
Printing:

88%

8%
4%

K-means x16

Successful Recovery

Scheduler Locks

FS/MM Locks

Other Locks

• User mode: 100% Success

• Idle mode: 100% Success

• Kernel mode: It’s complicated

• Crashes are due to held locks!

CSR: Core Surprise Removal in Commodity Operating Systems

Noam Shalev, Eran Harpaz, Hagar Porat, Idit Keidar, Yaron Weinsberg* | Technion, Israel Institute of Technology | *IBM Research, Israel

Motivation

• Current operating system crash in
face of any hardware fault.

Fault Model

Contributions

Recovery Strategy

Evaluation on Virtualized Environment

Hardware Transactional Memory

Evaluation on a Real System

70%

8%

5%
17%

401.bzip2 x4

88%

4%
6%

410.bwaves x4

86%

8%
6%

K-means x8

70%
5%

10%

15%

429.mcf x4

68
%

10%

12%

10%

Postmark x4

Postmark

429.mcf

K-means

410.bwaves

401.bzip2

5%

22%

99%

99%

99%

21%

14%

1%

1%

1%

21%

45%

53%

19%

Workload Properties

User

System

IOWait

Idle

• Fail-stop model:

• Core Surprise Removal strategy.

• HTM in kernel code for reliability.

• Implement CSR, using HTM, in Linux.

• Evaluation on real system.

Core Core

L1 L1

L2 Cache

L3 Cache

Reliable Shared Memory

L2 Cache

Solution: Replace OS locks for transactions

• Execute atomically

• Does not use locks

Implementation using Intel TSX®:

Less

Reliability

More
Cores

Core Core

L1 L1

Recovery
Workqueue

Tasklet
Queue

Close
Task

Reset
Interrupts

Migrate
Tasklets

Mark
Faulty

Migrate
Workqueues

Migrate
Processes

Update Services

Queue Work

Preparatory
Phase

Verify
Visibility

Inform
FDU

Queue
Tasklets

Resume

FDU
Triggered

Ack

MY_CRITICAL_SECTION:

if (_xbegin() == _XBEGIN_STARTED) {

if (raw_spin_is_locked(&rq->lock)){

_xabort(1);

}

/* Critical Section Body */

_xend();

} else { //fallback

if (retries < MAX_RETRIES){//retry

goto MY_CRITICAL_SECTION;

}

raw_spin_lock(&rq->lock);

/* Critical Section Body */

raw_spin_unlock(&rq->lock);

}

Transform

Before
Fault

Injection After

Faulty core stops
responding

Energy
Saving

Performance
Gain

Commit
Rate

Workload

4%-100%Idle

1%0%99.9%16-threads

3%3%99.9%32-threads

2%4%99.8%64-threads

