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Abstract

We study collections of linkages in 3-space that are interlocked in the sense that the
linkages cannot be separated without one bar crossing through another. We explore
pairs of linkages, one open chain and one closed chain, each with a small number
of joints, and determine which can be interlocked. In particular, we show that a
triangle and an open 4-chain can interlock, a quadrilateral and an open 3-chain can
interlock, but a triangle and an open 3-chain cannot interlock.
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1 Introduction

Consider a simple polygonal chain, either an open arc or a closed polygon, that is embedded
in 3-space. We view the vertices of the chain (except the endpoints of an open chain) as
universal joints, and the edges of the chain as rigid bars. We call a chain with k£ bars a
k-chain. A motion of the chain is a motion of the vertices that preserves the length of the
bars, and never causes bars to cross. In particular, a straightening of an open chain is a
motion that makes all joint angles become 180°. We say that a collection of disjoint, simple
chains can be separated if, for any distance d, there is a motion whose result is that every
pair of points on different chains has distance at least d. If a collection cannot be separated,
we say that its chains are interlocked. If a single chain cannot be straightened, we say that
it is locked.

It is known that a single, open chain in 3-space, having as few as 5 bars, can be locked [1,2].
Other classes of chains are known to be unlocked, but the complexity of deciding whether
a given chain can be unlocked is not known. One decision procedure applies the roadmap
algorithm for general motion planning [3,4], which runs in exponential time.

Our work is inspired by a question posed by Anna Lubiw [5]: Into how many pieces must a
chain be cut so that the pieces can be separated and straightened? This problem is motivated
by protein molecules, which can be modeled by polygonal chains, and, according to some
theories, temporarily split apart in order to reach the minimum-energy folding.

We can observe easy upper and lower bounds for Lubiw’s problem: some n-chains require
cutting at least |(n — 1)/4] vertices for separation, and no chain requires cutting of more
than | (n — 1)/2] vertices. The lower bound is obtained by concatenating many copies of the
5-bar “knitting needles” example from [1,2], each sharing one bar with the next as in Fig. 1.
Observe that each copy of the locked 5-bar chain must have one of its four interior vertices
cut. The upper bound is obtained by cutting every second joint of a chain, and observing
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Fig. 1. An n = 17 bar chain that requires cutting at least |(n — 1)/4] = 4 vertices to separate.

that the resulting 2-bar pieces (“hairpins”) can be rigidly separated arbitrarily far by dilating
from a point, because the pieces are starshaped sets. This separation motion dates back at
least to de Bruijn in 1954 [6], where he used it to prove separability of convex objects;
the same motion was shown to apply to the more general situation of starshaped objects
by Dawson in 1984 [7], and the algorithmic side of this result is described by Toussaint in
1985 [8]. See also [9].



While Lubiw’s problem motivated our original interest in interlocked open chains, we explore
here interlocking for combinations of open and closed chains. In the next section, we resolve

how many bars are needed by each chain in order to obtain an interlocked pair, as summarized
in Table 1.

Sec Chain 1 Chain 2 Result

2 | closed triangle open 3-chain | Cannot Interlock
3.1 | closed triangle open 4-chain Can Interlock
3.2 | closed quadrilateral | open 3-chain Can Interlock

Table 1

Our results on when an open chain and a closed chain can interlock. A claim that a k-chain can
interlock holds also for any [-chain with [ > k, and a claim that a k-chain cannot interlock holds
also for any [-chain with [ < k.

2 Triangle and 3-chain Cannot Interlock

We begin by showing that a triangle and a 3-chain cannot interlock. As we will see later,
this is in some sense a maximal non-interlocking configuration.

Theorem 1 An open 3-chain cannot interlock with a triangle.

PROOF. We follow this notation: Aabc lies in plane H, and the 3-chain C' has vertices
(po, P1, P2, p3) and bars (lg, [1, l2). First assume C'is not planar; otherwise, make C' nonplanar
by a small motion. Let L; be the support line of [; and define points ¢; = L; N H.

(1) Bar [; intersects the closed Aabe. In this case, it is possible to move bar [y and bar [y
within the plane that it forms with [; so that the angle at the joint shared with [ is
arbitrarily close to either 0 or m, because one of the two wedges spanned by these two
motions does not intersect any other edge. Once both end bars have been moved to that
position, C' is arbitrarily close to a single bar which can be translated in the direction
Pﬁz

(2) Barl, does not intersect the closed Aabc. Because configuration C' is non-self-intersecting,
we can assume that the points {qo, p1, P2, ¢2} do not lie on a common plane, or equiva-
lently {qo, ¢1,¢2} are not collinear. Denote the line containing ¢y and ¢z by Qp2, as in
Fig. 2. In fact, for any position of {; such that (Ly N H) ¢ Qoz, the lines containing
qop1 and pyqy do not intersect, and do not intersect the edges of Aabc. Thus the mo-
tion that translates [; in a direction orthogonal to QQp2 and parallel to H, away from
Aabe, while maintaining Ly and L, through the original points ¢g and ¢, will avoid
self-intersection.

3 See http://www.cs.smith.edu/~orourke/Interlocked/ for an animation of this motion.



Fig. 2. Translate [; so that the point ¢; = L; N H moves away from (g 2. Keep the points gy and
g2 fixed in H, so that the lines Ly and L9 pivot about gy = Ly N H and g3 = Lo N H as [; moves.
This separates the 3-chain from Aabc.

3 Interlocked Examples and the Topological Method

Our two proofs that chains are interlocked follow a similar structure in what we call the
topological method. We imagine tying the two ends of the open chain with a long rope near
infinity, which defines a topological link (multicomponent knot) [10, p. 17]. For the two chains
to separate, they must form the trivial link (referred to as 0%; see later). First we show that
before this happens, the ends of the open chain must get close to the closed chain. Second
we argue that this proximity is impossible before changing the topology of the link. Finally
we prove that this circularity leads to a contradiction, so the chains are interlocked.
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Fig. 3. The first few two-component links.

To make connections to known mathematics for links, we will refer to some links by their
numbers from standard tables. See [10, p. 287] or [11, p. 1086]. Tables of links are often



organized by (minimum) crossing number. The superscript in the link notation is the number
of components, for us always 2. The subscript is an arbitrary table index. See Fig. 3 *.

3.1 Triangle and 4-chain

We begin with the configuration illustrated in Fig. 4.

Theorem 2 A triangle can interlock with a 4-chain.

PROOF. We choose the following notation for the configuration of Fig. 4: A triangle abc
lies in a plane H, with HT the halfspace above and H~ the halfspace below H. Let the
circumcircle of Aabc have center o, and radius 7.

The 4-chain alternates points and bars py, lg, p1, l1, ..., [3, p4 with the following placements:
po is in H —, bar [y crosses the interior of Aabc, and ends at a point p; above o. Bar [; crosses
the interior of Aabc again, so ps € H . Bar l5 crosses H outside of Aabc, and I3 crosses the
wedge formed by Iy and [; above H. So {po,p2} C H™ and {p1,ps,ps} C H.

C

Fig. 4. A triangle and a 4-chain can lock.

Let R be the real number r + |l1| + |l2], and set the length of Iy and I3 to 20R. Consider the
open ball B of radius 15R, and the ball B’ of radius 4R, both centered at o. Initially, py and
p4 lie outside of B, while a, b, ¢, p1, po and p3 all lie inside B’ C B. As long as py and p, stay
outside B and all other vertices stay inside B, we can attach a sufficiently long unknotted
string between p, and ps that remains outside B, and thus is never crossed by any of the
bars, and our configuration is equivalent to the link 5?. The non-interlocked configuration
corresponds to two separable unknots 0%, so any motion separating this configuration would
require py or ps to enter the ball B or py, ps, or p3 to leave B.

Consider the first event when any p;, ¢ = 0,...,4 touches the boundary of B. Then before
or at that event, points p;, p» and p3 must be out of B’ but still inside B: When p, touches

4 link images produced by Robert Scharein’s knotplot program
http://www.cs.ubc.ca/nest/imager/contributions/scharein/KnotPlot .html.



B, point p; must be exterior to B’ by at least R, and therefore p, and p3 are also exterior to
B'. See Fig. 5. The same applies for when p, touches the boundary of B. When any one of
p1, P2 or ps touches the boundary, the other two are at least at a distance 14R from o and
so are outside of B’. Since we consider the first such event, there must be an instant before
that when all three points are outside B’ but still inside B.

Fig. 5. When pj touches B, point p1, ps and p3 must be exterior to B’.

At this time, the only elements possibly inside B’, besides Aabc, are the two bars [y and [3.
Then either one of [y and I3 crosses the interior of Aabe, or both do, or neither do. The first
case corresponds to a link 2% and the third case to two separable unknots 0%; neither of these
are equivalent to our starting configuration (in the knot theoretical sense). Since the rope
and the bars have not crossed, the topology of the configuration cannot have changed and
so these cases lead to a contradiction.

The case in which both [y and I3 cross Aabc requires a careful analysis. Because end vertices
po and p, are still outside of the open ball B, we can replace the string joining them by
a great arc v on the boundary of B. Let 1" be the plane parallel to [, and /3, and passing
through o. Consider the orthogonal projection of the 4-bar linkage onto 7'. Note that in the
projection, the lengths of bars [, and [3 are preserved, and all other segment lengths are at
most their original lengths. Let ¢y be the intersection of [y and plane H. The triangle Aabe
is contained in a ball of radius 2R centered at ¢y, and joints p;, po and ps lie in a ball of
radius R centered at p;. Since p; is outside B’ and ¢q is inside the circumcircle of Aabe,
the distance between those two points is larger than 3R, and that distance is preserved in
the projection. Thus, the projections of the two balls are disjoint and we can separate the
projections of py, p, and ps from the projections of py, p, and Aabe by a line (This separation
is necessary to exclude cases such as the one shown in Fig. 6.), and the two bars ; and [,
can be replaced by a single bar joining p; and p3 without changing the topology of the link.
By enumerating all possible above/below combinations for the crossings in that projection,
we can infer that configuration is equivalent to 0%, which is two separated, unknotted links,
or to 42, which is shown in Fig. 7. But neither of these are topologically equivalent to our
starting configuration, so this first event could never happen.



Fig. 7. The link 42, formed when bars [y and [3 both pass through the interior of Aabe. (Not to
scale; gray segments indicate omissions.) Joints {p1,p2,ps} can be separated from {a,b,c,po,ps}.

Note that a similar argument can be used to show that the chains in Fig. 6 are interlocked
as well.

3.2 Quadrilateral and 3-chain

In the following, we will use what is known as the linking number of a two component link.
We first arbitrarily orient both components of the link. Then each crossing drawn in the
projection of the link has one of two types, associated with a value +1 or —1. See Fig. 8.
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+1 ~1 Link(52) = 0

Fig. 8. Sign of a crossing.



The linking number of the link is half the sum of the values of all crossings between the
different components; crossings of a component with itself are not counted. For example,
the link 5% has 5 crossings, but only four of them involve both components. The sum of
the values of the four crossings is 0, which yields a linking number of 0. Note that if the
orientation of one of the components is reversed, then the linking number is negated. It can
be proved using some elementary knot theory that the linking number of an oriented link is
an invariant, that is, it has the same value for all drawings of the oriented link [10, p. 21].

Theorem 3 A 4-gon can interlock with a 3-chain.

PROOF. Let the 4-gon be abed, and again use (ly,ly,l3) and (pg, p1, pe, p3) to represent
the bars and vertices of the 3-chain. Starting with the configuration of Fig. 9, let R =
lab| + |be| + |ed| + |I1] and set the length of Iy and I, to 20R. Consider the open ball B of
radius 15R, the ball B’ of radius 4R, and the ball B” of radius R, all three centered at a.
As in the previous proof, we connect py to p3 by a string exterior to B. The resulting link is
now 62. We again argue that in order to separate the 4-gon from the 3-chain, py or p3 has to
enter the ball B or p; or py have to leave B. Before that, there must be an instant when p
and ps are still outside B, p; and p, are still inside B but out of B’, and the only elements
possibly inside B’, besides abcd, are the two edges [y and [5.
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Fig. 9. A quadrilateral and a 3-chain can lock.
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If neither [y nor I, intersects B”, then the configuration is the link 02, contradicting that the
topology cannot have changed. If one of the two end bars, say [y, intersects B”, let ¢y be a
point of [N B". We project the configuration onto a plane parallel to [y and I, preserving the
distances along those two bars. As in the previous proof, because the length of the segment
qop: is preserved in the projection, only the interiors of [y and [, can intersect the projection
of B”. This implies that the linking number of the configuration will be the sum of the
values induced by [y and abed, and the values induced by [y and abed, divided by 2. Notice
that the total of the values induced by a straight edge and a 4-gon is at most 2, and so the
linking number of the configuration is at most (2+2)/2 = 2. But the linking number of 6% is
3. Because the linking number is an invariant, the topology of the configuration must have
changed, a contradiction.



4 Open Problems

Many open problems remain in the context of interlocking pairs of open chains, which have
close connections to the motivating problem of Lubiw. For each value of ¢, what is the
smallest j for which an ¢-chain can interlock with a j-chain?

The topological method of Theorems 2 and 3, where we used a “rope” to close one open
chain to form a topological linkage, does not easily extend to pairs of open chains. Two ropes
would be needed, and their potential interactions would need to be controlled. To extend
this work, therefore, we will be investigating a geometric method that establishes a collection
of geometric facts and shows that there can be no first violation. We believe that we can use
such a method to establish three conjectures: that a 3-chain can interlock with a 4-chain,
that three 3-chains can interlock, but that two 3-chains cannot interlock even in the presence
of any finite number of 2-chains.

The proof of Theorem 3 depends upon a tetrahedron formed by the 4-gon, and does not show
that a 3-chain and a k-gon can interlock for any £ > 4. In fact, adding any small edge to the
4-gon would allow the 3-chain to escape. On the other hand, our conjecture that a 3-chain
can interlock with a 4-chain, once established, would imply that a 3-chain can interlock with
a k-gon for any k > 5 by connecting the endpoints of the 4-chain with one or more edges.

Chains that model physical objects, such as robot arms or protein backbones, often have
restrictions placed on the motion of a joint. There are a number of interesting problems for
open and closed chains under various restrictions on motions. For example, we conjecture
that a rigid, open 3-chain can interlock with a flexible, open 3-chain.
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