Exposing and Eliminating Vulnerabilities to
Denial of Service Attacks in Secure Gossip-Based
Multicast

Gal Badishi, Idit Keidar, and Amir Sasson

Abstract

We propose a framework and methodology for quantifying tfiece of denial of service (DoS) attacks on
a distributed system. We present a systematic study of @istaace of gossip-based multicast protocols to DoS
attacks. We show that even distributed and randomized mssied protocols, which eliminate single points of
failure, do not necessarily eliminate vulnerabilities to® attacks. We propose Drum — a simple gossip-based
multicast protocol that eliminates such vulnerabilitiBsum was implemented in Java and tested on a large cluster.
We show, using closed-form mathematical analysis, siriariat and empirical tests, that Drum survives severe
DoS attacks.

Index Terms

C.2.4.b Distributed applications, C.4.f Reliability, dadility, and serviceability. D.1.8 Distributed program
ming.

. INTRODUCTION

One of the most devastating security threats faced by aldistd system is aenial of servicdDoS)
attack, in which an attacker makes a system unresponsiversing it to handle bogus requests that
consume all available resources. Indstributed denial of servicéDDoS) attack, the attacker utilizes
multiple computers as the source of a DoS attack, in ordemdrease the attack strength. Since a DDoS
attack is essentially a strong DoS attack, we will consittent to be the same. In 2003, approximately
42% of U.S. organizations, including government agenciesnfifa institutions, medical institutions and
universities, were faced with DoS attacks [4]. That yearSCaitacks were the second most financially
damaging attacks, only short of theft of proprietary infatian, and far above other attacks [4]. Therefore,
coping with DoS attacks is essential when deploying sesvicea hostile environment such as the
Internet [20].

As a first defense, one may protect a system against DoS siisakg network-level mechanisms [25],
[22], [23]. These mechanisms involve rate-limiting incoiitraffic, and filtering packets according to
their headers. However, network-level filters cannot delDeS attacks at the application level, when the
traffic seems legitimate. Even if means are in place to ptagainst network-level DoS, an attack can
still be performed at the application level, as the bandwitkteded to perform such an attack is usually
lower. This is especially true if the application perfornmtensive computations for each message, as
occurs, e.g., with secure protocols based on digital sigaat

As network-level DoS-mitigation solutions are increagynavailable, application level DoS attacks are
becoming a major concern [29]. Consequently, vendors hayerbemploying some measures against DoS
attacks at the application layer [10], [21]. Such solutians commonly deployed at the network/firewall
level, although they are application-specific. Howevegsthmeasures are usually just hard-coded validity

In IEEE Transactions on Dependable and Secure Computing (TDSEC)March 2006. A preliminary version of this paper appeared in
The IEEE International Conference on Dependable Systems and Mst@{@SN) 2004.

Gal Badishi and Idit Keidar are with the Electrical Engineering Departnieechnion — I.1.T.

Amir Sasson was with the Computer Science Department, Technion —wWhé&n the work was conducted.

Gal Badishi is supported by the Israeli Ministry of Science.

checks for well-known protocols, and do not contain meargetd with resource exhaustion caused by the
application. In this paper, we are concerned with copindh\iibS attacks in application-level multicast
protocols. The basic idea is to assume simple and generdianisens at the network/firewall level and
to exploit them at the application (multicast protocol)dev

To quantify the effects of DoS attacks, we measure their emite on the time it takes to propagate a
message to all the processes in the system, as well as ondhegavthroughput processes can receive.
We do this using asymptotic analysis, simulations, and oreasents.

We focus on large-scale distributed systems (e.g00 processes). A DoS attack that targets every
process in a large system inevitably causes performancedkgipn, but also requires vast resources.
In order to be effective even with limited resources, attasktarget vulnerable parts of the system. For
example, consider a tree-based multicast protocol; byeteng a single inner node in the tree, an attacker
can effectively partition the multicast group. Hence, éhating single points of failure is an essential
step in constructing protocols that are less vulnerabled8 Bttacks.

We therefore focus on gossip-based (epidemic) multicastopols [5], [1], [6], [8], [12], [13], [11],
which eliminate single points of failure using redundanog aandom choices. Such protocols are robust
and have been shown to provide graceful degradation in e d& amounting failures [9], [14]. As in
previous work, e.g., [1], [13], we assume that the gossgebdamulticast system is deployed in a WAN
environment, and as such, its nodes suffer from DoS attacksched from outside the system. One may
expect that such a system will not suffer from vulneralg$itio DoS attacks, since it can continue to be
effective when many processes fail. Surprisingly, we shio&t gossip-based protocols can be extremely
vulnerable to DoS attacks targeted at a small subset of theepses. This occurs because an attacker can
effectively isolate a small set of processes from the reshefgroup by attacking this set.

Having observed the vulnerabilities of traditional praits; we turn to search for ways to eliminate these
vulnerabilities. Specifically, our goal is to design a puratithat does not allow an attacker to increase the
damage it causes by focusing on a subset of the processeseWetdamiliar with any previous protocol
that achieves this goal. We are familiar with only one prasiavork, by Minsky and Schneider [19], that
addresses DoS attacks on a gossip-based protocol. Howleegrroblem they consider differs from ours
in a way that renders their approach inapplicable to oumggefsee Section II), and moreover, they only
deal with limited attack strengths.

We presentDrum (DoS-Resistant Unforgeable Multicast), a gossip-basedicast protocol, which,
using a few simple ideas, eliminates common vulneraksliteDoS attacks: the best attack against Drum
requires the attacker to target the entire system. The 3 idaas used in Drum are:

1) Simultaneously using two gossiping techniquyasshand pull.
2) Allocating separate resources for each operation.
3) Using random ports whenever possible, for each commtioicahannel.

Mathematical analysis and simulations show that Drum iddsehieves our design goal: an attacker
cannot substantially hinder Drum’s performance by tangefh small subset of the processes. When an
adversary has a large sending capacity, its most effectteekaagainst Drum is an all-out attack that
distributes the attacking power as broadly as possible. (@vieentrate on heavy attacks since they are
the most damaging, and one can expect them to happen in acerarios [28].) Obviously, performance
degradation due to a broad all-out DDoS attack is unavoed#dsl any multicast protocol, and indeed all
the tested protocols exhibit the same performance degoadatder such a broad attack. In contrast, under
an attack that focuses on a strict subset of the processas)y®latency remaingonstantas the attack
strength increases, whereas in traditional protocols)atency growdinearly with the attack strength.

We have implemented Drum in Java and tested it on a clusterookstations. Our measurements
validate the analysis and simulation results, and showDRinam can withstand severe DoS attacks, where
naive protocols that do not take any measures against DoXKsittampletely collapse in terms of latency
and throughput.

In summary, this paper makes the following contributions:

. It presents a new framework and methodology for quantifyimg effects of DoS attacks. We are
not familiar with any previously suggested metrics for D@Sistance nor with previous attempts to
quantify the effect of DoS attacks on a system.

« It uses the new methodology to conduct the first systematidysof the impact of DoS attacks on
multicast protocols. This study exposes vulnerabilitresraditional fault-tolerant protocols, showing
that robustness, although necessary, is not sufficient &8-Bitigation.

« It presents Drum, a simple gossip-based multicast protthadl eliminates such vulnerabilities. We
believe that the ideas used in Drum can serve to mitigatefteete of DoS attacks on other protocols
as well.

« It provides closed-form asymptotic analyses as well as lsitioins and measurements of gossip-based
multicast protocols under DoS attacks varying in strengith extent.

This paper proceeds as follows: Section Il gives backgroand related work. Section Il presents
the system model. Section IV describes Drum. Section V pitsseur evaluation methodology and
considered attack models. The following three sectionduat& Drum and compare it to traditional
gossip-based protocols using various tools: Section Vegiclosed-form asymptotic latency bounds;
Section VII provides a thorough evaluation using simulaioand Section VIII presents latency and
throughput measurements. Section IX evaluates the ussiilof two specific DoS-mitigation techniques
used in Drum. Section X concludes. The appendices contane sterivations for the analysis.

I[I. BACKGROUND AND RELATED WORK

Gossip-based dissemination [5] is a leading approach inddsgn of scalable reliable application-
level multicast protocols, e.g., [1], [6], [8], [12], [13]11]. Our work focuses on symmetric gossip-based
multicast protocols like Ipbcast [6]. We consider protactilat do not rely on external mechanisms such
as IP multicast.

Such protocols work roughly as follows: each process lgdadllides its time intogossip roundsrounds
are not synchronized among the processes. In each roungrdbess randomly selects a small number
of processes to gossip with, and tries to exchange infoomatiith them. Every piece of information
is gossiped for a number of rounds. It has been shown that rby@agation time of gossip protocols
increases logarithmically with the number of processe$, [d4]. There are two methods for information
dissemination: (1push in which the process sends messages to randomly selecteesges; and (ull,
in which the process requests messages from randomly eglpobcesses. We show that both methods
are susceptible to DoS attacks: attacking the incoming phsimnels of a process may prevent it from
receiving valid messages, and attacking a process’s imgppull channels may prevent it from sending
messages to valid targets. Some protocols use both metdhd&]]. Karp et al. showed that combining
push and pull allows the use of fewer transmissions to endai@ arrival to all group members [11].

Drum utilizes both methods, and in addition, allocates anbded amount of resources for each operation
(push and pull), so that a DoS attack on one operation doeshaoper the other. Similar resource
separation was also used in COCA [33], for the sake of overapriinS attacks on authentication
servers. Drum further utilizes randomly selected portsdata transmission, thus making it difficult for
an attacker to target these ports.

Secure gossip-based dissemination protocols were pryisuggested by Malkhi et al. [16], [17], [18].
However, they did not deal with DoS attacks. Follow-up wogkNinsky and Schneider [19] suggested
a pull-based protocol that can endure limited DoS attackbduynding the number of accepted requests
per round. However, these works solve tti€usion problem, in which each message simultaneously
originates at more thah correct processes, where up #t@rocesses may suffer Byzantine failures. In
contrast, we consider a multicast system where a messagjeates at a single source. Hence, using a
pull-based solution that utilizes+ 1 disjoint paths, as suggested in [19], does not help in vatiding
DoS attacks in the multicast system we consider. Moreovensky and Schneider [19] focus on load
rather than on DoS attacks; they include only a brief analg§iDoS attacks, under the assumption that

no more thant processes perform the attack, and that each of them geseraiagle message per round
(the reception bound is also assumed to be one message pédlj.rbucontrast, we focus on substantially
more severe attacks, and study how system performanced#ésgas the attack strength increases.

Drum deals with DoS attacks at the application-level, assgmetwork-level defenses are already in
place. Network-level DoS analysis and mitigation has begansively dealt with [27], [2], [7], [30], [3],
[25], but DoS-resistance at the secure multicast serviger laas gotten little attention. We note that our
work is the first that we know of that conducts a systematidystf the effect of DoS attacks on message
latency.

Here, we focus on DoS attacks in which the attacker sendscédbd application messages. DoS can
also be caused by churn, where processes rapidly join and [&8&], thus reducing availability. In Drum,
as in other gossip-based protocols, churn has little efectvailability: even when as many as half
of the processes fail, such protocols can continue to delivessages reliably and with good quality
of service [14]. A DoS attack of another form can be caused foggss perturbations, whereby some
processes are intermittently unresponsive. The effecedbiations is analyzed in [1], where it is shown
that probabilistic protocols, e.g., gossip-based prdgysmlve this problem.

[ll. SYSTEM MODEL

Drum supports probabilistically reliable multicast [1§]] [11] among processes that are members of
a group. Each message is created by exactly one group meitgosoircg. Throughout this paper we
assume that the multicast group is static. Thereraraembers in the group, and each procgdsas a
list of the othern — 1 group members.

Like previous gossip protocols [1], [6], we assume that tinelanlying network is fully-connected.
The message latency varies, but it is bounded. The linkfosbability is constant, equal for all links,
and independent of any other factor. The communication reélamare insecure, meaning that senders of
incoming messages cannot be reliably identified in a sim@armar.

An adversary can generate fabricated messages. Howeagaeduires the adversary to utilize resources.
Malicious processes can perform DoS attacks on group meamids note that authenticating messages,
e.g., using digital signatures, does not solve the DoS prophs fabricated messages must be invalidated
using a costly operation.

We assume that communication can take place on ports thagehan demand, and that the multicast
protocol can randomly choose to process a subset of the gess#iaat arrive to a designated port, and
ignore messages that arrive to other ports. We further asshat a DoS attack that does not specifically
target the designated port does not affect the receptiomismport (i.e., the application-level DoS attack
does not cause a network-level DoS attack as well). This eaachieved using available network-level
products [25], [22], [23].

We assume that a process can choose a random port for conatomithat the adversary cannot
predict. We assume that the adversary only attacks portwiv& of. In our protocol, the use of a random
port is limited in time, and the process notifies another @ssmf this new communication port by sending
it a message stating the port number. We assume that it ta&esdiversary considerable time to react to
this message, so that it cannot attack this random port wthigestill in use. This assumption is justified,
since an attacker that has significant strength is probahlyl@/ing a DDoS attack and needs to notify
its subordinates whenever it wishes to change targets.

V. DOS-RESISTANT GOSSIPBASED MULTICAST PROTOCOL

Drum is a simple gossip protocol, which achieves DoS-rase# using a combination of pull and push
operations, separate resource bounds for different opesatand the use of random ports in order to
reduce the chance of a port being attacked. Each propesscally divides its time into rounds. The
rounds are not synchronized among the processes. A roungically in the order of a second, and its
duration may vary according to local random choices. Evennd, p chooses two small (constant size)

random sets of processes (group member&)y,,., and view,,;, and gossips with them. E.g., when
these views consist of two processes each, this corresgoralsombined fan-out of four. In additiop,
maintains a message buffer. Procegserforms the following operations in each round:

« Pull-request— p sends a digest of the messages it has received to the predes#s view,,,
requesting missing messages. Pull-request messagesnate sewell-known port. The pull-request
specifies a randomly selected port on whichill await responses, andspawns a thread for listening
on the chosen port. This thread is terminated after a fewdsun

« Pull-reply—in response to pull-request messages arriving on thekwmellvn port,p randomly selects
messages that it has and are missing from the received sligagl sends them to the destinations
indicated in the requests.

« Push-— in a traditional push operatiop, randomly picks messages from its buffer, and sends them
to each target in its view,,s,. In order to avoid wasting bandwidth on messages ttateady has,

p instead requeststo reply with a message digest, as follows:

1) p sends gush-offerto ¢, along with a random port on which it waits for a push-reply.

2) t replies with apush-replyto p’s random port, containing a digest of the messaghas, and
a random port on which waits for data messages.

3) If p has messages that are missing from the digest, it chooseslamasubset of these, and
sends them back t8s randomly chosen port.

The target process listens on a well-known port for puskrsff

Upon receiving a new data message, either by push or in respona pull-request first performs
some sanity checks. If the message passes these chedksyers it to the application and saves it in
its message buffer for a number of rounds. The sanity chechdoy cryptographic mechanisms, which
ensure that the attacker has negligible probability of it#ing a message that passes these checks.
Consequently, bogus messages impact only their first retigitowever, the sanity checks are costly in
terms of execution time (e.g., verifying digital signatjeThus, performing sanity checks at a high rate
effectively causes DoS.

Resour ce allocation and bounds. In each roundp sends push-offers to all the processes invitsv,, s,
and pull-requests to all the processes invitsw,,;;. If the total number of push-replies and pull-requests
that arrive in a round exceegss sending capacity, thep equally divides its capacity between sending
responses to push-replies and to pull-requests. Likewisesponds to a bounded number (typically
|view,usn|) OF push-offers in a round, and if more data messages thaamihandle arrive, thep divides
its capability for processing incoming data messages gbatween messages arriving in response to
pull-requests and those arriving in response to pushe®gplihe messages are randomly chosen from the
incoming message buffers.

At the end of each round; flushes its incoming message buffers. This is importante@afly in the
presence of DoS attacks, as an attacker can send more nedisage can handle in a round.

Achieving DoS-resistance. We now explain how the combination of push, pull, random getéctions,
and resource bounds achieves resistance to targeted DaxksatA DoS attack can flood a port with
fabricated messages. Since the number of messages acoeptath port in a round is bounded, the
probability of successfully receiving a given valid messag in a given round is inversely proportional
to the total number of messages arriving on the same poft as that round. Thanks to the separate
resource bounds, an attack on one port does not reduce thehility for receiving valid messages on
other ports.

In order to prevent a process frasendingits messages usingmshoperation, one must attack (flood)
the push-offer targets, the ports where push-replies aagteay or the ports where data messages are
awaited. However, the push destinations are randomly choseach round, as are the push-reply and
data ports. Thus, the attacker has no way of predicting tbbsies.

Similarly, in order to prevent a process fragceivingmessages during pull operation, one needs to
target the destination of the pull-requests or the ports loiclpull-replies arrive. However, the destinations

and ports are randomly chosen. Thus, using the push opgrBtiam achieves resilience to targeted attacks
aimed at preventing a process fr@andingmessages, and using the pull operation, it withstandskattac
that try to prevent a process froraceivingmessages.

V. EVALUATION METHODOLOGY

The most important contribution of this paper is our thotoegaluation of the impact of various DoS
attacks on gossip-based multicast protocols. In addittoexamining the effect of DoS on Drum, we also
measure the effectiveness of the DoS-mitigating techsigueployed by it. We mostly concern ourselves
with the benefits of combining both the push and pull methtds evaluate three protocols: (i) Drum, (ii)
Push which uses only push operations, and (#yll, which uses only pull operations. Pull and Push are
implemented the same way Drum is, with the important measafdounding the number of messages
accepted in each round and using random ports. Thus, in comgpthe three protocols, we study the
effectiveness of combining push and pull operations unkeraissumption that these other measures are
used. Subsequently, Section IX evaluates the effectigeaE®rum’s other DoS-mitigation concepts, by
contrasting Drum’s performance against that of two modifredsions of Drum: one without resource
separation, and a second without using random ports.

We begin by evaluating the effect that a range of DoS attaake bn message latency using asymptotic
mathematical analysis (in Section VI) and simulations @ctn VII). Our simulation results exhibit the
trends predicted by the analysis.

For these evaluations, we make some simplifying assungtidfe assume no message is ever purged
from any process’s message buffer, and that all processes dtane messages in their buffers (from
previous multicast sessions). We also assume that wheregges send a data message, they send the
complete contents of their buffer in a single operation. \Welet the push operation as performed without
push-offers (in Drum and in Push). We assume that the rourelsyachronized, and that the message-
delivery latency is smaller than half the gossip periodstha process that sends a pull-request receives
the pull-reply in the same round. All of these assumptionseweade in previous analyses of gossip-based
protocols, e.g., [1], [6], [16], [19].

The analysis and simulations measure latency in terms diggsunds: we measure the message’s
propagation timewhich is the expected number of rounds it takes a given pobto propagate a message
to all (in the closed-form analysis) or % (in the simulations) of the correct processes. We chose a
threshold 0f99% since the message may fail to reach some of the correct mexekie to old-message
purging or link loss. Note that correct processes can besrdlftacked or non-attacked. In both cases,
they should be able to send and receive data messages.

We turn to measure actual performance on a cluster of warsta(in Section VIII). Our goal for this
evaluation is twofold: First, we wish to ensure that the difying assumptions made in the analysis and
simulations have little impact on their results. E.g., ia thnplementation, rounds are not synchronized and
the push-offer mechanism is used (in Drum and in Push). Skcoa seek to measure the consequences
of DoS attacks not only on actual latency (in msecs.), bui afs the throughput of a real system, where
multiple messages are sent, and old messages are purgegroossses’ message buffers.

Attacks. In all of our evaluations, we stage various DoS attacks. Veeirag that the DoS attacks are
launched from outside the system. DoS from inside the grsugssentially just one source (or more)
generating excessive traffic. This can happen regardleasyofalicious nodes being part of the multicast
group, e.g., in a heterogenous system. Consequently, tmsast a flow-control problem, as one cannot
differentiate between a malicious attack and legitimateesgive traffic. Flow control in gossip-based
multicast has been dealt with in [26].

In each DoS attack, the adversary focuses on a fraatioithe processe® (< a < 1), and sends each of
themz fabricated messages per round (in Drum, this méapssh messages agdoull-requests). We note
that randomly choosing the attack targets every round doesiake any difference, as the communication
partners are re-chosen uniformly at random each round. Waté¢he total attack strength /= z-«a:-n.

0.95

M7
oo
PNWAOG

protd

09

S 08

0.751

0.7

0.6 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

processes X

(a) p. as a function ofn, for various fan-outs. (b) pa vs. g for F" =4, n = 1000.

Fig. 1. Actual values op,, andp,.

We assume that the message source is being attacked (thisohagpact on the results of Push). We
consider attacks either of faxed strengthwhere B is fixed anda increases (thusy decreases); or of
increasing strengthwhere eitherz is fixed anda increases, or vice versa (in both casBsincreases).
Examining fixed strength attacks allows us to identify pecolovulnerabilities, e.g., whether an adversary
can benefit from targeting a subset of the processes. Inogeagength attacks enable us to assess the
protocols’ performance degradation due to an increasitaglaintensity.

VI. ASYMPTOTIC CLOSED-FORM ANALYSIS

In this section we assume that all the processes are coflleetprotocols use a constant fan-oft,
Every round, each process sends messagespimcesses and accepts messages from at mpsbcesses.
In Drum, F' is equally divided between push and pull, e.g.Fif= 4, thenview,,, = view,,; = 2, and
each process accepts push messages from at2rmsicesses and pull-request messages from at Post
processes in a round. We analyze Drum in Section VI-A, Pusbertion VI-B, and Pull in Section VI-C.

We denote byp, the probability of a non-attacked process to accept a valkoming push or pull-
request message sent to it. Similarly, we denotepbyhe probability of an attacked process to accept
a valid incoming message. Obvious}y, is independent of the attack strength. In Appendix I, we give
detailed formulas fop, andp,, and Lemma 8 proves that, > 0.6 for all /' > 3. Numerical calculations
using the formula in Appendix | show that, > 0.6 for all ' > 1, as can be seen in Figure 1(a). When
at least one valid message is sent, an attacked processtiatdeastr + 1 messages in a round, and
accepts at most’ of them. We get the following coarse boung: < £. Figure 1(b) shows an example
of the numerical calculation af, versusg.

A. Drum

We begin by considering increasing strength attacks. Wevghat in Drum, an adversary does not
gain any significant advantage by increasing its attackigtrewhile focusing on a fixed strict subset of
the processes.

Lemma 1:Fix o < 1 andn. Drum’s expected propagation time is bounded from above bgrestant
independent of:.

Proof: Sincea < 1, some processes are not attacked at all. Let us look at atage-propagation
scheme that works as follows: At the first stage, only the @@yropagates the message. The expected
propagation time from the source via push to all the norckétd processes is independentzofand
bounded, since: is fixed. At the next stage, the non-attacked processesitgaston-attacked sources

for the rest of the group via pull. The expected propagatime tof the second stage is again independent
of x and bounded. Since is fixed, this two-stage expected propagation time is consihe two-stage
propagation from the source to all of the destinations isimisly not faster than Drum’s propagation.
Thus, Drum’s expected propagation time is bounded from aliiyva constant independent :of [|
Figure 3(a) in Section VII-B illustrates this quality of Dry using simulations.

We now consider attacks where the adversary has a fixed @mttaplower. Thus, the attacker can
intensely attack a small group of processes, or perform aenatel attack on a large number of processes.
We would like to see which strategy is more beneficial to thac&er. We denote by = % = o7 the
attack strength divided by the total system capacity. Wewstiat the adversary’s best strategy against
Drum is to attack as many processes as it can, i.e., inciease

We define theeffective expected fansih, to be the average number of valid data messages a process
successfully receives in a round. (If the same data messageeived fromk processes, we count this
as k messages.) Likewise, theffective expected fan-quD, is the average number of messages that a
process sends and are successfully received by their dargeat round.

Let us examine the effect of a DoS attack ©nand I, with respect to the push operatiof,(,, and
L.sh, resp.). The probability of an attacked process to receipashh message js,. The probability of a
non-attacked process to receive a push message iBherefore, the effective fan-ing, ., and 7}, ., of
an attacked and non-attacked process (resp.) are:

Lsn =F-po and I}, =F-p, Q)

push —

When an processes are attacked, the effective fan-outs are:

;ush = ;ush =F- (Oé *Da Tt (1 - Oé) pu) (2)

Similar arguments apply for the pull operation. The proligbof an attacked process to receive a pull-
request isp,. The same probability for a non-attacked procesg,isReceiving pull-requests allows a

process to send data messages, and on average, each pecedgssF’ pull-requests. Due to the use of

random ports, we assume that each pull-reply is actuallgygoeeceived, and thus, the effective fan-outs
are:

pull =F- Pu (3)

Receiving data messages requires sending pull-requests.rBand, F' pull-requests are being sent. On
averageq ' of them reach an attacked process and are successfully rragrabability p,, and(1—a) F

of those reach a non-attacked process and are successfatlywith probabilityp,. Due to the use of
random ports, we can assume it makes no difference whetbhetetjuesting process is attacked or not.
We get the following fan-ins:

L= L= F-(a-p.+(1—a) p) (4)

In Drum, O = %(O}msh + Opu) and [= %(Ipush + Ipu). Therefore:

a—+1 11—«

9 *Pa + 9 : pu) (5)

« 2—«
Hape+(L=a)putpa) =F- (5 pat =5 pu) (6)
Lemma 2:For ¢ > 5, Drum’s expected propagation time is monotonically insneg@ with a.
Proof: We will show that all the processes’ effective fan-ins anmatdaits are monotonically decreas-
ing with «. That is, we want to prove thaL <0 and < 0. We require the following:

0% = J* =

v

(@ pat+ (1 —a)py+p) =F-(

O% = J* =

Sl

do* _ d1* _ F dpa | dpa _
daa = da = 2 (pa+ada+da pu)<0

pa+(a+1)% < Py

Recall thatp, < £. In Lemma 7 in Appendix | we show thé{% < L. Bounding the left side of the
inequality, we get:
dp, F F _F 2041 3

. 1 =1 1) =
Do+ (a+)da $+(a—|—)ax o (a+a+) . .

Thus, our condition holds wheﬁ < pu, that is, whenc > —. Similarly, when applying the derivative to
the second term we get the condition:

do* _ drt _ I dpa _
daa = da T 2 (p“+ada pu)<0

P+ e < p,
Bounding the left side of the inequality, we get:
dp, F F F 20 2
Do+ <—+a—:—~(a+a):—<—
da T ar aw c c
Thus, we require tha?c < py, Or thatc > = . This is already inferred from our previous result. The leanm
follows sincep, > 0. 6 u

This behavior is validated in the simulations in Section-&ll Moreover, the simulations show that
even for much smaller values of(ranging from0.25 to 2), Drum’s propagation time increases with
(see Figures 7-8).

B. Push
We first prove the following simple lemma.
Lemma 3:Va >0 a<; <a+1.

(1+)
Proof: We show thawy >0 ;< ln(1+ <3 ;T L

Definen(y) = In(1 +y) — {7 andg(y) = In(1 + y) — y. By taking derivatives we get:

1 1
h/(y) = 11y (m - (yfl)z) = (yfl)z >0, Vy>0,

g’(y):Hy 1<0, Vy>0.

Since(0) = g(0) =0, y > In(1 +y) > 45 - Therefore,: y <7 (1+y)
We proceed to show that Push’s propagation time is linear. in
Lemma 4:The expected propagation time to all processes in Push isdeaufrom below by:
Inn—In[(1 —a)n+ 1]
In(1+ Fap,)

Proof: We prove that the given bound holds even for the case whetiallyiall the non-attacked
processes have the message (denotedlhyin addition to the source (which is attacked). The lemma
then follows immediately.

Let the random variablé/ (k) denote the number of processes that helvat the beginning of round
k, and let E [M (k)] denote its expectation. In rounkl each process having/ sends it toF' other
processes. On averagEq of those are attacked, and each attacked process receese@settsage with
probability p,. Thus, we get the coarse recursive boundV/ (k + 1)] < E [M (k)|+ E [M (k)] Fap, with
the initial condition £ [M(0)] = M(0) = (1 — a)n + 1. Thus, E [M(k)] < [(1 — a)n + 1] (1 + Fap,)*.

M reaches all the processes whe&nM (k)] > n. To boundk from below we use the fact that having
[(1—a)n+1](1+ Fap,)® < n implies thatE [M (k)] < n. Thus, the first round number that may
satisfy the inequality¥ [M (k)] > n is the required formula. |

Corollary 1: Fix a andn > 1. The propagation time of Push increases at least lineatly wi

Proof: Sincea andn > % are fixed, the numerator in Lemma 4 is a positive constant. i@ens
the denominator: sincg, < £, it holds thatF - « - p, is O(2). The lemma follows since, by Lemma 3,
1n(1+ is O(z). .
The above corollary explains the trend exhibited by Pushigure 3(a).

<+1 [|

C. Pull

We begin by proving the following lemma.
Lemma 5:¥b € N ——2— is Q(x).

xb—(z—F)b
Proof: We first show that% < ﬁil)b for everya > 1, b € N.

We prove by induction o that -2 > w Forb =1, -= > 1 for everya > 1. The inductive

a— a—
cabtl—(a=1)** _ a(a)’—(a=1)(a=1)" ab a—1a’—(a=1 1 | a=1 b _ 1 , b _ bl - btl
Step:——m — = = @y dap T e SetS T ataT . Ser

By substituting = for a in the proven inequality, we get thé&—F < Wb—mb for everyxz > F.

Therefore,#’iw is Q(z). |
We definep as probability that the messagdé is propagated from the source in a round.
Lemma 6:Fix a andn. The number of rounds it takes a message to leave the souR@ligrows at
least linearly withz.
Proof: We give a gross over-estimate pby assuming that all the other— 1 processes choose the
source every round. (When fewer processes choose the sadtrisaesslikely to leave the source.) Since
Pa < % p<(1- (#)”—1). The number of rounds it takes to propagate a message belgendedssage

source is geometrically distributed with Therefore, its expectation i}§> W Substituting
n— 1 for b in Lemma 5, we get that is Q(x). |
Corollary 2: Fix a andn. The propagation time of Pull grows at least linearly with

Figure 3(a) illustrates this behavior of Pull.

S}

VIlI. SIMULATION RESULTS

This section presents MATLAB simulations of the three peols under various DoS attack scenarios.
All group members constantly have messages to send, andaek tine propagation of one of these
messages)/, from its source. Each process receives messages from atAnest other processes each
round (disregarding pull-replies). If more th&hprocesses try to access this process’s incoming channels,
a randomF’-sized subset of them is chosen. We consider a link-lossabitty of 0.01 on all links and
a fan-out of ¥ = 4. Rounds are synchronized among all processes. Each dataipa@weraged over
1000 runs, where in each run the number of rounds it takes the medsareactD9% of the processes
iS measured.

In Section VII-A we consider situations with no DoS attackHer no failures or only crash failures),
and validate known results about gossip protocols. We goatin Sections VII-B and VII-C by measuring
the effect of DoS attacks on the system. In these studiessswarge that0% of the processes have crashed
when the system started (we assume that no failure deteaterseing used), and that the DoS attack is
launched from outside the system. Since we do not assumeadbas can detect that their gossip partners
are down, assuming that nodes crash right when the systets Bts no special effect on the results. If
nodes crash later on, the system will operate as usual inatiptocesses crash. After that, the system
will operate as analyzed with processes that have crasghtfrom the start.

We measure the propagation times to the correct processts atiacked and non-attacked. In Sec-
tion VII-B we measure the impact of targeted DoS attacks,iar®kction VII-C we examine fixed strength
attacks and adversary strategies.

A. Validating Known Results

We begin by evaluating the three protocols in a failure-feeenario, and in situations where crash
failures occur. We assume that the crashes occur béfbns generated, and that the source does not
crash. We also assume that the crashes are not detected bgritbet processes, i.e., they try to gossip
with crashed processes as well.

Our aim is to validate two known results: (1) the propagatiore of gossip-based multicast protocols
is O(logn) [24], [11], as can be seen in Figure 2(a), with a logarithmiaxis; and (2) the performance

10

10 30 T
- Push -» Push
-o Pull | ©- Pull
—+— Drum

rounds
rounds

L L L L L L L L
3 0 10 20 30 40 50 60 70 80 90

processes (log scale) % crashed processes

(a) Failure-free operation. (b) Operation with crashed processas= 1000.

Fig. 2. Runs without DoS attack: Average propagation tim&d% of the correct processes (simulations).

of such protocols degrades gracefully as crash failuresuatri®], [14], as depicted in Figure 2(b)). We
can see that Push and Pull slightly outperform Drum in theperments. This is due to the fact that the
bounds on the pull and push channels in Drum are stricteven if in a specific round no messages have
arrived via the push channels, only requests from at mostigtinct processes will be handled, although
the process is capable of handling four such requests. GselyePush and Pull have only one bound,
which guarantees that messages won’t be discarded if thep&grocessed. The ability to perform well
even when many processes crash stems from the random clicoenmunication partners each round.

B. Targeted DoS Attacks

30 T 80

—-& Push, 1000 ° -& Push, 1000

-+ Push, 120 7 -+ Push, 120 7

-o- Pull, 1000 - 701 -0~ Pull, 1000 P 1
25r - pull, 120 - 1 —~ Pull, 120 7 T

—— Drum, 1000 7 A oL —— Drum, 1000 PPt

—o— Drum, 120 .7 -7 —o— Drum, 120 o -

N

[S)
T
\

\

%) - -7 ~-0 (%)}
o < - e o
c . - - c
515 - - - _.—t =]
e e T a7 - =
I+ A -t I+
/5 e P
10 -l e -
;@//////*’ -
é/@i

L L L L L L
0 20 40 60 80 100 120 140 10 20 30 40 50 60 70 80

X a
@) a=10%. (b) z = 128.

Fig. 3. Increasing attack strength: Average propagation tin#9%6 of the correct processes,= 120, 1000 (simulations).

In this section we consider targeted attacks, where a sufssrze an of the processes is attacked.
Figure 3 compares the time it takisto reach99% of the correct processes for the three protocols under
various DoS attacks, with20 and 1000 processes. Figure 3(a) shows that whéfr of the processes are
attacked, the propagation time of both Push and Pull inesetinearly with the severity of the attack,
while Drum’s propagation time is unaffected by the attackrgjth. This is consistent with the prediction
of Lemma 1 and Corollaries 1 and 2. Moreover, the three prédgeerform virtually the same without

11

.
-+ Push -+ Push
oL —- Pull]
—+— Drum PR 12 —+— Drum 4+

10 o—-

rounds
+
rounds

I I I I I L L L L L L
0 20 40 60 80 100 120 140 10 20 30 40 50 60 70 80

@) a = 10%. (b) = = 128.

Fig. 4. Increasing attack strength: STD of the propagation tim@9% of the correct processes,= 1000 (simulations).

DoS attacks (see the leftmost data point). Figure 3(b)tithiss the propagation time as the percentage
of attacked processes (and thB} increases. The rightmost data point in this figure matchsseaario
where only10% of the processes are both correct non-attacked. Althoughptbtocols exhibit similar
trends, Drum propagates messages much faster than Pushubaind P

Figure 4 illustrates thetandard deviationSTD) of the propagation times presented in Figure 3 for
n = 1000. It shows that for a fixedv, Drum’s STD is not affected by the attack strength, wherbas t
other protocols’ STD increases linearly. Furthermorehtdatum and Push exhibit a small STD compared
to Pull. E.g., fora = 10% andxz = 128, the STDs of Drum and Push afe5 and 2.9 rounds (resp.),
whereas Pull's STD i9.3 rounds. Therefore, the behavior of Drum and Push is moreigiedde. The
high STD of Pull's propagation time is mainly due to the laig€D of the number of rounds it takes
to propagateM beyond the source. The number of rounds it takes to propaddteyond the source is
geometrically distributed witlp, wherep is the probability to propagatel beyond the source in a round.

Thus, the STD of the number of rounds it takes to propalyateeyond the source |é/: A numerical
calculation ofp according to the formula in Appendix Il, with" = 4 andz = 128, ylelds an STD of
8.17 rounds, which explains Pull's measured STD9df rounds mentioned above.

Figure 5 illustrates the cumulative distribution functi@®@DF) of the percentage of correct processes
that receiveM by a given round, under different DoS attacks. As expecteghRropagateM to the
non-attacked processes very quickly, but takes much lotmgmwopagate it to the attacked processes.
Again, we see that Drum significantly outperforms both Pusth Rull when a strict subset of the system
is attacked.

Interestingly, on average, Push propagdfieo more processes per round than Pull does (see Figure 5),
although the average number of rounds Pull takes to propdddb 99% of the correct processes is smaller
than that of Push (see Figure 3). This paradox occurs sinde Rwll, there is a non-negligible probability
thatM is delayed at the source for a long time. With= 4 andxz = 128, the probability ofM not being
propagated beyond the sourcefinl0, and 15 rounds is0.54, 0.3, and 0.16 resp. (as computed using
the formula forp in Appendix II). OnceM reaches one non-attacked process, it quickly propagates to
the rest of the processes. Therefore, even if by a certaindréy in most runs, a large percentage of
the processes havi/, there is still a non-negligible number of runs in which Pddles not reaclany
process (other than the source) by roundrhis large difference in the percentage of processes egach
has a significant impact on the average depicted in Figure 8omtrast, Push, which reaches all the non-
attacked processes quickly in all runs, does not have rutis smch low percentages factoring into this
average. Nevertheless, Push’s average propagation tird@/¢oof the correct processes is much higher
than Pull’'s, because Push has to propaddteo all the attacked processes, whereas Pull has to propagate

12

o =4

IS @

T T
o o o o e 4
w IS @ o ~ @

4
N
T

percentage of correct processes
o
S

percentage of correct processes

0.1

I
o
e

L L L L L L L L L L L L
15 20 30 35 40 45 50 15 20 30 35 40 45 50

25 25
rounds # rounds

(@) a =10%, z = 64. (b) a =10%, = = 128.

\
\
\
\
L
g
©

o
)
T
o
@
T

I
3
T
e
3

o
>
T
o
>

4
@
T
o
@

o
=
T
o
IS

o
w
T
o
w

e
N
T

percentage of correct processes
o
2

percentage of correct processes

o
e
I
o
e

o

o

L L L L L L L L = L L L L L L
0 5 10 15 20 30 35 40 45 50 0 5 10 15 20 30 35 40 45 50

25 25
rounds # rounds

() a =40%, x = 128. (d) o = 80%, x = 128.

Fig. 5. Targeted DoS attacks: CDF: Average percentage of correcegses that receild, n = 1000 (simulations).

M only out of one attacked process.

Figure 6 illustrates this behavior: Figure 6(a) shows thettPpropagates/ much faster than Pull to the
non-attacked processes, while Figure 6(b) indicates thahRRnd Pull take the same time to propagate
M to the attacked processes. Conversely, Drum exhibits fagiagation times both to attacked and
non-attacked processes.

C. Adversary Strategies

We now evaluate the protocols under a range of attacks wigl fxiversary strengths. First, we consider
severe attacks witly = 7.2n and B = 36n (corresponding te = 2 andc = 10, resp.) fabricated messages
per round. If the adversary chooses to attack all correctga®es, it can sergl (resp.,40) fabricated
messages to each of them in each round, becad&eof the processes are correct. If the adversary
instead focuses om0% of the processes, it can sefid (resp.,360) fabricated messages per round to
each of them. Figure 7 illustrates the protocols’ propagatimes with different percentages of attacked
processes, for system sizes 130 and 500. It validates the prediction of Lemma 2, and shows that the
most damaging adversary strategy against Drum is to attattieacorrect processes. That is, an adversary
cannot “benefit” from focusing its capacity on a small sulideéhe processes. In contrast, the performance
of Push and Pull is seriously hampered when a small subsbéegirocesses is targeted. Not surprisingly,
the three protocols perform equally when all correct preessare targeted (see the rightmost data point).

N

o
©
T

o
®
T

o
3
T

o
o
T

=)
IS
T

o
w
T

o
N
T

o
-
T

percentage of non—attacked processes

- - Push
- - Pull

—— Drum
. L

o

25
rounds

30

35

40 45 50

(a) Non-attacked processes.
Fig. 6. Propagation to attacked vs. non-attacked processes: CDFRgivpercentage of attacked versus non-attacked processes#iat re
M, n = 1000, o = 40%, = = 128 (simulations).

30 T T 100 T T
-6 Push, 120 -& Push, 120
—+ Push, 500 ol ~+ Push, 500 |
-0~ Pull, 120 \ -0~ Pull, 120
25 ~- Pull, 500 wl ~- Pull, 500 |
' —e— Drum, 120

201

—6— Drum, 120
—t+— Drum, 500

13

percentage of attacked processes
o S o o o o o o
5t +—c < - = 2 v

o
e
T

/
- - Push
- - Pull
—— Drum
.

o
\

10 15 20 25 30 35 40 45 50
rounds

(b) Attacked processes.

701

60

50

—+— Drum, 500

rounds

401

rounds
&
7]
/
7/

10
301

20+

10r

80 90

40 50 60 70 80 90
a

(@) B="17.2n (c=2). (b) B = 36n (c = 10).

Fig. 7. Strong fixed strength attacks: Average propagation tim#%6 of the correct processes (simulations).

Next, we evaluate Drum under attacks with relatively smdlleasary powers o8 = 0.9n, B = 1.8n
andB = 3.6n (c = 0.25, ¢ = 0.5, andc = 1, resp.) and also without an attack (as a baseline). As Figure

shows, such attacks have little impact on Drum’s propagdiine.

VIIl. | MPLEMENTATION AND MEASUREMENTS

We have implemented Drum, Push, and Pull in Java. The impiaatiens are multithreaded. The
operations that occur in a round are not synchronized, erg, process might send messages before
trying to receive messages in that round, while another triigbt receive a new message, and then
propagate it. We run our experiments 6t machines at the Emulab testbed [32], on a 100Mbit LAN,
where a single process is run on each machine (i.es,50). As in the simulations]0% of the processes
have crashed when the system started (these crashes geatadgtand the DoS attack is launched from
outside the system. Since we do not have a router/firewallriralomly selects messages according to
the protocol's needs, we have implemented the selectionesfsages by sequentially reading messages
from the port at random times within the round, and discaydaii messages at the end of the round.
Since rounds are locally controlled and randomly vary iration, the attacker cannot “aim” its messages

for the beginning of a round.

14

10

10

-~ c=1(B=3.6n) L

- - ¢=1(B=3.6n) o
| —+ ¢=0.5(B=1.8n) i oL — €=0.5(B=1.8n) -7 i
—e— ¢=0.25 (B=0.9n) —e— ¢=0.25(B=09n) _ _---"~
—— no attack —— no attack _ - — 7
8- 4 8 -7 4

[%) - [%)
T 6f) T 6 1
c c
> >
o *—* * * * o
= 50] = 5L il
** **
4 g 4 g
3 — 3 —
2 — 2 —
0 10 20 30 40 50 60 70 80 920 0 10 20 30 40 50 60 70 80 90
a a
(@) n = 120. (b) n = 500.

Fig. 8. Weak fixed strength attacks: Drum, average propagation tiri@%oof the correct processes (simulations).

T T T T T T 80 T T
—+ Push measurements + -+ Push measurements

25

. . 4 . -
-6 Push simulation P —-& Push simulation 1
—- Pull measurements e OF - —- Pull measurements e
-0 - Pull simulation ‘o - i -0~ Pull simulation -

201 -
- 60 - ~ -

L —— Drum measurements P -
e —e— Drum simulation e -

—— Drum measurements
—o— Drum simulation

-
s 50
- 4

=
@

a0f

rounds
N
NN
\
\
\
rounds

i
o
N
\
Q
\
\

~) 30

20

= 10

0 20 40 60 80 100 120 140
X a

@) o = 10%. (b) = = 128.

Fig. 9. Simulations vs. measurements: Average propagation tira@%oof the correct processes,= 50.

A. Validating the Simulation Methodology

Our first goal for these experiments is to validate the sitimrianethodology. To this end, we experiment
with the same settings that were tested in Section VI, fostirficreasing values of anda = 10%, and
then forx = 128 and increasing values ef. As in the simulations, every process has messages to send,
and we track the propagation of one of those messages. Etepalat is averaged ovano0 runs, again,
as in the simulations.

Due to the lack of synchronization, messages can be pragghgatltiple hops in a single round in
some situations. We use the following method to count the bmrmof rounds it takes to propagate a
message: when a message is created, a round counter isedttach and initialized td). The message
source logs the value, and immediately increases the round countet.t®Vhenever a process receives
a new message, it logs the message’s current round countny Eound, each process increments the
round counters of all the messages in its local buffer.

Figure 9 depicts the results of these experiments, and casiplaem with the corresponding simulation
results. It shows that the experimental results are camgistith the simulation results, indicating that
the simplifying assumptions made in the analysis and sitiunla have negligible effect on the results.

15

IS
a
IS
o

T
—— Drum

& g
T 7
al
’
a
/

w
S
T

N
[S)
T

Average Throughput (msgs/sec)

Average Throughput (msgs/sec)

=
o
T
|
I
I
|
I

L L L L L L L
10 20 30 40 50 60 70 80

o
o

I I I I I
40 60 80 100 120 140

o
n L
S}

@) a = 10%. (b) z = 128.

Fig. 10. Increasing attack strength: Average received througmpeagurements).

B. High Throughput Experiments

We proceed to evaluate the protocols in a realistic settiiggre multiple messages are sent, and old
messages are purged from processes’ buffers. By running ealaetwork, we can faithfully evaluate
latency in milliseconds (instead of rounds), as well asughput.

In each experiment scenario, a total 8f,000 messages are sent by a single source, at a rat® of
messages per second. The average received throughputtandylare measured at the remainihg
correct processes (recall thatof the 50 processes are faulty). The average throughput is calculate
ignoring the first and last% of the time of each experiment. The round durationl isecond. Data
messages arg) bytes long. (The evaluation in [6] used a similar transmoisgiate and similar message
sizes.)

In a practical system, messages cannot reside in localrbuibeever, nor can a process send all the
messages it ever received in a single round. In our expetgnemessages are purged from processes
buffers after10 rounds, and each process sends at rsostandomly chosemew messages to each of
its gossip partners in a round. These are roughly twice tliierbsize and sending rate required for the
throughput of40 messages per round in an ideal attack-free setting, sire@nbpagation time in the
absence of an attack is abdutounds. Due to purging, some messages may fail to reachegfirtitesses.
Since we measure throughput at the receiving end, this isctefl by an average throughput lower than
the transmission rate (a0 messages per second).

Figure 10 shows the throughput at the receiving processeBram, Push, and Pull, under the same
DoS attack scenarios staged above. Figure 10(a) indidad¢sas for latency, Drum’s throughput is also
unaffected by increasing, while Push shows a slight degradation of throughput, arllsRbroughput
decreases dramatically. Figure 10(b) shows that Drumutiinput gracefully degrades asincreases,
while Push exhibits a linear degradation, and Pull’s thhgug is drastically affected for every > 0.

Figure 11 depicts the CDF of the average latencguwicessfully receivemhessages in two scenarios.
Each data point shows, for a given laterigythe percentage of correct processes for which the average
latency does not excedd We observe that Push is the fastest in delivering messagesm-attacked
processes, but suffers from substantial variation in dgjivatency, as messages take a long time to reach
the attacked processes. E.g., Figure 11(a) shows that #itacked processes (other than the source)
measure an average latentytimes longer than non-attacked processes. While Pull eshédmost the
same average latency for all the processes, this latenarysleng. Drum combines the best of Push and
Pull: it delivers messages almost as fast as Push, whiletamaiimg a small variation between attacked
and non-attacked processes.

,,,,,,,, e--97 E? —— Drum
o9 & T g 09 —& Push
- Pull
B

@ & @
O osr § 5 O osr
[%] Q) [%]
Q $ o Q
O o7} 2 O o7
o 9 o
2] B 2
oY .-] & el
I —— Drum g I o-----
R - -c Push B g | $
5 oost 2 = pull 5 S oos
S | @ : 3 g
‘S 04r § § ‘S o4 §
3] Q [s] 3]
2 o3t @ g 2 oap §
— [0} o g §
@ g g @
8 o2 § g 8 ozr <80
o) 3) o
O oaf 3 z o oaf §

; S :

& & ¢ ‘ ‘ ‘ ‘ ‘ ‘

6000 3000 4000 5000 6000 7000 8000 9000

0 L L
1000 2000 3000

L L
4000 5000

Average Latency (msecs)

@) a=10%, z = 128.

7000

Average Latency (msecs)

(b) o = 40%, x = 128.

16

10000

Fig. 11. CDF: average latency of received messages (measusmen
30 . . . 12 . . .
—& Drum - Known Ports -©- Drum - Shared Bounds
—+— Drum - Random Ports —=— Drum - Separate Bounds
251 o A 10 - -©
20} 7 . R 8 JPne -
[%) 7 %) _e’
he] e gl -
% 15 _ -@ il g 6 -7
] T o -7
#* 7 3 .o
[} . -
10 7 g 4 //
- 'O/
EW
50 g 2t
léO 140 00 2‘0 4‘0 6‘0 8‘0 1(‘)0 120 140

. . . . I
0 20 40 60 80 100
X

(@) Random portsp = 1000 (simulations). (b) Separate bounds, = 50 (measurements).

Fig. 12. The effect of random ports and separate bounds on Dpenfermanceq = 10%.

IX. OTHER DOS-MITIGATION METHODS

Until now, we have evaluated the advantage of combining bo¢hpush and pull techniques as a way
to mitigate DoS attacks, in the context of a protocol thab asnploys resource bounds and random
ports. We now turn to examine the importance of using therdile techniques: utilizing random ports
whenever possible, and allocating separate resourcestfaygonal operations.

In order to evaluate the effectiveness of random ports, weilsite Drum as described in Section VII,
with the difference that pull-replies are sent to a wellA\knoport instead of to a random one. The
adversary attacks this port by equally dividing its attatkrggth for the pull channels between the pull-
request port and the pull-reply port (i.e., each pull poraitacked with a quarter of the total attack
strength). Figure 12(a) presents simulation results comgpdrum’s performance with and without the
use of random ports, whet0% of the processes are attacked. The results show a lineaaserin
propagation time for the well-known ports variation of Druas the rate of bogus messages each attacked
process receives in a round increases. This is in contrabetpropagation time of Drum using random
ports, which is bounded by a constant.

When solely using well-known ports, the adversary can attaatk pull ports, as well as the push
port. A process under attack experiences difficulty recgivhessages both via push and through the pull
channels, since the push and pull-reply ports are attacKeel.same process’s ability to send messages

17

is only partly hampered. Although the pull-request porttiseked, the adversary cannot directly affect
the process’s outgoing push channels.

Next, we measure the effect of resource separation on Drper®rmance. To this end, we change
Drum’s implementation detailed in Section VIII. Resources mow combined (i.e., a joint bound on the
maximum number of processed messages per round is use@c@ving control messages: pull-requests,
push-offers, and push-replies. We do not include the remef data messages in this bound, since this
bound may differ greatly from the bound on control messageasctual scenarios. Figure 12(b) contrasts
the measurements of Drum’s propagation time with sharechd®@against those with separate bounds,
when 10% of the processes are attacked. The results indicate a ldegaadation of performance as the
attack rate increases, when bounds are shared. On the @thdr the unmodified version of Drum is
virtually indifferent to the increase in attack strength.

Shared bounds degrade Drum’s performance under a DoS ,atiack the fabricated control messages
sent by the adversary to the well-known push-offer and mgliest ports consume resources that should
be used for reading pull-requests, push-offers, and pegles. The valid control messages are then
discarded when resources are exhausted, and the attackezbphecomes less responsive.

We conclude that random ports and separate resource borendeuaial to Drum’s ability to cope with
DoS attacks.

X. CONCLUSIONS

We have conducted the first systematic study of the impacto& Bttacks on multicast protocols, using
asymptotic analysis, simulations, and measurements. @dy ias exposed weaknesses of traditional
gossip-based multicast protocols: although such prosoam very robust in the face of process crashes,
we have shown that they can be extremely vulnerable to DaSkatt In particular, an attacker with limited
attack strength can cause severe performance degradgtiocusing on a small subset of the processes.

We have suggested a few simple measures that one can talgeimtoimprove a system'’s resilience to
DoS attacks: (i) combining pull and push operations; (iilibding resources separately for each operation;
and (iii) random port selection for each communication clenWe have presented Drum, a simple gossip-
based multicast protocol that uses these measures in orééminate vulnerabilities to DoS attacks. Our
closed-form mathematical analysis, simulations, and gogbitests have proven that these measures go a
long way in fortifying a system against DoS attacks. We hda@w that, as the attack strength increases
asymptotically, the most effective attack against Drum ne ¢hat divides the attack power among all
the correct processes in the system. As expected, the ab&viperformance degradation due to such a
broad attack is identical for all the studied protocols. ldoer, protocols that use only pull or only push
operations perform much worse under more focused attadkishvihave little influence on Drum.

We expect our proposed methods for mitigating the effectaf ttacks to be applicable to various other
systems operating in different contexts. Specifically, tise of well-known ports should be minimized,
and each process should be able to choose some of its conationipartners by itself. Our analysis
process and its corresponding metric can be used to geneadintify the effect of DoS attacks. We
hope that other researchers will be able to apply similamggies in order to quantitatively analyze their
system’s resilience to DoS attacks.

APPENDIX |
CALCULATING p, AND p,

Suppose process, sends a message to procgsswe want to calculate the probability that process
p,; accepts this message. Denote the event “propesends a message to process by S;;. Assume
n > F, and defingg as the probability that procegs appears in process’s view, then:

n—2 n—3 n—1-—F n—1-—F F

-1 . ..
g n—1 n—2 n—F n—1 n—1

18

Let Y be the number of valid messages receivedbbyn a single round, then:

—2
O<y<n Pr(Y=y]| Sy = (Z B 1)qyl(1 —q)" Y

Let py be the probability that a non-attacked processdiscards the message sentihygiven.S;;, then:

0 Y <F
Py =94 v-1 Y2 Y-F _Y-F vy p

Calculatingp, gives:

pu = 1=) p,-Pr(Y =y| S =

y=—00

— y-F (n—2\(F \"'(n-1-F\"""
[N
n—=2\(F \"'(n-1-F\"""
26 Gm) (=) "

~— F (n-2 F N\ (n—1-F\"""
206 ()
If p, is attacked withz > F' messages, we get:
Y+xr—1 Y4+z-2 Y+ax—F Y+ax—F
ey s Yyr-1 Yva-F+1l Ytz

And thus:

Do = 1-— ZpyPT(Y:y‘SU):

y=—00

. ~y+tz—F [(n-2 F\"'"/n-1-F "_l_y_
— Ytz y—1)\n—1 n—1 B
— F [n-2 FAN\"'/n—1-F "*1*y<
y+z \y—1 n—1 n—1
—~F (n-2\(F \"'(n—-1-F\""7" F
T y—1 n—1 n—1 oz

Lemma 7: % < £
(6% oaxr

19

Proof: Calculating the derivatives, we get:

dpa i vtz (n—2 F\'/n-1-F n_l_y_

de = y—1 n—1 n—1 N
"Zl —F n—2 F A\ /n-1-F\"""

yzl(y+:c)2 y—1)\n—-1 n—1

dz d% —-B

da da a?n

dp, _ dp. dz _

da dz da
”i FB (n—Q)(F)y-l <n—1—F)"_1_y_
yzlaQn(y+x) y—1) \n—1 n—1 B
"Z‘l Fu (n—Z)(F)y—l(n—1—F)”—1—y<
yzla(y—i—a:)? y—1) \n—1 n—1

1

nlex n—2\(F \“'(n-1-F\""" F
ar? \y—1 n—1 n—1 ax

y=1

We now give a bound op.,.
Lemma 8:p, > 0.6.
Proof. Define:
pEEY | Syl=0 Ty (e (=g Y =22 F 41
E[Y? | Sy -y llyz (n 2)qy e %.FQ_F?). =2 F
£ Var(Y | 5y) = U2t P43 i P l- (0 F 1) =13 F— iy P

By [31], for n > 1 we get thatY” given S;; can be approximated using a normal distribution function,
with 4 = F + 1 ando? = F. The cumulative distribution functio®(z) is thus:

D(x) = % (1—|—erf (%)) = % . (1+erf (’C_Q\/F—}:l)) where erf(z) =1— —/

From [31] we get the following:

1 x2 [0 2 1
v <€ [Te Tt dt < oy ey
Concluding that: ,
e—Z
erf(z / Pat>1-— _—
G \/_ z44/22 42

The first sum in formula 7 is approximated By F'). CalculatingD(F') gives:

piF) = Lo(iet(A)) sl (o2 oo =
T2 T \Ver 22 NN
2F s

V2F
_L _1
1 1 e 2F _ 1 \/— \/]7 e~ 2F
V7 VEmr Vi 8F —x

+

20

Define:

(r) = L
g _\/7T+8F+\/7_T

We want to bound D(x) from above by finding for which valuesfaf ¢'(F) < 0. The denominator of
¢'(F) is always positive, so we ignore it when calculating the \Ggive:

1 1 1
e 2F \/F€77 8\/?677
(597 +) (VA 8F - y7) - 32 <0
F34F3 [/T aFp 8 /Fe 2F
2;2 (T+ 8F — ﬁ) - 2\/7r+82; <0

(F% +F%> (\/ﬂ+8F7\/E)\/7r+8F78F%
2F2.\/74+8F

Once again, the denominator is positive, and we get:
(Fi+ F3) (VA +8F - V7) Vi + 8F —8F <0

7T+8F—\/7r2+87rF—8F~(1—F%rl) <0
=t < VT +8F — /T

Taking derivatives we get:
8 ; 8
VT (F +1)? 2y/m + 8F
o071 8F < VI(F + 1)

Clearly, (F' + 1)? grows faster thar+/m + 8F. Numerically solving forF’ = 1 shows that the inequality
holds. Thus, it holds for every’ € N. Consequently, we only need to find the fifstfor which:

8F
— <V SF —
TR S VTHsEovE
A numerical solution for this inequality shows that it firstléis for /' = 3. Thus, for ¥ > 3 we get that

¢ (F) <0, and thusD(F + 1) > D(F). AssigningF’ = 3 in our previous bound for D(F), we get that
forall F >3, D(F)> D(3) > 0.3968 ~ 0.4. AssumingF' > 3, we get:

zF: n—2 F\"'/n—1—-F ”‘1‘y>04
y—1) \n—1 n—1 '

y=1

Since D(z) is maximal atr = 4 = F'+ 1 and symmetric around it, we get the approximation:

S [B CTES R) (R [R (1L

y=F+1 y=1

21

And finally, we conclude that:

F —1 n—1—
n—2 F Y n—1—F Y
n= X G5) () e
y=1
"Zl F (n—Z)(F)y—l(n_1_F)”—1—y>
v \w—1\n—1 n—1
2 i F [n—2 F\Y'/n—1—-F ”‘1‘y>
5 2F \y—1 n—1 n—1

n—2 F N\ ' /n-1-F n_l_y>
- y—1 n—1 n—1

I
[]=*

+

+
N = N = ‘ﬁ

(N RGN
SR
Tt W

APPENDIXII
CALCULATING p

We now computep, the probability thatV/ is propagated from the source in a round in Pull. Assume
n > F, and defing; as the probability that procegs appears in process’s view,,, theng = % Let
Y be the number of valid pull-requests received in a singledothen:

Pr(Y <0) = Pr(Y >n)=0
n—1
)
Hea-a
Assumezx > F, and definepy as the probability that a valid pull-request is read from aéfer, then:

(1 Y - Y - Y 1 ol (Y +2—F)!
by = Y +z Y+x—-1) " Y+z—-F+1) (x — F)!- (Y +2)!

The probabilityp that a valid pull-request is read from the buffer, independ# Y, is:

- Emre =S (-2) (V)) (55

y=—00 y=

0<y<n Pr(Y=y) = <

ACKNOWLEDGMENTS

We thank Aran Bergman and Dahlia Malkhi for many helpful comteeand suggestions. We are
grateful to the Flux research group at the University of Utaid especially Mac Newbold, for allowing
us to use their network emulation testbed and assisting thsouir experiments.

REFERENCES

[1] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Ynbky. Bimodal multicastACM Transactions on Computer Systems
(TOCS) 17(2):41-88, 1999.

[2] R. K. C. Chang. Defending against flooding-based distributedattef-service attacks: A tutoriaEEE Communications Magazine
40:42-51, October 2002.

[3] Cisco Systems. Defining strategies to protect against TCP SYN den@fl service attacks.
http://ww. ci sco. com war p/ public/707/4.htm .

[4] CSI/FBI. Computer crime and security survey, 2003.t p: / / www. gocsi . coni forns/ fbi/pdf.jhtn.

[5] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, Snkée H. Stuygis, D. Swinehart, and D. Terry. Epidemic algorithms for
replicated database maintenance.6th ACM Symposium on Principles of Distributed Computing (PQp@pes 1-12, 1987.

(6]

[7]
(8]

9]

[10]
[11]

[12]
[13]
[14]
[15]
[16]
[17]
(18]

[19]
[20]

[21]
[22]
(23]
[24]
[25]
[26]
[27]
(28]

[29]
[30]

[31]
[32]

[33]

22

P. T. Eugster, R. Guerraoui, S. B. Handurukande, A. M. Kerew and P. Kouznetsov. Lightweight probabilistic broadcastThe
International Conference on Dependable Systems and Networks (R2801).

X. Geng and A. B. Whinston. Defeating distributed denial of servitacis. IEEE IT Professionalpages 46-51, July/August 2000.

I. Gupta, A.-M. Kermarrec, and A. J. Ganesh. Efficient epidestyle protocols for reliable and scalable multicast. 2itst IEEE
International Symposium on Reliable Distributed Systems (SRi28s 180-189, October 2002.

I. Gupta, R. van Renesse, and K. P. Birman. Scalable fault-tdleggregation in large process groupsThre International Conference
on Dependable Systems and Networks (D®Eyes 433-442, 2001.

Juniper Networks. The Need for Pervasive Application-Levithék Protectionht t p: / /i tresearch. f or bes. com det ai | / RES/ 1067617
R. M. Karp, C. Schindelhauer, S. Shenker, and B. Vockingnd®aized rumor spreading. MEEE Symposium on Foundations of
Computer Sciengcepages 565-574, 2000.

A.-M. Kermarrec, L. Massouli, and A. J. Ganesh. Probabilistitable dissemination in large-scale systeriSEE Transactions on
Parallel and Distributed System44(3):248-258, March 2003.

M. J. Lin and K. Marzullo. Directional gossip: Gossip in a wide areawork. In European Dependable Computing Conference
(EDCC), pages 364-379, 1999.

M. J. Lin, K. Marzullo, and S. Masini. Gossip versus deterministicatiystrained flooding on small networks. 1dth International
Symposium on DIStributed Computing (DIS@ages 253—-267, 2000.

P. Linga, I. Gupta, and K. Birman. A churn-resistant peerdefpweb caching systemACM Workshop on Survivable and Self-
Regenerative Systep®ctober 2003.

D. Malkhi, Y. Mansour, and M. K. Reiter. Diffusion without falsemoars: On propagating updates in a Byzantine environment.
Theoretical Computer Scienc299(1-3):289-306, April 2003.

D. Malkhi, E. Pavlov, and Y. Sella. Optimal unconditional informatidiffusion. In 15th International Symposium on DIStributed
Computing (DISC)2001.

D. Malkhi, M. K. Reiter, O. Rodeh, and Y. Sella. Efficient updatefidifon in Byzantine environments. 20th IEEE International
Symposium on Reliable Distributed Systems (SRO&pber 2001.

Y. M. Minsky and F. B. Schneider. Tolerating malicious gosdiistributed Computing16(1):49—-68, February 2003.

D. Moore, G. Voelker, and S. Savage. Inferring Internetialeof-service activity. InProceedings of the 10th USENIX Security
Symposiumpages 9-22, August 2001.

NetContinuum. Web Application Firewall: How NetContinuum Stops the 2las§es of Web Application Threats.
http://ww. net conti nuum con product s/ whi t ePaper s/ get PDF. cf nPn=NC_Wi t ePaper \WebFi rewal | . pdf.
P-Cube. Dos protectiorht t p: / / ww. p- cube. coni new.sol uti ons/ servi ce_DoS. shtn .

P-Cube. Minimizing the effects of dos attacks.t p: / / www. j uni per. net/sol utions/|iterature/app-note/ 350001. pdf.
B. Pittel. On spreading a rumo8IAM Journal on Applied Mathematicd47(1):213—-223, February 1987.

Riverhead Networks. Products overvielat t p: / / www. ri ver head. coni pr/i ndex. htm .

L. Rodrigues and R. G. A.-M. K. S. Handurukande, J. Peref@aptive gossip-based broadcast.Tlne International Conference on
Dependable Systems and Networks (QDSMpes 47-56, June 2003.

C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Siaram, and D. Zamboni. Analysis of a denial of service attack on TCP.
In Proceedings of the 1997 IEEE Symposium on Security and Privages 208-223, May 1997.

S. Staniford, V. Paxson, and N. Weaver. How to own the Inteimgtour spare time. IrProceedings of the 11th USENIX Security
Symposiumpages 149-167, August 2002.

Stephen de Vries. Application Denial of Service Attadkist p: / / www. cor sai re. coni whi t e- paper s/ 040405- appl i cati on-1 evel -
J. Wang, L. Lu, and A. A. Chien. Tolerating denial-of-service @ttausing overlay networks — impact of overlay network topology.
ACM Workshop on Survivable and Self-Regenerative Systeataber 2003.

E. W. Weisstein.CRC Concise Encyclopedia of Mathematics

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Neld, M. Hibler, C. Barb, and A. Joglekar. An integrated experimental
environment for distributed systems and networksPtac. of the Fifth Symposium on Operating Systems Design and Implementatio
pages 255-270, Boston, MA, Dec. 2002. USENIX Association.

L. Zhou, F. B. Schneider, and R. van Renesse. COCA: A sedistributed online certification authorityACM Transactions on
Computer System20(4):329-368, 2002.

