
0

Exposing and Eliminating Vulnerabilities to
Denial of Service Attacks in Secure Gossip-Based

Multicast
Gal Badishi, Idit Keidar, and Amir Sasson

Abstract

We propose a framework and methodology for quantifying the effect of denial of service (DoS) attacks on
a distributed system. We present a systematic study of the resistance of gossip-based multicast protocols to DoS
attacks. We show that even distributed and randomized gossip-based protocols, which eliminate single points of
failure, do not necessarily eliminate vulnerabilities to DoS attacks. We propose Drum – a simple gossip-based
multicast protocol that eliminates such vulnerabilities.Drum was implemented in Java and tested on a large cluster.
We show, using closed-form mathematical analysis, simulations, and empirical tests, that Drum survives severe
DoS attacks.

Index Terms

C.2.4.b Distributed applications, C.4.f Reliability, availability, and serviceability. D.1.8 Distributed program-
ming.

I. I NTRODUCTION

One of the most devastating security threats faced by a distributed system is adenial of service(DoS)
attack, in which an attacker makes a system unresponsive by forcing it to handle bogus requests that
consume all available resources. In adistributed denial of service(DDoS) attack, the attacker utilizes
multiple computers as the source of a DoS attack, in order to increase the attack strength. Since a DDoS
attack is essentially a strong DoS attack, we will consider them to be the same. In 2003, approximately
42% of U.S. organizations, including government agencies, financial institutions, medical institutions and
universities, were faced with DoS attacks [4]. That year, DoS attacks were the second most financially
damaging attacks, only short of theft of proprietary information, and far above other attacks [4]. Therefore,
coping with DoS attacks is essential when deploying services in a hostile environment such as the
Internet [20].

As a first defense, one may protect a system against DoS attacks using network-level mechanisms [25],
[22], [23]. These mechanisms involve rate-limiting incoming traffic, and filtering packets according to
their headers. However, network-level filters cannot detect DoS attacks at the application level, when the
traffic seems legitimate. Even if means are in place to protect against network-level DoS, an attack can
still be performed at the application level, as the bandwidth needed to perform such an attack is usually
lower. This is especially true if the application performs intensive computations for each message, as
occurs, e.g., with secure protocols based on digital signatures.

As network-level DoS-mitigation solutions are increasingly available, application level DoS attacks are
becoming a major concern [29]. Consequently, vendors have begun employing some measures against DoS
attacks at the application layer [10], [21]. Such solutionsare commonly deployed at the network/firewall
level, although they are application-specific. However, these measures are usually just hard-coded validity

In IEEE Transactions on Dependable and Secure Computing (TDSC), 3:1, March 2006. A preliminary version of this paper appeared in
The IEEE International Conference on Dependable Systems and Networks (DSN) 2004.

Gal Badishi and Idit Keidar are with the Electrical Engineering Department, Technion – I.I.T.
Amir Sasson was with the Computer Science Department, Technion – I.I.T. when the work was conducted.
Gal Badishi is supported by the Israeli Ministry of Science.

1

checks for well-known protocols, and do not contain means todeal with resource exhaustion caused by the
application. In this paper, we are concerned with coping with DoS attacks in application-level multicast
protocols. The basic idea is to assume simple and general mechanisms at the network/firewall level and
to exploit them at the application (multicast protocol) level.

To quantify the effects of DoS attacks, we measure their influence on the time it takes to propagate a
message to all the processes in the system, as well as on the average throughput processes can receive.
We do this using asymptotic analysis, simulations, and measurements.

We focus on large-scale distributed systems (e.g.,1000 processes). A DoS attack that targets every
process in a large system inevitably causes performance degradation, but also requires vast resources.
In order to be effective even with limited resources, attackers target vulnerable parts of the system. For
example, consider a tree-based multicast protocol; by targeting a single inner node in the tree, an attacker
can effectively partition the multicast group. Hence, eliminating single points of failure is an essential
step in constructing protocols that are less vulnerable to DoS attacks.

We therefore focus on gossip-based (epidemic) multicast protocols [5], [1], [6], [8], [12], [13], [11],
which eliminate single points of failure using redundancy and random choices. Such protocols are robust
and have been shown to provide graceful degradation in the face of amounting failures [9], [14]. As in
previous work, e.g., [1], [13], we assume that the gossip-based multicast system is deployed in a WAN
environment, and as such, its nodes suffer from DoS attacks launched from outside the system. One may
expect that such a system will not suffer from vulnerabilities to DoS attacks, since it can continue to be
effective when many processes fail. Surprisingly, we show that gossip-based protocols can be extremely
vulnerable to DoS attacks targeted at a small subset of the processes. This occurs because an attacker can
effectively isolate a small set of processes from the rest ofthe group by attacking this set.

Having observed the vulnerabilities of traditional protocols, we turn to search for ways to eliminate these
vulnerabilities. Specifically, our goal is to design a protocol that does not allow an attacker to increase the
damage it causes by focusing on a subset of the processes. We are not familiar with any previous protocol
that achieves this goal. We are familiar with only one previous work, by Minsky and Schneider [19], that
addresses DoS attacks on a gossip-based protocol. However,the problem they consider differs from ours
in a way that renders their approach inapplicable to our setting (see Section II), and moreover, they only
deal with limited attack strengths.

We presentDrum (DoS-Resistant Unforgeable Multicast), a gossip-based multicast protocol, which,
using a few simple ideas, eliminates common vulnerabilities to DoS attacks: the best attack against Drum
requires the attacker to target the entire system. The 3 mainideas used in Drum are:

1) Simultaneously using two gossiping techniques,pushandpull.
2) Allocating separate resources for each operation.
3) Using random ports whenever possible, for each communication channel.
Mathematical analysis and simulations show that Drum indeed achieves our design goal: an attacker

cannot substantially hinder Drum’s performance by targeting a small subset of the processes. When an
adversary has a large sending capacity, its most effective attack against Drum is an all-out attack that
distributes the attacking power as broadly as possible. (Weconcentrate on heavy attacks since they are
the most damaging, and one can expect them to happen in actualscenarios [28].) Obviously, performance
degradation due to a broad all-out DDoS attack is unavoidable for any multicast protocol, and indeed all
the tested protocols exhibit the same performance degradation under such a broad attack. In contrast, under
an attack that focuses on a strict subset of the processes, Drum’s latency remainsconstantas the attack
strength increases, whereas in traditional protocols, thelatency growslinearly with the attack strength.

We have implemented Drum in Java and tested it on a cluster of workstations. Our measurements
validate the analysis and simulation results, and show thatDrum can withstand severe DoS attacks, where
näıve protocols that do not take any measures against DoS attacks completely collapse in terms of latency
and throughput.
In summary, this paper makes the following contributions:

2

• It presents a new framework and methodology for quantifyingthe effects of DoS attacks. We are
not familiar with any previously suggested metrics for DoS-resistance nor with previous attempts to
quantify the effect of DoS attacks on a system.

• It uses the new methodology to conduct the first systematic study of the impact of DoS attacks on
multicast protocols. This study exposes vulnerabilities in traditional fault-tolerant protocols, showing
that robustness, although necessary, is not sufficient for DoS-mitigation.

• It presents Drum, a simple gossip-based multicast protocolthat eliminates such vulnerabilities. We
believe that the ideas used in Drum can serve to mitigate the effects of DoS attacks on other protocols
as well.

• It provides closed-form asymptotic analyses as well as simulations and measurements of gossip-based
multicast protocols under DoS attacks varying in strength and extent.

This paper proceeds as follows: Section II gives backgroundand related work. Section III presents
the system model. Section IV describes Drum. Section V presents our evaluation methodology and
considered attack models. The following three sections evaluate Drum and compare it to traditional
gossip-based protocols using various tools: Section VI gives closed-form asymptotic latency bounds;
Section VII provides a thorough evaluation using simulations; and Section VIII presents latency and
throughput measurements. Section IX evaluates the usefulness of two specific DoS-mitigation techniques
used in Drum. Section X concludes. The appendices contain some derivations for the analysis.

II. BACKGROUND AND RELATED WORK

Gossip-based dissemination [5] is a leading approach in thedesign of scalable reliable application-
level multicast protocols, e.g., [1], [6], [8], [12], [13],[11]. Our work focuses on symmetric gossip-based
multicast protocols like lpbcast [6]. We consider protocols that do not rely on external mechanisms such
as IP multicast.

Such protocols work roughly as follows: each process locally divides its time intogossip rounds; rounds
are not synchronized among the processes. In each round, theprocess randomly selects a small number
of processes to gossip with, and tries to exchange information with them. Every piece of information
is gossiped for a number of rounds. It has been shown that the propagation time of gossip protocols
increases logarithmically with the number of processes [24], [11]. There are two methods for information
dissemination: (1)push, in which the process sends messages to randomly selected processes; and (2)pull,
in which the process requests messages from randomly selected processes. We show that both methods
are susceptible to DoS attacks: attacking the incoming pushchannels of a process may prevent it from
receiving valid messages, and attacking a process’s incoming pull channels may prevent it from sending
messages to valid targets. Some protocols use both methods [5], [11]. Karp et al. showed that combining
push and pull allows the use of fewer transmissions to ensuredata arrival to all group members [11].

Drum utilizes both methods, and in addition, allocates a bounded amount of resources for each operation
(push and pull), so that a DoS attack on one operation does nothamper the other. Similar resource
separation was also used in COCA [33], for the sake of overcoming DoS attacks on authentication
servers. Drum further utilizes randomly selected ports fordata transmission, thus making it difficult for
an attacker to target these ports.

Secure gossip-based dissemination protocols were previously suggested by Malkhi et al. [16], [17], [18].
However, they did not deal with DoS attacks. Follow-up work by Minsky and Schneider [19] suggested
a pull-based protocol that can endure limited DoS attacks bybounding the number of accepted requests
per round. However, these works solve thediffusion problem, in which each message simultaneously
originates at more thant correct processes, where up tot processes may suffer Byzantine failures. In
contrast, we consider a multicast system where a message originates at a single source. Hence, using a
pull-based solution that utilizest + 1 disjoint paths, as suggested in [19], does not help in withstanding
DoS attacks in the multicast system we consider. Moreover, Minsky and Schneider [19] focus on load
rather than on DoS attacks; they include only a brief analysis of DoS attacks, under the assumption that

3

no more thant processes perform the attack, and that each of them generates a single message per round
(the reception bound is also assumed to be one message per round). In contrast, we focus on substantially
more severe attacks, and study how system performance degrades as the attack strength increases.

Drum deals with DoS attacks at the application-level, assuming network-level defenses are already in
place. Network-level DoS analysis and mitigation has been extensively dealt with [27], [2], [7], [30], [3],
[25], but DoS-resistance at the secure multicast service layer has gotten little attention. We note that our
work is the first that we know of that conducts a systematic study of the effect of DoS attacks on message
latency.

Here, we focus on DoS attacks in which the attacker sends fabricated application messages. DoS can
also be caused by churn, where processes rapidly join and leave [15], thus reducing availability. In Drum,
as in other gossip-based protocols, churn has little effecton availability: even when as many as half
of the processes fail, such protocols can continue to deliver messages reliably and with good quality
of service [14]. A DoS attack of another form can be caused by process perturbations, whereby some
processes are intermittently unresponsive. The effect of perturbations is analyzed in [1], where it is shown
that probabilistic protocols, e.g., gossip-based protocols, solve this problem.

III. SYSTEM MODEL

Drum supports probabilistically reliable multicast [1], [6], [11] among processes that are members of
a group. Each message is created by exactly one group member (its source). Throughout this paper we
assume that the multicast group is static. There aren members in the group, and each processp has a
list of the othern − 1 group members.

Like previous gossip protocols [1], [6], we assume that the underlying network is fully-connected.
The message latency varies, but it is bounded. The link-lossprobability is constant, equal for all links,
and independent of any other factor. The communication channels are insecure, meaning that senders of
incoming messages cannot be reliably identified in a simple manner.

An adversary can generate fabricated messages. However, this requires the adversary to utilize resources.
Malicious processes can perform DoS attacks on group members. We note that authenticating messages,
e.g., using digital signatures, does not solve the DoS problem, as fabricated messages must be invalidated
using a costly operation.

We assume that communication can take place on ports that change on demand, and that the multicast
protocol can randomly choose to process a subset of the messages that arrive to a designated port, and
ignore messages that arrive to other ports. We further assume that a DoS attack that does not specifically
target the designated port does not affect the reception on this port (i.e., the application-level DoS attack
does not cause a network-level DoS attack as well). This can be achieved using available network-level
products [25], [22], [23].

We assume that a process can choose a random port for communication that the adversary cannot
predict. We assume that the adversary only attacks ports it knows of. In our protocol, the use of a random
port is limited in time, and the process notifies another process of this new communication port by sending
it a message stating the port number. We assume that it takes the adversary considerable time to react to
this message, so that it cannot attack this random port whileit is still in use. This assumption is justified,
since an attacker that has significant strength is probably employing a DDoS attack and needs to notify
its subordinates whenever it wishes to change targets.

IV. D OS-RESISTANT GOSSIP-BASED MULTICAST PROTOCOL

Drum is a simple gossip protocol, which achieves DoS-resistance using a combination of pull and push
operations, separate resource bounds for different operations, and the use of random ports in order to
reduce the chance of a port being attacked. Each process,p, locally divides its time into rounds. The
rounds are not synchronized among the processes. A round is typically in the order of a second, and its
duration may vary according to local random choices. Every round,p chooses two small (constant size)

4

random sets of processes (group members),viewpush and viewpull, and gossips with them. E.g., when
these views consist of two processes each, this correspondsto a combined fan-out of four. In addition,p

maintains a message buffer. Processp performs the following operations in each round:
• Pull-request– p sends a digest of the messages it has received to the processes in its viewpull,

requesting missing messages. Pull-request messages are sent to a well-known port. The pull-request
specifies a randomly selected port on whichp will await responses, andp spawns a thread for listening
on the chosen port. This thread is terminated after a few rounds.

• Pull-reply – in response to pull-request messages arriving on the well-known port,p randomly selects
messages that it has and are missing from the received digests, and sends them to the destinations
indicated in the requests.

• Push– in a traditional push operation,p randomly picks messages from its buffer, and sends them
to each targett in its viewpush. In order to avoid wasting bandwidth on messages thatt already has,
p instead requestst to reply with a message digest, as follows:

1) p sends apush-offerto t, along with a random port on which it waits for a push-reply.
2) t replies with apush-replyto p’s random port, containing a digest of the messagest has, and

a random port on whicht waits for data messages.
3) If p has messages that are missing from the digest, it chooses a random subset of these, and

sends them back tot’s randomly chosen port.
The target process listens on a well-known port for push-offers.

Upon receiving a new data message, either by push or in response to a pull-request,p first performs
some sanity checks. If the message passes these checks,p delivers it to the application and saves it in
its message buffer for a number of rounds. The sanity checks employ cryptographic mechanisms, which
ensure that the attacker has negligible probability of fabricating a message that passes these checks.
Consequently, bogus messages impact only their first recipient. However, the sanity checks are costly in
terms of execution time (e.g., verifying digital signatures). Thus, performing sanity checks at a high rate
effectively causes DoS.

Resource allocation and bounds. In each round,p sends push-offers to all the processes in itsviewpush

and pull-requests to all the processes in itsviewpull. If the total number of push-replies and pull-requests
that arrive in a round exceedsp’s sending capacity, thenp equally divides its capacity between sending
responses to push-replies and to pull-requests. Likewise,p responds to a bounded number (typically
|viewpush|) of push-offers in a round, and if more data messages than it can handle arrive, thenp divides
its capability for processing incoming data messages equally between messages arriving in response to
pull-requests and those arriving in response to push-replies. The messages are randomly chosen from the
incoming message buffers.

At the end of each round,p flushes its incoming message buffers. This is important, especially in the
presence of DoS attacks, as an attacker can send more messages thanp can handle in a round.

Achieving DoS-resistance. We now explain how the combination of push, pull, random portselections,
and resource bounds achieves resistance to targeted DoS attacks. A DoS attack can flood a port with
fabricated messages. Since the number of messages acceptedon each port in a round is bounded, the
probability of successfully receiving a given valid message M in a given round is inversely proportional
to the total number of messages arriving on the same port asM in that round. Thanks to the separate
resource bounds, an attack on one port does not reduce the probability for receiving valid messages on
other ports.

In order to prevent a process fromsendingits messages using apushoperation, one must attack (flood)
the push-offer targets, the ports where push-replies are awaited, or the ports where data messages are
awaited. However, the push destinations are randomly chosen in each round, as are the push-reply and
data ports. Thus, the attacker has no way of predicting thesechoices.

Similarly, in order to prevent a process fromreceivingmessages during apull operation, one needs to
target the destination of the pull-requests or the ports on which pull-replies arrive. However, the destinations

5

and ports are randomly chosen. Thus, using the push operation, Drum achieves resilience to targeted attacks
aimed at preventing a process fromsendingmessages, and using the pull operation, it withstands attacks
that try to prevent a process fromreceivingmessages.

V. EVALUATION METHODOLOGY

The most important contribution of this paper is our thorough evaluation of the impact of various DoS
attacks on gossip-based multicast protocols. In addition to examining the effect of DoS on Drum, we also
measure the effectiveness of the DoS-mitigating techniques employed by it. We mostly concern ourselves
with the benefits of combining both the push and pull methods.We evaluate three protocols: (i) Drum, (ii)
Push, which uses only push operations, and (iii)Pull, which uses only pull operations. Pull and Push are
implemented the same way Drum is, with the important measures of bounding the number of messages
accepted in each round and using random ports. Thus, in comparing the three protocols, we study the
effectiveness of combining push and pull operations under the assumption that these other measures are
used. Subsequently, Section IX evaluates the effectiveness of Drum’s other DoS-mitigation concepts, by
contrasting Drum’s performance against that of two modifiedversions of Drum: one without resource
separation, and a second without using random ports.

We begin by evaluating the effect that a range of DoS attacks have on message latency using asymptotic
mathematical analysis (in Section VI) and simulations (in Section VII). Our simulation results exhibit the
trends predicted by the analysis.

For these evaluations, we make some simplifying assumptions: We assume no message is ever purged
from any process’s message buffer, and that all processes have some messages in their buffers (from
previous multicast sessions). We also assume that when processes send a data message, they send the
complete contents of their buffer in a single operation. We model the push operation as performed without
push-offers (in Drum and in Push). We assume that the rounds are synchronized, and that the message-
delivery latency is smaller than half the gossip period; thus, a process that sends a pull-request receives
the pull-reply in the same round. All of these assumptions were made in previous analyses of gossip-based
protocols, e.g., [1], [6], [16], [19].

The analysis and simulations measure latency in terms of gossip rounds: we measure the message’s
propagation time, which is the expected number of rounds it takes a given protocol to propagate a message
to all (in the closed-form analysis) or to99% (in the simulations) of the correct processes. We chose a
threshold of99% since the message may fail to reach some of the correct processes due to old-message
purging or link loss. Note that correct processes can be either attacked or non-attacked. In both cases,
they should be able to send and receive data messages.

We turn to measure actual performance on a cluster of workstations (in Section VIII). Our goal for this
evaluation is twofold: First, we wish to ensure that the simplifying assumptions made in the analysis and
simulations have little impact on their results. E.g., in the implementation, rounds are not synchronized and
the push-offer mechanism is used (in Drum and in Push). Second, we seek to measure the consequences
of DoS attacks not only on actual latency (in msecs.), but also on the throughput of a real system, where
multiple messages are sent, and old messages are purged fromprocesses’ message buffers.

Attacks. In all of our evaluations, we stage various DoS attacks. We assume that the DoS attacks are
launched from outside the system. DoS from inside the group is essentially just one source (or more)
generating excessive traffic. This can happen regardless ofany malicious nodes being part of the multicast
group, e.g., in a heterogenous system. Consequently, this isin fact a flow-control problem, as one cannot
differentiate between a malicious attack and legitimate excessive traffic. Flow control in gossip-based
multicast has been dealt with in [26].

In each DoS attack, the adversary focuses on a fractionα of the processes (0 < α ≤ 1), and sends each of
themx fabricated messages per round (in Drum, this meansx

2
push messages andx

2
pull-requests). We note

that randomly choosing the attack targets every round does not make any difference, as the communication
partners are re-chosen uniformly at random each round. We denote the total attack strength byB = x·α·n.

6

0 100 200 300 400 500 600 700 800 900 1000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

processes

p
u

F = 5
F = 4
F = 3
F = 2
F = 1

(a) pu as a function ofn, for various fan-outs.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F/x
p

a

(b) pa vs. F

x
for F = 4, n = 1000.

Fig. 1. Actual values ofpu andpa.

We assume that the message source is being attacked (this hasno impact on the results of Push). We
consider attacks either of afixed strength, whereB is fixed andα increases (thus,x decreases); or of
increasing strength, where eitherx is fixed andα increases, or vice versa (in both cases,B increases).
Examining fixed strength attacks allows us to identify protocol vulnerabilities, e.g., whether an adversary
can benefit from targeting a subset of the processes. Increasing strength attacks enable us to assess the
protocols’ performance degradation due to an increasing attack intensity.

VI. A SYMPTOTIC CLOSED-FORM ANALYSIS

In this section we assume that all the processes are correct.The protocols use a constant fan-out,F .
Every round, each process sends messages toF processes and accepts messages from at mostF processes.
In Drum, F is equally divided between push and pull, e.g., ifF = 4, thenviewpush = viewpull = 2, and
each process accepts push messages from at most2 processes and pull-request messages from at most2
processes in a round. We analyze Drum in Section VI-A, Push inSection VI-B, and Pull in Section VI-C.

We denote bypu the probability of a non-attacked process to accept a valid incoming push or pull-
request message sent to it. Similarly, we denote bypa the probability of an attacked process to accept
a valid incoming message. Obviously,pu is independent of the attack strength. In Appendix I, we give
detailed formulas forpa andpu, and Lemma 8 proves thatpu > 0.6 for all F ≥ 3. Numerical calculations
using the formula in Appendix I show thatpu > 0.6 for all F ≥ 1, as can be seen in Figure 1(a). When
at least one valid message is sent, an attacked process is sent at leastx + 1 messages in a round, and
accepts at mostF of them. We get the following coarse bound:pa < F

x
. Figure 1(b) shows an example

of the numerical calculation ofpa versusF
x

.

A. Drum

We begin by considering increasing strength attacks. We show that in Drum, an adversary does not
gain any significant advantage by increasing its attack strength while focusing on a fixed strict subset of
the processes.

Lemma 1:Fix α < 1 andn. Drum’s expected propagation time is bounded from above by aconstant
independent ofx.

Proof: Sinceα < 1, some processes are not attacked at all. Let us look at a two-stage propagation
scheme that works as follows: At the first stage, only the source propagates the message. The expected
propagation time from the source via push to all the non-attacked processes is independent ofx and
bounded, sincen is fixed. At the next stage, the non-attacked processes constitute non-attacked sources

7

for the rest of the group via pull. The expected propagation time of the second stage is again independent
of x and bounded. Sincen is fixed, this two-stage expected propagation time is constant. The two-stage
propagation from the source to all of the destinations is obviously not faster than Drum’s propagation.
Thus, Drum’s expected propagation time is bounded from above by a constant independent ofx.
Figure 3(a) in Section VII-B illustrates this quality of Drum, using simulations.

We now consider attacks where the adversary has a fixed attacking power. Thus, the attacker can
intensely attack a small group of processes, or perform a moderate attack on a large number of processes.
We would like to see which strategy is more beneficial to the attacker. We denote byc = B

F ·n = αx
F

the
attack strength divided by the total system capacity. We show that the adversary’s best strategy against
Drum is to attack as many processes as it can, i.e., increaseα.

We define theeffective expected fan-in, I, to be the average number of valid data messages a process
successfully receives in a round. (If the same data message is received fromk processes, we count this
as k messages.) Likewise, theeffective expected fan-out, O, is the average number of messages that a
process sends and are successfully received by their targets in a round.

Let us examine the effect of a DoS attack onO and I, with respect to the push operation (Opush and
Ipush, resp.). The probability of an attacked process to receive apush message ispa. The probability of a
non-attacked process to receive a push message ispu. Therefore, the effective fan-insIa

push and Iu
push of

an attacked and non-attacked process (resp.) are:

Ia
push = F · pa and Iu

push = F · pu (1)

Whenαn processes are attacked, the effective fan-outs are:

Oa
push = Ou

push = F · (α · pa + (1 − α) · pu) (2)

Similar arguments apply for the pull operation. The probability of an attacked process to receive a pull-
request ispa. The same probability for a non-attacked process ispu. Receiving pull-requests allows a
process to send data messages, and on average, each process receivesF pull-requests. Due to the use of
random ports, we assume that each pull-reply is actually being received, and thus, the effective fan-outs
are:

Oa
pull = F · pa and Ou

pull = F · pu (3)

Receiving data messages requires sending pull-requests. Each round,F pull-requests are being sent. On
average,αF of them reach an attacked process and are successfully read with probabilitypa, and(1−α)F
of those reach a non-attacked process and are successfully read with probabilitypu. Due to the use of
random ports, we can assume it makes no difference whether the requesting process is attacked or not.
We get the following fan-ins:

Ia
pull = Iu

pull = F · (α · pa + (1 − α) · pu) (4)

In Drum, O = 1
2
(Opush + Opull) andI = 1

2
(Ipush + Ipull). Therefore:

Oa = Ia = F
2
· (α · pa + (1 − α)pu + pa) = F · (α + 1

2
· pa +

1 − α

2
· pu) (5)

Ou = Iu = F
2
· (α · pa + (1 − α)pu + pu) = F · (α

2
· pa +

2 − α

2
· pu) (6)

Lemma 2:For c > 5, Drum’s expected propagation time is monotonically increasing with α.
Proof: We will show that all the processes’ effective fan-ins and fan-outs are monotonically decreas-

ing with α. That is, we want to prove that:dOa

dα
< 0 and dOu

dα
< 0. We require the following:

dOa

dα
= dIa

dα
= F

2
·
(
pa + αdpa

dα
+ dpa

dα
− pu

)
< 0

pa + (α + 1)dpa

dα
< pu

8

Recall thatpa < F
x

. In Lemma 7 in Appendix I we show thatdpa

dα
< F

αx
. Bounding the left side of the

inequality, we get:

pa + (α + 1)
dpa

dα
<

F

x
+ (α + 1)

F

αx
=

F

αx
· (α + α + 1) =

2α + 1

c
<

3

c

Thus, our condition holds when3
c

< pu, that is, whenc > 3
pu

. Similarly, when applying the derivative to
the second term we get the condition:

dOu

dα
= dIu

dα
= F

2
·
(
pa + αdpa

dα
− pu

)
< 0

pa + αdpa

dα
< pu

Bounding the left side of the inequality, we get:

pa + α
dpa

dα
<

F

x
+ α

F

αx
=

F

αx
· (α + α) =

2α

c
<

2

c

Thus, we require that2
c

< pu, or thatc > 2
pu

. This is already inferred from our previous result. The lemma
follows sincepu > 0.6.

This behavior is validated in the simulations in Section VII-C. Moreover, the simulations show that
even for much smaller values ofc (ranging from0.25 to 2), Drum’s propagation time increases withα
(see Figures 7–8).

B. Push

We first prove the following simple lemma.
Lemma 3:∀a > 0 a < 1

ln(1+ 1

a
)
< a + 1.

Proof: We show that∀y > 0 1
y

< 1
ln(1+y)

< 1
y

+ 1.
Defineh(y) = ln(1 + y) − y

1+y
andg(y) = ln(1 + y) − y. By taking derivatives we get:

h′(y) = 1
1+y

− (1
1+y

− y

(y+1)2
) = y

(y+1)2
> 0, ∀y > 0,

g′(y) = 1
1+y

− 1 < 0, ∀y > 0.

Sinceh(0) = g(0) = 0, y > ln(1 + y) > y

(y+1)
. Therefore,1

y
< 1

ln(1+y)
< 1

y
+ 1.

We proceed to show that Push’s propagation time is linear inx.
Lemma 4:The expected propagation time to all processes in Push is bounded from below by:

ln n − ln [(1 − α) n + 1]

ln (1 + Fαpa)
Proof: We prove that the given bound holds even for the case where initially all the non-attacked

processes have the message (denoted byM), in addition to the source (which is attacked). The lemma
then follows immediately.

Let the random variableM(k) denote the number of processes that haveM at the beginning of round
k, and let E [M(k)] denote its expectation. In roundk, each process havingM sends it toF other
processes. On average,Fα of those are attacked, and each attacked process receives the message with
probabilitypa. Thus, we get the coarse recursive boundE [M(k + 1)] ≤ E [M(k)]+E [M(k)] ·Fαpa with
the initial conditionE [M(0)] = M(0) = (1 − α)n + 1. Thus,E [M(k)] ≤ [(1 − α) n + 1] (1 + Fαpa)

k.
M reaches all the processes whenE [M(k)] ≥ n. To boundk from below we use the fact that having
[(1 − α) n + 1] (1 + Fαpa)

k
< n implies thatE [M(k)] < n. Thus, the first round numberk that may

satisfy the inequalityE [M(k)] ≥ n is the required formula.
Corollary 1: Fix α andn > 1

α
. The propagation time of Push increases at least linearly with x.

Proof: Sinceα and n > 1
α

are fixed, the numerator in Lemma 4 is a positive constant. Consider
the denominator: sincepa < F

x
, it holds thatF · α · pa is O(1

x
). The lemma follows since, by Lemma 3,

1
ln(1+ 1

x
)

is Θ(x).
The above corollary explains the trend exhibited by Push in Figure 3(a).

9

C. Pull

We begin by proving the following lemma.
Lemma 5:∀b ∈ N

xb

xb−(x−F)b is Ω(x).

Proof: We first show thata−1
b

≤ ab

ab−(a−1)b for everya > 1, b ∈ N.

We prove by induction onb that b
a−1

≥ ab−(a−1)b

ab . For b = 1, 1
a−1

≥ 1
a

for everya > 1. The inductive

Step: ab+1−(a−1)b+1

ab+1 = a(a)b−(a−1)(a−1)b

a(a)b = ab

a(a)b + a−1
a

ab−(a−1)b

ab ≤ 1
a

+ a−1
a

b
a−1

= 1
a

+ b
a

= b+1
a

≤ b+1
a−1

.

By substituting x
F

for a in the proven inequality, we get thatx−F
bF

≤ xb

xb−(x−F)b for every x > F .

Therefore, xb

xb−(x−F)b is Ω(x).
We definep̃ as probability that the messageM is propagated from the source in a round.
Lemma 6:Fix α andn. The number of rounds it takes a message to leave the source inPull grows at

least linearly withx.
Proof: We give a gross over-estimate ofp̃ by assuming that all the othern− 1 processes choose the

source every round. (When fewer processes choose the source,M is lesslikely to leave the source.) Since
pa < F

x
, p̃ < (1− (x−F

x
)n−1). The number of rounds it takes to propagate a message beyond the message

source is geometrically distributed with̃p. Therefore, its expectation is1ep > xn−1

xn−1−(x−F)n−1 . Substituting
n − 1 for b in Lemma 5, we get that1ep is Ω(x).

Corollary 2: Fix α andn. The propagation time of Pull grows at least linearly withx.
Figure 3(a) illustrates this behavior of Pull.

VII. S IMULATION RESULTS

This section presents MATLAB simulations of the three protocols under various DoS attack scenarios.
All group members constantly have messages to send, and we track the propagation of one of these
messages,M , from its source. Each process receives messages from at most F = 4 other processes each
round (disregarding pull-replies). If more thanF processes try to access this process’s incoming channels,
a randomF -sized subset of them is chosen. We consider a link-loss probability of 0.01 on all links and
a fan-out ofF = 4. Rounds are synchronized among all processes. Each data point is averaged over
1000 runs, where in each run the number of rounds it takes the message to reach99% of the processes
is measured.

In Section VII-A we consider situations with no DoS attack (either no failures or only crash failures),
and validate known results about gossip protocols. We continue in Sections VII-B and VII-C by measuring
the effect of DoS attacks on the system. In these studies, we assume that10% of the processes have crashed
when the system started (we assume that no failure detectorsare being used), and that the DoS attack is
launched from outside the system. Since we do not assume thatnodes can detect that their gossip partners
are down, assuming that nodes crash right when the system starts has no special effect on the results. If
nodes crash later on, the system will operate as usual until the processes crash. After that, the system
will operate as analyzed with processes that have crashed right from the start.

We measure the propagation times to the correct processes, both attacked and non-attacked. In Sec-
tion VII-B we measure the impact of targeted DoS attacks, andin Section VII-C we examine fixed strength
attacks and adversary strategies.

A. Validating Known Results

We begin by evaluating the three protocols in a failure-freescenario, and in situations where crash
failures occur. We assume that the crashes occur beforeM is generated, and that the source does not
crash. We also assume that the crashes are not detected by thecorrect processes, i.e., they try to gossip
with crashed processes as well.

Our aim is to validate two known results: (1) the propagationtime of gossip-based multicast protocols
is O(log n) [24], [11], as can be seen in Figure 2(a), with a logarithmic x-axis; and (2) the performance

10

10
2

10
3

1

2

3

4

5

6

7

8

9

10

ro

un
ds

processes (log scale)

Push
Pull
Drum

(a) Failure-free operation.

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

% crashed processes

ro

un
ds

Push
Pull
Drum

(b) Operation with crashed processes,n = 1000.

Fig. 2. Runs without DoS attack: Average propagation time to99% of the correct processes (simulations).

of such protocols degrades gracefully as crash failures amount [9], [14], as depicted in Figure 2(b)). We
can see that Push and Pull slightly outperform Drum in these experiments. This is due to the fact that the
bounds on the pull and push channels in Drum are strict, i.e.,even if in a specific round no messages have
arrived via the push channels, only requests from at most twodistinct processes will be handled, although
the process is capable of handling four such requests. Conversely, Push and Pull have only one bound,
which guarantees that messages won’t be discarded if they can be processed. The ability to perform well
even when many processes crash stems from the random choice of communication partners each round.

B. Targeted DoS Attacks

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

x

ro

un
ds

Push, 1000
Push, 120
Pull, 1000
Pull, 120
Drum, 1000
Drum, 120

(a) α = 10%.

10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

ro

un
ds

α

Push, 1000
Push, 120
Pull, 1000
Pull, 120
Drum, 1000
Drum, 120

(b) x = 128.

Fig. 3. Increasing attack strength: Average propagation time to99% of the correct processes,n = 120, 1000 (simulations).

In this section we consider targeted attacks, where a subsetof size αn of the processes is attacked.
Figure 3 compares the time it takesM to reach99% of the correct processes for the three protocols under
various DoS attacks, with120 and1000 processes. Figure 3(a) shows that when10% of the processes are
attacked, the propagation time of both Push and Pull increases linearly with the severity of the attack,
while Drum’s propagation time is unaffected by the attack strength. This is consistent with the prediction
of Lemma 1 and Corollaries 1 and 2. Moreover, the three protocols perform virtually the same without

11

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8

9

10

x

ro

un
ds

Push
Pull
Drum

(a) α = 10%.

10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

ro

un
ds

α

Push
Pull
Drum

(b) x = 128.

Fig. 4. Increasing attack strength: STD of the propagation time to99% of the correct processes,n = 1000 (simulations).

DoS attacks (see the leftmost data point). Figure 3(b) illustrates the propagation time as the percentage
of attacked processes (and thusB) increases. The rightmost data point in this figure matches ascenario
where only10% of the processes are both correct non-attacked. Although the protocols exhibit similar
trends, Drum propagates messages much faster than Push and Pull.

Figure 4 illustrates thestandard deviation(STD) of the propagation times presented in Figure 3 for
n = 1000. It shows that for a fixedα, Drum’s STD is not affected by the attack strength, whereas the
other protocols’ STD increases linearly. Furthermore, both Drum and Push exhibit a small STD compared
to Pull. E.g., forα = 10% and x = 128, the STDs of Drum and Push are0.5 and 2.9 rounds (resp.),
whereas Pull’s STD is9.3 rounds. Therefore, the behavior of Drum and Push is more predictable. The
high STD of Pull’s propagation time is mainly due to the largeSTD of the number of rounds it takes
to propagateM beyond the source. The number of rounds it takes to propagateM beyond the source is
geometrically distributed with̃p, wherep̃ is the probability to propagateM beyond the source in a round.

Thus, the STD of the number of rounds it takes to propagateM beyond the source is
√

1−ep
ep . A numerical

calculation ofp̃ according to the formula in Appendix II, withF = 4 and x = 128, yields an STD of
8.17 rounds, which explains Pull’s measured STD of9.3 rounds mentioned above.

Figure 5 illustrates the cumulative distribution function(CDF) of the percentage of correct processes
that receiveM by a given round, under different DoS attacks. As expected, Push propagatesM to the
non-attacked processes very quickly, but takes much longerto propagate it to the attacked processes.
Again, we see that Drum significantly outperforms both Push and Pull when a strict subset of the system
is attacked.

Interestingly, on average, Push propagatesM to more processes per round than Pull does (see Figure 5),
although the average number of rounds Pull takes to propagateM to 99% of the correct processes is smaller
than that of Push (see Figure 3). This paradox occurs since, with Pull, there is a non-negligible probability
that M is delayed at the source for a long time. WithF = 4 andx = 128, the probability ofM not being
propagated beyond the source in5, 10, and 15 rounds is0.54, 0.3, and 0.16 resp. (as computed using
the formula forp̃ in Appendix II). OnceM reaches one non-attacked process, it quickly propagates to
the rest of the processes. Therefore, even if by a certain round k, in most runs, a large percentage of
the processes haveM , there is still a non-negligible number of runs in which Pulldoes not reachany
process (other than the source) by roundk. This large difference in the percentage of processes reached
has a significant impact on the average depicted in Figure 5. In contrast, Push, which reaches all the non-
attacked processes quickly in all runs, does not have runs with such low percentages factoring into this
average. Nevertheless, Push’s average propagation time to99% of the correct processes is much higher
than Pull’s, because Push has to propagateM to all the attacked processes, whereas Pull has to propagate

12

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pe
rc

en
ta

ge
 o

f c
or

re
ct

 p
ro

ce
ss

es

rounds

Push
Pull
Drum

(a) α = 10%, x = 64.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pe
rc

en
ta

ge
 o

f c
or

re
ct

 p
ro

ce
ss

es

rounds

Push
Pull
Drum

(b) α = 10%, x = 128.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pe
rc

en
ta

ge
 o

f c
or

re
ct

 p
ro

ce
ss

es

rounds

Push
Pull
Drum

(c) α = 40%, x = 128.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pe
rc

en
ta

ge
 o

f c
or

re
ct

 p
ro

ce
ss

es

rounds

Push
Pull
Drum

(d) α = 80%, x = 128.

Fig. 5. Targeted DoS attacks: CDF: Average percentage of correct processes that receiveM, n = 1000 (simulations).

M only out of one attacked process.
Figure 6 illustrates this behavior: Figure 6(a) shows that Push propagatesM much faster than Pull to the

non-attacked processes, while Figure 6(b) indicates that Push and Pull take the same time to propagate
M to the attacked processes. Conversely, Drum exhibits fast propagation times both to attacked and
non-attacked processes.

C. Adversary Strategies

We now evaluate the protocols under a range of attacks with fixed adversary strengths. First, we consider
severe attacks withB = 7.2n andB = 36n (corresponding toc = 2 andc = 10, resp.) fabricated messages
per round. If the adversary chooses to attack all correct processes, it can send8 (resp.,40) fabricated
messages to each of them in each round, because90% of the processes are correct. If the adversary
instead focuses on10% of the processes, it can send72 (resp.,360) fabricated messages per round to
each of them. Figure 7 illustrates the protocols’ propagation times with different percentages of attacked
processes, for system sizes of120 and 500. It validates the prediction of Lemma 2, and shows that the
most damaging adversary strategy against Drum is to attack all the correct processes. That is, an adversary
cannot “benefit” from focusing its capacity on a small subsetof the processes. In contrast, the performance
of Push and Pull is seriously hampered when a small subset of the processes is targeted. Not surprisingly,
the three protocols perform equally when all correct processes are targeted (see the rightmost data point).

13

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rounds

pe
rc

en
ta

ge
 o

f n
on

−a
tta

ck
ed

 p
ro

ce
ss

es

Push
Pull
Drum

(a) Non-attacked processes.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rounds

pe
rc

en
ta

ge
 o

f a
tta

ck
ed

 p
ro

ce
ss

es

Push
Pull
Drum

(b) Attacked processes.

Fig. 6. Propagation to attacked vs. non-attacked processes: CDF: Average percentage of attacked versus non-attacked processes that receive
M, n = 1000, α = 40%, x = 128 (simulations).

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

ro

un
ds

α

Push, 120
Push, 500
Pull, 120
Pull, 500
Drum, 120
Drum, 500

(a) B = 7.2n (c = 2).

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

ro

un
ds

α

Push, 120
Push, 500
Pull, 120
Pull, 500
Drum, 120
Drum, 500

(b) B = 36n (c = 10).

Fig. 7. Strong fixed strength attacks: Average propagation time to99% of the correct processes (simulations).

Next, we evaluate Drum under attacks with relatively small adversary powers ofB = 0.9n, B = 1.8n
andB = 3.6n (c = 0.25, c = 0.5, andc = 1, resp.) and also without an attack (as a baseline). As Figure8
shows, such attacks have little impact on Drum’s propagation time.

VIII. I MPLEMENTATION AND MEASUREMENTS

We have implemented Drum, Push, and Pull in Java. The implementations are multithreaded. The
operations that occur in a round are not synchronized, e.g.,one process might send messages before
trying to receive messages in that round, while another might first receive a new message, and then
propagate it. We run our experiments on50 machines at the Emulab testbed [32], on a 100Mbit LAN,
where a single process is run on each machine (i.e.,n = 50). As in the simulations,10% of the processes
have crashed when the system started (these crashes go undetected), and the DoS attack is launched from
outside the system. Since we do not have a router/firewall that randomly selects messages according to
the protocol’s needs, we have implemented the selection of messages by sequentially reading messages
from the port at random times within the round, and discarding all messages at the end of the round.
Since rounds are locally controlled and randomly vary in duration, the attacker cannot “aim” its messages
for the beginning of a round.

14

0 10 20 30 40 50 60 70 80 90
1

2

3

4

5

6

7

8

9

10

ro

un
ds

α

c=1 (B=3.6n)
c=0.5 (B=1.8n)
c=0.25 (B=0.9n)
no attack

(a) n = 120.

0 10 20 30 40 50 60 70 80 90
1

2

3

4

5

6

7

8

9

10

ro

un
ds

α

c=1 (B=3.6n)
c=0.5 (B=1.8n)
c=0.25 (B=0.9n)
no attack

(b) n = 500.

Fig. 8. Weak fixed strength attacks: Drum, average propagation time to99% of the correct processes (simulations).

0 20 40 60 80 100 120 140
0

5

10

15

20

25

x

ro

un
ds

Push measurements
Push simulation
Pull measurements
Pull simulation
Drum measurements
Drum simulation

(a) α = 10%.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

α

ro

un
ds

Push measurements
Push simulation
Pull measurements
Pull simulation
Drum measurements
Drum simulation

(b) x = 128.

Fig. 9. Simulations vs. measurements: Average propagation time to99% of the correct processes,n = 50.

A. Validating the Simulation Methodology

Our first goal for these experiments is to validate the simulation methodology. To this end, we experiment
with the same settings that were tested in Section VII, first for increasing values ofx andα = 10%, and
then forx = 128 and increasing values ofα. As in the simulations, every process has messages to send,
and we track the propagation of one of those messages. Each data point is averaged over1000 runs, again,
as in the simulations.

Due to the lack of synchronization, messages can be propagated multiple hops in a single round in
some situations. We use the following method to count the number of rounds it takes to propagate a
message: when a message is created, a round counter is attached to it and initialized to0. The message
source logs the value0, and immediately increases the round counter to1. Whenever a process receives
a new message, it logs the message’s current round counter. Every round, each process increments the
round counters of all the messages in its local buffer.

Figure 9 depicts the results of these experiments, and compares them with the corresponding simulation
results. It shows that the experimental results are consistent with the simulation results, indicating that
the simplifying assumptions made in the analysis and simulations have negligible effect on the results.

15

0 20 40 60 80 100 120 140
5

10

15

20

25

30

35

40

45

x

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

m
sg

s/
se

c)

Drum
Push
Pull

(a) α = 10%.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

α

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

m
sg

s/
se

c)

Drum
Push
Pull

(b) x = 128.

Fig. 10. Increasing attack strength: Average received throughput (measurements).

B. High Throughput Experiments

We proceed to evaluate the protocols in a realistic setting,where multiple messages are sent, and old
messages are purged from processes’ buffers. By running on a real network, we can faithfully evaluate
latency in milliseconds (instead of rounds), as well as throughput.

In each experiment scenario, a total of10,000 messages are sent by a single source, at a rate of40
messages per second. The average received throughput and latency are measured at the remaining44
correct processes (recall that5 of the 50 processes are faulty). The average throughput is calculated
ignoring the first and last5% of the time of each experiment. The round duration is1 second. Data
messages are50 bytes long. (The evaluation in [6] used a similar transmission rate and similar message
sizes.)

In a practical system, messages cannot reside in local buffers forever, nor can a process send all the
messages it ever received in a single round. In our experiments, messages are purged from processes’
buffers after10 rounds, and each process sends at most80 randomly chosennew messages to each of
its gossip partners in a round. These are roughly twice the buffer size and sending rate required for the
throughput of40 messages per round in an ideal attack-free setting, since the propagation time in the
absence of an attack is about5 rounds. Due to purging, some messages may fail to reach all the processes.
Since we measure throughput at the receiving end, this is reflected by an average throughput lower than
the transmission rate (of40 messages per second).

Figure 10 shows the throughput at the receiving processes for Drum, Push, and Pull, under the same
DoS attack scenarios staged above. Figure 10(a) indicates that, as for latency, Drum’s throughput is also
unaffected by increasingx, while Push shows a slight degradation of throughput, and Pull’s throughput
decreases dramatically. Figure 10(b) shows that Drum’s throughput gracefully degrades asα increases,
while Push exhibits a linear degradation, and Pull’s throughput is drastically affected for everyα > 0.

Figure 11 depicts the CDF of the average latency ofsuccessfully receivedmessages in two scenarios.
Each data point shows, for a given latencyl, the percentage of correct processes for which the average
latency does not exceedl. We observe that Push is the fastest in delivering messages to non-attacked
processes, but suffers from substantial variation in delivery latency, as messages take a long time to reach
the attacked processes. E.g., Figure 11(a) shows that the4 attacked processes (other than the source)
measure an average latency4 times longer than non-attacked processes. While Pull exhibits almost the
same average latency for all the processes, this latency is very long. Drum combines the best of Push and
Pull: it delivers messages almost as fast as Push, while maintaining a small variation between attacked
and non-attacked processes.

16

1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Latency (msecs)

P
er

ce
nt

ag
e

of
 C

or
re

ct
 P

ro
ce

ss
es

Drum
Push
Pull

(a) α = 10%, x = 128.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Latency (msecs)

P
er

ce
nt

ag
e

of
 C

or
re

ct
 P

ro
ce

ss
es

Drum
Push
Pull

(b) α = 40%, x = 128.

Fig. 11. CDF: average latency of received messages (measurements).

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

x

ro

un
ds

Drum − Known Ports
Drum − Random Ports

(a) Random ports,n = 1000 (simulations).

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

x

ro

un
ds

Drum − Shared Bounds
Drum − Separate Bounds

(b) Separate bounds,n = 50 (measurements).

Fig. 12. The effect of random ports and separate bounds on Drum’sperformance,α = 10%.

IX. OTHER DOS-MITIGATION METHODS

Until now, we have evaluated the advantage of combining boththe push and pull techniques as a way
to mitigate DoS attacks, in the context of a protocol that also employs resource bounds and random
ports. We now turn to examine the importance of using the other two techniques: utilizing random ports
whenever possible, and allocating separate resources for orthogonal operations.

In order to evaluate the effectiveness of random ports, we simulate Drum as described in Section VII,
with the difference that pull-replies are sent to a well-known port instead of to a random one. The
adversary attacks this port by equally dividing its attack strength for the pull channels between the pull-
request port and the pull-reply port (i.e., each pull port isattacked with a quarter of the total attack
strength). Figure 12(a) presents simulation results comparing Drum’s performance with and without the
use of random ports, when10% of the processes are attacked. The results show a linear increase in
propagation time for the well-known ports variation of Drum, as the rate of bogus messages each attacked
process receives in a round increases. This is in contrast tothe propagation time of Drum using random
ports, which is bounded by a constant.

When solely using well-known ports, the adversary can attackboth pull ports, as well as the push
port. A process under attack experiences difficulty receiving messages both via push and through the pull
channels, since the push and pull-reply ports are attacked.The same process’s ability to send messages

17

is only partly hampered. Although the pull-request port is attacked, the adversary cannot directly affect
the process’s outgoing push channels.

Next, we measure the effect of resource separation on Drum’sperformance. To this end, we change
Drum’s implementation detailed in Section VIII. Resources are now combined (i.e., a joint bound on the
maximum number of processed messages per round is used) for receiving control messages: pull-requests,
push-offers, and push-replies. We do not include the reception of data messages in this bound, since this
bound may differ greatly from the bound on control messages in actual scenarios. Figure 12(b) contrasts
the measurements of Drum’s propagation time with shared bounds against those with separate bounds,
when10% of the processes are attacked. The results indicate a lineardegradation of performance as the
attack rate increases, when bounds are shared. On the other hand, the unmodified version of Drum is
virtually indifferent to the increase in attack strength.

Shared bounds degrade Drum’s performance under a DoS attack, since the fabricated control messages
sent by the adversary to the well-known push-offer and pull-request ports consume resources that should
be used for reading pull-requests, push-offers, and push-replies. The valid control messages are then
discarded when resources are exhausted, and the attacked process becomes less responsive.

We conclude that random ports and separate resource bounds are crucial to Drum’s ability to cope with
DoS attacks.

X. CONCLUSIONS

We have conducted the first systematic study of the impact of DoS attacks on multicast protocols, using
asymptotic analysis, simulations, and measurements. Our study has exposed weaknesses of traditional
gossip-based multicast protocols: although such protocols are very robust in the face of process crashes,
we have shown that they can be extremely vulnerable to DoS attacks. In particular, an attacker with limited
attack strength can cause severe performance degradation by focusing on a small subset of the processes.

We have suggested a few simple measures that one can take in order to improve a system’s resilience to
DoS attacks: (i) combining pull and push operations; (ii) bounding resources separately for each operation;
and (iii) random port selection for each communication channel. We have presented Drum, a simple gossip-
based multicast protocol that uses these measures in order to eliminate vulnerabilities to DoS attacks. Our
closed-form mathematical analysis, simulations, and empirical tests have proven that these measures go a
long way in fortifying a system against DoS attacks. We have shown that, as the attack strength increases
asymptotically, the most effective attack against Drum is one that divides the attack power among all
the correct processes in the system. As expected, the inevitable performance degradation due to such a
broad attack is identical for all the studied protocols. However, protocols that use only pull or only push
operations perform much worse under more focused attacks, which have little influence on Drum.

We expect our proposed methods for mitigating the effect of DoS attacks to be applicable to various other
systems operating in different contexts. Specifically, theuse of well-known ports should be minimized,
and each process should be able to choose some of its communication partners by itself. Our analysis
process and its corresponding metric can be used to generally quantify the effect of DoS attacks. We
hope that other researchers will be able to apply similar techniques in order to quantitatively analyze their
system’s resilience to DoS attacks.

APPENDIX I
CALCULATING pu AND pa

Suppose processpi sends a message to processpj, we want to calculate the probability that process
pj accepts this message. Denote the event “processpi sends a message to processpj” by Sij. Assume
n > F , and defineq as the probability that processpj appears in processpi’s view, then:

q = 1 − n − 2

n − 1
· n − 3

n − 2
· · · n − 1 − F

n − F
= 1 − n − 1 − F

n − 1
=

F

n − 1

18

Let Y be the number of valid messages received bypj in a single round, then:

Pr(Y ≤ 0 | Sij) = Pr(Y ≥ n | Sij) = 0

0 < y < n Pr(Y = y | Sij) =

(
n − 2

y − 1

)
qy−1(1 − q)n−1−y

Let pY be the probability that a non-attacked process,pj, discards the message sent bypi, givenSij, then:

pY =

{
0 Y ≤ F
Y −1

Y
· Y −2

Y −1
· · · Y −F

Y −F+1
= Y −F

Y
Y > F

Calculatingpu gives:

pu = 1 −
∞∑

y=−∞

py · Pr(Y = y | Sij) =

1 −
n−1∑

y=F+1

y − F

y
·
(

n − 2

y − 1

)(
F

n − 1

)y−1 (
n − 1 − F

n − 1

)n−1−y

=

F∑

y=1

(
n − 2

y − 1

)(
F

n − 1

)y−1 (
n − 1 − F

n − 1

)n−1−y

+ (7)

n−1∑

y=F+1

F

y
·
(

n − 2

y − 1

)(
F

n − 1

)y−1 (
n − 1 − F

n − 1

)n−1−y

If pj is attacked withx ≥ F messages, we get:

pY =
Y + x − 1

Y + x
· Y + x − 2

Y + x − 1
· · · Y + x − F

Y + x − F + 1
=

Y + x − F

Y + x

And thus:

pa = 1 −
∞∑

y=−∞

py · Pr(Y = y | Sij) =

1 −
n−1∑

y=1

y + x − F

y + x
·
(

n − 2

y − 1

)(
F

n − 1

)y−1 (
n − 1 − F

n − 1

)n−1−y

=

n−1∑

y=1

F

y + x
·
(

n − 2

y − 1

)(
F

n − 1

)y−1 (
n − 1 − F

n − 1

)n−1−y

<

n−1∑

y=1

F

x
·
(

n − 2

y − 1

) (
F

n − 1

)y−1 (
n − 1 − F

n − 1

)n−1−y

=
F

x

Lemma 7: dpa

dα
< F

αx
.

19

Proof: Calculating the derivatives, we get:

dpa

dx
=

n−1∑

y=1

d F
y+x

dx
·
(

n − 2

y − 1

)(
F

n − 1

)y−1 (
n − 1 − F

n − 1

)n−1−y

=

n−1∑

y=1

−F

(y + x)2
·
(

n − 2

y − 1

)(
F

n − 1

)y−1 (
n − 1 − F

n − 1

)n−1−y

dx

dα
=

d B
αn

dα
=

−B

α2n
dpa

dα
=

dpa

dx
· dx

dα
=

n−1∑

y=1

FB

α2n(y + x)2
·
(

n − 2

y − 1

)(
F

n − 1

)y−1 (
n − 1 − F

n − 1

)n−1−y

=

n−1∑

y=1

Fx

α(y + x)2
·
(

n − 2

y − 1

) (
F

n − 1

)y−1 (
n − 1 − F

n − 1

)n−1−y

<

n−1∑

y=1

Fx

αx2
·
(

n − 2

y − 1

)(
F

n − 1

)y−1 (
n − 1 − F

n − 1

)n−1−y

=
F

αx

We now give a bound onpu.
Lemma 8:pu > 0.6.

Proof: Define:

µ , E[Y | Sij] =
∑n−1

y=1 y ·
(

n−2
y−1

)
qy−1(1 − q)n−1−y = n−2

n−1
· F + 1

E[Y 2 | Sij] =
∑n−1

y=1 y2 ·
(

n−2
y−1

)
qy−1(1 − q)n−1−y = (n−2)(n−3)

(n−1)2
· F 2 + 3 · n−2

n−1
· F + 1

σ2 , V ar(Y | Sij) = (n−2)(n−3)
(n−1)2

· F 2 + 3 · n−2
n−1

· F + 1 −
(

n−2
n−1

· F + 1
)2

= n−2
n−1

· F − n−2
(n−1)2

· F 2

By [31], for n À 1 we get thatY given Sij can be approximated using a normal distribution function,
with µ = F + 1 andσ2 = F . The cumulative distribution functionD(x) is thus:

D(x) = 1
2
·
(
1 + erf

(
x−µ√

2σ

))
= 1

2
·
(
1 + erf

(
x−F−1√

2F

))
where erf(z) = 1 − 2√

π

∫ ∞

z

e−t2dt

From [31] we get the following:

1
x+

√
x2+2

< ex2
∫ ∞

x
e−t2dt < 1

x+
√

x2+ 4

π

Concluding that:

erf(z) = 1 − 2√
π

∫ ∞

z

e−t2dt > 1 − 2√
π
· e−z2

z +
√

z2 + 4
π

The first sum in formula 7 is approximated byD(F). CalculatingD(F) gives:

D(F) =
1

2
·
(

1 + erf

(−1√
2F

))
>

1

2
+

1

2
·


1 − 2√

π
· e−

1

2F

√
1

2F
+ 4

π
− 1√

2F


 =

1 − 1√
π
· e−

1

2F

√
π+8F√
2πF

− 1√
2F

= 1 −
√

2 ·
√

F · e− 1

2F

√
π + 8F −√

π

20

Define:

g(F) =

√
F · e− 1

2F

√
π + 8F +

√
π

We want to bound D(x) from above by finding for which values ofF , g′(F) < 0. The denominator of
g′(F) is always positive, so we ignore it when calculating the derivative:

(
e
−

1
2F

2
√

F
+

√
Fe

−

1
2F

2F 2

) (√
π + 8F −√

π
)
− 8

√
Fe

−

1
2F

2
√

π+8F
< 0

F
3
2 +F

1
2

2F 2

(√
π + 8F −√

π
)
− 8

√
Fe

−

1
2F

2
√

π+8F
< 0

“
F

3
2 +F

1
2

”
(
√

π+8F−
√

π)
√

π+8F−8F
5
2

2F 2
√

π+8F
< 0

Once again, the denominator is positive, and we get:
(
F

3

2 + F
1

2

) (√
π + 8F −√

π
)√

π + 8F − 8F
5

2 < 0

π + 8F −
√

π2 + 8πF − 8F ·
(
1 − 1

F+1

)
< 0

8F√
π(F+1)

<
√

π + 8F −√
π

Taking derivatives we get:

8√
π(F + 1)2

?
<

8

2
√

π + 8F

2
√

π + 8F
?
<

√
π(F + 1)2

Clearly, (F + 1)2 grows faster than2
√

π + 8F . Numerically solving forF = 1 shows that the inequality
holds. Thus, it holds for everyF ∈ N. Consequently, we only need to find the firstF for which:

8F√
π(F + 1)

<
√

π + 8F −
√

π

A numerical solution for this inequality shows that it first holds for F = 3. Thus, forF ≥ 3 we get that
g′(F) < 0, and thusD(F + 1) > D(F). AssigningF = 3 in our previous bound for D(F), we get that
for all F ≥ 3, D(F) ≥ D(3) > 0.3968 ≈ 0.4. AssumingF ≥ 3, we get:

F∑

y=1

(
n − 2

y − 1

)(
F

n − 1

)y−1 (
n − 1 − F

n − 1

)n−1−y

> 0.4

SinceD(x) is maximal atx = µ = F + 1 and symmetric around it, we get the approximation:

2F∑

y=F+1

(
n − 2

y − 1

)(
F

n − 1

)y−1 (
n − 1 − F

n − 1

)n−1−y

>

F∑

y=1

(
n − 2

y − 1

)(
F

n − 1

)y−1 (
n − 1 − F

n − 1

)n−1−y

21

And finally, we conclude that:

pu =
F∑

y=1

(
n − 2

y − 1

)(
F

n − 1

)y−1 (
n − 1 − F

n − 1

)n−1−y

+

n−1∑

y=F+1

F

y
·
(

n − 2

y − 1

)(
F

n − 1

)y−1 (
n − 1 − F

n − 1

)n−1−y

>

2

5
+

2F∑

y=F+1

F

2F
·
(

n − 2

y − 1

) (
F

n − 1

)y−1 (
n − 1 − F

n − 1

)n−1−y

>

2

5
+

1

2
·

F∑

y=1

(
n − 2

y − 1

) (
F

n − 1

)y−1 (
n − 1 − F

n − 1

)n−1−y

>

2

5
+

1

2
· 2

5
=

3

5

APPENDIX II
CALCULATING p̃

We now computẽp, the probability thatM is propagated from the source in a round in Pull. Assume
n > F , and defineq as the probability that processp2 appears in processp1’s viewpull, thenq = F

n−1
. Let

Y be the number of valid pull-requests received in a single round, then:

Pr(Y < 0) = Pr(Y ≥ n) = 0

0 ≤ y < n Pr(Y = y) =

(
n − 1

y

)
qy(1 − q)n−1−y

Assumex ≥ F , and definepY as the probability that a valid pull-request is read from thebuffer, then:

pY = 1 −
(

1 − Y

Y + x

)(
1 − Y

Y + x − 1

)
. . .

(
1 − Y

Y + x − F + 1

)
= 1 − x! · (Y + x − F)!

(x − F)! · (Y + x)!

The probabilityp̃ that a valid pull-request is read from the buffer, independent of Y , is:

p̃ =
∞∑

y=−∞

py · Pr(Y = y) =
n−1∑

y=0

(
1 − x! · (y + x − F)!

(x − F)! · (y + x)!

)(
n − 1

y

)(
F

n − 1

)y (
n − 1 − F

n − 1

)n−1−y

ACKNOWLEDGMENTS

We thank Aran Bergman and Dahlia Malkhi for many helpful comments and suggestions. We are
grateful to the Flux research group at the University of Utah, and especially Mac Newbold, for allowing
us to use their network emulation testbed and assisting us with our experiments.

REFERENCES

[1] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal multicast.ACM Transactions on Computer Systems
(TOCS), 17(2):41–88, 1999.

[2] R. K. C. Chang. Defending against flooding-based distributed denial-of-service attacks: A tutorial.IEEE Communications Magazine,
40:42–51, October 2002.

[3] Cisco Systems. Defining strategies to protect against TCP SYN denialof service attacks.
http://www.cisco.com/warp/public/707/4.html.

[4] CSI/FBI. Computer crime and security survey, 2003.http://www.gocsi.com/forms/fbi/pdf.jhtml.
[5] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Stuygis, D. Swinehart, and D. Terry. Epidemic algorithms for

replicated database maintenance. In6th ACM Symposium on Principles of Distributed Computing (PODC), pages 1–12, 1987.

22

[6] P. T. Eugster, R. Guerraoui, S. B. Handurukande, A. M. Kermarrec, and P. Kouznetsov. Lightweight probabilistic broadcast. InThe
International Conference on Dependable Systems and Networks (DSN), 2001.

[7] X. Geng and A. B. Whinston. Defeating distributed denial of service attacks. IEEE IT Professional, pages 46–51, July/August 2000.
[8] I. Gupta, A.-M. Kermarrec, and A. J. Ganesh. Efficient epidemic-style protocols for reliable and scalable multicast. In21st IEEE

International Symposium on Reliable Distributed Systems (SRDS), pages 180–189, October 2002.
[9] I. Gupta, R. van Renesse, and K. P. Birman. Scalable fault-tolerant aggregation in large process groups. InThe International Conference

on Dependable Systems and Networks (DSN), pages 433–442, 2001.
[10] Juniper Networks. The Need for Pervasive Application-Level Attack Protection.http://itresearch.forbes.com/detail/RES/1067617852
[11] R. M. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized rumor spreading. InIEEE Symposium on Foundations of

Computer Science, pages 565–574, 2000.
[12] A.-M. Kermarrec, L. Massouli, and A. J. Ganesh. Probabilistic reliable dissemination in large-scale systems.IEEE Transactions on

Parallel and Distributed Systems, 14(3):248–258, March 2003.
[13] M. J. Lin and K. Marzullo. Directional gossip: Gossip in a wide area network. In European Dependable Computing Conference

(EDCC), pages 364–379, 1999.
[14] M. J. Lin, K. Marzullo, and S. Masini. Gossip versus deterministicallyconstrained flooding on small networks. In14th International

Symposium on DIStributed Computing (DISC), pages 253–267, 2000.
[15] P. Linga, I. Gupta, and K. Birman. A churn-resistant peer-to-peer web caching system.ACM Workshop on Survivable and Self-

Regenerative Systems, October 2003.
[16] D. Malkhi, Y. Mansour, and M. K. Reiter. Diffusion without false rumors: On propagating updates in a Byzantine environment.

Theoretical Computer Science, 299(1–3):289–306, April 2003.
[17] D. Malkhi, E. Pavlov, and Y. Sella. Optimal unconditional informationdiffusion. In 15th International Symposium on DIStributed

Computing (DISC), 2001.
[18] D. Malkhi, M. K. Reiter, O. Rodeh, and Y. Sella. Efficient update diffusion in Byzantine environments. In20th IEEE International

Symposium on Reliable Distributed Systems (SRDS), October 2001.
[19] Y. M. Minsky and F. B. Schneider. Tolerating malicious gossip.Distributed Computing, 16(1):49–68, February 2003.
[20] D. Moore, G. Voelker, and S. Savage. Inferring Internet denial-of-service activity. InProceedings of the 10th USENIX Security

Symposium, pages 9–22, August 2001.
[21] NetContinuum. Web Application Firewall: How NetContinuum Stops the 21 Classes of Web Application Threats.

http://www.netcontinuum.com/products/whitePapers/getPDF.cfm?n=NC WhitePaper WebFirewall.pdf.
[22] P-Cube. Dos protection.http://www.p-cube.com/new solutions/service DoS.shtml.
[23] P-Cube. Minimizing the effects of dos attacks.http://www.juniper.net/solutions/literature/app note/350001.pdf.
[24] B. Pittel. On spreading a rumor.SIAM Journal on Applied Mathematics, 47(1):213–223, February 1987.
[25] Riverhead Networks. Products overview.http://www.riverhead.com/pr/index.html.
[26] L. Rodrigues and R. G. A.-M. K. S. Handurukande, J. Pereira. Adaptive gossip-based broadcast. InThe International Conference on

Dependable Systems and Networks (DSN), pages 47–56, June 2003.
[27] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Sundaram, and D. Zamboni. Analysis of a denial of service attack on TCP.

In Proceedings of the 1997 IEEE Symposium on Security and Privacy, pages 208–223, May 1997.
[28] S. Staniford, V. Paxson, and N. Weaver. How to own the Internetin your spare time. InProceedings of the 11th USENIX Security

Symposium, pages 149–167, August 2002.
[29] Stephen de Vries. Application Denial of Service Attacks.http://www.corsaire.com/white-papers/040405-application-level-dos-a
[30] J. Wang, L. Lu, and A. A. Chien. Tolerating denial-of-service attacks using overlay networks – impact of overlay network topology.

ACM Workshop on Survivable and Self-Regenerative Systems, October 2003.
[31] E. W. Weisstein.CRC Concise Encyclopedia of Mathematics.
[32] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An integrated experimental

environment for distributed systems and networks. InProc. of the Fifth Symposium on Operating Systems Design and Implementation,
pages 255–270, Boston, MA, Dec. 2002. USENIX Association.

[33] L. Zhou, F. B. Schneider, and R. van Renesse. COCA: A secure distributed online certification authority.ACM Transactions on
Computer Systems, 20(4):329–368, 2002.

