
Zooming in on Network-on-Chip Architectures ∗

Israel Cidon
Dept. of Electrical Engineering
Technion, Haifa 32000, Israel

cidon@ee.technion.ac.il

Idit Keidar
Dept. of Electrical Engineering
Technion, Haifa 32000, Israel

idish@ee.technion.ac.il

ABSTRACT
The aim of this paper is to expose the networking commu-
nity to the concept of network-on-chip (NoC), an emerging
field of study within the VLSI realm, in which networking
principles play a significant role, and new network architec-
tures are in demand. Networking researchers will find new
challenges in exploring solutions to familiar problems such
as network design, routing, and quality-of-service, in unfa-
miliar settings under new constraints. We present a new
classification of chip architectures into three categories with
different requirements from their NoCs. In order to stimu-
late some specific research directions, we highlight research
problems arising in each of these categories, focusing on
routing and resource allocation (e.g., capacity assignment).
We provide initial solution directions to example problems.

1. INTRODUCTION
As VLSI technology becomes smaller, and the number of

modules on a chip multiplies, on-chip communication solu-
tions are evolving in order to support the new inter-module
communication demands. Traditional solutions, which were
based on a combination of shared-buses and dedicated module-
to-module wires, have hit their scalability limit, and are no
longer adequate for sub-micron technologies [4, 12, 8, 23, 14,
15]. Current chip designs incorporate more complex multi-
layered and segmented interconnection buses [1, 16, 30].
More recently, chip architects have begun employing on-chip
network-like solutions [12, 13, 8, 24, 2, 17, 5]. This evolution
of on-chip interconnects may evoke feelings of déjà vu among
networking old-timers. We believe that the considerations
that have driven data communication from shared buses to
packet-switching networks (spatial reuse, multi-hop routing,
flow and congestion control, and standard interfaces for de-
sign reuse, etc.) will inevitably drive VLSI designers to use
these principles in on-chip interconnects. In other words,
we can expect the future chip design to incorporate a full-
fledged network-on-a-chip (NoC), consisting of a collection
of links and routers and a new set of protocols that govern
their operation. In Section 2, we survey the reasons for the
inevitable shift to NoCs in the VLSI world, while exposing
the most important requirements from a NoC. We note that
although some recent papers have begun to design such on-
chip network architectures, the field is still in its infancy,
and many challenges have yet to be tackled.

In designing a NoC, one has to address all the classical

∗This research is partially supported by Intel Corporation
and Semiconductor Research Corporation.

networking issues. Addressing and routing schemes need to
be devised in order to allow packets traversing the same links
to be routed to diverse destinations. Names meaningful to
applications (such as memory and I/O addresses) need to
be translated into routing efficient labels. Since the timely
delivery of certain types of traffic (or signals) on the chip
is crucial for performance, support for multiple quality-of-
service (QoS) requirements is also essential [5, 10, 28]. Sim-
ilarly, a NoC should support network level congestion con-
trol in order to accommodate excessive traffic conditions.
Where congestion control is employed, fairness issues need
to be considered as well. One also needs to address reli-
ability in the face of communication soft errors that may
corrupt transmitted data [28, 32]; this can be done using
a combination of error-correction codes and retransmission
mechanisms.

Since problems of this type have been extensively studied
in the networking realm, as well as for off-chip intercon-
nection networks [9], one may be tempted to employ well-
developed networking/interconnection solutions in the NoC
context. Nevertheless, a direct adaptation of network pro-
tocols to NoCs is impossible, due to the different communi-
cation requirements, cost considerations, and architectural
constraints. The primarily considerations in VLSI are min-
imizing power dissipation and area. This has a number of
implications on NoC design. First, NoC components should
be extremely simple, so as to allow implementing them with
a small number of logic gates and to expend as little en-
ergy as possible. In addition, power considerations render
shortest-path routes highly desirable, while area considera-
tions dictate the use of small routing tables.

Beyond the distinctive cost considerations, the require-
ments from a NoC also differ from their off-chip counter-
parts. For example, on-chip network topologies are quite
restricted– they are laid onto planar layers (in silicon and/or
metal), and are therefore often organized as (possibly par-
tial) grids. Thus, elaborate layouts like high-dimension hyper-
cubes and butterflies, which are often employed in intercon-
nection networks [9], are not cost-effective for NoCs. More-
over, NoC topologies are fixed throughout their lifetimes.
That is, they do not need to support the dynamic addition
or removal of network-attached modules. Furthermore, the
NoC is synthesized anew for each design [27, 5, 3], eliminat-
ing the need for standard network protocols; i.e., there is no
advantage in backward compatibility of NoC protocols and
architectures employed in a new chip designs with those used
in previous designs, beyond the use of standard network in-
terfaces to allow the reuse of modules, called IP cores, across

chip designs. This means that the future chip designer will
be able to select the best NoC architecture among a plural-
ity of architectures offered by the chip synthesis tools, cus-
tomized to his specific requirements. Another crucial aspect
of on-chip network design is meeting strict QoS requirements
for distinct types of in-chip traffic, such as interrupt signals
or fetching instructions and data from caches to processors.

Finally, the NoC design process dramatically differs from
that of classical networks, allowing a new important dimen-
sion of freedom— the ability to alter the physical layout
of the network routers and links along with the chip mod-
ule placements. This enables the designer to optimize the
NoC geography and resource allocation according to traffic
and layout constraints. Moreover, if traffic requirements are
known ahead of time (as is typical for many special purpose
SoCs), the NoC’s topological layout and capacity allocation
can be optimized to this traffic with any desired routing pro-
tocol; this eliminates the need for a high cost load-balanced
routing protocol.

The aforementioned differences between the on-chip en-
vironment and classical network settings imply that NoC
design requires the development of new solutions. Hence,
NoC is a promising research field, which can have a large
practical impact on the future of VLSI, and where network-
ing expertise will be valuable. Unlike the Internet “impasse”
described in [21], the NoC presents a fertile ground where
frustrated network architects may harness their abilities to
design not one, but many diverse network architectures!

In order to advance this field, there is a need for crisp def-
initions of models, requirements, costs, and problems. Since
different chips may require different NoCs, a classification of
NoC models and problems that arise in each category is also
of essence. In Section 3, we identify three categories of sili-
con systems, and observe that each category has inherently
different requirements, for which very different NoC solu-
tions are appropriate. In order to make the discussion con-
crete, we formally define example research problems in all
categories. In particular, we formulate routing and link ca-
pacity problems for each category, highlighting the different
requirements that these problems face in different system
types. We describe preliminary solution directions, which
are the subject of work-in-progress.

2. WHY NOC AND WHY NOW?
The first driving force behind the transition to NoC-based

solutions is the inadequacy of current-day VLSI inter-chip
communication design methodology for the deep sub-micron
chip manufacturing technology. Chip design in the last
decade consisted of designing separate functional modules,
and interconnecting them using standard shared buses as
well as a “spaghetti” of inter-module wires for critical or long
connections. The technological progress of the silicon indus-
try follows Moore’s Law, doubling the number of gates every
18 months by shrinking the technology dimensions propor-
tionally. However, whereas shrinking gates reduces their
intrinsic latencies and dynamic power dissipation, the same
is not true for interconnection wires. In fact, the decrease in
wire dimensions increases their resistance, while decreased
inter-wire spacing increases their capacitance, wire coupling
delays [31], and crosstalk noises. This increase in line ca-
pacitance, resistance, and inter-wire cross-talk increases the
latency of signal propagation with the advance of the tech-
nology. In order to preserve wire speeds and voltage noise

margins, today’s long wires (including bus lines) require the
periodic insertion of repeaters [20], which in turn consume
more dynamic and leakage power. Magen et al. [18] show
that in a modern microprocessor, 50% of the power dissipa-
tion is due to the (long) wires. These phenomena intensify
with time [15, 14, 23], as Ho et al. [15] write: “global wire
delays scale worse than gates, by one to three orders of mag-
nitude.” This trend favors the use of short wires and the
overall reduction of the total wire length in the chip. The
network-on-a-chip concept naturally embodies both ideas,
by building a highly-utilized and shared interconnection net-
work with short links connected by routers.

In addition, a NoC-based interconnect achieves better scal-
ability than traditional solutions in terms of the number of
modules on a chip. Recent analysis [4] shows that the power
and area of a NoC based on a grid of routers connected by
short wires scales linearly with the chip density (number
of modules), whereas common solutions, namely buses, seg-
mented buses, and point to point links, exhibit super-linear
growth in both dynamic power and area. Note that in the
case of a bus, the increase in the number of modules not
only increases the wire length, but also introduces a ma-
jor waste of energy due to the inherent broadcast nature of
buses, (which is only partially mitigated by the segmented
bus idea).

Another key aspect factoring in the future of VLSI is the
well-known chip design productivity gap [25]. It is a common
assumption that the productivity of the designer increases
every year by 21%, while the design complexity increases by
58% (following Moore’s Law). This problem has been caus-
ing the number of custom chip designs to decrease annually.
This situation resembles the software productivity crisis of
the eighties, which has led to a paradigm shift in software
engineering, emphasizing modular design, component reuse,
object orient programming, standard inter-module commu-
nication interfaces, etc. A similar trend in VLSI calls for
the development of highly reusable modules and the avail-
ability of third party IP cores. In order to enable such a
component-oriented design, the module interface needs to be
standardized. In particular, a module’s interface should be
independent of the chip size and of the number of modules on
the chip. NoCs naturally lend themselves to such standard
interfaces, since, in contrast to buses, a larger and faster
network does not imply a faster (or wider) module interface.
The non-standard interfaces used in custom wiring render
automatic synthesis virtually impossible, whereas the NoC
paradigm allows for a fully synthesizable solution, which can
be optimized automatically for each chip design.

Finally, NoC adoption is also driven by the distributed
nature of modern chip architectures, which introduce on-
chip peer-to-peer communication patterns. Unlike tradi-
tional chip designs, which had rigid master-slave or pipelined
communication patterns, the next generation of chip de-
signs will incorporate multiple autonomous intelligent mod-
ules with a rich collection of communication services among
them. The level of parallelism in chips is on the rise. There
are already commercial examples of Chip Multi Processors
(CMP), e.g., IBM’s Cell, Xilinx’s FPGA with multiple Pow-
erPC cores, etc. Other examples are Systems-on-Chip (SoCs)
for hand-held devices, which incorporate multiple functional
processors like digital RF processors, GPS, graphic acceler-
ator, 2D/3D video accelerator, voice and video codecs, dig-
ital cameras, and a general-purpose processor running an

operating system (e.g., the TI OMAP 2420 and the Qual-
comm MSM 7600 chip sets). A NoC provides support for
message-passing in such chips, and also allows for spatial
reuse, whereby communication among various modules can
occur concurrently over a distributed collection of wires.
Moreover, by having modules communicate over a network,
they can be separated into different clock and voltage do-
mains, which enables independently slowing down or even
shutting down unused parts of the system in order to reduce
heat dissipation and conserve battery life.

All in all, we believe that the shift to NoC-based ar-
chitectures is inevitable, and is likely to become the main
trend in VLSI in years to come. We further emphasize that
the main requirements from a NoC are conserving power
and area, which will be manifested in designs consisting of
short wires interconnected by simple routers, and energy-
conserving protocols. For example, the need to reduce area
and power is likely to promote the use of wormhole rout-
ing [9], whereby each packet is divided into small pieces
called flits, and flits of the same packets progress conse-
quently from a first router to a second router as soon as a flit
buffer in the second router is available. This technique en-
ables a large reduction in the minimal required buffer space
compared to standard store-and-forward packet switching.
Similarly, power conservation is likely to result in employ-
ing a minimal energy routing protocol, (which may or may
not be identical to shortest path routing), and area con-
versation dictates the use of a simple, preferably table-free
routing mechanisms.

3. CLASSIFYING NOC MODELS
In this section, we introduce our new classification of sili-

con chip designs. Chips are classified according to how much
is known in advance about their functionality. As we explain
below, this knowledge has a huge impact on the design of
their respective NoCs.

The first category, Systems-on-Chips (SoCs) (cf. Section 3.1),
encompasses custom-made designs for chips with a partic-
ular pre-known purpose, e.g., a multi-channel 3G base sta-
tion, a video camera, or a printer/fax/scanner system. In
such chips, the network usage is known a priori.

The second category, Field-Programmable Gate Arrays
(FPGAs) (cf. Section 3.2), consists of multi-purpose chips
that include generic hardware resources like logic arrays,
flip-flops, RAM, processors and special purpose IP cores
(Ethernet, USB, DSP core, etc.). Such chips can be con-
figured using a programmable interconnect grid into specific
systems. The design of such systems (and hence the design
of their interconnects) leaves a large degree of freedom for
the user (FPGA application designer/programmer). In this
case, the NoC that is part of the FPGA infrastructure (or
part of the interconnect grid) can also be configured accord-
ing to the application designer’s specification.

Finally, our last category, Chip Multi Processors (CMPs)
(cf. Section 3.3), captures general-purpose chip designs sup-
porting parallel processing, where the chip and interconnect
usage is unpredictable, and only determined at run time.

3.1 Systems on Chip
The distinguishing property of the System-on-Chip type

NoC is the assumed ability to accurately predict the network
usage patterns before the network is laid out. Since a special
purpose SoC has a specific functionality, this functionality

����������	
���
�����
	
�����������

����
�����	
����
������

��	������������

�����������
��

�����	
�����

�
����������
���
�
��
�
�
��

����	����
�
����	�����

���������������
��������� �

��	������������
����
��

!
�
��"����	����

	��#

$��
���
�����

%��������

������
���
�����

����������
&
���������
�

'(�����

)*+,-.
/01+*2

)*+,-.
/01+*22

)*+,-.
/01+*222

Figure 1: SoC network-on-chip design process.

can be accurately simulated, and the inter-module commu-
nication patterns can be inferred at design time. Traditional
SoC designs synthesize direct point to point wires meeting
the communication needs between pairs of modules. Simi-
larly, a SoC’s network can be synthesized specifically to sat-
isfy these needs. Virtually all network parameters, including
network layout, link capacity allocation, buffer sizes, packet
headers, routing tables, and the number of service classes,
can be custom-synthesized to meet the particular SoC’s re-
quirements.

Naturally, automated design tools are essential for de-
signing the NoC with all its parameters for each SoC de-
sign. Such tools, in turn, need be based on certain design
methodologies, and need to implement optimization algo-
rithms within their framework. This is where the research
challenges lie.

Bolotin et al. [5] suggest a design process for SoCs similar
to the one illustrated in Figure 1, consisting of the follow-
ing three phases. First, identifying the QoS requirements of
the target SoC. Second, customizing the network by an ap-
propriate module placement and a minimal gate-count cost,
static, shortest path routing function. Note the feedback
cycle between the placement of modules and the network
design. Finally, performing network load balancing by an
appropriate link bandwidth allocation so that the congestion
in the network is reduced and multi-class QoS requirements
of each communication flow are satisfied. The network’s
optimization process can be iterated until the QoS require-
ments are perfectly matched. We now discuss design phases
two (routing) and three (resource allocation) in more detail.

3.1.1 Routing
A typical generic NoC architecture can be based on worm-

hole routing over a grid topology (possibly a partial grid),
with shortest-path routing (in terms of Manhattan distance
on the grid) [8]. Note that in a pre-defined topology, shortest-
path routes may lead to uneven load distribution across
links. In the SoC-based NoC, not only this does not pose a
problem, it is even desirable for a number of reasons. First,
the energy gain from routing over shortest-paths is signif-
icant. Second, traffic aggregation over a small number of
high-capacity links results in lower latencies as compared to
routing over multiple routes of the same overall length and
capacity. A large degree of link sharing on some links can
render other links and routers unnecessary, saving area and
static power on the chip. Therefore, a shortest-path routing
scheme that also aggregates paths is highly desirable.

In a regular mesh it is easy to accomplish low gate-count
cost shortest path routing, by employing a simple variation
of dimension order routing [17] such as XY. XY is a table-
less routing discipline whereby each packet is routed first in
an X direction and then along the perpendicular dimension.
This is an attractive solution, since (i) it is shortest-path,
and hence minimizes the energy spent per information unit
transfer; and (ii) the usage of such a simple function dramat-
ically reduces the number of gates as compared to routing
table-based or source-route schemes. The fact that XY rout-
ing favors specific paths can be easily dealt with by moving
resources from underutilized links to these preferred links
(in the third design phase).

However, in the SoC environment, practical NoC topolo-
gies become irregular meshes because of modules’ shape and
size variability in VLSI layouts, and the need to physically
separate between the modules and the NoC infrastructure.
In [6], alternatives to the gate-count efficient shortest path
XY routing are examined for a SoC-based NoC with an ir-
regular mesh topology. Since all considered algorithms are
static shortest path schemes, which all have equal link power
dissipation, the comparative metric is the total implemen-
tation gate-count.

There are two simple routing alternatives for irregular
meshes: (i) source routing (SR), where the packet carries a
sequence of routing instructions; and (ii) distributing rout-
ing (DR), whereby the destination is looked up at each inter-
mediate router. In general, both SR and DR make extensive
use of routing tables (RTs). DR tables are located at each
router. They are indexed by the packet destination address
and contain output port values. SR tables are located at
each source. They are also indexed by packet destination
addresses, but they contain sequences of routing commands,
one for each hop along the routing path. Näıve RT imple-
mentations have as many entries as there are nodes in the
network. However, this is inefficient, since an all-to-all com-
munication pattern is very unlikely and the actual set of
destinations used at each source is typically a small fraction
of the number of modules.

Nevertheless, the hardware cost of empty table entries can
be avoided. More gate-efficient efficient implementations of
SR and DR may use a reduced-size ROM, or simple Boolean
logic implementing an equivalent routing function. In either
case, only the necessary table entries for each node need be
implemented. The reduced ROM implementation is equiva-
lent to a two-level implementation of a routing function by
a Programmable Logic Array (PLA).

The total gate count and the power dissipated in these ta-
bles can be estimated by the size of the tables, since the total

capacitance is proportional to the number of entries and the
size of an entry. Thus, the important factor to optimize in
such routing schemes is the overall size of all routing tables.
Formally, we define the following optimization problem:

Problem 1 (Minimal Hardware Cost Routing).
Given an irregular mesh topology, implement a shortest-path
routing scheme with a minimum number of entries in all
routing tables system-wide.

Bolotin et al. [6] present two techniques to further im-
prove the cost of both SR and DR. The XY-Deviation Table
(XYDT) Routing method reduces the cost of DR, by rely-
ing on a default dimension ordering routing scheme (e.g.,
XY), and storing only entries that deviate from the default
path. Each router holds a deviation table, so that an entry
in the deviation table towards destination D exists only if
the next hop from this router to D deviates from the next
hop calculated by the default (XY or any other dimension
ordering) routing function. We assume that packets carry
the XY coordinates of the destination. When a packet en-
ters a router, its next hop is looked up in the table. If it is
found, it is routed according to the table. Otherwise, the
default hardware function calculates the exit port for that
packet. Note that XYDT is a generic scheme, not a single
solution. In [6], specific assignments of deviation points are
given, so as to minimize the total number of routing table
entries.

Their second hardware-efficient routing scheme, Source
Routing for Deviation-Points (SRDP), is a method for re-
ducing the size of SR headers stored at the sources. Like
XYDT, it combines a default fixed routing function (for ex-
ample, XY) with lists of routing steps that may deviate from
the default. SRDP designates a fixed collection of routers
as deviation points (DPs). These are nodes through which
the direction of at least one routing path deviates from the
default scheme. An SR packet header includes a list of tags,
which are routing commands, one for each DP node on the
traversed path. The size of an SRDP tag is two bits for a
DP node that implements all ports, and less in cases when
some ports are missing. Only DP routers examine these tags
in order to determine how to route the packet; other routers
only implement the default function. As before, SRDP is
a general algorithm framework, not one specific algorithm.
In [6] optimal selection of DPs is studied.

Figure 2: Scaling of cost savings with XYDT versus

DR and SRDP versus SR.

Figure 2 shows the scaling of cost savings achieved by
XYDT versus DR, and by SRDP versus SR. It simulates

typical NoCs with a number of nodes growing from 9 to
256. About 40% of the routers are missing in each NoC,
and about 10% of the nodes are hotspots. The probability
of each node to communicate with each hotspot is 0.5, and
the probability to communicate with a non-hotspot node is
0.1. The curve with triangles shows the saving of XYDT ver-
sus traditional DR and the circled curve shows the saving of
SRDP versus traditional SR. The graph clearly shows that
the savings in routing costs grow rapidly (super-linearly)
with the size of the network. In all points, the relative sav-
ings obtained by XYDT and SRDP are around 90% and
60%, respectively.

We are currently studying additional gate-efficient routing
schemes for irregular meshes. Further research in this area
should address not only missing nodes in the mesh topology,
but also the insertion of long serial router-to-router wires,
which bypass intermediate routers [19]. Such long wires can
reduce the power dissipation of long distance traffic. Never-
theless, the communication cost over a wire does not increase
linearly with its length. It is therefore interesting to study
the SoC routing problem in the presence of such wires.

3.1.2 Capacity allocation
Having determined the traffic patterns and designed the

routing scheme, we turn to the third design phase, assigning
capacities to links. In this phase, the load on each link is pre-
computed, and each link is allocated a capacity appropriate
for its load. Given a statistical characterization of the traffic,
one must design the network capacity, buffer spaces, and
policies, so as to meet the traffic’s QoS requirements in terms
of end-to-end delay (see Figure 1, Design Phase III). The
QoS latency requirements can be stated statistically as well
(e.g., 99% of the traffic must incur a latency of no more than
50 clock cycles). Thus, we identify capacity allocation as an
important research problem in SoC, which is inter-related
with buffer allocation.

Recently, Walter et al. [29] have tackled a NoC specific
instance of the capacity allocation problem. In order to
allocate the minimal amount of capacity (in terms of inter-
router wires speed and width) they develop a new analy-
sis methodology for wormhole networks under general flow
distributions, variable link capacities, and multiple virtual
channels. Such an analysis serves as a building block in an
iterative optimization process where link capacity is gradu-
ally reduced until latency requirements are tightly met. At
this point, more detailed simulations are conducted to fi-
nalize the capacity plan. The minimal number of wires for
each link is selected as well as the minimal speed for a given
amount of wires. Reducing the speed allows the designer to
scale down the voltage to each router (a technique known as
”voltage scaling”) and consequently the dynamic and static
power dissipation. In a typical DVD SoC design, their al-
gorithm yields a reduction of roughly 30% in the overall
network capacity as compared to an unoptimized grid with
uniform capacities across all links. Many additional flavors
of the problem have yet to be addressed, e.g., with differ-
ent traffic shapes, different QoS requirements, and different
buffer considerations.

3.2 Field-Programmable Gate Arrays
Our second category of silicon systems is FPGAs. These

are multi-purpose chips whose functionality is determined
when they are configured (or programmed) to perform a

specific task. Current-day FPGAs are mainly comprised of
programmable elements (gate arrays, flip-flops, RAM, etc.)
with some embedded special-purpose IP cores such as pro-
cessors and network interfaces, and wired internal routing.

As technology scales, the number of logic units (gate ar-
rays, flip-flops, etc.) will render such a “flat” FPGA chip de-
sign unmanageable for programmers and optimization pro-
grams. We envision a future FPGA architecture that is
organized hierarchically; that is, the chip is divided into
high-level regions, interconnected by a NoC [11]. There are
two types of regions: configurable regions (CRs), comprised
of general purpose programmable elements, and functional
regions (FRs), each performing a pre-specified task (e.g.,
general purpose processor, Ethernet interface, PCI interface,
USB interface, DSP core, etc.). A configurable region can
be organized like a current-day FPGA, with wired internal
routing. Each CR may have several access points to the
network, which can be configured to work together or apart,
thus allowing multiple network-attached components to be
programmed in a single CR. Regions are connected to the
network using Configurable Network Interfaces (CNIs). An
example of such a high-level architecture is illustrated in
Figure 3.

 CR

CNI

R

FR

SERDES

CNI

R

FR

CPU

R

CNI

 CR

CNI

R

 CR

CNI

R

CNI

R

R

CNI

CR

CNI

R

CNI

R

CNI

R

FR

DSP

CNI

R

CR

R

FR

PCI

R

CNI

 CR

CNI

R

 CR

CNI

R

CNI

R

FR

CPU

R

CNI

 CR

CNI

R

CNI

R

CNI

R

FR

DRAM I/F

R

 CR

R

CNI

R

 CR

CNI

R

CNI

R

CNI

CNI
 CNI

FR

ETH

I/F

CNI

R

CNI

R

FR

D/A

A/D

CNI

R

CNI

R

FR

ETH

I/F

CNI

R

Figure 3: Example FPGA NoC architecture.

An FPGA’s NoC is designed in two phases: (i) the layout
phase, which occurs when the FPGA chip is designed, and
(ii) the configuration phase, occurring when a specific system
design is programmed into the FPGA interconnect grid. The
core design made in the former should be flexible enough
so as to allow for a large variety of configurations during
the latter. Unlike in the SoC model, little is known about
traffic patterns when the network is laid out, and hence,
custom optimizations are impossible. In the configuration
phase, the traffic patterns become available, but the physical
wires are already in place. Since little is known about traffic
requirements in advance, it is reasonable to design the NoC
as a uniform communication grid, where all link capacities
are identical.

The interplay between the two design phases defines the
degree of freedom that the layout phase allows. Consider,
for example, router logic. At one extreme, routers, includ-

ing routing tables, can be fully embedded in silicon dur-
ing the layout phase. This offers the most compact and
energy-efficient general-purpose router design, but may re-
sult in excess logic, as some routers and table entries may
be redundant for certain traffic patterns. In order to reduce
this waste of resources, it is possible to decouple routing ta-
bles from the core router logic, and implement them from
standard configurable memory. It is further possible for all
router logic to be “soft”, i.e., implemented from general-
purpose logic gates at the configuration phase, allowing for
custom networks as in a SoC, but at a larger per-router cost
in performance, power, and area.

Our architecture [11] employs a combination of hard and
soft logic. The network infrastructure, including metal wires
and hard-coded routers is laid out in silicon. In order to
allow for maximum flexibility, the NoC infrastructure ac-
commodates multiple routing schemes and a large variety of
traffic patterns. To this end, we allow network interfaces to
be soft. Simple routing schemes, like XY, can employ small
interfaces, whereas more elaborate source-routing schemes
may have the interfaces store large routing tables.

Let us now revisit the capacity allocation problem in the
context of FPGA. Despite the impossibility of predicting the
exact network usage, the layout phase can leverage knowl-
edge about typical communication patterns. For example,
by studying many configurations, one can observe that the
most stringent bottleneck issues occur when heavy traffic
is directed to one or more hotspots (high demand regions)
on the chip. Thus, the main priority of the layout phase
becomes providing for high throughput to a few hotspots.
More formally, a collection of hotspot locations (given by
their coordinates on the network grid), a hotspot-to-module
flow F , and a routing policy, jointly induce a communication
pattern where the flow from each module to each hotspot
is F , and this flow traverses the links chosen by the rout-
ing algorithm. Note that if routing is symmetric, then F

can be seen as the bidirectional flow between a module and
a hotspot. Thus, the hotspot model is very general, and
captures various common communication patterns. For ex-
ample, a hotspot can be an interface to external commu-
nication or memory, a master module that communicates
with a number of slaves, a dispatcher that forwards requests
from multiple masters to multiple slaves [22], etc. We there-
fore focus on traffic patterns involving one, two, or three
hotspots.

Matters are complicated by the fact that the number of
hotspots and their locations on the chip can vary at con-
figuration time. Hence, the layout should provide a design
envelope [11] covering multiple designs. For example, the
design envelope for all possible locations of k hotspots, is
a capacity assignment that exceeds the communication pat-
tern for every given choice of k hotspots.

An FPGA NoC architecture need not necessarily cater for
all possible hotspot locations. Rather, the design may re-
strict the placement freedom of the configuration phase, and
may restrict potential locations for hotspots. Consider, for
example, the case of a single hotspot. One hotspot with a
given throughput can be served at minimum cost if placed in
the middle of the chip. However, given that off-chip commu-
nication (e.g., to memory) is often a bottleneck, the layout
should also allow the hotspot to be located near one end
of the chip. Hence, one can plan an architecture for the
design envelope where one hotspot can be placed either in

the middle of the chip or in the middle of one of the edges.
In general, given a collection of restricted hotspot locations
for k hotspots, the routing algorithm and capacity alloca-
tion should then accommodate the desired design envelope.
Formally, we consider the following problem [11]:

Problem 2 (Uniform allocation for envelope).
Given a network grid, a number k of hotspots, a set of
constraints on allowed hotspot locations, and a hotspot-to-
module flow F , find a link capacity C and a routing scheme,
so that for every choice of k different hotspot locations sat-
isfying the constraints, C exceeds the flow routed by the in-
duced communication pattern on each link.

Obviously, the required capacity is tightly coupled with
the routing scheme employed. Note that since we consider
uniform grids, XY routing is no longer appropriate, since it
causes a significant imbalance among links. Yet, similar to
XY, the chosen routing algorithm should achieve shortest-
path routing and low implementation cost. To this end, we
examine the toggle XY algorithm (TXY) [11, 26], in which
every router alternates between the XY and Y-X routing
schemes. The only addition to the simple XY router is a
single packet-header bit, indicating which scheme should be
used to route the arriving packet, which is flipped at the
source each time a packet is sent. This approach reduces
the required capacity by up to 40% in some cases.

However, one problem with this approach is that sending
packets from the same source via multiple routes may cause
packets to arrive out-of-order, which requires buffering and
re-ordering at the receiving end. Since such buffering in-
volves increased hardware and power costs, we propose the
source-toggle XY algorithm (STXY), which uses XY or YX
based on the position of the packet’s source (similar to a
chess board), rather than on a per-packet basis. Thus, all
packets from a given source to a given destination traverse
the same path, and no re-ordering is required.

We turn to observe the design envelopes satisfying some
example constraints under the different routing schemes.
Let us first examine the case of one hotspot. We normalize
the graphs for F = 1 unit. Figure 4(a) shows the required
per-link capacity (in a uniform grid) for the three routing
algorithms, and five different constrained locations on a 25
module (5x5) grid. These capacities are contrasted with a
theoretical lower bound on the link capacity required to ac-
commodate the envelopes. We see that TXY and STXY
achieve virtually identical results, and both are significantly
better than XY. Since STXY eliminates the need for buffer-
ing, it is therefore the preferred scheme. We further observe
that the minimum required capacity is achieved when the
hotspot is located in the center.

We turn to examine how much overall capacity is wasted
by the fact that we chose a uniform-capacity grid. Fig-
ure 4(b) illustrates, on a 5x5 grid, the per-link capacity
required to accommodate an envelope of all possible loca-
tions for a single hotspot, with XY and STXY routing. We
see that whereas with XY routing, much higher capacity is
required for vertical links than for horizontal ones, the ca-
pacity requirements of STXY are almost uniform, and hence,
one does not waste resources by allocating a uniform net-
work grid.

Figure 5 examines how the required capacity of accom-
modating a single hotspot scales with the grid size. We see
that TXY and STXY scale much better than XY.

Corner Center Internal Horiz. Edge Vert. Edge
0

2

4

6

8

10

12

14

16

18

20

Location of the hot spot

C
ap

ac
ity

XY
TXY
STXY
Lower Bound

(a) Maximum link capacity.

XY STXY

(b) Envelope of all possible hotspot locations.

Figure 4: Required capacity for accommodating one hotspot on a 5x5 grid.

6 8 10

10

20

30

40

50

60

70

C
ap

ac
ity

Center

Grid Size − M
6 8 10

20

30

40

50

60

70

80

C
ap

ac
ity

Corner

Grid Size − M
6 8 10

5

10

15

20

25

30

35

40

45

50

C
ap

ac
ity

Internal

Grid Size − M
6 8 10

10

20

30

40

50

60

70

80

C
ap

ac
ity

Edge

Grid Size − M

XY
TXY
STXY

Figure 5: Scalability of capacity requirements for

one hotspot at various locations.

In Figure 6, we examine the required capacity for accom-
modating multiple hotspots. We observe that the most im-
portant factor impacting the capacity requirements is the
proximity of the hotspots to one another: If the hotspots
are close together, then a large amount of traffic will need
to reach their area. With two hotspots, the only significant
drop in required capacity occurs when we rule out adjacent
locations. Again, we see that STXY and TXY are superior
to XY routing.

We are continuing our investigation of FPGA architec-
tures, further optimizing routing and capacity allocation for
multiple hotspots. We are also conducting a formal analysis
of the requirements and proposed solutions. Future work
should address network layouts that are not complete grids
(as in Section 3.1.1 above), as well as richer communication
patterns.

3.3 Chip Multi Processors
In a general-purpose CMP, the traffic pattern is com-

pletely unpredictable until run-time. In this regard, many of

the challenges resemble ones we normally see in traditional
networks or interconnection networks, e.g., static versus dy-
namic routing, congestion control, connection rate fairness,
etc. Unfortunately, traditional mechanisms for dealing with
these issues may be prohibitively expensive to implement in
silicon. On the other hand, the relatively small dimension
of the complete network, combined with the fact that the
entire chip is often controlled by a single operating system,
makes the problems amenable to centralized solutions.

But before developing such mechanisms, we need to de-
sign the network layout for the chip. Consider a CMP chip
organized as a grid of computation units, memories, and
other devices. Since all processing units are peers, and play
the same role, we can expect a symmetric communication
pattern among the peers. Although we cannot accurately
predict the traffic pattern, our best bet for a CMP is to
plan for a uniform one. That is, we shall assume that every
module communicates with every other model at the same
maximum rate F . We thus need to design a network layout
accommodating a rate of F between every pair of modules.

Unlike in typical SoC designs, this all-to-all traffic pat-
tern includes a substantial number of long-distance flows.
Having all the long-distance traffic traverse all intermedi-
ate routers will be quite costly. In this situation, we would
therefore like to bypass some routers en route to remote des-
tinations [7]. That is, we can designate wires that traverse
a given router, and others that bypass it. On the one hand,
traversing routers allows multiple modules to share wires
(spatial reuse). On the other hand, bypassing routers re-
duces the latency, energy consumption [20], and router gate
costs. This tradeoff can be captured using a cost function,
whereby the overall cost of a network consists of the total
wire length times a constant, α, plus the number of router
connections times a constant, β. This defines the following
interesting cost optimization problem [7]:

Problem 3 (Router bypass layout). Given a grid,
wires with a fixed capacity C, and known traffic flow require-
ments Fi,j among all pairs of modules i, j on the grid, lay
out wires of capacity C between pairs of routers so as to
minimize the cost function.

An algorithmic solution to this problem will attempt to
“fill” all wires to their maximum capacity, C, while inducing
a minimal number of connections. For example, consider the

1 1.5 2 2.5 3 3.5 4 4.5 5
12

14

16

18

20

22

24

26

28

30

Minimum Distance between the hotspots

C
ap

ac
ity

XY
TXY
STXY

(a) Two hotspots.

1 1.5 2 2.5 3 3.5

20

25

30

35

40

Minimum Distance between the hotspots

C
ap

ac
ity

XY
TXY
STXY

(b) Three hotspots.

Figure 6: Required capacity for accommodating multiple hotspots.

case of symmetric flows, F = 1, among all pairs of modules.
One can logically organize modules into clusters of size

√
C,

and connect each pair of clusters using a direct link, i.e., a
wire that does not traverse any routers. Since each module
in one cluster needs to communicate with each module in
the other, a single wire of capacity C exactly accommodates
the communication requirements between the two clusters.
Within each cluster, all modules are directly connected to
a central point (module) via which all inter-cluster traffic is
routed. We call this layout Stars-Mesh, since each cluster is
organized as a star topology, and the entire chip is a fully-
connected mesh of such stars. The division into clusters
is based on proximity in the grid, e.g., by dividing the grid
into squares of the appropriate size. Such an example layout
on a 4x4 mesh with clusters of four modules is depicted in
Figure 7.

Figure 7: Stars-Mesh NoC layout for CMP with

symmetric flows, 2x2 clusters.

We show that the clustering solution is asymptotically
optimal for symmetric flows under the considered cost func-
tion [7]. More specifically, we first prove the following lower
bound on network cost for an m by n grid:

α · m3n2+m2n3
−m2n−mn2

3C
+

β · max
“

mn − 1,
mn(mn−1)

C

”

Note that, asymptotically, the dominant factor is the over-
all wire length, which is multiplied by α. Since the number

of modules is N = nm, we get an asymptotic growth of
O(N2.5) in the cost. Second, we prove the following up-
per bound on the cost of the clustering algorithm described
above, showing that the clustering algorithm is asymptoti-
cally optimal:

α ·
m3n2 + m2n3

3C
+ O

“

m
2
n

2 + m
3
n + mn

3
”

In Figure 8 we see the actual cost of the clusters algorithm
for increasing grid sizes. Figure 8(a) focuses on grid sizes
ranging from 4x4 to 22x22, and Figure 8(b) examines larger
grids, ranging from 22x22 to 40x40. As only square grids
are examined, n = m =

√
N . We examine the case that

C = 16, and each cluster is a 2x2 square of four modules.
The figure compares the actual algorithm cost against the
theoretical lower and upper bounds. It shows that beyond
being asymptotically optimal, the algorithm’s cost is also
close to the theoretical lower bound. In case C is not a
perfect square, the actual results are not as close to the
lower bound, but some heuristics can be used to improve its
actual cost. We are currently developing such heuristics and
optimizations.

Note that although the clustering solution addresses sym-
metric flows, Problem 3 is more generally stated for any
specified flows, not necessarily symmetric ones. An interest-
ing extension of this work is to find adequate solutions for
various non-symmetric flow requirements. One interesting
example to consider is a somewhat similar situation, where
most modules communicate symmetrically with each other,
but in addition, there is a hotspot (such as access to external
memory) to which there is heavier traffic from all modules.

Unfortunately, the theoretical study above shows that a
chip-wide all-to-all communication pattern does not scale
well as the number of modules grows. While specific opti-
mizations can yield efficient solutions for small to medium
sized chips, ultimately, they will not suffice. Moreover, the
main conclusion from the asymptotic study above is that
long (inter-cluster) wires dominate the cost. Hence, for
large chips, chip designs that encourage more local traffic
and less long distance traffic are essential. We believe that
the approach to designing such chips should be hierarchi-
cal, whereby the chip is divided into regions, each including

(a) Small grids (b) Large grids

Figure 8: Actual cost achieved by clustering algorithm versus theoretical bounds, C = 16, α = C, β = 3C.

processing units and memory modules. The operating sys-
tem must be aware of these regions, so that related threads
can be scheduled to run on processors residing in the same
region. In this scenario, there is very little inter-region com-
munication, and the all-to-all communication problem as
above needs to be solved only within each confined region.

4. CONCLUSIONS
One aim of this paper has been to introduce the network-

on-a-chip concept to the networking community. We have
argued that the future of VLSI will most likely focus on
NoC-based system architectures, driven by considerations
like scalability, energy-efficiency, and design productivity.
Today’s VLSI designers are approaching the NoC tenta-
tively, repeating incremental steps similar to the evolution
steps of interconnected networks – from point to point links
to a collection of shared buses, to segmented buses, and to
full-fledged networks. We believe that networking experts
will be able to contribute to this evolution. We have em-
phasized the major differences between NoCs and off-chip
interconnection networks, which render traditional network
solutions not directly applicable to NoCs.

Our second aim has been to make the field more accessible
for networking researchers, by highlighting specific problems
that need to be addressed. To this end, we have classified po-
tential NoC-based systems into three categories– SoCs, FP-
GAs, and CMPs– and have outlined the architectural char-
acteristics and requirements of each. We have illustrated
the unique characteristics of each model by examining com-
mon problems, namely routing and resource allocation, in
all models. In this context, we have described initial solu-
tion ideas, and listed some specific future research problems
that ought to be tackled.

5. ACKNOWLEDGMENTS
The authors thank Evgeny Bolotin, Roman Gindin, Ran

Ginosar, Zvika Guz, Avinoam Kolodny, Ehud Shavit, and
Isask’har Walter for helpful discussions and for many of the
initial results presented here with their permission.

6. REFERENCES

[1] Arm inc. AMBA specification revision 2.0, May 1999.

[2] L. Benini and G. De Micheli. Networks on chips: A
new SoC paradigm. IEEE Computer, 35(1):70–80,
2002.

[3] D. Bertozzi, S. Murali, R. Tamhankar, S. Stergiou,
L. Benini, and G. De Micheli. NoC synthesis flow for
customized domain specific multiprocessor
systems-on-chip. IEEE Trans. on Parallel and Dist.
Systems,, 16(2):113–129, 2005.

[4] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny.
Cost considerations in network on chip. Integration,
Special Issue on NoC, 38(1):19–42, Oct. 2004.

[5] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny.
QNoC: QoS architecture and design process for
network on chip. J. Systems Architecture,
50(2–3):105–128, Feb. 2004.

[6] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny.
Routing in irregular meshes. TR CCIT 554,
Department of Electrical Engineering, Technion, Sept.
2005.

[7] I. Cidon, I. Keidar, and E. Shavit. NoC Layout for
CMPs. In preparation, 2005.

[8] W. J. Dally and B. Towles. Route packets, not wires:
on-chip interconnection networks. In DAC, pages
684–689, 2001.

[9] W. J. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufmann, 2004.

[10] T. Felicijan and S. B. Furber. An asynchronous
on-chip network router with quality-of-service (QoS)
support. In SOCC, Sept. 2004.

[11] R. Gindin, I. Cidon, and I. Keidar. NoC Architecture
for Future FPGAs. In preparation, 2005.

[12] P. Guerrier and A. Greiner. A generic architecture for
on-chip packet-switched interconnections. In DATE,
pages 250–256, Mar. 2000.

[13] A. Hemani, A. Jantsch, S. Kumar, A. Postula,
J. Oberg, M. Millberg, and D. Lindqvist. Network on
a chip: An architecture for billion transistor era. In
IEEE NorChip, 2000.

[14] R. Ho, K. Mai, and M. Horowitz. The future of wires.
Proceedings of the IEEE, 89(4):490–504, Apr. 2001.

[15] R. Ho, K. Mai, and M. Horowitz. Managing wire
scaling: A circuit perspective. In IEEE Interconnect
Technology Conference, June 2003.

[16] IBM. The coreconnect bus architecture, 1999.

[17] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell,
M. Millberg, J. Oberg, K. Tiensyrja, and A. Hemani.
A network on chip architecture and design
methodology. In ISVLSI, 2002.

[18] N. Magen, A. Kolodny, U. Weiser, and N. Shamir.
Interconnect-power dissipation in a microprocessor. In
SLIP’04, Feb. 2004.

[19] A. Morgenshtein, I. Cidon, A. Kolodny, and
R. Ginosar. Comparative analysis of serial vs. parallel
lings in NoC. In International Symposium on
System-on-Chip, pages 185–188, Nov. 2004.

[20] A. Morgenshtein, I. Cidon, A. Kolodny, and
R. Ginosar. Low-leakage repeaters for NoC
interconnects. In ISCAS, pages 600–603, May 2005.

[21] L. Peterson, S. Shenker, and J. Turner. Overcoming
the Internet impasse through virtualization. In
HotNets III, Nov. 2004.

[22] A. Radulescu and K. Goossens. Communication
services for networks on chip, pages 193–213. Marcel
Dekker, 2004.

[23] V. Raghunathany, M. B. Srivastavay, and R. K.
Guptaz. A survey of techniques for energy efficient
on-chip communication. In DAC, pages 900–905, 2003.

[24] E. Rijpkema, K. Goossens, and P. Wielage. A router
architecture for networks on silicon. In Progress 2001,
2nd Workshop on Embedded Systems, Veldhoven, the
Netherlands, Oct. 2001.

[25] ITRS report. Semiconductor Industry Association,
1999.

[26] D. Seo, A. Ali, W.-T. Lim, N. Rafique, and
M. Thottethodi. Near-optimal worst-case throughput
routing for two-dimensional mesh networks. In ISCA,
2005.

[27] S. Stergiou, F. Angiolini, S. Carta, L. Raffo,
D. Bertozzi, and G. De Micheli. Xpipes Lite: A
synthesis oriented design library for networks on chips.
In DATE, 2005.

[28] P. Vellanki, N. Banerjee, and K. S. Chatha.
Quality-of-service and error control technfiques for
mesh-based network-on-chip architectures. Integration,
38:353–382, 2005.

[29] I. Walter, Z. Guz, I. Cidon, R. Ginosar, and
A. Kolodny. Efficient link capacity and QoS design for
wormhole network-on-chip. In DATE, 2006.

[30] D. Wingard. Micronetwork-based integration of SoCs.
In DAC, June 2001.

[31] X. Zhang. Coupling effects on wire delay - challenges
in deep submicron vlsi design. IEEE Circuits and
Devices Magazine, 12:12–18, Nov. 1996.

[32] H. Zimmer. Fault modelling and error-control coding
in a network-on-chip. Masters thesis, Laboratory of
Electronics and Computer Systems, KTH, Sweden,
Dec. 2002.

