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Abstract. We prove that any given well-behaved folded
state of a piece of paper can be reached via a continuous
folding process starting from the unfolded paper and ending
with the folded state. The argument is an extension of that
originally presented in [DM01].

1 Introduction. In defining an “origami” or “folding” of
a piece of paper, there is a distinction between specifying the
geometry of the final folded state (a single folding, e.g., an
origami crane) and specifying a continuous folding motion
from the unfolded sheet to the final folded state (an entire
animation of foldings). It is conceivable that some folded
state exists, but that the piece of paper could not reach that
state via a continuous folding process, e.g., the state could
only be reached by passing portions of the paper through
itself, or by cutting and regluing.

Our main result is that in fact every well-behaved folded
state of a simple polygonal piece of paper can be reached by
a continuous folding motion, and so the entire configuration
space of all well-behaved folded states of a piece of paper is
connected. As a consequence, other results that define fold-
ings with specific properties need not distinguish between
folded states and continuous folding motions, and can use
the more convenient specification of a single folded state.

The same result as ours was established in [DM01] for
the special case of a rectangular piece of paper and a folded
state having a flat patch. Here we extend the result to an
arbitrary simple polygonal piece of paper and to any well-
behaved, possibly entirely curved, folded state, in addition
to formalizing definitions and adding detail to the proof.

2 Definitions. We believe that research in mathematical
origami has been somewhat hampered by lack of clear, for-
mal foundation, so we devote a relatively lengthy section
to this topic before turning to the proofs. At a high level,
our definitions generalize Justin’s definition of flat folded
states [Jus94].
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2.1 Folded States: Overview. A piece of paper P is a
closed set defined by a simple planar polygon (i.e., the inte-
rior and boundary of that polygon). A folded state (f, λ)
of P is an isometric function f : P → R

3 mapping
P into Euclidean 3-space, together with a partial function
λ : P 2 → {−1, +1} specifying the local “stacking order” of
pairs of points in contact. The pair (f, λ) must satisfy several
conditions, detailed below. First, f must be isometric in the
sense that the intrinsic geodesic (shortest-path) distance be-
tween any two points of P is the same when measured either
on P or on the folded-state geometry f . Thus the paper does
not stretch or shrink when mapped by the folded state. One
consequence of being isometric is that f must be continuous,
meaning that the folded state does not tear the paper. Second,
λ must be symmetric, in the sense that it consistently assigns
the order of q with respect to p and the order of p with respect
to q, transitive, so that we obtain a consistent total order on
several points in contact, and consistent, in the sense that it
assigns the same ordering to nearby pairs of points in con-
tact. Third, (f, λ) must be noncrossing in the sense that the
paper does not cross itself when mapped by the folded state.

2.2 Well-Behaved Folded States. We place a piecewise-
smoothness restriction on the geometry f of the folded state.
Specifically, f is well-behaved of order k if it is piecewise-
Ck, i.e., P can be decomposed into a finite number of open
sets R1, R2, . . . , Rm ⊂ P , with ∪iRi = P , such that f

has continuous derivatives up to order k on each Ri, and the
boundary of each Ri consists of finitely many Ck curves.
For most of the results in this paper, we need only well-
behavedness of order 1, so that we can define a tangent
plane at every interior point, but for one proof we need well-
behavedness of order 2, so we assume this property of f from
now on. We call all boundary points of ∪iRi crease points.

2.3 Folded States: Isometry. A folded state (f, λ) is iso-
metric in the sense that, for any two points p, q ∈ P , the
geodesic distance between p and q is the same when mea-
sured on either P or the folded-state geometry f . (The
isometry condition is independent of λ.) The geodesic dis-
tance between p and q on P is the length of a shortest path:
inf {arclengthC | curve C : [0, 1] → P with C(0) =
p, C(1) = q}, where arclengthC is defined as usual as
∫

1

t=0
‖ d

dt
C(t)‖dt, and ‖ · ‖ denotes the Euclidean norm. The

geodesic distance between p and q on the folded-state ge-
ometry f is the length of a shortest path, where length is
measured after mapping the curve onto the surface by com-
posing with f : inf {arclength(f ◦ C) | curve C : [0, 1] →
P with C(0) = p, C(1) = q}. Note that even if f folds C on
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top of itself, this definition captures the length appropriately.

2.4 Folded States: Order. For two distinct noncrease
points p 6= q of P mapped into contact by f and having
neighborhoods that are mapped into contact by f , λ(p, q) ∈
{+1,−1} defines a “stacking order” on p and q. The par-
tial function λ is undefined at (p, q) in all other cases. More
precisely, λ(p, q) is defined for two points p, q ∈ P pre-
cisely when (a) p 6= q, (b) p and q are noncrease points of f ,
(c) f(p) = f(q), and (d) there are neighborhoods Np of p

and Nq of q (in P ) such that f(Np) = f(Nq). In particular,
λ(p, q) is defined precisely when λ(q, p) is defined.

Intuitively, λ(p, q) specifies whether q is above (+1) or be-
low (−1) p with respect to the surface normal of f at p. Note
that f does not provide this topological information because
f(Np) = f(Nq); we need to separately keep track of the
ordering relation between such points in contact.

λ must satisfy three conditions:

Symmetry. Let n(p) denote the surface normal vector of
f at a noncrease point p ∈ P . Intuitively, the direction of
this surface normal specifies which side of the surface was
originally the top side of the piece of paper. The symme-
try condition constrains any two points p, q ∈ P for which
λ(p, q) is defined. If n(p) = n(q), i.e., the neighborhoods
Np and Nq are oriented the same, then λ(p, q) = −λ(q, p).
Otherwise, n(p) = −n(q), i.e., the neighborhoods are ori-
ented oppositely, and then λ(p, q) = λ(q, p). See Figure 1.
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Figure 1: Symmetry of λ.
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Figure 2: Transitivity of λ.

Transitivity. The transi-
tivity condition constrains
the relationship among
three points p, q, r ∈ P

in contact. If λ(p, q)
and λ(q, r) are defined,
and λ(q, p) = −λ(q, r),
then λ(p, r) is defined
and λ(p, r) = λ(p, q).
Intuitively, the condi-
tion λ(q, p) = −λ(q, r)
specifies that p and r are on opposite sides of q, and the
consequence λ(p, r) = λ(p, q) specifies that r is related to p

in the same way as q. See Figure 2.

Consistency. The consistency condition constrains any
two points p, q ∈ P for which λ(p, q) is defined. For any
connected neighborhoods Np of p and Nq of q for which
f(Np) = f(Nq), and for any pair of points p̃ ∈ Np and

q̃ ∈ Nq for which f(p̃) = f(q̃), we have λ(p̃, q̃) = λ(p, q).
Intuitively, this condition specifies that the entire region of
contact surrounding p and q is consistently ordered.

2.5 Folded States: Noncrossing. Intuitively, the non-
crossing condition enforces that portions of paper that come
into contact geometrically do not properly cross. When the
contact between layers occurs in a two-dimensional region
(open set), λ arms us with additional order information to
disambiguate the geometry. When the contact occurs in a
zero- or one-dimensional region (non-open set), the geome-
try itself is sufficient to disambiguate the ordering.

1D. We start with the definition of the noncrossing condi-
tion in the case of folding a one-dimensional piece of paper
P (a line segment, or equivalently an interval of R) into R

2.
For each point q in R

2, we constrain the local behavior of the
folded-state image f(P ) around the point q. The idea is to
look at portions of paper that come to this point, and ensure
that connections between these portions at this point do not
cross each other. The main issue here is how to define the
notion of a connection.

Consider a point p ∈ P for which f(p) = q. The local
behavior of f near p can be characterized, even when p is
a crease point, by measuring the unit direction vector from
f(p) to f(p + δ), and the unit direction vector from f(p) to
f(p − δ), as δ → 0. By the analogous well-behavedness
assumption for 1D that there are finitely many crease points
between which f is C1, these limiting directions are well-
defined. If f is C1 at p, then in fact the two directions are
negations of each other; in general they correspond to the
left and right derivatives of f at p with the left one negated.
The two direction vectors can be mapped to two points on
the unit circle Ĉ.

We view the interior of the unit circle Ĉ as an infinitesimal
expansion of the behavior at q. The two points on Ĉ corre-
sponding to p serve as connections between this local behav-
ior and the rest of the folded-state image away from q. We
require that the local behavior within Ĉ connects these two
points by a curve, corresponding to an infinitesimal stretch-
ing of the point p of paper. Considering all points p ∈ P

for which f(p) = q, we obtain a collection of pairs of points
on the unit circle Ĉ, where each pair must be connected by
a curve within Ĉ. See Figure 4(a). The noncrossing con-
dition requires that these curve connections can be made
without crossings; equivalently, there cannot be four points
p1, p2, p3, p4 in cyclic order around Ĉ such that both (p1, p3)
and (p2, p4) appear as pairs in the collection.

One detail remains: we may obtain multiple copies of the
same point on the unit circle Ĉ , and the noncrossing con-
dition requires that these points be distinctly ordered (dis-
ambiguated) around the circle. Without loss of generality,
suppose that, for i ∈ {1, 2}, pi ∈ P , f(pi) = q, and the
unit direction vector from f(pi) to f(pi + δ) approaches v

as δ → 0. If f((p1, p1 + ε)) 6= f((p2, p2 + ε)) for all ε > 0,
then the local divergence from v of the directions from f(p1)
to f(p1+ε) and from f(p2) to f(p2+ε) (for small enough ε)
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(a) 1D piece of paper. (b) 2D piece of paper.

Figure 4: Illustration of local noncrossing behavior around a
point q (the center of the circle or sphere).

specifies a geometric ordering on the two copies of v around
the unit circle Ĉ. Otherwise, f((p1, p1 + ε)) = f((p2, p2 +
ε)) for some ε > 0, in which case λ(p1 +x, p2 +x) provides
a consistent value of +1 or −1 for all x ∈ (0, ε). In this case
we use the λ value to determine the order of the two copies
of v around the unit circle: as x → 0, n(p1 + x) approaches
one of the two unit tangent vectors to the unit circle Ĉ at v

p1

q

p2

x

n(p1+x)

ε

Figure 3: f(p1) = f(p2) =
q and f((p1, p1 + ε)) =
f((p2, p2 + ε)) for some ε > 0.

(see Figure 3), and
λ(p1 + x, p2 + x) spec-
ifies whether p2’s copy
of v should be in that
direction (+1) or in the
opposite direction (−1)
from p1’s copy of v.
By transitivity of λ, this
definition provides a
consistent total order
among all copies of a point v with defined pairwise λ values,
which in turn are totally ordered according to the geometry.

2D. Finally, we define the noncrossing condition for folded
states of a two-dimensional piece of paper P folded in R

3.
As before we constrain the local behavior of the folded-state
image f(P ) around each point q in R

3. This local behavior is
charactered by, for each point p ∈ P for which f(p) = q, the
unit direction vectors from f(p) to f(p + εv) as ε → 0 over
all unit vectors v in R

2. (These unit direction vectors are
the normalized directional derivatives of f at p.) For each
p interior to P , these vectors give us a closed curve on the
unit sphere Ŝ; and each p on the boundary of P gives us an
open curve on Ŝ. Each closed curve can be parameterized
as a function from the unit circle Ĉ of directions in R

2 (cor-
responding to v) to points on the unit sphere Ŝ; similarly,
each open curve can be parameterized as a function from
the unit interval [0, 1]. Thus the picture on the sphere Ŝ can
be viewed as the union of finitely many folded states of 1D
pieces of paper, except that some pieces of paper are circles
instead of line segments and the folding space is a sphere
instead of the plane; see Figure 4(b). Our definition of 1D

noncrossing condition trivially generalizes to this multicom-
ponent circular/spherical scenario. The 2D noncrossing con-
dition at q is exactly the 1D noncrossing condition on these
folded states applied to every point on the unit sphere Ŝ.

2.6 Folding Motions. Let FoldP denote the set of all
folded states (f, λ) of P . A folding motion is a contin-
uous function M : [0, 1] → FoldP , where the argument
t ∈ [0, 1] represents time. Let F and Λ denote correspond-
ing functions from [0, 1] that return f and λ, respectively:
M(t) = (F (t), Λ(t)). Continuity of M with respect to t

consists of two parts: continuity of F and continuity of Λ.

Time continuity of geometry. Continuity of F is defined
in the usual way: for every ε > 0, there is a δ > 0 such
that |t1 − t2| < δ implies d(F (t1), F (t2)) < ε. However,
for this definition to make sense, we need a metric d on the
geometric component f of folded states.

For two such folded-state geometries f1 and f2, define
their distance d(f1, f2) by d(f1, f2) = supp∈P ‖f1(p) −
f2(p)‖. Thus we measure distance as the maximum Eu-
clidean displacement of a point in P when comparing how
that point is mapped by the two folded-state geometries.

Time continuity of order. Continuity of Λ constrains any
two points p, q ∈ P and time t ∈ [0, 1] for which Λ(t)(p, q)
is defined. We consider the possible departure of q from p

as time increases; the possible arrival of q at p is symmet-
ric (e.g., by reversing time). Let N(t)(p) denote the surface
normal vector of F (t) at a noncrease point p ∈ P . Then we
have one of the following two conditions:

1. Departure case:
(

d
dt

F (t)(q) − d
dt

F (t)(p)
)

·N(t)(p) is
strictly positive if Λ(t)(p, q) = +1 and is strictly negative if
Λ(t)(p, q) = −1. The derivative is taken with respect to time
intervals on the positive side of t, i.e., (t, t + ε). Intuitively,
this condition ensures that q instantaneously departs on the
correct side of p, as specified by Λ, in the sense that the the
relative motion vector of q with respect to p has a correctly
signed dot product with the normal vector at p.

2. Contact case: For every ε > 0, there is a δ > 0
such that, for every ∆t ∈ [0, δ], there is a point q′ within a
disk of radius ε centered at q for which Λ(t + ∆t)(p, q′) is
defined and Λ(t + ∆t)(p, q′) = Λ(t)(p, q). See Figure 5.

p & q'

t: f(p) = f(q) t + ∆t: f(p) = f(q')

q

ε

p & q

Figure 5: After time ∆t, a point q′

within ε of q remains in contact with p.

Intuitively, there
is a point q′ arbi-
trarily close to q

such that p comes
in contact with q′

after a sufficiently
small motion, and
the ordering of
that contact is the
same as that of p and q at time t.

3 Rolling between Flat Folded States. We now proceed
to the proof of our main result. The first part claims that we
can “roll up” P into a triangle. This motion will use only
flat folded states. A folded state (f, λ) is flat if the third (z)
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coordinate of f is always zero. The silhouette of a flat folded
state f is the image f(P ) of the folded-state geometry.

Lemma 1 Let T ⊆ P be a triangle that does not intersect
any diagonal of some triangulation of the simple polygonal
piece of paper P . Then there is a continuous folding of P

from the unfolded state into a flat state whose silhouette is
congruent to T , such that the intermediate folded states are
flat, have finitely many creases, and are nested by subset over
time.

a

b

c

a

b

a

b

c A

ε

α

β

B

a

b

d
c

d

e
e

(a) α and β both acute.

a
c

b

A

B

a
c

b

c

a

b

α

β
ε

(b) α not acute.

Figure 6: Illustration of the proof of Lemma 1.

Proof sketch. We repeatedly remove an ear not containing
T from the triangulation of P , by continuously rolling the
ear onto itself until it fits within P as shown in Figure 6. �

4 Unfurling onto the Target Folded State. We are now
prepared for the main theorem:

Theorem 2 If (f, λ) is a folded state of a simple polygonal
piece of paper P that is well-behaved of order 2, then there
is a continuous folding motion of P into (f, λ).

Figure 7 provides a précise of the proof.

P = P(0) P(1)P(t)

W(1) = f(T)

f(P) = S

S

M(t)

f o M(1−t)

Figure 7: The construction of a continuous folding motion of P

into f (not to scale). S = f(P ) is the image of the folded state. W

is the continuous folding motion that wraps T onto its home f(T )
on S. M is the motion that takes P to a flat folded state T within
the plane. (The origami bird is based on a design by L. Zamiatina
at http://documents.wolfram.com/v4/MainBook/G.2.28.html.)

Proof. Let (f, λ) be a folded state with image S = f(P ).
Fix some triangulation of P ; f maps its diagonals to curves
on S. We now locate a triangle T in P (not necessarily a
triangle of the triangulation), mapping to a patch f(T ) on S,
that satisfies these properties:

1. The interior of T avoids all triangulation diagonals.
2. The interior of T avoids all crease points.
3. There is a direction in which the orthogonal projection

of f(T ) is non-self-overlapping.
It is easy to achieve the first two properties by selecting a
suitably small triangle in P . Any such patch is a developable
surface, and “torsal ruled,” which means that it may be swept
out by lines generated by a well-behaved curve [PW01,
p. 328]. That the patch is C2 suffices to ensure that a small
enough piece will have a non-overlapping projection. The
ruling of the patch can be used to obtain a a continuous fold-
ing motion W (t) that wraps the flat triangle T onto this patch
f(T ) of S. For example, one could bend the ruling lines of
the ruled surface f(T ), interpolating from a straight segment
to the generating curve of the ruling.

Now we apply Lemma 1 to obtain a continuous rolling
motion M from P to T , with each M(t) = (F (t), Λ(t)) flat,
F (0)(P ) = P , and F (1)(P ) = T . If we then apply the mo-
tion W̃ (t) = (W (t) ◦ F (1), Λ(1)), we bring the multilayer
flat folding of P from T to f(T ).

The last step of the construction is to “unravel” f(T )
onto S. One can imagine S as a virtual scaffold, as de-
picted in Figure 7. The unraveling of f(T ) reverses the
motion M(t) by considering M(1 − t) for t ∈ [0, 1], but
rather than progressing through the continuum of flat states,
the motion unfurls on the surface S. Thus, at each time t,
we are composing the folded state (f, λ) with M(1 − t).
The geometry of this composition is simply f ◦ F (1 − t).
The subset-nesting property from Lemma 1 ensures that f

is applied only within its domain P . The ordering λt(p, q)
is defined as Λ(1 − t)(p, q) when that is defined and as
λ(F (1− t)(p), F (1− t)(q)) when that is defined. (Note that
at most one of these two alternates is defined; if Λ(1−t)(p, q)
is defined, then F (1 − t)(p) = F (1 − t)(q), so λ(F (1 −
t)(p), F (1 − t)(q)) is undefined.) The noncrossing of this
composed state follows from the noncrossing of both (f, λ)
and M(1 − t). At the end we have continuously folded P

into (f, λ). �

Corollary 3 The configuration space of well-behaved
folded states is connected.

Bounding the number of steps (and even defining what
constitutes a “step”) in the motion from the flat P to the
folded state f remains for future consideration.
Acknowledgments. We thank Piyush Kumar and Alan Saalfeld for
early discussions that inspired the main result of this paper.

References.
[DM01] E. D. Demaine and J. S. B. Mitchell. Reaching folded

states of a rectangular piece of paper. In Proc. 13th Cana-
dian Conf. Comput. Geom., pp. 73–75, 2001.

[Jus94] J. Justin. Towards a mathematical theory of origami. In
Proc. 2nd Internat. Meeting of Origami Science and Sci-
entific Origami, pp. 15–29, 1994.

[PW01] H. Pottmann and J. Wallner. Computational Line Geome-
try. Springer-Verlag, 2001.

4


