parity bits transmitted 

from S to D is therefore: 

 

� �
� �

� � � �� �
2 0 4 ... 4 2 1

1
2 , ,

r

r

x y

r
d S D d S D

� �
 
 
 �� �� �



� �� �
� � � �

12 1 2 1

, ,

r

x y

r

d S D d S D

�� � �



 

 

It is easy to see, that as the NoC grows, the percentage 

of S-D pairs for which PaR-r can choose 2r  paths 

asymptotically grows to 100%. For such pairs, the average 

value of the denominator in the equation above (averaging 

over all relevant S-D pairs) grows to infinity with the NoC 

size, while the nominator remains constant. Hence, the 

percentage of parity bits actually transmitted goes 

asymptotically to zero. In other word, for any constant r, the 

savings of PaR-r grow asymptotically to 100% with the size 

of the NoC. 

To compute the average savings percentage in a given 

NoC, we ran a numeric computation, which iterates over all 

S-D pairs, and sums the savings, and then divides them by 

the number of pairs. The results for different r requirements 

are shown in Fig. 10. 
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Fig. 10 – PaR cost reduction. If only one redundant bit is required, its 

transmission is saved 80-90% of the time, even in small NoCs. For 2 parity 

bits, savings are over 50%, (more than one bit), and for 3 bits, more than 

30% on small NoCs. 



  

C. Power Reduction Example 

We demonstrate the power saving achieved by PaR-1 

with NxN regular mesh NoC with 5mm long, 8-bit width 

links. Hardware design is implemented on 0.18�  TOWER 

process, and synthesized by Synopsis's design compiler. 

Interconnect power consumption is measured by SPICE 

model, assume random data and traffic patterns. 

Measurements of the redundant bits switching power, 

along with the parity circuits' power and PaR circuits' power 

are referred as power consumption and shown at Fig. 11. 

The measurements were made on 2x2, 3x3 and 4x4 regular 

mesh NoCs. We can observe increased power saving with 

the size of the NoC. We expect the savings to grow as more 

parity bits are used because of less redundant network traffic 

as well as avoiding the need to use more complex error 

protection decoders. 
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Fig. 11 – Example: PaR-1 power reduction. For 2x2 NoC, the encoder and 

decoder blocks overhead do not compensate for the power reduction 

achieved by the reduced redundant bits traffic. For 3x3 NoC, savings are 

over 25%, and for 3x3 NoC, more than 35%. 

V. CONCLUSIONS 

Achieving interconnect reliability is already a difficult 

task facing chip designers and manufacturers today, and can 

be anticipated to become an even more serious problem in 

years to come. A key challenge in this context is providing 

high reliability at a low power cost. While error detection 

codes provide a promising approach towards achieving 

reliability, they do expend additional power in redundant bit 

transmissions. In this paper, we have tackled the problem of 

ensuring error detection, while reducing the need for 

redundant transmissions. 

We presented PaR – parity routing, a low-overhead error 

detection solution for networks on chip. PaR can be used to 

provide any predefined error protection requirement. 

It exploits NoC path diversity, and selects routing paths 

based on parity bits. It thus saves actual transmissions of 

these bits, along with the associated power penalty. PaR 

uses simple, low-complexity encoding and decoding 

circuits. We have analyzed the savings achieved by PaR, 

and have shown that it yields significant savings even on 

small NoCs, (for example, saving 75% of redundant bit 

transmissions on a 4x4 NoC mesh), and its savings 

asymptotically converge to 100% with the size of the NoC. 

We showed that PaR can yield power savings (for example, 

saving 35% of redundant power consumption on a 3x3 NoC 

mesh NoC). 

We believe that our novel parity routing approach opens 

interesting opportunities that may be explored in future 

work. One such interesting future direction is related to wire 

(capacity) allocation. By eliminating the need to transmit 

redundant parity bits most of the time, PaR may allow for 

wire reductions in NoC design. For example, if a parity bit is 

sent with every packet, the NoC designer is likely to add a 

wire for parity bits to all the links in the NoC. On the other 

hand, if less than 20% of transmissions carry redundant bits 

(as occurs, e.g., with PaR-1 on a 6x6 NoC), then it might be 

more cost-effective not to add a parity wire, and transmit the 

parity bit after the data when needed. A study of the optimal 

wire allocation for NoCs that use PaR is an interesting topic 

for future research. Beyond this example, another interesting 

question for future research is how to extend the PaR 

approach to also allow for error correction. Though in 

current day VLSI technology the bit error rates render error 

detection and retransmission more power-efficient than error 

correction [2], this situation may change in future 

technologies, where one may therefore wish to employ error 

correction. 
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