
GEODESIC HAM-SANDWICH CUTS∗

Prosenjit Bose† Erik D. Demaine‡ Ferran Hurtado§ John Iacono¶ Stefan Langerman‖

Pat Morin∗∗

ABSTRACT. Let P be a simple polygon with m vertices, k of which are reflex, and which contains r red
points and b blue points in its interior. Let n = m + r + b. A ham-sandwich geodesic is a shortest path in P
between two points on the boundary of P that simultaneously bisects the red points and the blue points. We
present an O(n log k)-time algorithm for finding a ham-sandwich geodesic. We also show that this algorithm
is optimal in the algebraic computation tree model when parameterizing the running time with respect to n
and k.

1 Introduction

Let R,B ⊆ R
2 be two finite point sets of sizes r and b, respectively. We call the elements of R the red points

and the elements of B the blue points. The (2-dimensional) ham-sandwich theorem (for point sets) states
that there always exists a line L such that each of the two open halfplanes bounded by L contains at most
r/2 red points and at most b/2 blue points.1 We call such a line a ham-sandwich cut.

Megiddo [17] showed that, if the sets R and B are linearly separable (there exists a line that sepa-
rates R from B) then a ham-sandwich cut can be found in O(n) time. Edelsbrunner and Waupotitisch [8]
modified Meggido’s method and obtained an O(n log n) time algorithm for the general case. Lo and Steiger
[15] finally settled the problem by giving an O(n) time algorithm for computing a ham-sandwich cut of two
arbitrary point sets in the plane.

The problem of computing ham-sandwich cuts in d dimensions, d ≥ 3, has been considered by Lo
et al [14]. Several generalizations of planar ham-sandwich cuts have also been proposed [1, 2, 3, 10, 11].
Particularly relevant to the current paper is the algorithm of D́ıaz and O’Rourke for computing a ham-
sandwich cut of two simple polygons [6].

In this paper we generalize the notion of ham-sandwich cuts to polygonal domains. In particular, we
consider the problem of computing ham-sandwich cuts in (rather than of) a polygonal domain. Let P be a
simple polygon with m vertices and that contains the sets R and B in its interior. A geodesic is a shortest path
in P that joins two points on the boundary of P . We show that there always exists a geodesic that has at most
r/2 red points to its right and left sides and at most b/2 blue points to its right and left sides. (See Figure 1.)
We call such a geodesic a ham-sandwich geodesic. We give an O(n log k) expected-time randomized algorithm
for finding a ham-sandwich geodesic and prove that this is optimal in the algebraic computation tree model.
Here, and throughout the remainder of the paper, n = m + r + b and k is the number of reflex vertices of P .
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1The full ham-sandwich theorem is much more geneneral: Let S1, . . . , Sd be bounded measurable subsets of Rd. The ham-sandwich

theorem states that there exists a hyperplane h that divides each Si into two subsets of equal measure [19].
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Figure 1: A ham-sandwich geodesic with r = 8 and b = 10.

Note that our algorithm is a strict generalization of the algorithm of Lo and Steiger since, in the
case of a convex polygon, the polygon plays no role and we are simply looking for a ham-sandwich cut of
R and B. The main tools used in our algorithm are randomized prune and search [16] and a new duality
for points in polygons. We expect that our new duality will find other algorithmic applications. In particular,
we believe that it will allow many results on points and lines in the plane to be generalized to points and
geodesics in simple polygons.

The remainder of the paper is organized as follows: In Section 2 we describe an O(n log k) time
algorithm for computing a ham-sandwich geodesic. In Section 3 we prove that this algorithm is optimal in
the algebraic computation tree model.

2 The Algorithm

We say that a geodesic bisects a set of n points if it has at most n/2 points on each side. A ham-sandwich
geodesic is a geodesic that has at most r/2 red points on its left or right and at most b/2 blue points on its left
or right. That is, a ham-sandwich geodesic simultaneously bisects both the red set R and the blue set B. In
this section we show how to compute a ham-sandwich geodesic in O(n log k) time.

Throughout this section, we use the following notations: For two points p and q on the boundary
of P , pq denotes the geodesic joining p to q and [pq] denotes the polygonal chain traversed by walking
counterclockwise on the boundary of P beginning at p and ending at q. We will also make the following
general position assumption: No three input points (red points, blue points and vertices of P ) are collinear.
Finally, to save wear and tear on floors and ceilings we will assume that r and b are both even.

Our algorithm for computing a ham-sandwich geodesic is quite complex and requires several appli-
cations of the prune-and-search paradigm [16]. Some of these applications operate on the reflex vertices of
P while others operate on the point sets R and B. The outline of our algorithm is as follows:

1. We preprocess P , R and B so that, for any geodesic pq, we can report, in O(n) time, the points in R
and/or B to the right of pq. This preprocessing takes O(n log k) time.

2. We find two geodesics wy and xz such that

(a) w, x, y and z appear in that order as we traverse the boundary of P counterclockwise,

(b) wy and xz both bisect the blue set B,

(c) wy has at least r/2 red points on its right, and

(d) xz has at most r/2 red points on its right.
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Figure 2: The set of points {w, x, y, z} on the boundary of P .

(Refer to Figure 2.) Lemma 1 (below) shows that there must exist a ham-sandwich geodesic pq with
p ∈ [wx] and q ∈ [yz].

3. We perform O(log k) rounds of pruning during which we reduce the number of reflex vertices in the
two chains [wx] and [yz]. During each round, we reduce the number of reflex vertices in these two
chains by a constant factor. This process terminates when [wx] and [yz] are both convex chains. Each
round runs in O(n) time and there are O(log k) rounds, so this step runs in O(n log k) time.

4. We now have a problem of computing a ham-sandwich geodesic pq where p and q are constrained to
lie on two convex chains. Using a further prune-and-search step, we reduce this problem, in O(n log k)
time, to the problem of computing a ham-sandwich geodesic in a polygon having at most 6 vertices,
with two vertical sides and 2 reflex vertices. The points p and q are constrained to lie on the two
vertical sides.

5. We define a point-geodesic duality that allows us to apply the linear-time planar ham-sandwich algo-
rithm of Lo and Steiger [15] to find a ham-sandwich geodesic in this constant-sized polygon in O(n)
time.

The correctness of this algorithm depends on the following result:

Lemma 1. Let P be a simple polygon containing a set R of r red points and a set B of b blue points and let
w, x, y, and z be four points on the boundary of P that satisfy Conditions 2a-2d above. Then there exists a
ham-sandwich geodesic pq with p ∈ [wx] and q ∈ [yz].

Proof. The proof is by a continuity argument. Begin by setting p = w and q = y. We can move p and q
continuously and counterclockwise on the boundary of P while maintaining the invariant that pq bisects B.
This movement can be accomplished in such a way that we reach a state where p = x and q = z. Thus,
during this motion the geodesic pq goes from having at least r/2 red points to its right (when p = w and
q = y) to having at most r/2 red points to its right (when p = x and q = z). Since the motion is continuous
there must therefore be some point at which the geodesic pq has at most r/2 red points to its right and at
most r/2 red points to its left. This geodesic is a ham-sandwich geodesic with p ∈ [wx] and q ∈ [yz], as
required.

In the next 5 subsections we explain the 5 steps of our algorithm in greater detail.

2.1 Preprocessing

Given a polygon P and a finite point set S ⊂ P we would like to preprocess P and S so that, for any geodesic
pq, we can report, in O(n) time, the subset of S to the right of pq. To do this, we partition P into convex
pieces P1, . . . , P`, ` = O(n), to obtain a convex partition. With each piece Pi we store a list Li of the points
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in S contained in Pi. The geodesic pq can be computed in O(n) time [13] and it defines three types of pieces:
(1) The pieces completely to the left of pq, (2) the pieces completely to the right of pq and (3) the pieces that
intersect pq. Note that each type 3 piece intersects pq only in a single line segment (otherwise pq would not
be a shortest path). Therefore, by walking in the convex subdivision along the path pq, we can classify each
Pi as type 1, 2, or 3. Furthermore, for each type 3 piece Pi we can compute which points of Li are to the
right of pq simply by testing them, one at a time, against the supporting line of the segment pq ∩ Pi. Thus
we can count the number of points to the right of pq in O(n) time.

What remains is to show how we partition P into the convex pieces and to determine which piece
each element of S falls into. First we observe that if k > n1/3 then n log k = Ω(n log n). In this case, we can
triangulate P in O(n) time and use planar point location to determine which triangle contains each point of
S in O(n log n) = O(n log k) time. Therefore, we may assume that k ≤ n1/3.

To partition P we shoot upwards and/or downwards vertical rays from each reflex vertex into the
interior of P . These rays partition P into ` = O(k) convex polygons and this convex partition can be
computed in O(n) time using Chazelle’s trapezoidal decomposition algorithm [5]. Next we must determine,
for each point in S, which of the pieces contains it. This presents some difficulty since P1, . . . , P` form a
planar subdivision that may consist of Ω(n) edges so using straightforward data structures for point location
would require Ω(n log n) time in the worst case. Instead, we compute a planar subdivision of size O(k2) such
that locating a point of S in this subdivision is sufficient to determine which piece Pi contains that point.

For each piece Pi, we compute the perpendicular bisector of Pi with every other piece Pj , i.e., the
perpendicular bisector of the segment joining the two closest points on Pi and Pj . Each such bisector can
be computed in O(log n) time using Edelsbrunner’s binary search procedure [7]. Clearly a point p ∈ P is
contained in Pi if and only if p is on the same side of each of these O(k) lines as Pi. Thus, determining if
p is contained in Pi involves determining if P is in a convex polygon with O(k) vertices. The total time to
compute all these O(k) polysons is O(k2 log n).

By doing this for each Pi, we obtain O(k) disjoint convex polygons each of size O(k). We can,
in O(k2 log k) time preprocess this set of polygons for point location so that we can answer point location
queries in O(log k) time per query. Thus the total preprocessing time is

O(n + k2 log n + k2 log k + n log k) = O(n log k)

for k ≤ n1/3.

To summarize, we partition P into O(k) convex pieces. From these pieces we derive a planar sub-
division of size O(k2) such that, locating a point in this subdivision is sufficient to determine which piece
the point lies in. We then locate each point of S in this arrangement in O(log k) time per point, for a total
running time of O(n log k). Once this is done, we can determine the subset of S on the right side of a query
geodesic in O(n) time by walking in the subdivision consisting of the O(k) convex pieces.

2.2 Finding a Blue Bisector

To initialize the iterative phase of our algorithm, we need to partition the boundary of P into two chains
[wx] and [yz] such that there exists a ham-sandwich cut with one point on [wx] and one point on [yz]. One
way to do this is to find a geodesic pq that bisects B, i.e., that has exactly b/2 blue points to its right. Suppose
pq has r′ ≥ r/2 red points on its right side. Then the reverse geodesic qp has r − r′ ≤ r/2 red points on
its right side. Thus, setting w = z = p and x = y = q is sufficient to initialize the algorithm. Therefore, to
initialize the algorithm all we need is to show how to compute a geodesic that bisects B.

We will present an algorithm that, given any point p on the boundary of P , finds a point q such
that the geodesic pq bisects B. This algorithm will be an oft-used subroutine in subsequent phases of our
algorithm, so we require that it has a running time of O(n). The algorithm we present is based on the
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randomized linear-time median finding algorithm of Floyd and Rivest [9] with the simplification presented
by Motwani and Raghavan [18, Section 3.3].

Observe that, for each point q′ ∈ B we can obtain a geodesic by extending the last edge of the
shortest path from p to q′ until it hits the boundary of P . These kinds of geodesics are totally ordered by the
“to the right of” relationship and the bisector pq that we are looking for is defined by the median q′ in this
total order. Thus, we are concerned with finding the point q′.

To find this median point q′ we begin by computing the shortest path tree from p to every vertex of
P in O(n) time using the funnel algorithm of Chazelle [4] and Lee and Preparata [13]. We then augment
this tree by extending each edge that joins a parent vertex to a child vertex in the direction of the child
until it hits the boundary of P (see Figure 3). The result is a partition of P into triangles that we call the
augmented shortest-path partition. We then preprocess the augmented shortest-path partition in O(n) time
using Kirkpatrick’s algorithm [12] so that point location queries can be answered in O(log n) time.

p

Figure 3: The augmented shortest path partition for a point p. Edges added during the augmenting step are
dotted.

Next, we choose a random sample B′, with replacement, of size b3/4 from B. We then locate, in
O(n3/4 log n) time, each point of B′ in the augmented shortest path partition. Observe that each triangle
t in the augmented shortest path partition has one vertex that is either a reflex vertex of P or is the point
p. We call this vertex the parent vertex of t and of all points contained in t. For each point of our sample
B′, we find its parent vertex and draw a line segment from the parent vertex through the sample point and
intersecting the opposite edge of t. (See Figure 4.) In this way, we obtain a tree that contains, for each point
y in B′, a geodesic from p that passes through y. Note that these b3/4 geodesics (and their defining points)
are totally ordered by the “to the right of” relationship and they are easily sorted according to this order in
O(n + b3/4 log b) time by traversing the shortest path tree and sorting the blue points joined to each parent
vertex.

p

Figure 4: Computing a tree that contains a geodesic from p through every point of B′.

From the set B′ we can select the two points a and b that define geodesics ga and gb with ranks
b3/4/2− b1/2 and b3/4/2 + b1/2, respectively. That is, ga has b3/4/2− b1/2 points of B′ to its right and gb has

5



b3/4/2+ b1/2 points of B′ to its right. Let B′′ be the subset of B that is between ga and gb i.e., the points of B
that are simultaneously the left of ga and to the right of gb. With exceedingly high probability, the following
two statements are true [18]: (1) |B′′| ≤ 4b3/4 +2 and (2) B′′ contains the median point q′ we are searching
for. Furthermore, both these conditions can be checked in O(n) time by counting the number of points in B
to the right of ga and of gb and the algorithm can be restarted if either of the conditions is not met.

Thus, we need only search for the point q′ in the set B′′. In O(n) time, we can compute the number,
b′, of points in B to the right of ga. The element q′ that we are looking for is the element whose rank in B′′ is
b/2− b′. But, since |B′′| = O(n3/4) we can easily find the element q′ in O(n + b3/4 log n + b3/4 log b) = O(n)
time by locating the elements of B′′ in the augmented shortest path partition and then sorting them.

To summarize, we take a random sample B′ of B of size b3/4 and sort this sample by the “to the
right of relationship.” From this sample we select two points a and b that define geodesics ga and gb such
that the set B′′ ⊆ B contained between ga and gb has size O(n3/4) and one of the points in B′′ is the point
q′ that defines our bisector. We then sort B′′ by the “to the right of relationship” to find the point q′. Each
step takes O(n) expected time, so the entire cost of finding a bisector of the blue set with one endpoint on
p is O(n). Finally, we observe that this algorithm generalizes in a straightforward way to an algorithm for
finding a bisector with one endpoint on p, that has exactly i points of S to its right, for any 0 ≤ i ≤ |S|.

2.3 Pruning Reflex Vertices

To reduce the number of reflex vertices on the chains [wx] and [yz], we simply determine which of these two
chains contains more reflex vertices by counting them. We then take p to be the middle reflex vertex on this
chain and compute a bisector pq of B with one endpoint on p (q will be on the other chain). Depending on
the number of red points to the right of pq (which can be counted in O(n) time) we then either set w = p
and z = q or set x = p and z = q, as appropriate, in order to maintain Conditions 2a-2d. This takes O(n)
time using the algorithm of the previous section and reduces the number of reflex vertices in the two chains
[wx] and [yz] by a constant factor. Therefore, in O(n log k) time we arrive at a state when [wx] and [yz] are
convex chains, i.e., they contain no reflex vertices of P .

2.4 Fat and Skinny Funnels

At this point, we have reduced the problem of computing a ham-sandwich geodesic to that of finding a
ham-sandwich geodesic where the endpoints of the geodesic are constrained to lie on the two convex chains
[wx] and [yz]. This means that the ham-sandwich geodesic is constrained to lie in the funnel to the left of
the geodesic xy and to the right of the geodesic wz. There are two types of funnels: A fat funnel has, as
its boundary, two convex chains and two reflex chains (Figure 5.a). A skinny funnel consists of a polygonal
chain joining two polygons. The boundaries of each of these polygons consist of two reflex chains and one
convex chain (Figure 5.b).

w

x y

z

E1

E2

h1
h2

w

x
y

z

(a) (b)

Figure 5: Two funnels: (a) a fat funnel and (b) a skinny funnel.
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First we observe that, in both the skinny and fat cases, the convex vertices of the two chains [wx]
and [yz] become irrelevant. This is because we are only interested in geodesics with one endpoint on each
convex chain and such geodesics can be described simply by listing their interior edges and the slopes of
their first and last edges. Using this representation, we can preprocess a funnel using a slight variation on
the algorithm of Section 2.1 so that, after O(k + r + b) preprocessing we can count the number of red and/or
blue points on the right side of a query geodesic in O(k + r + b) time. (Recall that a funnel has at most k
reflex vertices.)

For both skinny and fat funnels we will also be able to ignore any points of R ∪ B that are not
contained in the funnel. Note that these points are either to the left of every geodesic contained in the
funnel or to the right of every geodesic contained in the funnel, and we can count the number of points of
each type in O(n) time. This leaves us with a generalized ham-sandwich problem of finding a geodesic pq
having exactly r′ points of R on its right and exactly b′ points of B on its right. We know such a geodesic
exists because wy has at least r′ red points to its right and xz has at most r′ red points to its right and both
wy and xz have exactly b′ blue points to their right.

2.4.1 Skinny Funnels

To treat the case of a skinny funnel, we apply prune and search to the sets R and B. Note that a skinny
funnel consists of two ends E1 and E2 each of which is a polygon whose boundary is made up of two reflex
chains and one convex chain. These ends each have heads h1 and h2, respectively, that are the common
vertices in the two reflex chains. (See Figure 5.b.) All the geodesics we are interested in pass through the
heads of both ends.

Suppose, without loss of generality, that |B| ≥ |R|. To execute a pruning step we first choose a
random point p′ from B. Suppose, again without loss of generality, that p′ is contained in E1. Note that all
geodesics that contain p′ take the same path through E1. Thus, the number of points in E1∩B to the right of
any such geodesic is fixed. Call this number b1. We would like to find a geodesic through p′ that has exactly
b′ blue points to its right, but such a geodesic is not guaranteed to exist. In particular, such a geodesic will
not exist if and only if b1 > b′ or |E2 ∩ B| < b′ − b1. However, in these cases we can discard the points of
E1 ∩ B to the left, respectively right, of the geodesic that contains h1 and p′. It is an easy exercise to show
that, because p′ is chosen at random from B, either case results in a positive constant fraction of B being
discarded with a positive constant probability.

If a geodesic does exist that contains p′ and has exactly b′ blue points to its right then we compute
this geodesic (call it pq) and count the number of red points on its right. As in Section 2.3 this count will
tell us that we can either remove from consideration the part of E1 to the left of pq and the part of E2 to the
right of pq or vice-versa. In either case, we can discard the elements of B that lie in these regions. As before,
it is an easy exercise to show that either case results in a positive constant fraction of B being removed with
positive constant probability.

The above pruning step runs in O(k + r + b) time and reduces r + b by a positive constant fraction
with positive constant probability. It follows that the expected time to reduce r + b to a small constant is
O(k log n + n) = O(n log k), at which point the ham-sandwich cut can be computed in O(k) time using a
brute-force algorithm.

2.4.2 Fat Funnels

Next we show how to treat the case of a fat funnel. Note that this case is still far from trivial since it
generalizes the linear-time algorithm for computing ham-sandwich cuts with lines in the plane (i.e., the case
k = 0). This problem was open for many years before it was finally solved by Lo and Steiger [15]. Our
strategy, therefore, is to further reduce the number of vertices of P until we reach a point where we can
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(almost) apply the algorithm of Lo and Steiger directly. So that we can meaningfully use terms like left,
right, above, and below we will assume, without loss of generality, that our fat funnel contains a horizontal
line segment with its left endpoint on [wx] and its right endpoint on [yz].

Suppose we have some finite sequence (w = p1), p2, . . . , (pd = x) of points on the chain [wx]. Then
we can perform binary search to find two points pi and pi+1 such that the geodesic piqi having exactly b′

blue points to its right has at least r′ red points to its right and the geodesic pi+1qi+1 having b′ blue points to
its right has at most r′ red points to its right. In other words, we can reduce our search for the left endpoint
of the ham-sandwich geodesic to the subchain [pipi+1]. Each step of this binary search can be implemented
in O(n) time using the algorithm of Section 2.2 so the total cost of this binary search is O(n log d).

Our goal is to reduce the complexity of the upper and lower reflex chains that make up our fat
funnel. In particular, we would like to reach a state where each of these chains has at most two edges. We
show how to handle the upper chain. The lower chain is handled symmetrically. Refer to Figure 6.a for what
follows. For each edge on the upper chain, we extend it to the left until it hits the chain [wx] in some point
pi. If it hits some other part of the funnel first then we ignore it. We also compute the intersection of the
cross tangent C having the upper reflex chain on its left and the lower reflex chain on its right with [wx].
Call the resulting set of points p1, . . . , pk′ , where p1 = w and pk′ = x. We then apply binary search to locate
the pair pi, pi+1 described in the previous paragraph. There are two distinct cases to consider:

p1 = w

p2

p3

p4

p5

pk′−1

pk′ = x

C

y

z

p4

p5

q′

w

x y

z q5
q4

(a) (b.1)

p4

p5

q′

w

x y

z

p′

q5

q4

p4

p5

q′

w

x y

z

q5

q4

(b.2) (b.3)

w

x y

z w

x y

z

(c) (d)

Figure 6: Reducing a fat funnel to a 6-gon by (a) extending the upper chain edges until they intersect [wx],
(b.1-b3) using pi and pi+1 to eliminate all but one reflex vertex of the upper chain, and (c-d) replacing the
two convex chains with vertical edges.
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1. i = k′ − 1, In this case we know there exists a ham-sandwich geodesic in the skinny funnel that
joins [pk′−1pk′ ] to [yz] and we can find this geodesic in O(n log k) time using our algorithm for skinny
funnels.

2. i < k′ − 1. Refer to Figure 6.b. In this case, the point pi+1 was generated by the (i + 1)st edge of
the upper chain. Extend this edge to the right until it hits some edge of the funnel. If it does not hit
chain [yz] then we know there exists a ham-sandwich geodesic contained in the skinny funnel that
joins [pipi+1] to [yz] and we can find it in O(n log k) time using our algorithm for skinny funnels.

Otherwise, the right-extension of the edge hits the chain [yz] in some point q′. There are three subcases
to consider depending on the relative locations of q′, qi and qi+1 on the chain [yz]:

(a) qi+1 and qi are above q′ (Figure 6.b.1). Then we know there exists a ham-sandwich geodesic
contained in the skinny funnel joining [pipi+1] to [qiqi+1] and we can find it in O(n log k) time
using our algorithm for skinny funnels.

(b) qi+1 is above q′ and qi is below q′ (Figure 6.b.2). Then we compute the geodesic p′q′ having
exactly b′ blue points below it (which will have its other endpoint p′ in [pipi+1]). If p′q′ has at
least r′ red points below it then there exists a ham-sandwhich geodesic in the skinny funnel that
joins [p′pi+1] and [q′qi+1] and we can find it in O(n log k) time. Otherwise, there exists a ham-
sandwhich geodesic in the funnel that joins [pip

′] to [qiq
′]. But this funnel has only one two edges

on its upper chain, as required.

(c) qi+1 and qi are both below q′ (Figure 6.b.3). In this case, the funnel joining [pipi+1] and [qiqi+1]
has at most one reflex vertex in its upper chain, as required.

By applying the above procedure to both the upper and lower chains we reach a state in which our
funnel has at most two reflex vertices, one on the upper chain and one on the lower chain. This funnel can
be further simplified since we already argued that the actual convex chains are not relevant, thus they can
be replaced with vertical edges as in Figure 6.c-d.

2.5 Lo and Steiger Revisited

We are now left with the problem of computing a ham-sandwich geodesic in a d-gon, for d ≤ 6. In this d-gon,
two of the edges are vertical and these two vertical edges are joined by reflex chains consisting of at most 2
edges each.

We wish to make use of the algorithm of Lo and Steiger [15] which is most easily described in the
dual. In the dual, their algorithm operates on a set of red lines and blue lines and finds an intersection
between the median level of the blue lines and the median level of the red lines. More generally, if we
provide their algorithm with two vertical lines L1 and L2 and two integers r′ and b′ such that

1. the intersection of the r′ level of the red lines with L1 is above the intersection of the b′ level of the
blue lines with L1 and

2. the intersection of the r′ level of the red lines with L2 is below the intersection of the b′ level of the
blue lines with L2

then their algorithm can find an intersection of the r′ level of the red lines with the b′ level of the blue lines
in O(n) time and the intersection found is between the vertical lines L1 and L2. In fact, their algorithm is
even more general; a careful inspection of their algorithm reveals that it works even when the input consists
of x-monotone pseudolines.2

2A set of x-monotone Jordan arcs are called pseudolines if any two elements of the set intersect in at most one point.

9



Our goal, therefore, is to find a dualization of points in the 6-gon to x-monotone Jordan arcs. It will
be easier to first describe the dualization of a geodesic. Recall that we are only interested in the interesting
geodesics which join one vertical edge of our 6-gon to the other. We can parameterize these two vertical edges
linearly so that any point on the edge is represented by a real number in the interval (0, 1). (See Figure 7
(left).) Therefore, any interesting geodesic g can be described by a pair of real numbers (gx, gy) that describe
the locations of the left and right endpoints of g, respectively, on the vertical edges. In our dualization, the
geodesic g dualizes to the point ϕ(g) = (gx, gy).

0

1 0

1

a
φ(a)

b

φ(b)

c

φ(c)

Figure 7: A 6-gon containing three points (left) and the dual of these three points (right).

The dual of a point p in our polygon is defined as follows: There is an infinite set of interesting
geodesics that contain p. Each of these geodesics g maps to a dual point (gx, gy) as described above. The
locus of all such points is a (weakly) x and y-monotone curve that joins two points on the boundary of
the unit square. (This latter property can be proved by showing that, if there is no interesting geodesic
containing w (respectively, x) and p then there is an interesting geodesic containing y (respectively, z) and
p.) To obtain ϕ(p) we extend this curve into a Jordan arc by attaching two rays whose slope is 1 (45◦).

Figure 7 shows an example 6-gon containing three points (left) and the dual of these three points
(right). The dashed lines in the right figure show the duals of the polygon’s two reflex vertices. This
dualization has the following properties:

1. For a point p, ϕ(p) consists of at most five line segments and can be computed in constant time.

2. For a point p, ϕ(p) is an x and y-monotone Jordan arc.

3. If a geodesic g is above (respectvely, below) a point p then the point ϕ(g) is above (respectively, below)
the Jordan arc ϕ(p).

4. For two points p and q such that the line through p and q is not collinear with either reflex vertex, ϕ(p)
and ϕ(q) have at most one point in common. I.e., a set of points dualizes to a set of pseudolines.

Property 3 above implies that our problem of finding an interesting geodesic with r′ red points below
it and b′ blue points below it is equivalent to finding an intersection of the r′ level in ϕ(R) with the b′ level
in ϕ(B). Properties 1, 2 and 4 imply that this intersection can be found in O(n) time using the algorithm of
Lo and Steiger. This completes the proof of:
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Theorem 1. Given a polygon P with m vertices, k of which are reflex, and containing a set R of r red points
and a set B of b blue points, with r + b + m = n, there exists a randomized algorithm that finds a geodesic pq
that simultaneously bisects R and B and runs in O(n log k) expected time.

3 An Ω(n log k) Lower Bound

In this section we show that the algorithm of the previous section is optimal when parameterizing the running
time only in terms of n and k. To prove this result, we start with a 1-dimensional problem that has an
Ω(n log k) lower bound.

Let G and Y be two sets of distinct integers. We call an element x ∈ Y odd (respectively, even) if
the number of elements of G less than or equal to x is odd (respectively, even). Let Yo denote the set of odd
elements in Y and let Ye denote the set of even elements in Y . From the work of Yao, it follows that testing
if |Yo| = |Ye| requires Ω(|Y | log |G|) time in the algebraic computation tree model. This is true even if the
elements of G (but not Y ) are given in sorted order. We refer to the problem of testing if |Yo| = |Ye| as the
COLORED-PARITY problem.

Given an instance of COLORED-PARITY we construct a ham-sandwich instance as follows (see Figure 8):
Our blue point set B will have |Y |+2 points. Of these points, |Y | are on the x axis and take their x-coordinate
from the elements of Y . Our polygon P has a series of |G| + 2 spikes through the x-axis such that the line
segment joining the tip of the ith spike to the tip of the (i + 1)st spike intersects the x axis at the ith value of
G. These spikes are skinny enough and placed so that they do not intersect any elements of G ∪ B. Such a
set of spikes is easy to compute in O(|G|) time because the elements of G ∪B are integers and the elements
of G are sorted. We then complete our polygon into a series of |G|+ 2 chambers as shown in Figure 8.

Figure 8: The lower bound input to a ham-sandwich algorithm.

Our two remaining blue points are placed in the (|G|+2)nd chamber in such a way that any geodesic
that separates them and enters another chamber must pass through the tip of the last spike. Finally, we place
two red points in the first chamber so that any geodesic that separates them and enters another chamber
must pass through the tip of the first spike.

Observe that, if we take a geodesic g that separates the two red points in the first chamber and
separates the two blue points in the last chamber, then the number of blue points above and below G is
|Ye| + 1 and |Yo| + 1, respectively. Furthermore, of all the geodesics that separate the two red points, only
those that separate the two blue points in the final chamber have this property. Therefore, a ham-sandwich
geodesic separates the two blue points in the final chamber if and only |Ye| = |Yo|. Thus, computing a ham-
sandwich geodesic and testing if it separates the two blue points in the final chamber is sufficient to solve
the COLORED-PARITY problem. Since this reduction can be accomplished in O(|Y |+ |G|) time and produces
a polygon with O(|G|) reflex vertices we obtain the following theorem:

Theorem 2. Given sets R of red points and B of blue points in a simple polygon P with k reflex vertices, finding
a ham-sandwich geodesic requires Ω(n log k) time in the algebraic computation tree model.
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