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Abstract
Snapshots are useful tools for monitoring big distributed and parallel systems. In this paper,

we adapt the well-known atomic snapshot abstraction to dynamic models with an unbounded
number of participating processes. Our dynamic snapshot specification extends the API to al-
low changing the set of processes whose values should be returned from a scan operation. We
introduce the ephemeral memory model, which consists of a dynamically changing set of nodes;
when a node is removed, its memory can be immediately reclaimed. In this model, we present
an algorithm for wait-free dynamic atomic snapshots.
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23:2 Snapshots in Dynamic Memory Models

1 Introduction

Atomic snapshots [2, 12] are essential buildings blocks for distributed computing. For
example, systems that perform long-running computations regularly take checkpoints in
order to avoid restarting from scratch in case of failures [41, 40, 10, 35, 33, 19, 31]. Other
systems use snapshots in order to gather statistics [9, 14] or to detect inconsistent states,
(e.g., deadlocks) [32, 34, 17]. A snapshot API supports two operations: scan and update,
where a scan returns a mapping from every participant to its last update value. Until now,
snapshots were mostly considered in static models, where the set of participants cannot be
dynamically changed.

Yet it is clear that long-lived reliable systems have to be able to replace old and faulty
components with new ones. Indeed, there is a growing interest in dynamic distributed
systems, in which the set of participating processes can be changed on-the-fly according
to application demands and available resources [5, 27, 18, 38, 23, 15]. There is also strong
motivation for checkpointing and monitoring dynamic systems, for example, large-scale
distributed computations running on platforms like Hadoop [36] and Spark [20]. Another
example is distributed block-chains [28, 11], which implement distributed shared memory,
(e.g., a ledger); consistent snapshots of this memory can be useful for collecting statistical
information and checking whether the system is subject to attacks [13].

Motivated by the above, we define and solve the dynamic snapshot problem. While
previous work [16, 4] has addressed snapshots with infinitely many participants, (see Section 2),
to the best of our knowledge, our snapshot is the first to allow dynamic changes in the set of
participants whose values are returned by scan operations. We consider here asynchronous
dynamic shared memory consisting of single-writer, multi-reader (SWMR) registers, capturing
systems in which every process has a private memory space where it publishes its state and all
other processes can read from it; this occurs, for example, in map reduce-based computation
platforms [36, 20], where each process stores partial computation results for later stages to
process, as well as in state-machine replication [25, 21] and blockchain protocols [28], where
one may want to monitor consistency across replicas.

We distinguish between persistent memory, where registers are available even after the
processes that write to them are removed from the system, and ephemeral memory, which can
be reclaimed. Once a process is removed, any ephemeral register it writes to can immediately
become unavailable and thus be garbage collected. (Our model and problem definitions are
given in Section 3.)

In order to implement any meaningful service in ephemeral memory we have to assume
two essential conditions. First, a slow process may lose track of the active set of processes
(ones that were added and not removed). Therefore, we have to equip the model with some
discovery mechanism, which helps slow processes find new added ones. Second, the number of
remove operations must be bounded. Otherwise, there is a scenario in which a slow process
always tries to read from reclaimed memory, and is thus unable to complete operations; (see
more details in Section 4).

Our main result is an atomic wait-free algorithm for dynamic snapshots in ephemeral
memory. The algorithm is an extension of the well-known static snapshot algorithm by Attiya
et al. [2]. The main challenges in making it dynamic are (i) tracking the active set of processes,
(ii) dealing with a potentially infinite number of processes, which makes the helping mechan-
ism more subtle, and (iii) making sure that no pertinent information is lost when ephemeral
memory is reclaimed. For didactic reasons, we first present (in Section 5) an algorithm for
the persistent dynamic memory model, overcoming the first two challenges. We then extend
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the algorithm (in Section 6) for ephemeral memory, addressing the third challenge. The com-
plexity of every snapshot operation is quadratic in the number of processes that were added
before the operation started, denoted m. An interesting question for future work is trying
to reduce this complexity to O(m·log(m)) as was done for static snapshots [8]; (see Section 7).

Summary of contributions:

We define the dynamic persistant and ephemeral memory models.
We define a dynamic atomic snapshot.
We implement wait-free dynamic atomic snapshots in both dynamic memory models.

2 Related Work

The atomic snapshot abstraction [2] was defined and widely studied in static systems,
assuming a fixed set of participating processes. Shared memory models that allow infinitely
many participating processes and snapshot implementations therein were previously presented
in [16, 4]. As opposed to us, they assume multi-writer, multi-reader (MWMR) registers,
which cannot be emulated from SWMR ones in these models (as proven in the full paper [39]).
In addition, their implementations require a number of MWMR registers that is linear in
the number of participating processes, and they do not allow memory reclamation. We,
in contrast, define an ephemeral memory model in which registers pertaining to removed
processes can be safely reclaimed.

The snapshot problem was also studied for concurrent data structures [24, 30, 29].
However, these works consider a different memory model than ours, in particular, all their
memory objects are shared and are not “owned” by any of the threads. Thus, objects are not
ephemeral in the sense of “disappearing” when their owners are removed. These papers more
adequately capture shared memory multi-processors, whereas our model captures distributed
systems with independent state per process.

Our dynamic shared memory models are inspired by recent dynamic work on dynamic
message passing systems [5, 38, 23, 15], from which we adopt the idea that processes must
be added via explicit add operations before they can invoke operations. Similarly, an
explicit remove operation allows memory to be reclaimed. This extension allows us emulate
snapshots from SWMR registers in the presence of infinitely many potential processes, which
is impossible in shared memory models that do not support explicit add and remove [16, 4].

3 Model and Problem Definitions

We consider asynchronous dynamic memory, which extends asynchronous fault-prone memory [3,
22, 1] to allow for a dynamic set of nodes. We begin in Section 3.1 with standard shared
memory definition, and continue in Section 3.2 to introduce dynamic memory. For brevity,
some of the formal definitions can be found in the full paper [39] In Section 3.3, we define
the dynamic snapshot abstraction, which we emulate in this paper.

3.1 Preliminaries
A shared memory model consists of an infinite set Π of processes accessing variables that
reside at nodes from some set N .

Processes Processes may fail by crashing or by invoking an explicit stop signal. A correct
process is one that never fails. There is no restriction on the number of faulty processes.
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23:4 Snapshots in Dynamic Memory Models

Nodes Each of the nodes is some shared memory location, either at a single server, or
emulated by a group of servers that use protocols like ABD [6] and SMR [26] via message
passing.

Processes access nodes’ variables via low-level operations (e.g., read, write), and interact
with objects emulated on top of the set of nodes via high-level operations (e.g., update and
scan in a snapshot). Both high-level and low-level operations are invoked and subsequently
respond. A history is a (finite or infinite) sequence of invocations and matching responses.
We refer to the tth event (invoke or response) in H as time t. An operation is pending in
history H if its invocation occurs in H but its response does not.

Operation opi precedes operation opj in a history H, denoted opi ≺H opj , if opi’s response
occurs before opj ’s invoke in H. Operations opi and opj are concurrent in H if neither
precedes the other. A history with no concurrent operations is sequential. A history is
well-formed if every process’s subhistory is sequential. We consider only well-formed histories
in this paper. We use sequential histories to define objects’ correct behavior: an object’s set
of allowed sequential histories is called its sequential specification. The sequential specification
of a register is the following: Every read operation returns the value of the last write that
precedes it, or some initial value v0 in case there is no such write.

Two histories of an object are equivalent if every process performs the same sequence of
operations (with the same return values) in both, where operations that are pending in one
can either be included in or excluded from the other. A linearization of a history H is an
equivalent sequential history that satisfies H’s operation precedence relation and the object’s
sequential specification. An object is atomic if each of its histories has a linearization.

3.2 Dynamic memory
In the dynamic model, N is infinite, and the memory is actually kept at a finite subset
of N , which changes dynamically. Objects in this model, called dynamic objects, have to
provide a mechanism to reconfigure the system so as to change this subset. This is done via
the special add and remove operations each object exposes. An explicit remove operation
is essential for applications in order to be able to safely transfer a node’s state before it
is removed and becomes unavailable. An explicit add operation helps processes track the
participating processes, as discussed in Section 4. Some initial subset N0 ⊂ N is known to all
processes. We say by convention that for all n ∈ N0, add(n) is invoked and responds at the
beginning of every history. We say that a node ni is included (respectively, excluded) at time
t in history H if the prefix of length t of H includes a response of an add(ni) (respectively,
remove(ni)) operation. A node ni is active in history H if it is included at any time in H

and not excluded in H.
In this paper we are interested in what can and cannot be done assuming single writer

registers. In this context, each node ni ∈ N is associated with a unique process pi ∈ Π, and
holds one atomic SWMR register to which only pi can write and from which all processes
can read. We refer to the SWMR register at node ni, (which is associated with process pi),
as segmenti.

A process pi is active if node ni is active. A wait-free implementation of an object (in
the dynamic model) is one that guarantees that any operation invoked by a correct (and
active) process completes regardless of the actions of other processes.

We define two memory responsiveness models for dynamic memory:

Persistent memory: Every segmenti s.t. ni is included is wait-free. That is, once a
process is added, its segment is forever available.
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Ephemeral memory: Segments of active nodes are wait-free. Note that here, once a node
is removed, the information it holds is not necessarily available.

Wait-free segments are called responsive, whereas other segments are unresponsive [22, 3, 1].
We refer to the dynamic model with persistent memory as the persistent memory model,
and to the dynamic model with ephemeral memory as ephemeral memory model.

3.3 Dynamic snapshots
Snapshot objects [2] expose an interface for invoking scan and update operations. A dynamic
snapshot object extends the snapshot object with add and remove operations, and has the
following sequential specification:

I Definition 1 (Dynamic snapshots’ sequential specification). Update, add, and remove return
ok. A scan operation invoked at some time t in history H returns a mapping from every
node ni that is included and not excluded at time t in H to a value vi s.t. vi is the argument
of the last update operation invoked by pi before time t in H, or ⊥ if no update is invoked
by pi before the scan.

In this paper we are interested in wait-free implementation of dynamic atomic snapshots in
dynamic memory models.

4 Essential Assumptions

In this section we discuss our assumptions.

Explicit add. Wait-free high-level objects cannot be implemented from low-level SWMR
registers if infinitely many processes may start to participate, i.e., (invoke high-level oper-
ations), at any time without an explicit add. This is actually true in both persistent and
ephemeral memory models; (it is stated in [4], and, for completeness, proven in the full
paper [39]. Thus, we henceforward assume the following:

I Assumption 1. At any time, only processes associated with included nodes can invoke
high-level operations.

Discovery mechanism. Given that in ephemeral memory, removed nodes may be
unresponsive, we have to equip processes with some mechanism to locate included nodes.
Otherwise, a slow process may be unable to proceed after all nodes it had been aware of
have been removed and have become unresponsive. For clarity, we avoid using an additional
discovery entity, but instead assume that accesses to unresponsive nodes throw exception
messages with segments belonging to responsive nodes. Formally, we assume the following:

I Assumption 2. When a process p reads from an unresponsive node ni, it receives either
segmenti, or an exception notification with some segmentj . Moreover, if p reads ni infinitely
often and never receives segmenti, then every segment that belongs to a responsive node is
returned at least once.

Finite number of removals. In addition, it is impossible to implement wait-free dynamic
objects in ephemeral memory in the presence of infinitely many remove operations. This
can proven similarly to the impossibility proof in [37], and so the formal proof is omitted.
Instead we provide the following intuitive justification:
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23:6 Snapshots in Dynamic Memory Models

I Claim 1. There is no wait-free atomic snapshot implementation in ephemeral memory
where infinitely many removes may be invoked.

Proof sketch. Consider a slow process pi that invokes a high-level operation at time t

and before its low-level operations reach any node, all nodes that were included by time
t are removed and become unresponsive. We can construct an infinite history in which
the following happens repeatedly: pi learns from an exception about a node n ∈ N , then
some other process pj adds node n′ 6= n and removes node n. Notice that the add and
remove operations have to be wait-free and pj cannot write to the node associated with
pi (single writer), so the operations complete without affecting pi’s node. Then, node n

becomes unresponsive, so pi cannot read from it. By repeating this process infinitely, we get
an infinite run where pi does not read from any node except its own, and thus, its high-level
operation cannot complete. A contradiction to wait-freedom.

One way to circumvent the impossibility is by assuming a bound on the rate of remove
operations and a corresponding bound on the low-level operation delay [7]. However, since
we want to focus on a fully asynchronous model, we instead assume the following:

I Assumption 3. The number of remove operations is finite.

5 Dynamic Snapshots in Persistent Memory

In this section we assume Assumption 1 and present an algorithm for a wait-free dynamic
snapshot in the persistent memory model. This algorithm serves as a stepping stone for our
ephemeral memory algorithm given in the next section.

Static snapshots. The general idea is based on the well-known snapshot algorithm for
static systems [2]: Each process pi writes only to segmenti, which holds the value written
by its last update, denoted vali, and some additional information. A process that performs a
scan operation repeatedly collects all the segments until it gets two identical scans, which
is called a double collect. The process then stores in its segment the mapping of processes
to data read from their segments in this double collect, called view. Notice that if other
processes perform infinitely many updates concurrently with the scan, the scan may fail
to ever obtain a double collect. In order to overcome this, the algorithm uses a helping
mechanism, whereby a process obtains a scan and stores it in its view before writing a new
value to its segment. A process that fails to obtain a successful double collect a certain
number of times can “borrow” a view from another process.

Dynamic view. In the dynamic model, we need to implement also add and remove, which
change the set of processes that can invoke operations and the set of values that should be
returned by a scan. The view is thus no longer a static array. Instead, it is a mapping from
a dynamic set of nodes to their values. Specifically, the view embedded in the segment holds
three fields: The first, denoted mem, is the set of all known active nodes, initially N0. (In
the original algorithm, this set is static, thus there is no need to store it in the segment.)
The second field, removed, tracks excluded nodes. The third field is a map, snap, from
mem ∪ removed to segments, where snap[i] holds the last value vali read from segmenti.

In order for scans to determine which segments’ values to return, (i.e., which nodes were
included and not excluded), we add to every segment a set changes consisting of tuples of
the form 〈add/remove, ni〉. A process that performs add or remove adds the operation to
changes. A scan by process pi is performed in iterations as follows: It first collects the values
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from the segments that belong to processes in its current mem ∪ removed; then checks their
changes sets to discover which processes were included or excluded and updates mem and
removed accordingly; and repeats this process if no double collect was obtained. Notice that
since we consider a persistent memory model at this point, segments of excluded processes
remain responsive. Therefore, information about added and removed processes is never lost,
and even slow processes can obtain it.

Helping. The second issue we address is how a process can know which view it can borrow
during a scan operation. Consider a run, illustrated in Figure 1, in which some process
performs a scan concurrently with infinitely many add operations, s.t. every process performs
exactly one add and no updates. One way for a scan to complete is by obtaining a successful
double collect, but in this case, because of the infinitely many add operations, the scan can
never obtain one despite the fact that there are no updates. Alternatively, a scan can borrow
a view from another process, but it needs to make sure that the view is fresh enough.

To this end, we add a version number, denoted num, to every segment and include it in
the embedded view. Each process increases its num at the beginning of every scan operation,
and in every collect it checks whether some process has a view that contains its own updated
num. If some process has such a view, then it means that this view is fresh (obtained after
the scan began) and can be borrowed. An illustration is presented in Figure 2.

Figure 1 A run with infinitely many process additions; the scanning process cannot detect which
view is fresh and may be borrowed.

Figure 2 A run with infinitely many process additions; p1’s scan may return the view from
segment17, since it was obtained by p17 during the scan.

Detailed algorithm. The segment structure is defined in Algorithm 1 and illustrated in
Figure 3.

In the context of our algorithm, we say that a node ni is added before time t if ni ∈ N0 or
some process performs a low-level write of 〈add, ni〉 to its segment’s changes during an add(ni)
operation before time t. In the same way, we say that a node ni is removed before time t

if some process performs a low-level write 〈remove, ni〉 to its segment during remove(ni)
before time t. These embedded writes are also the linearization points of the add and remove

operations.
At any time t, we define full-snapshot(t) to be the states (excluding the embedded views)

at time t of the segments of nodes added before time t: each node ni is mapped to the
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23:8 Snapshots in Dynamic Memory Models

Figure 3 Example of segment1. In this example N0 = {n1, n2}, process p2 has not invoked
any operation yet, and process p1 completed add(n3), including writing 1 to segment1.num, per-
forming embeddedScan and writing the result to segment1.view, and finally writing 〈add, n3〉 to
segment1.changes.

tuple 〈value, changes, num〉 that was last written to segmenti before time t. We define
snapshot(t) to be the sub-mapping of full-snapshot(t) excluding nodes that were removed
before time t.

The core of the algorithm lies in the embeddedScan procedure, which obtains full-
snapshot(t) for some t that is later than the time when the procedure is invoked and
saves it in the view field of the segment. Helping is done by performing embeddedScan at the
beginning of every operation (scan, update, add, and remove).

Algorithm 1 Segment structure.
segment = 〈val, changes, num, view〉

where view = 〈mem, removed, snap〉
where mem, removed ⊆ N , and snap is a mapping from mem to tuples 〈val, changes, num〉

initially: if ni ∈ N0, segmenti = 〈⊥, {}, 0, 〈N0, 〈⊥, {}, 0〉|N0|〉〉, else segmenti =⊥

Algorithm 2 Dynamic snapshots in persistent memory: operations. Pseudocode for pro-
cess pi.
1: procedure scani()
2: embeddedScan()
3: for each nj ∈ segmenti.view.mem

4: V [j] = segmenti.view.snap[j].val

5: return V

6: procedure updatei(d)
7: embeddedScan()
8: segmenti.val← d

9: procedure addi(nj)
10: embeddedScan()
11: segmentj ← 〈⊥, {}, 0, segmenti.view〉 . set segmentj ’s initial value
12: segmenti.changes← segmenti.changes ∪ {〈add, nj〉}

13: procedure removei(nj)
14: embeddedScan()
15: segmenti.changes← segmenti.changes ∪ {〈remove, nj〉}

Pseudocode for the algorithm’s operations is presented in Algorithm 2. A scan first
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performs embeddedScan in line 2, and then in lines 3-5 it returns a mapping from scanned
nodes in mem to their segment values. The update operation first performs embeddedScan

and then writes the new value to the segment. Similarly, add and remove first perform
embeddedScan, and then add to changes the information about the included or excluded
node. Additionally, the initial value of a newly added segment is set as part of the add

operation.

Algorithm 3 Dynamic snapshots in persistent memory: embeddedScan function. Pseudocode
for process pi.
16: procedure embeddedScan()i

17: P revV iew ← segmenti.view

18: segmenti.num← segmenti.num + 1 . increase version number

19: while true . try to obtain a consistent snapshot
20: CurV iew.mem← P revV iew.mem

21: CurV iew.removed← P revV iew.removed

22: for each nj ∈ CurV iew.mem ∪ CurV iew.removed . collect
23: CurV iew.snap[j]← 〈segmentj .val, segmentj .changes, segmentj .num〉
24: if CurView=PrevView . successful double collect
25: goto Done
26: for each nj ∈ CurV iew.mem ∪ CurV iew.removed

27: if segmentj .view.snap[i].num = segmenti.num . found a fresh snapshot
28: CurV iew ← segmentj .view

29: goto Done
30: for each 〈OP, nl〉 ∈ CurV iew.snap[j].changes \ P revV iew.snap[j].changes

. update view
31: if OP = add ∧ nl 6∈ P revV iew.removed

32: P revV iew.mem← P revV iew.mem ∪ {nl}
33: P revV iew.snap[l]← 〈⊥, {}, 0〉
34: else
35: P revV iew.mem← P revV iew.mem \ {nl}
36: P revV iew.removed← P revV iew.removed ∪ {nl}
37: P revV iew.snap[j]← CurV iew.snap[j]

Done:
38: if ∃j s.t. 〈remove, ni〉 ∈ CurV iew.snap[j].changes then stop . ni was excluded
39: segmenti.view ← CurV iew

The embeddedScan procedure (Algorithm 3) first increases the version number (line 18),
and then begins repeatedly collecting segments of all known processes. It uses two local
variables to track the added nodes and their views, CurV iew and PrevV iew. Each of them
is structured like view, consisting of mem, removed, and snap. In every iteration after the
first, PrevV iew stores the view from the previous iteration, and in the first iteration it
holds the view from pi’s segment. Lines 22-23 collect a new view into CurV iew. Note that
we collect segments not only from nodes in the current mem, but also from removed ones.
Failing to do so would introduce a subtle problem: it may cause us to miss operations that
are successfully completed by processes after their removal, and before they discover the
removal and stop; we shall revisit this issue in the next section, where we consider ephemeral
memory and hence cannot rely on removed nodes to respond.

There are two ways for pi to complete embeddedScan. The first is by obtaining a double
collect in line 24. The second is by borrowing the view of another process that contains
pi’s up-to-date version number (lines 27–29). It is guaranteed that this view was obtained
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after pi’s embeddedScan began because version numbers never decrease, and this number is
increased at the beginning of the embeddedScan.

In lines 30–37, PrevV iew is updated according to CurV iew. Finally, in line 38, pi checks
if its node was removed, and if so, stops. Otherwise, pi writes the new view to its segment in
line 39.

6 Dynamic Snapshots in Ephemeral Memory

In this section we assume Assumptions 1–3 and extend the algorithm of Section 5 for the
ephemeral memory model. We present the algorithm in Section 6.1, and discuss its complexity
in Section 6.2. A formal correctness proof is given in the full paper [39].

6.1 Algorithm
Recall that in the ephemeral memory model, nodes can become unresponsive, and thus,
information (for example, about added and removed nodes) that is stored in their segments
can be lost. Therefore, unlike the algorithm of Section 5, before removing a node, we need to
make sure that information about its associated process’s completed add and remove opera-
tions will persist after the node is excluded; note that it is possible that such operations are
still pending when the node is being removed and complete later. Our algorithm correctness
is based on the following claim (see proof in the full paper [39]):

I Claim 2. For every time t, for every two processes pi, pj, if segmentj .changes in-
cludes 〈remove, ni, commit〉 at time t, then at time t, segmentj .changes includes every
〈OP, NODE, commit〉 ever included in segmenti.changes.

Note, in particular, that Claim 2 implies that if pi completes an operation after pj

removes it, that operation is already reflected in pj . Given our assumption that the number
of removes is finite (Assumption 3), Claim 2 implies that information about every succeeded
operation is eventually stored at an active, and therefore responsive, node. Note that once
this information is stored at some responsive node, then thanks to our discovery mechanism
(Assumption 2), it is reachable by all correct processes. From this point, every correct process
can eventually complete its embeddedScan as in the algorithm of the previous section.

State transfer. In order to make sure that information about added and removed nodes
persists, processes now update their changes set with all such information observed during
an embeddedScan. The new algorithm’s embeddedScan procedure is presented in Algorithm
4. The segment structure remains as in Algorithm 1. The embeddedScan uses a local set
Changes to track the information observed during its iterations, and segment.changes is
updated according to Changes at the end of the procedure.

When a process p tries to read from a removed node in line 9 during an embeddedScan,
the discovery service may throw an exception with a value read from another segment. Upon
such an exception (line 27), p checks whether the removed set in the view returned by the
exception contains nodes that p did not know were removed. If so, p updates it local variables
PrevV iew and Changes, and jumps to the beginning of the next iteration (Loop) to collect
from the new mem set. Otherwise, retries the read.

Additional phases in add and remove. Since removed nodes can be unresponsive,
processes should not attempt to collect their segments during embeddedScan. However, this
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introduces a subtle problem: In the basic algorithm, a process can complete an add or remove

operation long after it is removed. For example, it can complete an embeddedScan, then
be removed by some other process, and then (without knowing that it has been removed)
write to its segment.changes; recall that writing to changes is the linearization point of the
operation. Since processes no longer collect removed segments, we cannot allow removed
nodes to complete operations that might be missed by some future embeddedScan.

To overcome this problem, we use multiple phases in the add and remove operations.
Pseudocode for the revised operations is given in Algorithm 5. At first, add(n) calls
embeddedScan and adds 〈add, n, propose〉 to its changes set (lines 34-36). The purpose of
this phase is to announce ongoing operations, so that other processes can help complete them
if necessary, while still being able to refrain from completing the add in case self-removal is
observed. Tuples with propose are not taken into account when the sets mem and removed

are updated during embeddedScan iterations (line 16). The second phase calls embeddedScan
again (line 37). Recall that if embeddedScan observes its own removal has started by some
process, it stops. Otherwise, the operation adds 〈add, n, commit〉 to its changes set (line 38).

Algorithm 4 Dynamic snapshots in ephemeral memory: embeddedScan function. Pseudo-
code for process pi.
1: procedure embeddedScani()
2: P revV iew ← segmenti.view

3: Changes← segmenti.changes

4: segmenti.num← segmenti.num + 1 . increase version number
5: while true . try to obtain consistent snapshot
6: CurV iew.mem← P revV iew.mem

7: CurV iew.removed← P revV iew.removed

8: for each nj ∈ CurV iew.mem . the following line may through an exception
9: CurV iew.snap[j]← 〈segmentj .value, segmentj .changes, segmentj .num〉

10: if CurView=PrevView . successful double collect
11: goto Done
12: for each nj ∈ CurV iew.mem s.t. P revV iew.snap[j] 6= CurV iew.snap[j]
13: if segmentj .view.snap[i].num = segmenti.num . found a fresh snapshot
14: CurV iew ← segmentj .view . may through an exception
15: goto Done
16: for each 〈OP, nl, commit〉 ∈ CurV iew.snap[j].changes \ Changes . update view
17: if OP = add ∧ nl 6∈ P revV iew.removed

18: P revV iew.mem← P revV iew.mem ∪ {nl}
19: P revV iew.snap[l]← 〈⊥, {}, 0〉
20: else
21: P revV iew.mem← P revV iew.mem \ {nl}
22: P revV iew.removed← P revV iew.removed

⋃
{nl}

23: Changes← Changes ∪ CurV iew.snap[j].changes

24: P revV iew.snap[j]← CurV iew.snap[j]
Done: . no exceptions from here

25: segmenti ← 〈segmenti.value, Changes, segmenti.num, CurV iew〉
26: if 〈remove, ni, ∗〉 ∈ segmenti.changes then stop

27: upon exception(Seg)
28: if Seg.removed \ P revV iew.removed 6= {} . found new removed node, jump forward
29: P revV iew ← Seg.view

30: Changes← Seg.changes

31: goto Loop
32: else retry read
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A remove operation consists of three phases. A process pi that performs remove(nj)
first calls embeddedScan, then adds 〈remove, nj , prepare〉 to its changes set. The purpose
of this phase is to announce ongoing remove operations so that removed processes will
observe them and stop before committing new operations. In the second phase pi calls
embeddedScan again in order to check what operations pj concurrently performs, i.e., what
operations pj has already proposed but has not yet committed, and then it proposes them
together with its proposal by adding 〈OP, NODE, propose〉 to its changes set for every
〈OP, NODE, propose〉 it has observed in segmentj .changes during its last embeddedScan
together with 〈remove, pj , propose〉. This phase enforces a “flag principle”: if the removed
node doesn’t see its own remove and stop, then its proposal is seen and proposed together
with the proposal to remove it. For example, if a process p1 performs add(n) or remove(n)
concurrently with a remove(n1) operation by another process p2, then either (1) p1 observes
〈remove, n1, prepare〉 before committing its operation and stops, or (2) p2 observes p1’s
〈OP, n, propose〉 and proposes it together with remove(n1).

In the third phase pi calls embeddedScan again, but this time it serves two different
purposes: First, as in add, it checks (at the end of the embeddedScan) if some other process
already initiated removal, in which case it stops before committing its proposals. Second, it
checks if some other process has already committed a remove(pj), in which case it completes
the operation without committing pj ’s proposals. Otherwise, pi commits all its proposals,
i.e., it adds 〈OP, NODE, commit〉 to its changes set for every 〈OP, NODE, propose〉 it
proposed in the second phase. The second check is essential because in case pi observes that
some other process pk had removed pj , it may be the case that pk had missed some of pi’s
proposals and committed pi’s removal without them. Hence, committing them know violates
Claim 2.

The linearization point of an add(n) or remove(n) operation is when 〈add, n, commit〉 or
〈remove, n, commit〉 is added to a changes set of one of the segments for the first time (not
necessarily by the process that invoked the operation).

6.2 Complexity
In this section we analyze the complexity of our algorithm. We measure complexity of
an operation as the total number of memory accesses it performs, including ones that
result in exceptions. Note that all the operations (update, scan, add, and remove) perform
embeddedScan at most three times in addition to a constant number of low-level writes. Thus,
the asymptotic complexity of all operations is equal to the complexity of the embeddedScan
procedure. We assume that the discovery service does not return the same segment twice
during the same while iteration (collect).

I Claim 3. Let op be an embeddedScan invoked at time t by process pi, and let m be the
number of included nodes at time t. Then op’s complexity is O(m2).

Proof sketch. We start by showing that op performs at most O(m) collects. Note that after
two iterations, op performs an additional collect only if there exists a segmentj that is different
in the current and in the previous collects, and segmentj .view.snap[i].num < segmenti.num.
This can only happen if there is an operation by process pj that is invoked before op, during
which pj writes to segmentj after pi reads segmentj in the previous collect, and before pi

reads segmentj in the current collect. By Assumption 1 and since we assume well-formed
histories, the number of such operations is bounded by m. Thus, op performs O(m) collects.

We now show that op successfully reads at most O(m) segments in every collect. Assume
in a way of contradiction that op reads more than 2m segments in some collect col. Therefore,
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op observes, before col begins, more than m nodes that were added after op was invoked. Thus,
op observes in some segment segmentj , before col begins, at least one node whose addition
was invoked after op. Therefore, op reads segmentj .view.snap[i].num = segmenti.num

before col begins, and thus completes without performing col. A contradiction.
By a similar argument and by the assumption that the discovery service does not return

the same segment twice in the same collect, the number of exceptions op handles in every
collect is O(m). All in all, we conclude that the complexity of our algorithm is O(m2).

J

In our analysis above m denotes the number of nodes that are included before op is invoked.
However, we do not need to count in m excluded nodes that become unresponsive before op

is invoked and the discovery service no longer returns them. Therefore, the complexity of
the algorithm depends on the quality of the discovery service: the faster it is notified about
excluded nodes, the less excluded nodes affect complexity. For example, if the discovery
service is perfect and excluded nodes immediately become unresponsive, then the complexity
of an embeddedScan does not depend on nodes that were excluded before it was invoked.

Algorithm 5 Dynamic snapshots in ephemeral memory: add and remove operations. The
update and scan operations remain the same as in Algorithm 2. Pseudocode for process pi.

33: procedure addi(nj)
34: embeddedScan() . phase 1: propose
35: segmentj ← 〈⊥, segmenti.changes, 0, segmenti.view〉 . set segmentj ’s initial value
36: segmenti.changes← segmenti.changes ∪ {〈add, nj , propose〉}
37: embeddedScan() . phase 2: commit
38: segmenti.changes← segmenti.changes ∪ {〈add, nj , commit〉}

39: procedure removei(nj)
40: embeddedScan() . phase 1: prepare
41: segmenti.changes← segmenti.changes ∪ {〈remove, nj , prepare〉}
42: embeddedScan() . phase 2: propose
43: P roposeSet = {〈∗, ∗, propose〉 ∈ segmenti.snap[j].changes} ∪ {〈remove, nj , propose〉}
44: segmenti.changes← segmenti.changes ∪ P roposeSet

45: embeddedScan() . phase 3: commit
46: if 〈remove, pj , commits〉 6∈ segmenti.changes

47: CommitSet = {〈OP, NODE, commit〉 | 〈OP, NODE, propose〉 ∈ P roposedSet}
48: segmenti.changes← segmenti.changes ∪ CommitSet

7 Discussion

Atomic snapshots are essential building blocks in distributed systems. Clearly, any long-lived
distributed system must support dynamism to replace old entities with new ones. In this
paper, we addressed dynamic atomic snapshots for the first time. We defined asynchronous
dynamic shared memory models consisting of a changing active set of nodes, each of which
contains SWMR registers. We distinguished between the case in which nodes that are no
longer part of the set can be reclaimed and become unresponsive (ephemeral memory),
and the case in which nodes are always responsive (persistent memory). We then defined
a dynamic snapshot object that allows users to change the set of processes whose values
should be returned by a scan operation, and presented implementations of this object in the
persistent and ephemeral memory models.
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Our algorithm has quadratic time complexity, and since it is based on a quadratic-
complexity static algorithm [2], we cannot expect any better from our algorithm. An
interesting question for future research is to determine whether more efficient algorithms
exist, given that for static snapshots, O(m · log(m)) algorithms are known [8].

Our notion of ephemeral memory is interesting in its own right because of its generality.
It can be applied to message-passing models: Each node can be emulated on top of a number
of servers (e.g., using ABD [6]), and our responsiveness definition abstracts away the need
to deal explicitly with the failure model of the emulation algorithm. Therefore, another
interesting future direction is to try to implement dynamic reliable storage [5, 38, 23, 27] in
the ephemeral memory model.
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A Definitions: Runs, Global States, and Algorithms

An algorithm defines the behavior of processes as deterministic state machines, where a
high-level operation performs a series of low-level invoke and respond actions on variables,
starting with the high-level operation’s invocation and ending with its response; where a
process pi’s action may change pi’s local state as well as segmenti. A global state is a mapping
to states from system components, i.e., processes and nodes. An initial global state is one
where all components are in initial states specified by the algorithm. A run of algorithm A

is a (finite or infinite) alternating sequence of global states and actions, beginning with some
initial global state, such that global state transitions occur according to A. A run fragment
is a contiguous subsequence of a run.

B Mutable Object Impossibility

Here we prove that without an explicit add operation no meaningful object can be emulated
from SWMR registers. An illustration of the proof of the following theorem can be found in
Figure 4. We start with a definition of mutable objects.

Mutable objects. For a global state c and operation a, we denote by c.ai the sequential
run fragment of a by process pi from the global state c. Intuitively, a mutable object is
one that can be changed by a process, in the sense that a mutating operation can change
the value returned by another operation. Formally, a mutable object is an object that has
operations a, b, possibly a = b, s.t. there exists a global state c, s.t. for every pair of processes
pi, pj , c.ai returns a different value than ai in c.bj .ai. In this case we say that b mutates the
object.

For example, an MWMR register is a mutable object, where a is a read operation and
b is a write(v) operation s.t. v 6= v′, where write(v′) is the last write to complete before c.
Another example is an atomic snapshot [2] object, where a is a scan and b is an update.

I Theorem 2. A wait-free mutable object cannot be emulated from SWMR registers if
infinitely many processes are allowed to invoke high-level operations at any time.

Proof. Assume to the contrary that there is some object with operations a and b as in the
definition of mutable objects. Consider an initial global state c. We construct a sequential
run in which the mutability of the object is contradicted. Consider a solo run of ai from c,
c.ai. By wait-freedom, the operation completes and returns some value v after reading only
finitely many registers (reading infinitely many registers cannot be wait-free). Therefore,
there is a process pj that none of its registers are read through the run. Now consider another
run in which pj executes b solo from c and completes in some global state c′. In global states
c and c′, all registers except ones written by pj hold the same value, so a solo run of ai from
c′ also completes, and the steps of ai are the same in both runs. Since a does not read any
of pj ’s registers, the value returned from c.bj .ai is also v. A contradiction to the assumption
that b mutates the object.

J
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Figure 4 Theorem 2 proof illustration: impossibility of wait-free mutable object emulation.

C Correctness Proof

We prove here the correctness of our algorithm for dynamic snapshots in the ephemeral
memory model (Section 6).

Notation. We denote the view of local variable v at process pi as vi, e.g., PrevV iewi

is pi’s PrevV iew. We say that a process p commits add(n) (remove(n)) when it writes
〈add, n, commit〉 (respectively, 〈remove, n, commit〉) to its segment. Recall that we say that
node n is added (removed) when add(n) (respectively, remove(n)) is committed for the first
time. We will show that the linearization point of an add(n) (remove(n)) operation is when
n is added (respectively, removed). Recall also that a snapshot(t) is a mapping from every
added and not removed node at time t to its value at time t. In order to prove correctness we
show that every scan operation that is invoked at time t1 and completes at time t2 returns
snapshot(t’) for some t′ s.t. t1 < t′ < t2.

We begin with the following observation:

I Observation 1. Consider some time t in a run of the algorithm when some process pi is
executing embeddedScan. Then N0 ⊆ PrevV iewi.mem ∪ PrevV iewi.removed at time t.

Our proof is based on the following key property:

I Property 1 (Remove propagation up to time t). For every two processes pi, pj , if segmentj .changes

includes 〈remove, ni, commit〉 at time t, then at time t, segmentj .changes includes every
〈OP, NODE, commit〉 ever included in segmenti.changes.

We first show that Property 1 implies certain pertinent properties about segment views
(Lemma 3 to Corollary 6) and proceed to prove it by induction for all t.

I Lemma 3. Consider some time t in a run of the algorithm when some process pi is
at the beginning of some collect in an execution of embeddedScan (line 5 in Algorithm
4). Assume that Property 1 is true for time t. Assume also that there exists either a
node not in PrevV iewi.mem at time t that has been added and not removed before time
t, or a node in PrevV iewi.mem that has been removed before time t. Then there exists
pk ∈ PrevV iewi.mem s.t. PrevV iewi.snap[k].changes 6= segmentk.changes at time t.

Proof. By the second assumption, there is an operation (add or remove) op, committed before
time t, that pi did not see. Now pick a process that commits op before time t and denote it
by pj1 . Node nj1 is either in N0 or it has been added by another process pj2 before time t.
Node nj2 is also either in N0 or it has been added by another process pj3 before time t, and so
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on. The number of added nodes before time t is finite. Thus, there is a sequence pj1 , . . . , pjn

s.t. for every 0 ≤ l < n node njl
has been added by pjl+1 before time t, and njn

∈ N0. Now
let pjk

be the process with the lowest k s.t. njk
∈ PrevV iewi.mem ∪ PrevV iewi.removed

at time t. It is guaranteed that there is such process because njn ∈ N0 and by Observation
1, N0 ⊆ PrevV iewi.mem ∪ PrevV iewi.removed at time t.

Note that if k = 1, process pjk
commits op before time t. Otherwise, pjk

commits
add(njk−1) before time t. Now consider two cases:

First, njk
∈ PrevV iewi.mem. In this case, segmentjk

.changes contains 〈add, njk−1 , commit〉
(if k > 1, or op’s commit otherwise) at time t, whereas PrevV iewi.snap[jk].changes does
not. Otherwise, pi would have added njk−1 to PrevV iewi.mem earlier (if k > 1, or see
op otherwise), and we are done.
Second, njk

∈ PrevV iewi.removed. In this case, 〈remove, pjk
, commit〉 ∈ segmenti.changes.

Thus, by the first assumption (Property 1), 〈add, njk−1 , commit〉 ∈ segmenti.changes,
and thus njk−1 ∈ PrevV iewi.mem ∪ PrevV iewi.removed at time t (if k > 1, or pi sees
op’s commit otherwise before time t). A contradiction.

J

I Lemma 4. Assume that Property 1 is true for time t. Assume also that some process
pi completes a successful double collect in a run of the algorithm during an execution
of embeddedScan, and let t be the time when the second collect begins. Then at time t,
PrevV iewi.snap = snapshot(t), and the value written to segmenti.view at the end of the
embeddedScan is snapshot(t).

Proof. At time t, PrevV iewi.snap holds the values returned from the first collect. We
first show that ∀nj ∈ PrevV iewi.mem, PrevV iewi.snap[j] is equal to segmentj at time t.
Assume the contrary, then pj wrote to segmentj in the interval between the read of segmentj

in the first collect and time t. The values of segmentj cannot repeat themselves because
segmentj .num is increased at the beginning of every operation. Therefore, the value read
from segmentj in the second collect is different from the one read from segmentj in the first
collect. A contradiction to the successful double collect.

We get, in particular, that PrevV iewi.snap[j].changes = segmentj .changes for all
nj ∈ PrevV iew.mem. By the contrapositive of Lemma 3, PrevV iewi.mem contains at time
t all the processes that have been added and not removed before time t. Therefore, at time t,
PrevV iewi.snap is snapshot(t). After a successful double collect, pi stops the iterations and
writes PrevV iewi to its segment.view.

J

I Lemma 5. Consider some process pi that begins an embeddedScan at some time ts and
completes at time te. Assume that Property 1 is true for every time t ≤ t1, te > t1 > ts. If
at time t1 pi reads some segmentj s.t. segmentj .view.snap[i].num = segmenti.num, then
the value of segmentj .view.snap at time t1 is a snapshot(t2) for some time te > t2 > ts.

Proof. Let V be the value of segmentj .view at time t1. First note that every segment value
is either the initial value, or obtained by a successful double collect, or borrowed from another
process’ segment. Since the number of embeddedScans that complete before time t1 is finite
and initial values are not borrowed, it follows by induction that every non-initial segment
value is the result of a successful double collect by some process. Since segmentj .num > 0,
segmentj is the result of a successful double collect D obtained by some process pl, possibly
j = l, not after time t1. Now recall that process pi increases segmenti.num at the beginning
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of its embeddedScans, and since segmentj .view.snap[i].num = segmenti.num, we get that
pl reads pi’s segment during the first collect of D, after pi increases its version number, i.e.,
after time ts. Let t2 be the time at the beginning of the second collect of D, and notice
that te > t1 > t2 > ts. By Lemma 4, the value of PrevV iewl.snap at t1 is snapshot(t2).
Therefore V is snapshot(t2). The lemma follows.

J

I Corollary 6. Consider time t in a run of the algorithm. Assume that Property 1 is true
for every time t′ ≤ t. Then every embeddedScan that completes before t returns snapshot(t’)
for some time t′ in the embeddedScan interval.

We are now ready to prove our key claim:

Claim 2 (restated). For every time t, Property 1 holds.

Proof. We prove by induction on t.
Base: t = 0. Since no remove operations have been committed yet, the claim trivially

holds.
Step: Assume that the claim holds for every time 0 ≤ t′ ≤ t, we prove that the claim

holds for t + 1. By Corollary 6, every embeddedScan that completes before t + 1 returns
snapshot(t’) for some time t′ in the embeddedScan interval. Let pj be a process that writes
〈remove, pi, commit〉 to segmentj .changes at time t+1, and let 〈OP, NODE, commit〉 be a
commit ever written by pi to segmenti.changes. We need to show that 〈OP, NODE, commit〉 ∈
segmentj .changes at time t + 1. Since pj writes 〈remove, pi, commit〉 to segmentj .changes

at time t + 1, it writes 〈remove, pi, propose〉 to segmentj .changes at time tj
propose < t + 1

and some process pl (possibly pj) writes 〈remove, pi, prepare〉 to segmentl.changes at time
tl
prepare < tESj

2
< tj

propose s.t. pj ’s second embeddedScan returns snapshot(tESj
2
). Denote the

third embeddedScan performed by pi during the operation that commits OP (NODE) by
ESi

3. Now consider three cases according to ESi
3.

First, ESi
3 returns snapshot(tESi

3
) for some tESi

3
< tl

prepare. Thus, pi writes 〈OP, NODE, propose〉
to segmenti.changes before time tl

prepare. We now show that pj sees it and writes
〈OP, NODE, commit〉 to segmentj .changes at time t + 1. Consider two cases:

First, pj reads segmenti during its second embeddedScan. In this case, pj sees
〈OP, NODE, propose〉 in segmenti its second embeddedScan, and thus pj writes
〈OP, NODE, commit〉 to segmentj .changes at time t + 1.
Second, pj skips segmenti because it sees 〈remove, pi, commit〉 at some segmentk dur-
ing its second embeddedScan. By the induction assumption, pj also sees 〈OP, NODE, commit〉
in segmentk, and thus pj writes 〈OP, NODE, commit〉 to segmentj .changes at time
t + 1.

Second, ESi
3 returns snapshot(tESi

3
) for some tESi

3
, tl

prepare < tESi
3

< tj
propose. Note that

segmentl includes 〈remove, pi, prepare〉 throughout ESi
3. Consider two cases:

First, pi sees 〈remove, pi, prepare〉 in segmentl.changes during ESi
3, and thus stops

before writing 〈OP, NODE, commit〉 to segmenti.changes. A contradiction.
Second, pi does not see segmentl in ESi

3. Since pl is added before ESi
3 begins, it

must be the case that pi sees 〈remove, pl, commit〉 during ESi
3. Now note that pj ’s

third embeddedScan starts after tj
propose, and thus after tESi

3
. Therefore, pj sees

〈remove, pl, commit〉 during its third embeddedScan. Therefore, it does not write
〈remove, pi, commit〉 to segmentj at time t + 1. A contradiction.
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Third, ESi
3 does not return snapshot(tESi

3
) s.t. tESi

3
< tj

propose. Since pi does not stop after
ESi

3, pi does not read segmentj during its ESi
3. Therefore, pi sees 〈remove, pj , commit〉

in some segmentk1 . Note that pi does not see 〈remove, pi, propose〉 in segmentk1 . Oth-
erwise it would have stopped. Therefore, there is a sequence pi, pk1 , . . . , pkn (possibly,
n = 1 ) s.t. each process in the sequence except pkn

reads 〈remove, pj , commit〉 and
not 〈remove, pi, propose〉 from the segment of the consecutive process during its third
embeddedScan, and pkn

writes 〈remove, pj , commit〉 to its segment and sees neither
〈remove, pj , commit〉 nor 〈remove, pi, propose〉 during its third embeddedScan, ESkn

3 .
Therefore, ESkn

3 reads from segmentj , and returns snapshot(tESkn
3

) s.t. tESkn
3

< tj
propose.

Thus, pkn
writes 〈remove, pj , propose〉 to segmentkn

before tj
propose. Now note that pj ’s

third embeddedScan, ESj
3, begins after tj

propose, and consider two options:

First, pj reads segmentkn
during ESj

3. In this case pj sees 〈remove, pj , propose〉, and
stops before writing 〈remove, pi, commit〉 to its segment. A contradiction.
Second, pj reads 〈remove, pkn

, commit〉 from some segmentr during or before ESj
3.

Since ESj
3 completes before time t + 1, by the induction assumption, pj reads

〈remove, pj , commit〉 in segmentr as well. Therefore, pj stops before writing 〈remove, pi, commit〉
to its segment. A contradiction.

J

I Theorem 7. The algorithm presented in Algorithms 1, update and scan operations in
Algorithm 2, Algorithm 4, and Algorithm 5 implements dynamic atomic snapshot.

Proof. Let r be a run of the algorithm and let rs be a sequential run s.t. the operation in rs

are ordered according to their linearization points in r. Now consider some process pi that
invokes a scan operation at time ts in r. Assume that the scan operation completes at some
time te > ts in r and returns V . By Claim 2 and Corollary 6, V is a snapshot(t) for some
ts < t < te, and thus rs satisfies the dynamic snapshot’s sequential specification. Therefore,
rs is a linearization of r.

J

Note that the wait-freedom of our algorithm follows from Claim 3 (Section 6.2).
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