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• User mode: 100% Success

• Idle mode:   100% Success

• Kernel mode: It’s complicated

• Crashes are due to held locks!
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Motivation

• Current operating system crash in 
face of any hardware fault.

Fault Model
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Recovery Strategy

Evaluation on Virtualized Environment

Hardware Transactional Memory

Evaluation on a Real System
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• Fail-stop model:

• Core Surprise Removal strategy.

• HTM in kernel code for reliability.

• Implement CSR, using HTM, in Linux. 

• Evaluation on real system.
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Solution: Replace OS locks for transactions

• Execute atomically

• Does not use locks

Implementation using Intel TSX®:
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MY_CRITICAL_SECTION:

if (_xbegin() == _XBEGIN_STARTED) {

if (raw_spin_is_locked(&rq->lock)){

_xabort(1);

}

/* Critical Section Body */

_xend();

} else { //fallback

if (retries < MAX_RETRIES){//retry

goto MY_CRITICAL_SECTION;

}

raw_spin_lock(&rq->lock);

/* Critical Section Body */

raw_spin_unlock(&rq->lock);

}
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