
Early-Delivery Dynamic Atomic Broadcast
(Extended Abstract) ?

Ziv Bar-Joseph1, Idit Keidar2, and Nancy Lynch1

1 MIT Laboratory for Computer Science
zivbj@mit.edu, lynch@theory.lcs.mit.edu

2 Technion Department of Electrical Engineering
idish@ee.technion.ac.il

Abstract. We consider a problem of atomic broadcast in a dynamic
setting where processes may join, leave voluntarily, or fail (by stopping)
during the course of computation. We provide a formal definition of
the Dynamic Atomic Broadcast problem and present and analyze a new
algorithm for its solution in a variant of a synchronous model, where
processes have approximately synchronized clocks.
Our algorithm exhibits constant message delivery latency in the absence
of failures, even during periods when participants join or leave. To the
best of our knowledge, this is the first algorithm for totally ordered mul-
ticast in a dynamic setting to achieve constant latency bounds in the
presence of joins and leaves. When failures occur, the latency bound is
linear in the number of actual failures. Our algorithm uses a solution to
a variation on the standard distributed consensus problem, in which par-
ticipants do not know a priori who the other participants are. We define
the new problem, which we call Consensus with Uncertain Participants,
and give an early-deciding algorithm to solve it.

1 Introduction

We consider a problem of atomic broadcast in a dynamic setting where an un-
bounded number of participants may join, leave voluntarily, or fail (by stop-
ping) during the course of computation. We formally define the Dynamic Atomic
Broadcast (DAB) problem, which is an extension of the Atomic Broadcast prob-
lem [13] to a setting with infinitely many processes, any finite subset of which can
participate at a given time. Just as Atomic Broadcast is a basic building block
for state machine replication in a static setting, DAB can serve as a building
block for state machine replication among a dynamic set of processes.
We present and analyze a new algorithm, which we call Atom, for solving

the DAB problem in a variant of a synchronous crash failure model. Specifi-
cally, we assume that the processes solving DAB have access to approximately-
synchronized local clocks and to a lower-level network that guarantees timely

? Full version appears as MIT Technical Report MIT-LCS-TR-840 [3]. This work sup-
ported by MURI AFOSR Award F49620-00-1-0327, AFOSR Contract F49620-00-1-
0097, NTT Contract number MIT9904-12, and NSF Contract CCR-0121277.

message delivery among currently active processes. The challenge is to guarantee
consistency among the sequences of messages delivered to different participants,
while still achieving timely delivery, even in the presence of joins and leaves.

Atom exhibits constant message delivery latency in the absence of failures,
even during periods when participants join or leave; this is in contrast to pre-
vious algorithms solving similar problems in the context of view-oriented group
communication, e.g., [1, 9]. When failures occur, Atom’s latency bound is linear
in the number of failures that actually occur; it does not depend on the number
of potential failures, nor on the number of joins and leaves that occur.

A key difficulty for an algorithm solving DAB is that when a process fails,
the network does not guarantee that the surviving processes all receive the same
messages from the failed process. But the strong consistency requirements of
DAB dictate that processes agree on which messages they deliver to their clients.
The processes carry out a protocol to coordinate message delivery, which works
roughly as follows: Each Atom process divides time into slots, using its local
clock, and assigns each message sent by its client to a slot. Each process delivers
messages to its client in order of slots, and within each slot, in order of sender
identifiers. Each process determines the membership of each slot, and delivers
messages only from senders that it considers to be members of the slot. To ensure
consistency, the processes must agree on the membership of each slot.

Processes joining (or voluntarily leaving) the service coordinate their own join
(or leave) by selecting a join-slot (or leave-slot) and informing the other processes
of this choice, without delaying the normal delivery of messages. When a process
fails, Atom uses a novel distributed consensus service to agree upon the slot in
which it fails. The consensus service required by Atom differs from the standard
stopping-failure consensus services studied in the distributed algorithms litera-
ture (see, e.g., [16]) in that the processes implementing the consensus service do
not know a priori who the other participants are. Atom tracks process joins and
leaves, and uses this information to approximate the active set of processes that
should participate in consensus. However, different processes running Atom may
have somewhat different perceptions of the active set, e.g., when a participant
joins or leaves Atom at roughly the time consensus is initiated.

In order to address such uncertainties, we define a new consensus service,
consensus with uncertain participants (CUP). When a process i initiates CUP,
it submits to CUP a finite set Wi estimating the current world, in addition
to i’s proposed initial consensus value vi. The worlds suggested by different
participants do not have to be identical, but some restrictions are imposed on
their consistency. Consider, e.g., the case that process k joins Atom at roughly
the time CUP is initiated. One initiator, i, may think that k has joined in time
to participate and include k in Wi, while another, j, may exclude k from Wj .
Process k cannot participate in the CUP algorithm in the usual way, because j
would not take its value into account. On the other hand, if k does not participate
at all, i could block, waiting forever for a message from k. We address such
situations by allowing k to explicitly abstain from an instance of CUP, i.e., to
participate without providing an input. A service that uses CUP must ensure
the following world consistency assumption: that for every i, (1) Wi includes all

the processes that ever initiate this instance of CUP (unless they fail or leave
prior to i’s initiation); and (2) if j ∈ Wi, (and neither i nor j fail or leave),
then j participates in CUP either by initiating or by abstaining. Thus, Wi sets
can differ only in the inclusion of processes that abstain, leave, or fail. Note
that once an instance of CUP has been started, no new processes (that are not
included in Wi) can join the running instance. Nevertheless, CUP provides a
good abstraction for solving DAB, because Atom can invoke multiple instances
of CUP with different sets of participants.
We give an early-deciding algorithm to solve CUP in a fail-stop model, that

is, in an asynchronous crash failure model with perfect failure detectors. The
failure detector is external to CUP; it is implemented by Atom. CUP uses a
strategy similar to previous early-deciding consensus algorithms [10], but it also
tolerates uncertainty about the set of participants, and moreover, it allows pro-
cesses to leave voluntarily without incurring additional delays. The time required
to reach consensus is linear in the number of failures that actually occur during
an execution, and does not depend on the number of potential failures.
We also analyze the message-delivery latency of Atom under different failure

assumptions. We show a constant latency bound for periods when no failures
occur, even if joins and leaves occur. When failures occur, the latency is pro-
portional to the number of actual failures. This is inevitable: atomic broadcast
requires a number of rounds that is linear in the number of failures.
We envision a service using Atom, or a variation of it, deployed in a large

LAN, where latency is predictable and message loss is bounded. In such settings,
a network with the properties we assume can be implemented using forward
error correction (see [2]), or retransmissions (see [20]). The algorithm can be
extended for use in environments with looser time guarantees, e.g., networks
with differentiated services; we outline ideas for such an extension in Section 7.4.
In summary, this paper makes the following main contributions: (1) the def-

initions of two new services for dynamic networks: DAB and CUP; (2) an early-
delivery DAB algorithm, Atom, which exhibits constant latency in the absence
failures; (3) a new early-deciding algorithm for CUP; and (4) the analysis of
Atom’s message-delivery latency under various failure assumptions.
The rest of this paper is organized as follows: Section 2 discusses related work.

In Section 3, we specify the DAB service. In Section 4 we specify CUP and in
Section 5, we present the CUP algorithm. Section 6 specifies the environment
assumptions for Atom, and Section 7 presents the Atom algorithm. Section 8
concludes the paper. In the full paper [3], we present the algorithms in pseudo-
code and prove their correctness.

2 Related Work

Atomic broadcast in a dynamic universe, where processes join and leave, was
first considered in the context of view-oriented group communication systems
(GCSs) [6], pioneered by Isis [4]. Our service resembles those provided by GCSs;
although we do not export membership to the application, it is computed and
would be easy to export.

GCSs, including those designed for synchronous systems and real-time appli-
cations (e.g., Cristian’s [9], xAMp [18], and RTCAST [1]), generally run a group
membership protocol every time a process joins or leaves, and therefore delay
message delivery to all processes when joins or leaves occur. Cristian’s service ex-
hibits constant latency only in periods in which no joins or failures occur; latency
during periods with multiple joins is not analyzed. xAMp is a GCS supporting a
variety of communication primitives for real-time applications. The presentation
of xAMp in [18] assumes that a membership service is given. The delays due to
failures and joins are incurred in the membership part, which is not described or
analyzed. The latency bound achieved by RTCAST is linear in the number of
processes, even when no process fails, due to the use of a logical ring. Moreover,
RTCAST makes stronger assumptions about its underlying network than we do
– it uses an underlying reliable broadcast service that guarantees that correct
processes deliver the same messages from faulty ones.
Light-weight group membership services [11] avoid running the full-scale

membership for join and leaves by using atomic broadcast to disseminate join
and leave messages in a consistent manner. Unlike our CUP service, the atomic
broadcast services used by such systems do not tolerate uncertainty about the
participants. Therefore, a race condition between a join and a concurrent fail-
ure can cause such light-weight group services (e.g., [11]) to violate consistency.
Those light-weight group services that do preserve consist membership semantics
(e.g., [19]), do incur extra delivery latencies whenever joins and leaves occur.
Other work on group membership in synchronous and real-time systems,

e.g., [15, 14] has focused on membership maintenance in a static, fairly small,
group of processes, where processes are subject to failures but no new processes
can join the system. Likewise, work analyzing time bounds of synchronous atomic
broadcast, e.g., [12, 8, 7], considered a static universe, where processes could fail
but not join. Thus, this work did not consider the DAB problem.
In a previous paper [2], we considered a simpler problem of dynamic totally

ordered broadcast without all or nothing semantics. For this problem, the linear
lower bound does not apply, and we exhibited an algorithm that solves the
problem in constant time even in the presence of failures.
Recent work [17, 5] considers different services, including (one shot) con-

sensus, for infinitely many processes in asynchronous shared memory models.
Chockler and Malkhi [5] present a consensus algorithm for infinitely many pro-
cesses using a static set of active disks, a minority of which can fail. This differs
from the model considered here, as in our model all system components may be
ephemeral. Merritt and Taubenfeld [17] study consensus under different concur-
rency models, and show that if there is no bound on the number of participants,
in an asynchronous shared memory model, solving consensus requires infinitely
many bits. The algorithms they give tolerate only initial failures. To the best of
our knowledge, atomic broadcast has not been considered in a similar context.

3 Dynamic Atomic Broadcast Service Specification

The universe is an infinite ordered set of endpoints, I; M is a message alphabet.
Figure 1 presents DAB’s signature. We assume that an application using DAB

satisfies some basic well-formedness assumptions, (cf. [3]), e.g., that a process
does not join / leave more than once, does not multicast messages before a join
or after a leave, and does not send the same message more than once. We do not
consider rejoining; instead, we consider the same client joining at new endpoints.

Input: joini, leavei, faili, i∈I

mcasti(m), m∈M, i∈I

Output: join OKi, leave OKi, i∈I

rcvi(m), m∈M, i∈I

Fig. 1. The signature of the DAB service.

We require that there be a total ordering S on all the messages received by
any of the endpoints, such that for all i ∈ I, the following properties are satisfied.

– Multicast order: If mcasti(m) occurs before mcasti(m’), then m precedes m′

in S.
– Receive order: If rcvi(m) occurs before rcvi(m’) then m precedes m′ in S.
– Multicast gap-freedom: If mcasti(m), mcasti(m’), and mcasti(m’’) occur,
in that order, and S contains m and m′′, then S also contains m′.

– Receive gap-freedom: If S containsm,m′, andm′′, in that order, and rcvi(m)

and rcvi(m’’) occur, then rcvi(m’) also occurs.
– Multicast liveness: If mcasti(m) occurs and no faili occurs, then m ∈ S.
– Receive liveness: If m ∈ S, m is sent by i and i does not leave or fail, then

rcvi(m) occurs, and for every m′ that follows m in S, rcvi(m’) also occurs.

In addition to the above, DAB is required to satisfy basic integrity properties,
e.g., that join OKi (leave OKi) must be preceded by a joini (leavei); that every
joini (leavei) is followed by a join OKi (leave OKi); and that messages are not
received more than once, and are not received unless they are multicast. The
formal definitions of these appear in [3].

4 Consensus with Uncertain Participants – Specification

In order to solve DAB, we use the CUP service. CUP is an adaptation of the
problem of fail-stop uniform consensus to a setting in which the set of partici-
pants is not known precisely ahead of time, and in which participants can leave
the algorithm voluntarily after initiating it. Moreover, participants are not as-
sumed to initiate at the same time. CUP assumes an underlying reliable network,
and a perfect failure detector. The signature of the CUP service is presented in
Figure 2; I is a universe as above; V is a totally ordered set of possible consensus
values; and MCUP is a message alphabet.
A process i may participate in CUP in two ways: it may initiate CUP using

initi(v,W) and provide an initial value and an initial world, or it may abstain
(using abstaini). Informally speaking, a participant abstains when it does not
need to participate in CUP, but because of uncertainty about CUP participants,
some other participant may expect it to participate. CUP reports the consensus
decision value to process i using the decidei(v) action. The environment pro-
vides a leave detector and a failure detector: leave detecti(j) notifies i that

Input: initi(v,W), v ∈ V, W ⊆ I, W finite, i ∈ I // i initiates
abstaini, i ∈ I // i abstains
net rcvi(m), m ∈ MCUP, i ∈ I // i receives message m
leavei, i ∈ I // i leaves
leave detecti(j), j, i ∈ I // i detects that j has left
faili, i ∈ I // i fails
fail detecti(j), j, i ∈ I // i detects that j failed

Output: decidei(v), v ∈ V, i ∈ I // i decides on value v
net mcasti(m), m ∈ MCUP, i ∈ I // i multicasts m

Fig. 2. The signature of CUP.

j has left the algorithm voluntarily, and fail detecti(j) notifies i that j has
failed. In Section 4.1 we specify assumptions about CUP’s environment; assum-
ing these hold, CUP satisfies the following properties:

– Uniform Agreement: For any i, j ∈ I, if decidei(v) and decidej(v’) both
occur then v = v′.

– Validity: For any i ∈ I, if decidei(v) occurs then (1) for some j, initj(v,*)

occurs; and (2) if initi(v’,*) occurs then v ≤ v′.
– Termination: If initi occurs, then a decidei, leavei, or faili occurs.

The validity condition (2) is not a standard property for consensus but is
needed for our use in Atom. Another difference from standard consensus is that
participants that abstain need not be informed of the decision value.
In addition to these properties, CUP satisfies a well-formedness condition

saying that only participants that have initiated can decide, and each participant
decides at most once (cf. [3]).

4.1 CUP Environment Assumptions

CUP requires some simple well-formedness conditions saying that each partic-
ipant begins participating (by initiating or abstaining) at most once, leaves at
most once, and fails at most once. CUP also makes standard integrity assump-
tions about the underlying network, namely that every message that is received
was previously sent, and no message is received at the same location more than
once. Moreover, the order of message receipt between particular senders and re-
ceivers is fifo. We now specify the more interesting environment assumptions.
The following assumptions are related to the worlds W suggested by partici-

pants in their init events. The first is a safety assumption saying that each W set
submitted by an initiating participant i must include all participants that ever
initiate CUP and that do not leave or fail prior to the initi event. This implies
that every participant must be included in its own estimated world. The next is
a liveness assumption saying that, if any process i expects another process j to
participate, then j will actually do so, unless either i or j leaves or fails.

– World consistency: If initi(*, W) and initj(*,*) events occur, then either
j ∈W , or a leavej or failj event occurs before the initi(*, W) event.

– Init occurrence: If an initi(*,W) event occurs and j ∈ W, then an initj ,
abstainj , leavei, faili, leavej , or failj occurs.

The next assumptions are related to leaves, leave detection, and failure de-
tection. The second property says that leaves are handled gracefully, in the sense
that the occurrence of a leave detecti(j) implies that i has already received
any messages sent by j prior to leaving. Thus, a leave detecti(j) is an in-
dication that i has not lost any messages from j. Note that we do not have
a failure assumption analogous to the lossless leave property; thus, failures are
different from leaves in that we allow the possibility that some messages from
failed processes may be lost.

– Accurate leave detector: For any i, j ∈ I, at most one leave detecti(j)

event occurs, and if it occurs, then it is preceded by a leavej .
– Lossless leave: Assume net mcastj(m) occurs and is followed by a leavej .
Then if a leave detecti(j) occurs, it is preceded by net rcvi(m).

– Accurate failure detector: For any i, j ∈ I, at most one fail detecti(j)

event occurs, and if it occurs, then it is preceded by a failj .
– Complete leave and failure detector: If initi(*,W) occurs, j ∈ W , and

leavej or failj occurs, then fail detecti(j), leave detecti(j), decidei,
leavei, or faili occurs.

The next liveness assumption describes reliability of message delivery. It says
that any message that is multicast by a non-failing participant that belongs to
any of the W sets submitted to CUP, is received by all the non-leaving, non-failing
members of all those W sets.

– Reliable delivery: Define U = ∪k∈I{ W | initk(*, W) occurs}. If i, j ∈ U

and net mcasti(m) occurs after an initi or abstaini event, then a net rcvj(m),
leavej , faili, or failj occurs.

5 The CUP Algorithm

The algorithm proceeds in asynchronous rounds, 1, 2, In each round, a pro-
cess sends its current estimates of the value and the world to the other processes.
Each process maintains two-dimensional arrays, value and world, with the value
and world information it receives from all processes in all rounds. It records, in
a variable out[r], the processes that it knows will not participate in round r

because they have left, abstained, or decided, and in a variable failed[r], the
processes that it learned have failed in this round.
When initi(v,W) occurs, process i triggers net mcast(i,1,v,W) to send its

initial value v and estimated world W to all processes, including itself. Note that
two separate processes, A and B can initiate CUP with different (overlapping)
subsets of processes in their W parameter. For example, it could be that A has W
= {A,B,C} while B has W = {A,B,D}. However, in this case we are guaranteed
from the World consistency and Init occurrence assumptions that C either fails

prior to initB(v,W), or abstains, and the same holds for A and D. The world
W is determined to be the set of processes that i thinks are still active, i.e., the
processes in i’s previous world that i does not know to be out or to have failed
in round r. Process i may perform this multicast only if its round is r-1, it has
received round r-1 messages from all the processes in W, and it is not currently
able to decide. The value v that is sent is the minimum value that i has recorded
for round r-1 from a process in W. When a net rcvi(j,r,v,W) occurs, process
i puts v and W into the appropriate places in the value and world arrays.
Process i can decide at a round r when it has received messages from all

processes in its world[r,i] except those that are out at round r, such that all
of these messages contain the same value and contain worlds that are subsets of
world[r,i]. The subset requirement ensures that processes in world[r,i] will
not consider values from processes outside of world[r,i] in determining their
values for future rounds. When process i decides, it multicasts an OUT message
and stops participating in the algorithm.
When abstaini occurs, process i also sends an OUT message, so that other

processes will know not to wait for further messages from it, and stops partici-
pating in the algorithm. When a net rcvi(j,OUT) occurs, process i records that
j is out of the algorithm starting from the first round for which i has not yet
received a regular message from j.
When leavei occurs, i just stops participating in the algorithm. When a

leave detecti(j) event occurs, i records that j is out from the first round after
the round of the last message received from j. The lossless leave assumption
ensures that i has already received all the messages j sent. Process i knows that
process j has failed if fail detecti(j) occurs.
In [3] we prove that when CUP’s environment satisfies CUP’s safety assump-

tions, CUP satisfies its safety guarantees, and when CUP’s environment satisfies
CUP’s safety and liveness assumptions, CUP satisfies its liveness guarantees.

5.1 Analysis

The algorithm is early-deciding in the sense that the number of rounds it executes
is proportional to the number of actual failures that occur, and does not depend
on the number of participants or on the number of processes that leave. In [3],
we prove the following theorem, which says that the algorithm always terminates
after it can run two rounds without failures.

Theorem 1. Suppose that r > 0. Suppose that there is a point t in the exe-
cution such that every process is in round ≤ r at point t, and no fail events
happen from t onward. Then every process always has round ≤ r +2.

The proof is based on the observation that once failures stop, the values
and worlds that processes send in their round messages stop changing; the value
converges to the minimum value that a live process has, and the world converges
to the set of live processes. After a round in which all processes in W send the
same value and the world W, all the live processes can decide.
We next analyze CUP’s running time assuming the following bounds on mes-

sage latency, failure and leave detection times, and the difference between differ-

ent processes’ initiation times. Note: time bounds are not assumed as a condition
for correctness; they are only assumed for the sake of the analysis.

1. δ1 is an upper bound on message latency and on failure and leave detection
time. Moreover, if a message is lost due to failure, then the failure is detected
at most δ1 after the lost message was sent. More precisely,
(a) if net rcv(m) occurs, the time since the corresponding net mcast(m) is
at most δ1.
(b) Assume initi(*,W) occurs with j ∈ W and failj or leavej occurs
at time t. Then fail detecti(j), leave detecti(j), decidei, leavei, or
faili occurs by time t+ δ1.
(c) Let U = ∪k∈I{W | initk(∗,W) occurs}. Assume i, j ∈ U and net mcastj(m)

occurs at time t but no net rcvi(m) occurs. Then either fail detecti(j),
leave detecti(j), decidei, leavei, or faili occurs by time t+ δ1.

2. δ2 bounds the difference between the initiation time of different processes.
More precisely:
Assume a process initiates at time t and does not fail by time t+δ1, and that
initi(*, W) occurs. Then, every process j ∈ W initiates, abstains, leaves,
or fails by time t+ δ2.

Given these bounds, in [3], we prove the following theorem:

Theorem 2. Suppose that there is a point t in the execution such that no fail

events happen from t onward. Suppose also that some process initiates CUP by
time t. Then every process that decides, decides by time t+ 3δ1 + δ2.

6 Environment and Model Assumptions for Atom

We model time using a continuous global variable now, which holds the real
time. This is a real variable, initially 0. Each endpoint i is equipped with a local
clock, clocki. We assume a bound of Γ on clock skew, where Γ is a positive
real number. Specifically, for each endpoint i, we assume that in any state of the
system that is reachable |clock i − now | ≤ Γ/2. That is, the difference between
each local clock and the real time is at most Γ/2. It follows that the clock skew
between any pair of processes is Γ , formally: in any reachable state, and for any
two endpoints i and j, |clock i − clock j | ≤ Γ . We assume that local processing
time is 0 and that actions are scheduled immediately when they are enabled.

We assume that we are given a low-level reliable network service Net, with
a message alphabet, M ′. The Net signature is defined in Figure 3. The actions
are the same as those of DAB, except that they are prefixed with net .

Input: net joini, net leavei, i∈I

faili, i∈I

net mcasti(m), m∈M ′, i∈I,

Output: net join OKi, i∈I,

net leave OKi, i∈I,

net rcvi(m), m∈M ′, i∈I

Fig. 3. The signature of the Net service.

Like DAB, Net assumes that its application satisfies the some basic integrity
conditions. Assuming these, Net satisfies a number of safety and liveness proper-
ties. First, Net satisfies the basic integrity properties that DAB does. In addition,
Net guarantees fifo delivery of messages, and a simple liveness property:

– fifo delivery: If net mcasti(m) occurs before net mcasti(m’), and net rcvj(m’)

occurs, then net rcvj(m) occurs before net rcvj(m’).
– Eventual delivery: Suppose net mcasti(m) occurs after net join OKj , and
no faili occurs. Then either net leavej or failj or net rcvj(m) occurs.

Additionally, the network latency is bounded by a constant nonnegative real
number ∆. The maximum message latency of ∆ guaranteed by Net is intended
to include any pre-send delay at the network module of the sending process,
and is independent of the message size. Since an implementation of Net cannot
predict the future, it must deliver messages within time ∆ as long as no failures
occur. In particular, if a message is sent more than ∆ time before its sender fails,
it must be delivered.

7 The Atom Algorithm

The Atom algorithm uses Net and CUP services as building blocks. It uses
multiple instances of CUP. As before, faili causes process i to stop. faili is
an input to all the components, i.e., Net and all instances of CUP (including
dormant ones), and causes all of them to stop; leavei also goes directly to all
the local instances of CUP, including dormant ones.
Atom defines the constant Θ, a positive real number that represents the

duration of a time slot. We assume that Θ > ∆. We define the message alphabet
M ′ of Net in term of the alphabet M of DAB:

– M1, the set of finite sequences of elements ofM . These are the bulk messages
processes send.

– M2 =M1 ∪ {JOIN,LEAV E} ∪ {CUP INIT × I}
– M ′ = I ×M2 × N.

Each message contains either a bulk message (sequence of client messages)
for a particular slot, a request to join or leave a particular slot, or a report that
process has initiated consensus on behalf of a particular endpoint. Each message
is tagged with the sender and the slot. The algorithm divides time and messages
into slots, each of duration Θ. Each process multicasts all of its messages for a
given slot in one bulk message. This is an abstraction that we make in order to
simplify the presentation. In practice, the bulk message does not have to be sent
as one message; a standard packet assembly/disassembly layer can be used.
Message delivery is also done in order of slots. Before delivering messages

of a certain slot s, each process has to determine the membership of s, i.e., the
set of processes from which to deliver slot s messages. To ensure consistency,
all the processes that deliver messages for a certain slot have to agree upon its
membership. Within each slot, messages are delivered in order of process indices,
and for each process, messages from its bulk message are delivered in fifo order.

7.1 Atomi Signature and Variables

The signature of Atomi includes all the interaction with the client and underlying
network. In addition, Atomi has input and output actions for interacting with
CUP. Since Atom uses multiple instances of CUP, at most one for each process
j, actions of CUP automata are prefixed with CUP(j), where CUP(j) is the
instance of CUP used to agree in which slot process j fails. E.g., process i
uses the action CUP(j).initi to initiate the CUP automaton associated with
process j. CUP.fail and CUP.leave are not output actions of Atom, since they
are routed directly from the environment to all instances of CUP.
Atomi also has two internal actions, end sloti, and membersi, which play

a role in determining the membership of each slot. end slot(s)i occurs at a
time by which slot s messages from all processes should have reached i. At
this point, processes from which messages are expected but do not arrive are
suspected to have failed in this slot; we are guaranteed that these processes
indeed have failed, but we are uncertain about the slot in which they fail. For
each suspected process j, CUP(j) is run to have the surviving processes agree
upon j’s failure slot. This is needed because failed processes can be suspected
at different slots by different surviving processes. After CUP reaches decisions
about all the suspected processes that could have failed at slot s, members(P,s)
can occur, with P being the agreed membership for slot s. When members(P,s)i

occurs, the messages included in bulk messages that i received for slot s from
processes in P are delivered (their delivery is triggered) in order of process indices.
A variable join-slot holds the slot at which a process starts participating

in the algorithm; this will be the value of current-slot when join OK will be
issued, and the first slot for which a bulk message will be sent. If a process explic-
itly leaves the algorithm, its leave-slot holds the slot immediately following
the last slot in which the process sends a bulk message. Both join-slot and
leave-slot are initially ∞.
The flags did-join-OK and did-leave ensure that join OK and net leave

actions are not performed more than once. The set mcast-slots tracks the slots
for which the process already multicast a message (JOIN, LEAVE, or bulk). Like-
wise, ended-slots and reported-slots track the slots for which the end slot

or members actions, resp., were performed.
out-buf[s] stores the message (bulk, JOIN, or LEAVE) that is multicast

for slot s; it initially holds an empty sequence, and in an active slot, all appli-
cation messages are appended into it. A JOIN message is inserted for the slot
before the join-slot, and a LEAVE message for the leave-slot. Either way,
there is no overlap with a bulk message. Variables joiners[s] and leavers[s]
keep track of the processes j for which join-slotj =s (resp. leave-slotj =s).
suspects[s] is the set of processes suspected in slot s as determined when
end slot(s) occurs. in-buf[j,s] holds the sequence of messages received in
a slot s bulk message from j. Its data type supports assignment, extraction of
the head of the queue, and testing for emptiness. alive[s] is a derived variable
containing the set of processes from which slot s messages were received.
There are three variables for tracking the status and values of the different

instances of CUP. CUP-status[j] is initially idle; when CUP(j) is initiated, it

becomes running; if a CUP INIT message for j arrives, it becomes req; and when
there is a decision for CUP(j), or if the process abstains from CUP(j), it becomes
done. CUP-req-val[j] holds the lowest slot value associated with a CUP INIT
message for j (⊥ if no such message has arrived). Finally, CUP-dec-val[j] holds
the decision reached by CUP(j), and ⊥ if there is none.

7.2 Algorithm flow

Upon an application join, Atom triggers net join. Once the Net responds
with a net join OK, Atom calculates the join-slot to be 2 + dΓ/Θe slots in
the future. This will allow enough time for the JOIN message to reach the
other processes. A JOIN message is then inserted into out-buf[join-slot -

1]. Once current-slot is join-slot, join OK is issued to the application.

When the application issues a leave, the leave-slot is chosen to be the
ensuing slot, and a LEAVE message is inserted into out-buf[leave-slot].
A net leave is issued after the LEAVE message has been multicast, and the
net leave OK triggers a leave OK to the application.

Messages multicast by the application are appended to the bulk message for
the current slot in out-buf[current-slot]. Once a slot s ends, the message
pertaining to this slot is multicast using net mcast. If s = join-slot - 1, a
JOIN message is sent. If s = leave-slot, a LEAVE message is sent, and if s
is between join-slot and leave-slot - 1, a bulk message is sent. A received
bulk message is stored in the appropriate in-buf. When a (j, JOIN, s) (or (j,
LEAVE, s)) message is received, j is added to joiners[s] (resp. leavers[s]).
Additionally, when a LEAVE message is received, CUP.leave detect is triggered
for all running instances of CUP.

end sloti(s) occurs once i should have received all the slot s messages sent
by non-failed processes. Since such messages are sent immediately when slot s
ends, are delayed at most ∆ time in Net, and the clock difference is at most Γ ,
i should have all the slot s messages ∆+Γ time after it began slot s+1. Process
i expects to receive slot s messages from every process in alive[s-1] that does
not leave in slot s. Any process from which a slot s message is expected but does
not arrive becomes suspected at this point, and is included in suspects[s].

For every suspected process, CUP is run in order to agree upon the slot at
which the process failed. Note that CUP is only performed for failed processes
since we implement a perfect failure detector. The slot s in which the process
is suspected is used as the initial value for CUP. The estimated world for CUP
is alive[s] ∪ joiners[s+1]. This way, if k joins in slot s+1, k is included in
the estimated world. This is needed in order to satisfy the world consistency
assumption of CUP, because k can detect the same failure at slot s+1, and
therefore participate in CUP(j). When i initiates CUP(j), it also multicasts a
(CUP INIT, j) message. If a process k does not detect the failure and does
not participate, the (CUP INIT, j) message forces k to abstain. Since Atom
implements the failure detector for CUP, the effect of end sloti(s) also triggers
CUP(k).fail detect(j) actions for every suspected process j, and for every
currently running instance k of CUP.

Process i abstains from CUP(j) only if (1) a (CUP INIT,j) message has pre-
viously arrived, setting CUP-status[j]i = req; and (2) end sloti has already
occurred for a slot value greater than CUP-req-val[j]i. The latter condition en-
sures that i abstains only from instances of CUP that it will not initiate. There
are two circumstances that can lead to a process i abstaining from CUP(j). First,
if i is just joining, and the failure occurs before its join-slot, then i will not
be affected by the decision because it does not deliver any messages for this
slot. Second, if j has joined and immediately failed before i could see its JOIN
message, then j did not send any bulk messages prior to its failure, and thus no
process will deliver any messages from j.
The members(P,s) action triggers the delivery of all slot s messages from

processes in P. It occurs once agreement is reached about the processes to be
included in P. Recall that the slots at which a process k is suspected by two
processes i and j can differ by at most one. Therefore, membersi(P,s) can occur
after end slot(s+1), when the suspicions for slot s+1 are determined, since
all processes that i does not suspect at slot s+1 could not have failed prior to
ending slot s. Thus, after i gets decisions from all instances of CUP pertaining
to processes suspected in slots up to s+1 i can deliver all slot s messages. The
set P includes every process j that is alive in slot s and for which there is either
no CUP instance running, or the CUP decision value is greater than s.
In [3] we prove the following: (1) Atom satisfies CUP’s safety assumptions

independently of CUP; (2) assuming a service that satisfies the CUP safety guar-
antees, Atom satisfies CUP’s liveness assumptions; and (3) assuming a service
that satisfies the CUP safety and liveness guarantees, Atom satisfies the DAB
service safety and liveness guarantees.

7.3 Latency Analysis

In failure free executions, Atom’s message latency is bounded by ∆+ 2Θ + 2Γ .
We denote this bound by ∆Atom. In executions with failures, the upper bound on
message latency is linear in the number of failures. In [3], we prove the following:

Lemma 1. Consider an execution in which no process fails. If the application at
process j performs mcastj(m) when current-sloti = s and if process i delivers
m, then i delivers m immediately after end sloti(s+1) occurs.

From this lemma, we derive the following theorem:

Theorem 3. If the application at process j performs mcastj(m) at time t, and
if process i delivers m, then i delivers m by time t+∆Atom = t+∆+2Θ+2Γ .

We then turn our attention to executions in which there is a long time period
with no failures. We analyze the time it takes Atom to clear the backlog it has
due to past failures, and reach a situation in which message latency is bounded by
the same bound as in failure free executions, namely ∆Atom, barring additional
failures. The fact that once failures stop for a bounded time all messages are
delivered within constant time implies that in periods with f failures, Atom’s
latency is at most linear in the number of failing processes.
In order to analyze how long it takes Atom to reach a stable point, we need to

use our bounds on CUP’s running time once failures stop. We first have to assign

values to the constants that were used in the analysis of CUP in Section 5.1 (δ1

and δ2). Recall, δ1 is an upper bound on message latency and on failure and
leave detection time, and if a message is lost due to failure, then the failure is
detected at most δ1 after the lost message was sent; and δ2 is an upper bound
on the difference between different processes’ initiation times. In [3], we prove
the following bounds: δ1 = ∆+ 3Θ + 2Γ ; and δ2 = Γ +Θ.
We then consider executions in which failures do occur but there are long

time periods with no failures. We analyze the time it takes Atom to clear the
backlog it has due to past failures, and again reach a situation in which message
latency is bounded by ∆Atom, barring additional failures.
Let t1 = δ2+4δ1, where δ2 and δ1 are bounds as given above for the difference

between process initiation times and failure detection time, resp. By the bounds
above, we get that t1 = Γ +Θ + 4(∆+ 3Θ + 2Γ) = 4∆+ 9Γ + 13Θ.
Assume that from time t to time t′ = t + t1 there are no failures. We now

show that if a message m is sent after time t′, and there are no failures for a
period of length ∆Atom after m is sent, then m is delivered within ∆Atom time
of when it is sent. Since the delivery order preserves the fifo order, this also
implies that any message m′ sent before time t′ is delivered by time t′ barring
failures in the ∆Atom time interval after m

′ is sent.
Theorem 4. Assume no process fails between time t and t′ = t+t1. If mcast(m)j

occurs at a time t′′ such that t+ t1 ≤ t′′, and no failures occur from time t′′ to
time t′′ +∆Atom, and if i delivers m, then i delivers m by time t′′ +∆Atom.

7.4 Future Direction: Extending Atom to Cope with Late Messages

In this paper, we assumed deterministic network latency bounds. Since the net-
work latency, ∆ is expected to be of a smaller order of magnitude than Θ, it
would not significantly hurt time bounds if conservative assumptions are made
in the choice of ∆. Future research may consider networks where latency bounds
cannot be ensured. E.g., some networks may support differentiated services with
probabilistic latency guarantees, and loss rates may exceed those assumed in the
latency analysis of the underlying reliable network (see [2, 20]).
Although Atom cannot guarantee atomic broadcast semantics while network

latency exceeds its bound, it would be useful to modify Atom as to allow it
to recover from such situations, and to once more provide correct semantics
after network guarantees are re-established. In addition, it would be desirable
to inform the application when a violation of Atom semantics occurs. There are
some strategies that can be used to make Atom recover from periods in which
network guarantees are violated. For example, a lost or late message can cause
inaccurate failure suspicions. With Atom, if a process k is falsely suspected, it
will receive a (CUP INIT, k) message for itself. We can have the process use this
as a trigger to “commit suicide”, i.e., inform the application of the failure and
have the application re-join as a new process (similar to the Isis [4] algorithm).

8 Conclusions
We have defined two new problems, Dynamic Atomic Broadcast and Consensus
with Uncertain Participants. We have presented new algorithms for both prob-
lems. The latency of both of our algorithms depends linearly on the number of

failures that occur during a particular execution, but does not depend on an
upper bound on the potential number of failures, nor on the numbers of joins
and leaves that happen during the execution.

Acknowledgments

We thank Alan Fekete, Rui Fan, Rachid Guerraoui, and the referees for useful
comments that helped improve the presentation.

References
1. T. Abdelzaher, A. Shaikh, F. Jahanian, and K. Shin. RTCAST: Lightweight multi-

cast for real-time process groups. In IEEE Real-Time Technology and Apps. Symp.
(RTAS), Jun 1996.

2. Z. Bar-Joseph, I. Keidar, T. Anker, and N. Lynch. QoS preserving totally or-
dered multicast. In Franck Butelle, editor, 5th Int. Conf. On Prin. Of Dist. Sys.
(OPODIS), pp. 143–162, Dec 2000. Special issue of Studia Informatica Universalis.

3. Z. Bar-Joseph, I. Keidar, and N. Lynch. Early-delivery dynamic atomic broadcast.
Tech. Rep. MIT-LCS-TR-840, MIT Lab. for Comp. Sci., Apr 2002.

4. K. Birman and R. van Renesse. Reliable Distributed Computing with the Isis
Toolkit. IEEE Comp. Soc. Press, 1994.

5. G. Chockler and D. Malkhi. Active Disk Paxos with infinitely many processes. In
21st ACM Symp. on Prin. of Dist. Comp. (PODC), July 2002. To appear.

6. G. V. Chockler, I. Keidar, and R. Vitenberg. Group Communication Specifications:
A Comprehensive Study. ACM Comp. Surveys, 33(4):1–43, Dec 2001.

7. F. Cristian. Synchronous atomic broadcast for redundant broadcast channels.
Journal of Real-Time Systems, 2:195–212, 1990.

8. F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From simple
message diffusion to Byzantine agreement. Inf. Comp., 118:158–179, Apr 1995.

9. F. Cristian. Reaching agreement on processor group membership in synchronous
distributed systems. Dist. Comp., 4(4):175–187, Apr 1991.

10. D. Dolev, R. Reischuk, and H. R. Strong. Early stopping in byzantine agreement.
Journal of the ACM, 37(4):720–741, Oct 1990.

11. B. Glade, K. Birman, R. Cooper, and R. van Renesse. Lightweight process groups
in the Isis system. Dist. Sys. Eng., 1:29–36, 1993.

12. A. Gopal, R. Strong, S. Toueg, and F. Cristian. Early-delivery atomic broadcast.
In 9th ACM Symp. on Prin. of Dist. Comp. (PODC), pp. 297–309, 1990.

13. V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In
Sape Mullender, editor, chapter in: Distributed Systems. ACM Press, 1993.

14. S. Katz, P. Lincoln, and J. Rushby. Low-overhead time-triggered group member-
ship. In 11th Int. Wshop. on Dist. Algs. (WDAG), pp. 155–169, 1997.

15. H. Kopetz and G. Grunsteidl. TTP - a protocol for fault-tolerant real-time systems.
IEEE Computer, pp. 14–23, January 1994.

16. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
17. M. Merritt and G. Taubenfeld. Computing with infinitely many processes under

assumptions on concurrency and participation. In 14th Int. Symp. on DIStributed
Comp. (DISC), Oct 2000.

18. L. Rodrigues and P. Verissimo. xAMp, A multi-primitive group communications
service. In IEEE Int. Symp. on Reliable Dist. Sys. (SRDS), pp. 112–121, Oct 1992.

19. L. Rodrigues, K. Guo, A. Sargento, R. van Renesse, B. Glade, P. Verissimo, and
K. Birman. A dynamic light-weight group service. In 15th IEEE Int. Symp. on
Reliable Dist. Sys. (SRDS), pp. 23–25, Oct 1996.

20. P. Verissimo, J. Rufino, and L. Rodrigues. Enforcing real-time behaviour of lan-
based protocols. In 10th IFAC Wshop. on Dist. Comp. Control Systems, Sep 1991.

