Increasing the Resilience of
Distributed and Replicated Database Systems *

Idit Keidar! Danny Dolev?

Institute of Computer Science,
The Hebrew University of Jerusalem,
Jerusalem, Israel, 91904
E-mail: {idish,dolev}@cs.huji.ac.il
Url: http://www.cs.huji.ac.il/{~idish,~dolev}

Abstract

This paper presents a new atomic commitment protocol, enhanced three phase commit
(E3PC), that always allows a quorum in the system to make progress. Previously suggested
quorum-based protocols (e.g., the quorum-based three phase commit (3PC) [Ske82]) allow a
quorum to make progress in case of one failure. If failures cascade, however, and the quorum
in the system is “lost” (i.e., at a given time no quorum component exists), a quorum can later
become connected and still remain blocked. With our protocol, a connected quorum never
blocks. E3PC is based on the quorum-based 3PC [Ske82], and it does not require more time
or communication than 3PC. We describe how this protocol can be exploited in a replicated
database setting, making the database always available to a majority of the sites.

1 Introduction

Reliability and availability of loosely coupled distributed database systems are becoming require-
ments for many installations, and fault tolerance is becoming an important aspect of distributed
systems design. When sites crash, or when communication failures occur, it is desirable to allow
as many sites as possible to make progress. A common way to increase the availability of data and
services is replication. If data are replicated in several sites, they can still be available despite site
and communication-link failures. Protocols for transaction management in distributed and repli-
cated database systems need to be carefully designed in order to guarantee database consistency.
In this paper we present a novel atomic commitment protocol (ACP) that always allows a majority
(or quorum) to make progress. We describe how this protocol can be exploited in a replicated
database setting, making the database always available to a majority of the sites.

In distributed and replicated database systems, when a transaction spans several sites, the
database servers at all sites have to reach a common decision regarding whether the transaction

*Preprint of a paper to appear in J. Comut. Systems Science (JCSS) special issue with selected papers from PODS
1995, December 1998

'1dit Keidar’s research is supported by the Israeli Ministry of Science.

{This work supported by the United States - Israel Binational Science Foundation, Grant 92-00189.

should be committed or not. A mixed decision results in an inconsistent database, while a unani-
mous decision guarantees the atomicity of the transaction (provided that the local server at each
site can guarantee local atomicity of transactions). To this end an atomic commitment protocol,
such as two phase commit (2PC') [Gra78] is invoked. The atomic commit problem and the two
phase commit protocol are described in Section 3. Two phase commit is a blocking protocol: if the
coordinator fails, all the sites may remain blocked indefinitely, unable to resolve the transaction.

To reduce the extent of blocking, Skeen suggested the quorum-based three phase commit (3PC)
protocol, which maintains consistency in spite of network partitions [Ske82]. In case of failures, the
algorithm uses a quorum (or majority)-based recovery procedure that allows a quorum to resolve the
transaction. If failures cascade, however, and the quorum in the system is “lost” (i.e., at a certain
time no quorum component exists), a quorum of sites can become connected and still remain blocked.
Other previously suggested quorum-based protocols (e.g., [CR83, CK85]) also allow a quorum to
make progress in case of one failure, while if failures cascade, a quorum can later become connected
and still remain blocked. To our knowledge, the only previously suggested ACP that always allows
a quorum to make progress is the ACP that we construct in [Kei94]. The protocol in [Kei94] is
not straightforward; it uses a replication service as a building block, while the protocol presented
in this paper is easy to follow and self-contained.

In this paper we present the enhanced three phase commit (EF3PC) protocol, which is an en-
hancement of the quorum-based 3PC [Ske82]. E3PC maintains consistency in the face of site
failures and network partitions: sites may crash and recover, and the network may partition into
several components' and remerge. E3PC always allows a quorum to make progress: At any point
in the execution of the protocol, if a group G of sites becomes connected, and this group contains
a quorum and no subsequent failures occur for sufficiently long, then all the members of G eventu-
ally reach a decision. Furthermore, every site that can communicate with a site that has already
reached a decision will also, eventually, reach a decision. An operational site that is not a member
of a connected quorum may be blocked, i.e., may have to wait until a failure is repaired in order
to resolve the transaction. This is undesirable but cannot be avoided; Skeen proved that every
protocol that tolerates network partitions is bound to be blocking in certain scenarios [SS83].

E3PC achieves higher availability than 3PC simply by carefully maintaining two additional
counters and with no additional communication. The principles demonstrated in this paper can be
used to increase the resilience of a variety of distributed services, e.g., replicated database systems,
by ensuring that a quorum will always be able to make progress. Other protocols that use two
counters in order to allow a majority to make progress are given in [MHS89, CT96, KD96, Lam89,
DLS88].

Numerous database replication schemes that are based on quorums have been suggested [Gif79,
Her86, Her87, EASC85, EATR9]. These algorithms use quorum systems to determine when data
objects are accessible. In order to guarantee the atomicity of transactions, these algorithms use
an ACP and therefore are bound to block when the ACP they use blocks. Thus, with previously
suggested ACPs, these approaches do not always allow a connected majority to update the database.
Using E3PC these protocols can be made more resilient. In Section 6 we describe in detail how
E3PC may be incorporated into accessible copies protocols [EASC85, EAT89], in order to make the
database always available to a quorum.

! A component is sometimes called a partition. In our terminology, a partition splits the network into several
components.

E3PC uses a perfect fault detector: Every site has accurate information regarding which sites
are connected to it. In Section 7 we discuss unreliable failure detectors [CT96, DFFKM96] and the
ability of our protocol to work with such failure detectors. In this case, the protocol solves the weak
atomic commit problem [Gue95].

The rest of this paper is organized as follows: Section 2 presents the computation model.
Section 3 provides general background on the atomic commitment problem. The quorum-based
three phase commit protocol [Ske82] is described in Section 4, and enhanced three phase commit is
described in Section 5. In Section 6 we describe how E3PC can be exploited in replicated database
systems. In Section 7 we describe the protocol’s behavior with an unreliable failure detector.
Section 8 concludes the paper. In Appendix A we formally prove the correctness of E3PC.

2 The Model

Our protocol is applicable in an asynchronous message-passing environment. The set of sites
running the protocol is fixed and is known to all the sites. The sites are connected by an underlying
communication network that provides communication between any pair of connected sites. We
consider the following types of failures: failures may partition the network, and previously disjoint
network components may remerge; messages may be lost or delivered out of order. Sites may crash
and recover; recovered sites come up with their stable storage intact. We assume that messages are
neither corrupted nor spontaneously generated by the network.

Failures are detected using a fault detector: Every site has accurate information regarding which
sites are connected to it. This assumption is weakened in Section 7.

3 Background — Distributed Transaction Management

This section provides general background on the atomic commit problem and protocols.

3.1 Problem Definition

A distributed transaction is composed of several subtransactions, each running on a different site.
The database manager at each site can unilaterally decide to ABORT the local subtransaction, in
which case the entire transaction must be aborted. If all the participating sites agree to COMMIT
their subtransaction (vote Yes on the transaction) and no failures occur, the transaction should
be committed. We assume that the local database server at each site can atomically execute the
subtransaction once it has agreed to COMMIT it.

In order to ensure that all the subtransactions are consistently committed or aborted, the
sites run an atomic commitment protocol such as two phase commit. The requirements of atomic
commitment (as defined in Chapter 7 of [BHG87]) are as follows:

AC1: Uniform Agreement: All the sites that reach a decision reach the same one.
AC2: A site cannot reverse its decision after it has reached one.

AC3: Validity: The coMMIT decision can be reached only if all sites voted Yes.

AC4: Non-triviality: If there are no failures and all sites voted Yes, then the decision
will be to cCOMMIT.

AC5: Termination: At any point in the execution of the protocol, if all existing failures
are repaired and no new failures occur for sufficiently long, then all sites will eventually
reach a decision.

3.2 Two Phase Commit

The simplest and most renowned ACP is two phase commit [Gra78]. Several variations of 2PC
have been suggested (e.g., presume abort and presume commit [MLOS86]), the simplest version is
centralized — one of the sites is designated as the coordinator. The coordinator sends a transaction
(or request to prepare to commit) to all the participants. Each site answers by a Yes (“ready to
commit”) or by a No (“abort”) message. If any site votes No, all the sites abort. The coordinator
collects all the responses and informs all the sites of the decision. In absence of failures, this protocol
preserves atomicity. Between the two phases, each site blocks, i.e., keeps the local database locked,
waiting for the final word from the coordinator. If a site fails before its vote reaches the coordinator,
it is usually assumed that it had voted No. If the coordinator fails in the first phase, all the sites
remain blocked indefinitely, unable to resolve the last transaction. The centralized version of 2PC
is depicted in Figure 1.

Coordinator Participant
Transaction is received:
Send sub-transactions. vote \7 we "NO”
Sub-transaction is received:

Send reply — Yes or No.

COMMIT or ABORT is received:
Process accordingly.

Figure 1: The Centralized Two Phase Commit Protocol

If all sites respond Yes:
Send cOMMIT.

If some site voted No:
Send ABORT.

Commit protocols may also be described using state diagrams [SS83]. The state diagram for
2PC is shown in Figure 1. The circles denote states; final states are double-circled. The arcs
represent state transitions, and the action taken (e.g., message sent) by the site is indicated next
to each arc. In this protocol, each site (either coordinator or participant) can be in one of four
possible states:

q : INITIAL state — A site is in the initial state until it decides whether to unilaterally abort or to
agree to commit the transaction.

w : WAIT state — In this state the coordinator waits for votes from all of the participants, and each
participant waits for the final word from the coordinator. This is the “uncertainty period”
for each site, when it does not know whether the transaction will be committed or not.

¢ : COMMIT state — The site knows that a decision to commit was made.
a : ABORT state — The site knows that a decision to abort was made.

The states of a commit protocol may be classified along two orthogonal lines. In the first
dimension, the states are divided into two disjoint subsets: The committable states and the non-
committable states. A site is in a committable state only if it knows that all the sites have agreed
to proceed with the transaction. The rest of the states are non-committable. The only committable
state in 2PC is the coMMIT state. The second dimension distinguishes between final and non-final
states. The finalstates are the ones in which a decision has been made and no more state transitions
are possible. The final states in 2PC are COMMIT and ABORT.

3.3 Quorums

In order to reduce the extent of blocking in replication and atomic commit protocols, majority votes
or quorums are often used. A quorum system is a generalization of the majority concept. E3PC,
like Skeen’s quorum-based three phase commit protocol [Ske82], uses a quorum system to decide
when a group of connected sites may resolve the transaction. To enable maximum flexibility the
quorum system may be elected in a variety of ways (e.g., weighted voting [Gif79]). The quorum
system is static; it does not change in the course of the protocol.

The predicate (S) is TRUE for a given subset S of the sites iff S is a quorum. The requirement
from this predicate is that for any two sets of sites S and S’ such that S NS’ = (), at most one of
Q(S) and Q(S') holds, i.e., every pair of quorums intersect. For example, in the simple majority
quorum system ((S) is TRUE iff |[S| > n/2, where n is the total number of sites running the
protocol. Numerous quorum systems that fulfill these criteria were suggested. An analysis of the
availability of different quorum systems may be found in [PW95].

For further flexibility, it is possible to set different quorums for commit and abort (this idea
was presented in [Ske82]). In this case, a commit quorum of connected sites is required in order
to commit a transaction, and an abort quorum is required to abort. For example, to increase the
probability of commit in the system, one can assign smaller quorums for commit and larger ones
for abort.

In this case, the quorum system consists of two predicates: Q¢ (G) is TRUE for a given group of
sites G iff G is a commit quorum, and @ 4(G) is TRUE iff GG is an abort quorum. The requirement
from these predicates is that for any two groups of sites G and G’ such that GN G’ = 0, at most
one of Q¢ (G) and Q4(G’) holds, i.e., every commit quorum intersects every abort quorum.

3.4 The Extent of Blocking in Commit Protocols

The 2PC protocol is an example of a blocking protocol: operational sites sometimes wait on the
recovery of failed sites. Locks must be held in the database while the transaction is blocked.
Even though blocking preserves consistency, it is highly undesirable because the locks acquired by
the blocked transaction cannot be relinquished, rendering the data inaccessible by other requests.
Consequently, the availability of data stored in reliable sites can be limited by the availability of
the weakest component in the distributed system.

Skeen et al. [SS83] proved that there exists no non-blocking protocol resilient to network par-
titioning. When a partition occurs, the best protocols allow no more than one group of sites to

continue while the remaining groups block. Skeen suggested the quorum-based three phase com-
mit protocol, which maintains consistency in spite of network partitions [Ske82]. This protocol is
blocking in case of partitions; it is possible for an operational site to be blocked until a failure is
mended. In case of failures, the algorithm uses a quorum (or majority)-based recovery procedure
that allows a quorum to resolve the transaction. If failures cascade, however, a quorum of sites can
become connected and still remain blocked. Skeen’s quorum-based commit protocol is described in
Section 4.

Since completely non-blocking recovery is impossible to achieve, further research in this area
concentrated on minimizing the number of blocked sites when partitions occur. Chin et al. [CR83]
define optimal termination protocols (recovery procedures) in terms of the average number of sites
that are blocked when a partition occurs. The average is over all the possible partitions, and all the
possible states in the protocol in which the partitions occurs. The analysis deals only with states
in the basic commit protocol and ignores the possibility for cascading failures (failures that occur
during the recovery procedure). It is proved that any ACP with optimal recovery procedures takes
at least three phases and that the quorum-based recovery procedures are optimal.

In [Kei94] we construct an ACP that always allows a connected majority to proceed, regardless
of past failures. To our knowledge, no other ACP with this feature was suggested. The ACP
suggested in [Kei94] uses a reliable replication service as a building block and is mainly suitable for
replicated database systems. In this paper, we present a novel commitment protocol, enhanced three
phase commit, which always allows a connected majority to resolve the transaction (if it remains
connected for sufficiently long). E3PC does not require complex building blocks, such as the one
in [Kei94], and is more adequate for partially replicated or non-replicated distributed database
systems; it is based on the quorum-based three phase commit [Ske82].

4 Quorum-Based Three Phase Commit

In this section we describe Skeen’s quorum-based commit protocol [Ske82]. E3PC is a refinement
of 3PC, and therefore we elaborate on 3PC before presenting E3PC. The basic three phase commit
is described in Section 4.1, and the recovery procedure is described in Section 4.2. In Section 4.3
we show that with 3PC a connected majority of the sites can be blocked. We present a simplified
version of 3PC that uses the same quorums for commit and abort.

4.1 Basic Three Phase Commit

The 3PC protocol is similar to two phase commit, but in order to achieve resilience, another non-
final “buffer state” is added in 3PC, between the WAIT and the COMMIT states:

pc : PRE-COMMIT state — this is an intermediate state before the commit state and is needed to
allow for recovery. In this state the site is still in its “uncertainty period.”

The quorum-based 3PC is described in Figure 2, and a corresponding state diagram is depicted
in Figure 3(a). The coMMIT and PRE-COMMIT states of 3PC are committable states; a site may be
in one of these states only if it knows that all the sites have agreed to proceed with the transaction.
The rest of the states are non-committable. In each step of the protocol, when the sites change
their state, they must write the new state to stable storage before replying to the message that
caused the state change.

Coordinator Participant

Transaction is received:
Send sub-transactions to participants.

Sub-transaction is received:
Send reply — Yes or No.

If all sites respond Yes: Send PRE-COMMIT.
If any site voted No: Send ABORT.

PRE-COMMIT received:
Send ACK to coordinator.

Upon receiving a quorum of ACKs:
Send COMMIT.
Otherwise:

Block (wait for more votes or until recovery)

COMMIT or ABORT is received:
Process the transaction accordingly.

Figure 2: The Quorum-Based Three Phase Commit Protocol

4.2 Recovery Procedure for Three Phase Commit

When a group of sites detect a failure (a site crash or a network partition) or a failure repair (site
recovery or merge of previously disconnected network components), they run the recovery procedure
in order to try to resolve the transaction (i.e., commit or abort it). The recovery procedure consists
of two phases: first elect a new coordinator, and next attempt to form a quorum that can resolve
the transaction.

A new coordinator may be elected in different ways (e.g., [GM82]). In the course of the election,
the coordinator hears from all the other participating sites. If there are failures (or recoveries) in
the course of the election, the election can be restarted.?

The new coordinator tries to reach a decision whether the transaction should be committed or
not and tries to form a quorum for its decision. The protocol must take the possibility of failures
and failure repairs into account and, furthermore, must take into account the possibility of two
(or more) different coordinators existing concurrently in disjoint network components. In order to
ensure that the decision will be consistent, a coordinator must explicitly establish a quorum for a
COMMIT or an ABORT decision. To this end, in the recovery procedure, another state is added:

pa : PRE-ABORT state. Dual state to PRE-COMMIT.

The recovery procedure is described in Figure 4. The state diagram for the recovery procedure is
shown in Figure 3(b). The dashed lines represent transitions in which this site’s state was not used
in the decision made by the coordinator. Consider for example the following scenario: site p; reaches
the PRE-ABORT state during an unsuccessful attempt to abort. The network then partitions, and
p1 remains blocked in the PRE-ABORT state. Later, a quorum (that does not include p;) is formed,
and another site, pz, decides to cOMMIT the transaction (this does not violate consistency, since

2Election is a weaker problem than atomic commitment, only the coordinator needs to know that it was elected,
while the other sites may crash or detach without ever finding out which site was elected.

vote 7 : wze "NO"

Pre

(a) The Basic Three Phase Commit (b) The Recovery Procedure

Figure 3: Three Phase Commit and the Recovery Procedure
q: INITIAL state; w: WAIT; pc: PRE-COMMIT; ¢: COMMIT; pa: PRE-ABORT; a: ABORT.

the attempt to abort has failed). If now p; and p; become connected, the coordinator must decide
to COMMIT the transaction, because py is COMMITTED already. Therefore, p; makes a transition
from PRE-ABORT to COMMIT.

After collecting the states from all the sites, the coordinator tries to decide how to resolve the
transaction. If any site has previously committed or aborted, then the transaction is immediately
committed or aborted accordingly. Otherwise, the coordinator attempts to establish a quorum. A
COMMIT is possible if at least one site is in the PRE-COMMIT state and the group of sites in the waiT
state together with the sites in the PRE-COMMIT state form a quorum. An ABORT is possible if the
group of sites in the WAIT state together with the sites in the PRE-ABORT state form a quorum.
The decision rule is summarized in Figure 5.

4.3 Three Phase Commit Blocks a Quorum

In this section we show that in the algorithm described above, it is possible for a quorum to become
connected and still remain blocked. In our example, there are three sites executing the transaction:
p1, p2, and p3. The quorum system we use is a simple majority: every two sites form a quorum.
Consider following the scenario depicted in Figure 6:

p1 is the coordinator. All the sites vote Yes on the transaction. p; receives and processes the
votes, but p; and ps detach from p; before receiving the PRE-COMMIT message sent by py.

po is elected as the new coordinator. It sees that both py and ps are in the wAIT state and
therefore sends a PRE-ABORT message, according to the decision rule. p3 receives the PRE-ABORT
message, acknowledges it, and then detaches from p,.

Now, p3 is in the PRE-ABORT state, while p; is in the PRE-COMMIT state. If now p; and ps3
become connected, then according to the decision rule, they remain BLOCKED, even though they

1. Elect a new coordinator, r.
2. The coordinator, 7, collects the states from all the connected sites.

3. The coordinator tries to reach a decision, as described in Figure 5. The decision is computed
using the states collected so far. The coordinator multicasts a message reflecting the decision.

4. Upon receiving a PRE-COMMIT or PRE-ABORT each participant sends an ACK to r.

5. Upon receiving a quorum of ACKs for PRE-COMMIT or PRE-ABORT, r multicasts the corre-
sponding decision: COMMIT or ABORT.

6. Upon receiving a COMMIT or an ABORT message: Process the transaction accordingly.

Figure 4: The Quorum-Based Recovery Procedure for Three Phase Commit

Collected States Decision

3 ABORTED ABORT

3 COMMITTED COMMIT

3 PRE-COMMITTED A)(sites in WAIT and PRE-COMMIT states) | PRE-COMMIT
() (sites in WAIT and PRE-ABORT states) PRE-ABORT
Otherwise BLOCK

Figure 5: The Decision Rule for The Quorum-Based Recovery Procedure

form a quorum.

Analysis

In this example, it is actually safe for p; and ps3 to decide PRE-ABORT, because none of the sites
could have committed, but it is not safe for them to decide PRE-COMMIT, because p3 cannot know
whether py has aborted or not.

We observe that p3 decided PRE-ABORT “after” p; decided PRE-COMMIT, and therefore we can
conclude that the PRE-COMMIT decision made by p; is “stale”, and no site has actually reached a
COMMIT decision following it, because otherwise, it would have been impossible for ps to reach a
PRE-ABORT decision.

The 3PC protocol does not allow a decision in this case, because the sites have no way of
knowing which decision was made “later.” Had the sites known that the a PRE-ABORT decision
was made “later,” they could have decided PRE-ABORT again and would have eventually ABORTED
the transaction. In E3PC, we provide the mechanism for doing exactly this.

5 The E3PC Protocol

We suggest a three phase atomic commitment protocol, enhanced three phase commit, with a novel
quorum-based recovery procedure that always allows a quorum of sites to resolve the transaction,
even in the face of cascading failures. The protocol is based on the quorum-based three phase

pc

\\ / pl decides pre-commit

Ll
L

pa

I
:
[

o, =
[} P1 X P2 p2 decides pre-abort
E AN
"
P3
pc X ?
L] =—> |
\\ pland p3 are blocked
/‘/)(P2
pa ——Z—— Comm. Link
@ ___I’X Comm. Link Failure
P3

Figure 6: Three Phase Commit Blocks a Quorum

commit protocol [Ske82]. E3PC does not require more communication or time than 3PC; the
improved resilience is achieved simply by maintaining two additional counters, which impose a
linear order on quorums formed in the system.

Initially, the basic E3PC is invoked. If failures occur, the sites invoke the recovery procedure
and elect a new coordinator. The new coordinator carries on the protocol to reach a decision. If
failures cascade, the recovery procedure may be reinvoked an arbitrary number of times. Thus, one
ezecution of the protocol (for one transaction) consists of one invocation of the basic E3PC and of
zero or more invocations of the recovery procedure.

In Section 5.1 we describe how E3PC enhances 3PC. The recovery procedure for E3PC is
described in Section 5.2. In Section 5.3 we show that E3PC does not block a quorum in the
example of Section 4.3. In Section 5.4 we outline the correctness proof for E3PC. We first present
a simplified version of E3PC that uses the same quorums for commit and abort. In Section 5.5 we
describe a more general version of E3PC, which uses different quorums for commit and abort.

10

5.1 E3PC: Enhancing Three Phase Commit

The basic E3PC is similar to the basic 3PC, the only difference being that E3PC maintains two
additional counters. We now describe these counters. In each invocation of the recovery procedure,
the sites try to elect a new coordinator. The coordinators elected in the course of an execution of
the protocol are sequentially numbered: A new “election number” is assigned in each invocation of
the recovery procedure. Note that there is no need to elect a new coordinator in each invocation
of the basic 3PC or E3PC; the re-election is needed only in case failures occur. The coordinator
of the basic E3PC is assigned “election number” one, even though no elections actually take place.
The following two counters are maintained by the basic E3PC and by the recovery procedure:

Last_Elected - The number of the last election that this site took part in. This variable is updated
when a new coordinator is elected. This value is initialized to one when the basic E3PC is
invoked.

Last_Attempt - The election number in the last attempt this site made to commit or abort. The
coordinator changes this variable’s value to the value of Last_Elected whenever it makes a
decision. Every other participant sets its Last_Attempt to Last_FElected when it moves to the
PRE-COMMIT or to the PRE-ABORT state, following a PRE-COMMIT or a PRE-ABORT message
from the coordinator. This value is initialized to zero when the basic E3PC is invoked.

These variables are logged on stable storage. The second counter, Last_Attempt, provides a
linear order on PRE-COMMIT and PRE-ABORT decisions; e.g., if some site is in the PRE-COMMIT
state with its Last_Attempt = 7, and another site is in the PRE-ABORT state with its Last_Attempt
= 8, then the PRE-COMMIT decision is “earlier” and therefore “stale,” and the PRE-ABORT decision
is safe. The first counter, Last_Elected, is needed to guarantee the uniqueness of the Last_Attempt, 3
i.e., that two different attempts will not be made with the same value of Last_Attempt (cf. Lemma 3
in Appendix A).

Notation

We use the following notation:

e P is the group of sites that are live and connected, and which take part in the election of the
new coordinator.

o Maz_Elected is max,ep (Last_Elected of p).
o Maz_Attempt is max,ep (Last_Attempt of p).

o Is Max_Attempt_Committable is a predicate that is TRUE iff all the members that are in
non-final states and whose Last_Attempt is equal to Max_Attempt are in a committable
state (i.e., in the PRE-cOMMIT state). Formally, Is_Maz_Attempt_Committable is TRUE iff
Voep (Last_Attempt of p = Maxz_Attempt Ap is in a non-final state — p is in a committable
state)

The value of Last_Elected is not guaranteed to be unique, two elections may be made with the same value of
Last_Flected, in case the first election with this number did not terminate successfully at all the members. Also note
that the same coordinator can not be chosen with the same election number twice.

11

5.2 Quorum-Based Recovery Procedure

1. Elect a new coordinator r. The election is non-blocking, it is restarted in case of failure.
In the course of the election, r hears from all the other sites their values of Last_Flected
and Last_Attempt and determines Maz_Flected and Max_Attempt. r sets Last_Flected to
Maz_Flected+1 and notifies the sites in P of its election, and of the value of Maz_Flected.

2. Upon hearing Maz_Flected from r, set Last_Flected to Maz_Flected+1 and send local state to
the coordinator r.

3. The coordinator, r collects states from the other sites in P, and tries to reach a decision as
described in Figure 8. The decision is computed using the states collected so far, we denote
by & the subset of sites from which r received the state so far. Upon reaching a decision other
than BLOCK, r sets Last_Attempt to Last_Flected, and multicasts the decision to all the sites
in P.

4. Upon receiving a PRE-COMMIT or PRE-ABORT each participant sets its Last_Attempt to
Last_Flected and sends an ACK to r.

5. Upon receiving a quorum of ACKs for PRE-COMMIT (PRE-ABORT), r multicasts the decision:
COMMIT (ABORT).

6. Upon receiving a COMMIT (ABORT) message from r: process the transaction accordingly.

Figure 7: The Recovery Procedure for E3PC

As in 3PC, the recovery procedure is invoked when failures are detected and when failures are
repaired. Sites cannot “join” the recovery procedure in the middle, instead, the recovery procedure
must be reinvoked to let them take part.

All the messages sent by the protocol carry the election number (Last_Elected) and process id of
the coordinator. Thus, it is possible to know in which invocation of the protocol each message was
sent. A site that hears from a new coordinator ceases to take part in the previous invocation that it
took part in and no longer responds to its previous coordinator. Messages from previous invocations
are ignored. Thus, a site cannot concurrently take part in two invocations of the recovery procedure.
Furthermore, if a site responds to messages from the coordinator in some invocation, it necessarily
took part in the election of that coordinator.

The recovery procedure for E3PC is similar to the quorum-based recovery procedure described
in Section 4.2. As in 3PC, in each step of the recovery procedure, when the sites change their state,
they must write the new state to stable storage before replying to the message that caused the
state change. The recovery procedure is described in Figure 7. The possible state transitions in
E3PC and its recovery procedure are the same as those of 3PC, depicted in Figure 3; the improved
performance in E3PC results from the decision rule, which allows state transitions in more cases.

In Step 3 of the recovery procedure, r collects the states from the other sites in P and tries
to reach a decision. The sites are blocked until r receives enough states to allow a decision. It is
possible to reach a decision before collecting the states from all the sites in P; e.g., when a final state
is received, a decision can be made. It is also possible to reach a decision once states are collected

12

from a quorum, if one of the quorum members has Last_Attempt=Maz_Attempt. We denote by S
the subset of P from which r received the state so far; r constantly tries to compute the decision
using the states in &, whenever new states arrive and until a decision is reached. The decision
rule is described below. If the decision is not BLOCK, r changes Last_Attempt to Last_Flected, and
multicasts the decision to all the sites in P.

Decision Rule

Collected States Decision
34 ABORTED ABORT
34 COMMITTED COMMIT

Is_Maz_Attempt_Committable NQ(S) | PRE-COMMIT
—Is_Maz_Attempt_Committable A()Q(S) | PRE-ABORT
Otherwise BLOCK

Figure 8: The Decision Rule for E3PC

The coordinator collects the states from the live members of P and applies the following decision
rule to the subset § of sites from which it received the state.

o If there exists a site (in &) that is in the ABORTED state — ABORT.

o If there exists a site in the COMMITTED state — COMMIT.

If Is_Maz_Attempt_Committable is TRUE, and § is a quorum — PRE-COMMIT.

If Is_Maz_Attempt_Committable is FALSE and § is a quorum — PRE-ABORT.

e Otherwise — BLOCK.

The decision rule is summarized in Figure 8. It is easy to see that with the new decision rule,
if a group of sites is a quorum, it will never be blocked.

5.3 E3PC does not Block a Quorum

In E3PC, if a group of sites forms a quorum, it will never be blocked. This is obvious from the de-
cision rule: if some site has previously committed (aborted), then the decision is COMMIT (ABORT).
Otherwise, a decision can always be made according to the value of Is_Maz_Attempt_Committable.

We now demonstrate that E3PC does not block with the scenario of Section 4.3 (in which Skeen’s
quorum-based 3PC does block). In this example, there are three sites executing the transaction -
p1, p2, and p3 - and the quorum system is a simple majority: every two sites form a quorum. We
considered the following scenario, depicted in Figure 9:

e Initially, p; is the coordinator. All the sites vote Yes on the transaction. p; receives and
processes the votes, but py and p3 detach from p; before receiving the PRE-COMMIT message
sent by pi. Now Last_Attempt,, is 1 while Last_Attempt,, = Last_Attempt,, = 0, and the
value of Last_FElected is one for all the sites.

13

pl decides pre-commit
P2 with Last Attempt =1

O~ —0-
b=

== p2 decides pre-abort
() P1 X P2 with Last Attempt =2
E AN
g
P3
1
pl decides pre-abort
PL \\ X P2 with Last Attempt =3
pa ——Z—— Comm. Link
@ IX Comm. Link Failure

Figure 9: E3PC does not Block a Quorum

e py is elected as the new coordinator, and the new Last_FElected is two. It sees that both pgy
and ps are in the WAIT state and therefore sends a PRE-ABORT message, according to the
decision rule, and moves to the PRE-ABORT state while changing its Last_Attempt to two.
p3 receives the PRE-ABORT message, sets its Last_Attempt to two, sends an acknowledgment,
and detaches from ps.

e Now, ps is in the PRE-ABORT state with its value of Last_Attempt = 2, while p; is in the
PRE-COMMIT state with its Last_Attempt = 1. If now p; and p3 become connected, then,
according to the decision rule, they decide to PRE-ABORT the transaction, and they do not
remain blocked.

5.4 Correctness of E3PC

In Appendix A we formally prove that E3PC fulfills the requirements of atomic commitment de-
scribed in Section 3.1. In this section we outline the proof.

14

First we prove that two contradicting attempts (i.e., PRE-COMMIT and PRE-ABORT) cannot be
made with the same value of Last_Attempt (Lemma 3). This is true due to the fact that every two
quorums intersect and that a quorum of sites must increase Last_FElected before a PRE-COMMIT or
a PRE-ABORT decision. Moreover, Last_Attempt is set to the value of Last_Flected, which is higher
than the previous value of Last_Elected of all the participants of the recovery procedure. Next, we
prove that the value of Last_Attempt at each site increases every time the site changes state from
a committable state to a non-final non-committable state, and vice versa (Lemma 5).

Using the two lemmas above we prove (Lemmas 6 and 8): If the coordinator reaches a coMmmIT
(ABORT) decision upon receiving a quorum of ACKs for PRE-COMMIT (PRE-ABORT) when setting
its Last_Attempt to i, then for every j > ¢ no coordinator will decide PRE-ABORT (PRE-COMMIT)
when setting its Last_Attempt to j. We prove these lemmas by induction on j > ¢; we show, by
induction on j, that if some coordinator r sets its Last_Attempt to j in Step 3 of the recovery
procedure, then Is_Maz_Attempt_Committable is TRUE (FALSE) in this invocation of the recovery
procedure, and therefore, the decision is PRE-COMMIT (PRE-ABORT).

We conclude that if some site running the protocol coMMITS the transaction, then no other site
ABORTS the transaction.

5.5 Using Different Quorums for Commit and Abort

In this section we describe how to generalize E3PC to work with different quorums for commit and
abort. Commit and abort quorums are described in Section 3.3. The following changes need to be
made in the protocol:

Collected States Decision
4 ABORTED ABORT
4 COMMITTED COMMIT

Is_Maz_Attempt_Committable NQc(S) | PRE-COMMIT
—Is_Maz_Attempt_Committable NQ) 4(S) | PRE-ABORT
Otherwise BLOCK

Figure 10: The Decision Rule for E3PC with Commit and Abort Quorums

1. In the second phase of the basic E3PC, the coordinator waits for a commit quorum of ACKs
before sending PRE-COMMIT.

2. In Step 5 of the recovery procedure, the coordinator needs to wait for a commit quorum of
ACKs in order to PRE-COMMIT, and for ACKs from an abort quorum in order to PRE-ABORT.

3. Likewise, the decision rule is slightly changed to require a commit quorum in order to PRE-
CcOMMIT (in case Is_Maz_Attempt_Committable is TRUE) and an abort quorum in order to
PRE-ABORT (if Is_Maz_Attempt_Committable is FALSE). The resulting decision rule is shown
in Figure 10.

It is easy to see from the new decision rule that if a group of processes is both a commit quorum
and an abort quorum, it does not remain blocked.

15

The correctness proof of the general version of E3PC is similar to the correctness proof of E3PC
presented in this paper; we use the property that every commit quorum intersects every abort
quorum in order to prove that two contradicting attempts (i.e., PRE-COMMIT and PRE-ABORT)
cannot be made with the same value of Last_Attempt. The formal proof may be found in [KD94].

6 Replicated Database Systems

In replicated database systems, the sites continuously execute transactions. When the network
partitions, it is often desirable to allow a quorum of the sites to access the database, but it is usually
undesirable to allow sites in two disjoint network components to concurrently update the same data.
Numerous replication schemes that are based on quorums have been suggested [Gif79, Her86, Her87,
EASC85, EAT89]. In order to guarantee the atomicity of transactions, these algorithms use an
ACP and therefore are bound to block when the ACP they use blocks. We propose to use E3PC
in conjunction with these protocols in order to make the database always available to a quorum.
The same quorum system should be used to determine when the data are accessible to a group
of sites as for the atomic commitment protocol. In a fully replicated database, a group of sites
needs to be a quorum of the total number of sites in order to access the database. Hence, in order
to resolve a transaction using the E3PC recovery procedure, a group of sites needs to be a quorum
of the total number of sites and not just of the sites that invoked E3PC for the specific transaction.
If the data are partially replicated, then for each item accessed by this transaction, a quorum
of the sites it resides on is required. In order to resolve a transaction using the E3PC recovery
procedure, a group of sites needs to contain a quorum for each item accessed by this transaction.
There is a subtle point to consider with this solution: sites that did not take part in the
basic E3PC for this transaction may take part in the recovery procedure. The local databases
at such sites are not up-to-date, since they do not necessarily reflect the updates performed by
the current transaction. Therefore, these sites need to recover the database state from other
sites during the merge and before taking part in the recovery procedure. In the accessible copies
protocols [EASC85, EATR89], this is done every time the view changes. In this case, we suggest
using the view change as the “fault detector” for E3PC; thus, the recovery procedure is always
invoked following a view change, after all the participating sites have reached an up-to-date state.
Below, we describe in detail how E3PC may be incorporated into accessible copies protocols.

6.1 Using E3PC with Accessible Copies Protocols

Accessible copies protocols [EASC85, EAT89] maintain a view of the system to determine when data
are accessible: A data item can be read/written within a view (component) only if a majority of
its read /write votes are assigned to copies that reside on sites that are members of this view. This
majority of votes is the “accessibility threshold for the item,” not to be confused with read and write
quorums used within the current view. In order to guarantee the atomicity of each transaction, these
protocols use an ACP. We propose to use E3PC as this ACP using these accessibility thresholds as
its quorum system. This way the sites that succeed in resolving the previous transaction are also
allowed to access the database in new transactions.

A group of sites is considered a quorum (in E3PC) if and only if it contains a majority of
the votes of each item accessed by this transaction. A connected quorum of the sites may invoke

16

a transaction and access the data. When the sites running the transaction wish to commit it,
they run E3PC for the transaction. The basic E3PC may be invoked by a subset of the sites, the
members of the current view. The views maintained by the accessible copies protocol are used as
fault detectors for E3PC; when the view changes, the recovery procedure is invoked.

In the course of the view change protocol, each site executes an update_transaction in order to
recover the most up-to-date values of each data item. If the update_transaction is aborted, the view
change is aborted; a successful view change implies that the “newly joined” sites have successfully
performed the updates and thus have given up their right to unilaterally abort the transaction.
When the recovery procedure is invoked with sites that did not take part in the basic E3PC for the
current transaction, these sites are considered to be in the wait state with their Last_Flected= 1
and Last_Attempt= 0, as if they had voted Yes on the transaction, and detached.

e The basic E3PC may be invoked by a subset of the sites, the members of the current
view.

e E3PC uses view changes as its fault detector, i.e., every time the view changes, the
recovery procedure is invoked.

e When the recovery procedure is invoked with “newly joined” sites that did not take
part in the basic E3PC, the “newly joined” sites are considered to be in the wait state
with their Last_Flected=1 and Last_Attempt= 0.

Figure 11: E3PC Adjusted to the Accessible Copies Protocol

Figure 11 summarizes the adjustments made in E3PC to make it suitable for the accessible
copies protocol. With this protocol, the database is always available to a quorum of connected
sites. We know of no previous database replica control protocol with this feature.

7 Failure Detectors and Weak Atomic Commit

The E3PC protocol presented in this paper uses a perfect failure detector: Every site has accu-
rate information regarding which sites are connected to it. This assumption is not practical: in
asynchronous systems, it is not always possible to tell failed sites from very slow ones. In practice,
systems use unreliable mechanisms, e.g., timeout, in order to detect faults. Such mechanisms may
make mistakes and suspect that a correct (connected) site is faulty (disconnected).

Can we relax the perfect failure detection assumption? Guerraoui [Gue95] proves that the
Atomic Commit Problem, as defined in Section 3.1, cannot be solved without a perfect failure
detector; the non-triviality requirement (AC4) is too strong. He defines the weak atomic commit
problem by changing the non-triviality requirement of atomic commit as follows:

Non-Triviality: If all sites voted Yes, and no site is ever suspected, then the decision will be to
COMMIT.

The other requirements of atomic commit are unchanged. The weak atomic commit problem
can be solved with non-perfect failure detectors.

17

Can the weak atomic commit problem be solved in a fully asynchronous environment that is
not augmented with any failure detector? Unfortunately, the answer to this question is no. In a
fully asynchronous environment, reaching consensus? is impossible [FLP85], in the sense that every
protocol that reaches agreement is bound to have an infinite run. In particular, using any failure
detector that can be implemented in such an environment, e.g., a time-out mechanism, E3PC does
not fulfill the termination (AC5) requirement. However, when the protocol does terminate, the rest
of the requirements of weak atomic commit are preserved.

7.1 TFailure Detector Classes

We have seen that in order to solve weak atomic commit, the model must be augmented with
some failure detector. Chandra and Toueg [CT96] classify failure detectors with different levels of
reliability. These failure detector classes are defined in a crash-failure asynchronous environment.
In [DFKMO6] these definitions are extended to the model where network partitions may occur.

An eventual perfect failure detector (formally defined in [CT96] and [DFKM96]) may suspect
correct sites, but there is a time after which correct sites are no longer suspected. Using such a
failure detector, E3PC solves the weak atomic commit problem. E3PC terminates once a quorum
of sites becomes connected and no failures or suspicions occur for sufficiently long. In a practical
system, this assumption is likely to be fulfilled.

Similarly, [CT96] and [DFKMO96] define weaker classes of failure detectors; Chandra et al. [CHT92]
prove that the weakest possible failure detector to solve consensus is the eventual weak failure de-
tector. Intuitively, an eventual weak failure detector may make mistakes and suspect correct sites,
but there is a time after which there is some correct site that is not suspected by any other site that
is connected to it. Guerraoui and Schiper [GS95] present a solution to the weak atomic commit
problem in an environment without network partitions, using an eventual weak failure detector.
Their protocol may be adapted to work in an environment with network partitions, using the tech-
nique presented in [DFKMO96]. This technique yields a protocol that is less efficient (requiring more
communication) than E3PC.

8 Conclusions

In this paper we demonstrated how the three phase commit [Ske82] protocol can be made more
resilient simply by maintaining two additional counters and by changing the decision rule. The new
protocol, E3PC, always allows a quorum of connected sites to resolve a transaction: At any point
in the execution of the protocol, if a group G of sites becomes connected and this group contains
a quorum of the sites, and no subsequent failures occur for sufficiently long, then all the members
of G eventually reach a decision. Furthermore, every site that can communicate with a site that
already reached a decision will also, eventually, reach a decision. We have shown that 3PC does
not possess this feature: if the quorum in the system is “lost” (i.e., at a certain time no quorum
component exists), a quorum can later become connected and still remain blocked.

E3PC does not require more communication or time than 3PC; the improved resilience is
achieved simply by maintaining two additional counters. The information needed to maintain

*Guerraoui [Gue95] proves that the Weak Atomic Commit problem is reducible to consensus.

18

the counters is piggybacked on messages that are sent in 3PC as well as in E3PC: the values of
Last_FElected and Last_Attempt are attached to messages used to elect a new coordinator.

We discussed how E3PC can be extended to work in an environment with unreliable failure
detectors. In this case, the protocol solves the weak atomic commitment problem.

E3PC may be used in conjunction with quorum-based replication protocols, such as [Gif79,
Her86, Her87, EASC85, EATR89], in order to make the database always available to a quorum. We
demonstrated how E3PC may be incorporated in accessible copies protocols [EASC85, EAT89];
with the new protocol, the database is always available to a quorum of connected sites. The
technique demonstrated here may be used to make other algorithms more resilient, e.g., an algo-
rithm for maintaining a primary component in the network, to support processing of sequences
of distributed transactions, as well as for ordering of messages [KD96] and replication [Kei94].
In [YLKD97, DKYL96] we exploit this technique in a dynamic voting scheme for maintaining the
primary component in the network.

Acknowledgment

We thank the referees that reviewed this paper for their helpful comments.

A Correctness Proof of E3PC

In this section we prove the correctness of E3PC; we show that E3PC and its recovery procedure
fulfill the requirements of atomic commitment (as defined in Chapter 7 of [BHG87]) described in
Section 3.1. The proof follows:

AC1: Uniform Agreement: In Theorem 1 below we will prove that all the sites that
reach a decision reach the same one.

AC2: In our protocol, a site cannot reverse its decision after it has reached one. When a
site in a final state (COMMIT or ABORT) participates in some invocation of the recovery
procedure, the decision in this invocation of the recovery procedure will correspond with
its state.

AC3: Validity: The coMmMIT decision can be reached only if all sites voted Yes: In the
basic E3PC, a committable decision can be made only if all the sites vote Yes. If the
recovery procedure is invoked with no site in a committable state, then according to
the decision rule, a committable decision cannot be reached.

AC4: Non-triviality: If there are no suspicions during the execution of basic E3PC, then
the basic E3PC succeeds in reaching a decision. If all sites voted Yes, then the decision
is COMMIT. Since we assume a perfect failure detector, if there are no failures, there are
no suspicions.

Without a perfect failure detector, the weak non-triviality requirement (defined in [Gue95]
and Section 7) is fulfilled.

19

AC5: Termination: At any point in the execution of the protocol, if all existing failures
are repaired and no new failures occur for sufficiently long, then all sites will eventually
reach a decision. Our protocol guarantees a much stronger property:

At any point in the execution of the protocol, if a group G of sites becomes connected
and this group contains a quorum of the sites, and no subsequent failures occur for
sufficiently long, then all the members of GG eventually reach a decision. Furthermore,
every site that can communicate with a site that already reached a decision will also,
eventually, reach a decision.

This property is immediate from the decision rule and from our assumption that the
failure detector is perfect. This property is also fulfilled with an eventual perfect failure
detector, since with such a failure detector, there is a time after which correct sites are
no longer suspected.

We now prove that the decision made is unanimous, i.e., that if one site decides to COMMIT,
then no site can decide to ABORT and vice versa.

Lemma 1 If a coordinator r sets its local value of Last_Attempt to i and sends a PRE-COMMIT
(PRE-ABORT) message to the participants in Step 3 of the recovery procedure, then a quorum of
sites have set their value of Last_Elected to i during the same invocation of the recovery procedure.

Proof. It is immediate from the protocol and from the fact that sites cannot “join” the recovery
procedure in the middle, but rather the protocol must be reinvoked to let them take part. O

Lemma 2 At each site, the value of Last_Elected never decreases.

Proof. The value of Last_Flected is modified only in Step 2 of the recovery procedure, when it
is changed to Maxz_Flected+1. A site may execute Step 2 only if it took part in the election of the
coordinator in that invocation of the recovery procedure and its value of Last_Flected was used to
compute Max_Flected, and therefore Maxz_FElected> Last_Elected, and Last_Elected increases. O

Lemma 3 If two sites, p and q, both set their Last_Attempt to the number ¢ without changing to
a final state, then either both of them set their Last_Attempt to 7 as a response to a PRE-COMMIT
decision or both of them set their Last_Attempt to ¢ as a response to a PRE-ABORT decision.

Proof. A coordinator changes the value of Last_Attempt when it reaches a decision (in Step 3
of the recovery procedure or in the basic E3PC), and it remains in a non-final state if the decision
is PRE-COMMIT or PRE-ABORT. Other sites change the value of Last_Attempt only in response to
a PRE-COMMIT or a PRE-ABORT decision, in Step 4 of the recovery procedure, or in response to
PRE-COMMIT in the basic E3PC.

Assume the contrary; then w.l.o.g., p set its Last_Attempt to 7 in response to a PRE-COMMIT
decision in the course of some invocation, Iy, of the recovery procedure (or of the basic E3PC), and
¢, in response to a PRE-ABORT decision, in an invocation I1. From Lemma 1, a quorum of sites set
their Last_Flected to 1 in invocation Iy and another quorum of sites set their Last_Flected to 1 in

20

invocation I. Since the coordinator in invocation Iy decided to PRE-COMMIT and the coordinator
in I; decided to PRE-ABORT, Iy and I; were different invocations of recovery procedure or of the
basic E3PC.

Since every two quorums intersect, there exists a site, s, that set its Last_Flected to i in both
invocations. W.l.o.g., s set its Last_FElected to i in Iy before setting it to ¢ in ;. From the protocol,
a site cannot concurrently take part in two invocations of the recovery procedure, furthermore, if a
site responds to messages from the coordinator in some invocation, it necessarily took part in the
election of that coordinator. Therefore, s took part in the election of the coordinator in I, after
it set its Last_Flected to i, and from Lemma 2, in the course of the election, the coordinator heard
from s that its value of Last_Flected> ¢ and determined that Maz_Flected> i. The new value of
Last_FElected for this invocation was Maz_Flected+1, which is greater than ¢, which contradicts our
assumption. O

Lemma 4 At each site, at any given time, Last_Elected>Last_Attempt.

Proof. From Lemma 2, the value of Last_Flected never decreases, so it is sufficient to show
that Last_Attempt is never increased to exceed it. We prove this by induction on the steps of the
protocol in which Last_Attempt changes. Base: When E3PC is initiated, Last_Flected is set to one,
and Last_Attempt, to zero. Step: Whenever Last_Attempt is changed in the course of the protocol,
it takes the value of Last_Flected. O

Lemma 5 The value of Last_Attempt at each site increases every time the site changes state
from a committable state to a non-final, non-committable state and vice versa. The value of
Last_Attempt never decreases.

Proof. The only non-final committable state is PRE-COMMIT, and the only way to switch to a PRE-
COMMIT state is in response to a PRE-COMMIT decision, when setting Last_Attempt to Last_Elected.
Likewise, the only way to switch from a committable state to a non-final non-committable state is
in Step 3 or in Step 4 of the recovery procedure, in response to a PRE-ABORT decision, when setting
Last_Attempt to Last_Flected.

It is sufficient to prove that Last_Attempt increases when it is set to Last_Flected in Step 3
or 4 of the recovery procedure, i.e., that Last_Attempt< Last_Elected before Step 3. And indeed, in
Step 2, Last_FElected is set to Maz_Flected+1, which is greater than the value of Last_Flected was
when the recovery procedure was initialized. From Lemma 4, Last_Elected> Last_Attempt at all
times, therefore, before Step 3, Last_Flected is greater than Last_Attempt. O

Lemma 6 If the coordinator reaches a COMMIT decision upon receiving a quorum of ACKs for
PRE-COMMIT when setting its Last_Attempt to i, then for every 7 > 1 no coordinator will decide
PRE-ABORT when setting its Last_Attempt to j.

Proof. The proof is by induction on j. Base (j = i): This is immediate from Lemma 3. Step: We
now assume that no coordinator decides PRE-ABORT with Last_Attempi= k for every 7 > k > 1,
and prove for j. From the assumption, no site can be in a non-final non-committable state with
its § > Last_Attempt> 1. Now, assume some coordinator r sets its Last_Attempt to j in Step 3 of

21

the recovery procedure, we have to show that r did not decide PRE-ABORT during this invocation
of the recovery procedure. Assume the contrary, then r collected states, from a quorum of sites
with Last_Attempt< j, and therefore, in this invocation Max_Attempi< j. Since every two quorums
intersect, at least one member of GG, p took part in this invocation of the recovery procedure and
sent its state to r. Since j > ¢, from Lemma 5, p set its Last_Attempt to i (and switched to a
committable state) before this invocation. But, no site can be in a non-final non-committable state
with its j > Last_Attempt> 1, and therefore Is_Maz_Attempt_Committable is TRUE in this invocation,
which contradicts the assumption that r decides PRE-ABORT. O

Lemma 7 If the coordinator reaches a COMMIT decision when setting its Last_Attempt to 1, then
for every j > 1 no coordinator will decide PRE-ABORT when setting its Last_Attempt to j.

Proof. There are two cases to consider:

e If the coordinator reaches a coMMIT decision upon receiving a quorum of ACKs for PRE-
COMMIT when setting its Last_Attempt to ¢, then from Lemma 6 for every j > ¢ no coordinator
will decide PRE-ABORT when setting its Last_Attempt to j.

e If the coordinator reaches a coMMIT decision during the recovery procedure upon receiving
a COMMIT state, then some coordinator has reached a coMMIT decision before, when its
Last_Attempt was < 1. We go back, by induction, to the first coordinator that reached a
COMMIT decision. This coordinator must have reached a commit decision according to the
previous case. Thus, we can conclude that for every j > 7 no coordinator will decide PRE-
ABORT when setting its Last_Attempt to j. O

Lemma 8 If the coordinator reaches an ABORT decision upon receiving a quorum of ACKs for
PRE-ABORT when setting its Last_Attempt to i, then for every j > © no coordinator will decide
PRE-COMMIT when setting its Last_Attempt to j.

Proof. This lemma is dual to Lemma 6 and can be proven the same way. O

Lemma 9 If the coordinator reaches an ABORT decision when setting its Last_Attempt to 1, then
for every j > 1 no coordinator will decide PRE-COMMIT when setting its Last_Attempt to j.

Proof. There are three cases to consider:

e [f the coordinator reaches an ABORT decision during the basic E3PC, this decision is reached
because some site voted No on the transaction. In this case, the coordinator does not PRE-
COMMIT, and no site reaches a committable state in the course of the protocol. Note: If
the recovery procedure is invoked with no site in a committable state, then according to the
decision rule, a committable decision cannot be reached.

e If the coordinator reaches an ABORT decision during the recovery procedure upon receiving a
quorum of ACKs for PRE-ABORT when setting its Last_Attempt to i, then from Lemma 8 for
every j > 1 no coordinator will decide PRE-COMMIT when setting its Last_Attempt to j.

22

e If the coordinator reaches an ABORT decision during the recovery procedure upon receiving
an ABORT state, then some coordinator has reached an ABORT decision before, when its
Last_Attempt was < 1. We go back, by induction, to the first coordinator that reached an
ABORT decision, according to one of the previous two cases, and conclude that for every j > ¢
no coordinator will decide PRE-COMMIT when setting its Last_Attempt to j. O

Theorem 1 If some site running the protocol COMMITS the transaction, then no other site ABORTS
the transaction and vice versa.

Proof. A site may coMMIT (ABORT) only upon hearing a COMMIT (ABORT) decision from its
coordinator. Assume that a COMMIT or ABORT decision was reached for some transaction 7. Note:
It is possible for more than one coordinator to reach a decision for the same transaction. Let 7
be the lowest value of Last_Attempt that a coordinator had when reaching a COMMIT or ABORT
decision. There are two cases to consider:

1. Some coordinator reached an ABORT decision when setting its Last_Attempt to 1:

Assume for the sake of contradiction that some coordinator also reached a coMmMIT decision,
and let j be the lowest value of Last_Attempt of a coordinator reaching a COMMIT decision.
From the assumption, j > 7. Furthermore, since j is the lowest value of Last_Attempt of
a coordinator reaching a coMMIT decision, no site could have started this invocation of
the recovery procedure in the COMMITTED state, and the COMMIT decision must have been
preceded by a PRE-COMMIT. But from Lemma 9 no coordinator can decide PRE-COMMIT
when setting its Last_Attempt to 7, and we reach a contradiction.

2. Some coordinator reached a coMMIT decision when setting its Last_Attempt to :

The proof is similar to the proof of Case 1 above, but there is one more case to consider:
An ABORT decision reached in the course of the basic E3PC (not in the recovery procedure)
is not preceded by a PRE-ABORT decision. In this case, Last_Attempt is set to 1, and the
COMMIT decision could not have been reached with a lower value of Last_Attempt; therefore
¢ = 1. This case reduces to Case 1 proved above. O

References

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, Reading, MA, 1987.

[CHT92] T.D. Chandra, V. Hadzilacos, and S. Toueg. The Weakest Failure Detector for Solving
Consensus. In ACM Symposium on Principles of Distributed Computing (PODC), pages
147-158, 1992.

[CK85] D. Cheung and T. Kameda. Site Optimal Termination Protocols for a Distributed
Database under Network Partitioning. In jth ACM Symposium on Principles of Dis-
tributed Computing (PODC), pages 111-121, August 1985,

23

[CRS3]

[CTO6]

[DFKMO96]

[DKYL96]

[DLS88]

[EASCS5]

[EATS9]

[FLP85]

[Gif79]

[GMS2]

[GraT78]

[GS95]

[Gue95]

[Her86]

F. Chin and K. V. S. Ramarao. Optimal Termination Protocols for Network Parti-
tioning. In ACM SIGACT-SIGMOD Symposium on Principles of Database Systems
(PODS), pages 25-35, March 1983.

T. D. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed
Systems. J. Assoc. Comput. Mach. (JACM), 43(2):225-267, March 1996.

D. Dolev, R. Friedman, I. Keidar, and D. Malki. Failure Detectors in Omission Failure
Environments. TR 96-13, Institute of Computer Science, The Hebrew University of
Jerusalem, Jerusalem, Israel, September 1996. Also Technical Report 96-1608, Depart-
ment of Computer Science, Cornell University.

D. Dolev, I. Keidar, and E. Yeger Lotem. Dynamic Voting for Consistent Primary Com-
ponents. TR 96-7, Institute of Computer Science, The Hebrew University of Jerusalem,
Jerusalem, Israel, June 1996.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the Presence of
Partial Synchrony. J. Assoc. Comput. Mach. (JACM), 35(2):288-323, April 1988.

A. El Abbadi, D. Skeen, and . Christian. An Efficient Fault-Tolerant Algorithm for
Replicated Data Management. In ACM SIGACT-SIGMOD Symposium on Principles
of Database Systems (PODS), pages 215-229, March 1985.

A. El Abbadi and S. Toueg. Maintaining Availability in Partitioned Replicated
Databases. ACM Trans. Database Systems, 14(2):264-290, June 1989.

M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensus with
One Faulty Process. J. Assoc. Comput. Mach. (JACM), 32:374-382, April 1985.

D.K Gifford. Weighted Voting for Replicated Data. In ACM SIGOPS Symposium on
Operating Systems Principles, December 1979.

H. Garcia-Molina. Elections in a Distributed Computing System. IFEF Trans. Com-
put., C-31, NO.1:48-59, Jan. 1982.

J.N. Gray. Notes on Database Operating Systems. In Operating Systems: An Advanced
Course, Lecture Notes in Computer Science, volume 60, pages 393-481. Springer-Verlag,
Berlin, 1978.

R. Guerraoui and A. Schiper. The Decentralized Non-Blocking Atomic Commitment
Protocol. In IFEFE International Symposium on Parallel and Distributed Processing
(SPDP), October 1995.

R. Guerraoui. Revisiting the Relationship between non-blocking Atomic Commitment
and Consensus. In International Workshop on Distributed Algorithms (WDAG), pages
87-100, September 1995.

M. Herlihy. A Quorum-Consensus Replication Method for Abstract Data Types. ACM
Trans. Comput. Systems, 4(1):32-53, February 1986.

24

[Her87]

[KD94]

[KD96]

[Kei94]

[Lam89]

[MHSS9]

[MLOS6]

[PW95]

[Ske82]

[S83]

[YLKD97]

M. Herlihy. Concurrency versus Availability: Atomicity Mechanisms for Replicated
Data. ACM Trans. Comput. Systems, 5(3):249-274, August 1987.

I. Keidar and D. Dolev. Increasing the Resilience of Atomic Commit, at No Additional
Cost. Technical Report CS94-18, Institute of Computer Science, The Hebrew University
of Jerusalem, Jerusalem, Israel, 1994.

I. Keidar and D. Dolev. Efficient Message Ordering in Dynamic Networks. In 15th
ACM Symposium on Principles of Distributed Computing (PODC), pages 68-76, May
1996.

I. Keidar. A Highly Available Paradigm for Consistent Object Replication. Master’s
thesis, Institute of Computer Science, The Hebrew University of Jerusalem, Jerusalem,
Israel, 1994. Also available as Technical Report CS95-5, and via anonymous ftp at
cs.huji.ac.il (132.65.16.10) in users/transis/thesis/keidar-msc.ps.gz.

L. Lamport. The part-time parliament. TR 49, Systems Research Center, DEC, Palo
Alto, September 1989.

Tim Mann, Andy Hisgen, and Garret Swart. An Algorithm for Data Replication.
Technical Report 46, DEC Systems Research Center, June 1989.

C. Mohan, B. Lindsay, and R. Obermark. Transaction Management in the R* Dis-
tributed Database Management System. ACM Trans. Database Systems, 11(4), Febru-
ary 1986.

D. Peleg and A. Wool. Availability of Quorum Systems. Inform. Comput., 123(2):210—
223, 1995.

D. Skeen. A Quorum-Based Commit Protocol. In 6th Berkeley Workshop on Distributed
Data Management and Computer Networks, pages 69-80, Feb. 1982.

D. Skeen and M. Stonebraker. A Formal Model of Crash Recovery in a Distributed
System. IEEFE Trans. Software Fng., SE-9 NO.3, May 1983.

E. Yeger Lotem, I. Keidar, and D. Dolev. Dynamic Voting for Consistent Primary Com-
ponents. In 16th ACM Symposium on Principles of Distributed Computing (PODC),
August 1997.

25

