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Abstract

We analyze the computational complexity of various
rolling cube puzzles.

1 Introduction

Consider the simple rolling cube puzzle in Fig. 1(a). The
objective is to roll the die over all labeled cells of the
board such that the label on the top face of the die is
always the same as the label of the cell it lies on. The
die may be rolled between neighboring cells by tipping
it over along one edge that touches the board. The die
may not be rotated within the same cell.

(a) by Joseph O’Rourke (b) by Martin Demaine

Figure 1: Rolling cube puzzles posed at CCCG 2005 [3].

Rolling cube puzzles were popularized by Martin
Gardner in his Mathematical Games columns published
in Scientific American [4, 5, 6]. The problems he pre-
sented are due to Roland Sprague [9] and John Har-
ris [7]. More recently, Robert Abbott has posed rolling
cube puzzles in his books [1, 2].1 In the open-problem
session at CCCG 2005 [3], Joseph O’Rourke posed the
computational complexity of rolling cube puzzles like
the one in Fig. 1(a). During the discussion, Martin De-
maine developed the multiple-dice puzzle in Fig. 1(b).

In general, a rolling cube puzzle consists of one or
more dice, a board, a task, and a set of rules. A die is
a cube with (some) labeled faces. We consider the case
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of a standard die2, that is, a die with faces labeled 1 to
6 and with the labels on opposite sides adding up to 7.
There are two standard dice. They can be distinguished
by how the numbers 1, 2, and 3 are oriented with re-
spect to each other and are called either right-handed
or left-handed dice (Fig. 2). Here we use a right-handed
orientation. Rolling a tetrahedron has been studied by
Charles W. Trigg [10]. The board is a grid with (some)
labeled cells. Given a board, the objective is to roll the
die over the cells of the board to accomplish some task,
e.g., to visit all the labeled cells; sometimes we are given
a starting position of the die and an ending position. We
consider the case where all labeled cells must be visited.

In Section 2 we show that puzzles are easy (for a
computer, not for a human) if labeled cells may be vis-
ited several times. Thus we later concentrate on puzzles
where labeled cells must be visited exactly once. Cells
can be of three types: labeled, blocked, or free. Labeled
cells must be visited exactly once with the label ap-
pearing on the top face of the die being the same as
the label of the cell. Blocked cells cannot be visited by
the die. Free cells can be visited with any label on the
top face of the die and any number of times. We re-
strict ourselves to puzzles with one die, but puzzles can
also involve several dice as in Fig. 1(b). In Section 3
we prove that it is NP-complete to decide whether we
can roll a die over the labeled cells of a board that has
some free cells. This solves the open problem posed by
Joseph O’Rourke. Free cells seem to be essential for the
hardness of the problem; thus in Section 4 we present an
algorithmic approach to puzzles with no free cells, and
show that the solution to a puzzle with labeled (and
possibly blocked) cells is not necessarily unique. The
computational complexity of such puzzles remains open.
Due to space constraints we omit the proofs of various
results from this paper and refer the reader to the full
version of the paper (in the electronic proceedings).
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Figure 2: Right- and left-handed orientation.

2We have also considered puzzles with a two-colored die where
the task is to color as many cells as possible in one color; see the
full paper.
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Figure 3: (a–b): Die and board with 2-colored corners.
(c) U-turn and Z-turn.

2 Basic Properties

State Graph. The state graph has a vertex for each
possible state of the die and an edge for each possi-
ble transition between two states. A state consists of
a board position and the entire orientation of the die.
In particular, the state encodes which label is on the
top face, but even fixing this top label, there are four
possible orientations, defined by the label facing a fixed
side of the board. An edge of the state graph connects
vertices corresponding to adjacent cells on the board
for which it is possible to roll a die from one cell to
the other, respecting the orientations of the two states.
(Moves are reversible, so the graph is undirected.)

Parity Property. An important property of the state
graph is that its vertex set naturally falls into two parts
of equal size with no edges between the two parts. For
a labeled cell, only two of the four orientations need to
be considered if we restrict the die to one part of the
state graph. This corresponds to the parity property of
rolling cube puzzles [4].

In the following we look at this property in a differ-
ent way. We consider how a 2-coloring of the corners
of the cube induces a 2-coloring of the corners of the
board. We color the corners of the cube alternatingly
black and white as in Fig. 3(a). Rolling this cube over
the board generates one of two 2-colorings of the corners
of the board, i.e., a checkerboard pattern. One possible
2-coloring is shown in Fig. 3(b); the other is its comple-
ment with black and white exchanged. Consider a cube
with a given label on top. Each of the two possible 2-
colorings of the board is generated by two of the four
orientations of the cube. It is not possible to return to
a cell with the cube rotated by 90◦.

Changing Direction Twice. If the die changes direc-
tion twice, the label on its top face is either the same as
before or the opposite, depending on whether the last
turn was back or not. More precisely, suppose the die
starts with label x and rolls one cell in one direction,
then an arbitrary number of cells in an orthogonal di-
rection, and then one cell in the original or opposite
direction. Then the die shows the label x if the turn
was a U-turn, and 7−x if it was a Z-turn; see Fig. 3(c).
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Figure 4: Reduction of a grid graph to a labeled board
with blocked and free cells.

Rolling over Labeled Cells Multiple Times. Puzzles
where labeled cells may be rolled on several times can
be solved by checking the reachable part of the state
graph, starting at some initial state (or a set of possi-
ble initial states). Thus finding a rolling path for the
die corresponds to finding a sufficiently large connected
component in the state graph. The reachable part can
for instance be determined by a breadth first search of
the state graph. This implies the following proposition:

Proposition 1 When the labeled cells of a rolling cube
puzzle may be visited arbitrarily often, the puzzle can be
solved in polynomial time. The time needed is at most
linear in the complexity of the state graph.

We therefore restrict our attention to the case where
every labeled face must be visited exactly once.

3 Boards with Free Cells

In this section we show that solving puzzles on boards
with labeled, free, and blocked cells is NP-complete. We
then refine the proof to show that the problem remains
NP-complete with only labeled and free cells.

Free and Blocked Cells. We show NP-hardness by a
reduction from the Hamiltonian path problem in grid
graphs. An (induced) grid graph is an induced sub-
graph of the infinite grid graph that has vertices (i, j),
i, j ∈ Z, and edges between vertices of distance one.
Grid graphs are uniquely determined by their vertex set.
Detecting a Hamiltonian path or cycle in grid graphs is
NP-complete [8].

We sketch the reduction using the example in Fig. 4,
which shows a grid graph and the corresponding board.
For each vertex of the grid graph, the board has a la-
beled cell. For each edge of the grid graph, the board
has a free cell. The labeled cells are labeled alternat-
ingly with the labels 1 and 6. There is a Hamiltonian
path in the grid graph if and only if it is possible to roll
a die over the board such that it visits each labeled cell
exactly once.

Theorem 2 Deciding whether a die can roll along a
path or cycle over a board with labeled, blocked, and free
cells is NP-complete.
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Figure 5: Reduction of a grid graph to a labeled board
with free cells.

Free Cells. We now sketch a proof of how the above
reduction extends to the case without blocked cells. We
illustrate this by the example in Fig. 5. The leftmost
figure shows a 3 × 3 grid with 4 vertices and 4 “non-
vertices”. On the corresponding board in the middle
figure, vertices get the label 1 and non-vertices neighbor-
ing a vertex get the label 6. We label the cells between
the ones corresponding to vertices and non-vertices such
that a vertex is blocked in all four diagonal directions as
shown in the figure. So far it is only possible to either
roll over the 1-labels corresponding to vertices or to roll
over all other labels. In the first case it is possible to roll
over all 1-labels if and only if there is a Hamiltonian path
in the grid graph. To allow rolling over all labeled cells
(in the case of a Hamiltonian cycle) we introduce ex-
actly one “gate” into the construction. The gate allows
switching between the two sets of labels exactly once.
This addition is shown in the rightmost figure: for one
vertex on the boundary of the grid graph, we leave out
one set of labels diagonally blocking it. Moreover, we
add 6-labels halfway to both its neighbors. This guar-
antees that, if a die rolls over all 1-labels corresponding
to vertices, then the die starts and ends at the same la-
bel, and thus we obtain a cycle. Using this construction
we can prove the following theorem:

Theorem 3 Deciding whether a die can roll along a
path or cycle over a board with labeled and free cells is
NP-complete.

4 Boards without Free Cells

What happens when the board contains only labeled
and possibly blocked cells? It remains open whether a
polynomial-time algorithm can determine Hamiltonicity
of a board, even when all the cells are labeled and when
the labeling specifies the orientation of the die. In this
section we provide a discussion of the problem, with
the hope that our observations will lead to establishing
a result. On fully labeled boards the following simple
observation holds:

Observation 1 Hamiltonian cycles cannot be rolled on
fully labeled boards with an odd number of cells.

Eliminating and Cutting. Consider the version of the
problem where the labeled cells of the board also specify
full die orientation, and let G be the state graph induced
by such a board. First observe that, if G contains a
vertex of degree at most 2, then a Hamiltonian cycle has
only one way of visiting this vertex. Let a chain of the
state graph be a path where all vertices except the first
and the last have degree 2 and at least one vertex has
degree 2. Such chains are effectively forced : they must
appear in any Hamiltonian cycle. On the other hand, if
a vertex u has degree more than 2 but is connected to
two vertices of degree 2, then a Hamiltonian cycle will
visit u using the two edges connecting u to its neighbors
of degree 2. Based on these two observations, we define
two operations on state graphs: (1) Elimination: if a
vertex is incident to two forced edges, remove all other
incident edges. (2) Cutting : if the two endpoints of a
chain are also connected by an edge, remove the edge.
We apply these two operations exhaustively on G to
get a subgraph G′ with possibly fewer edges, and such
that G′ has a Hamiltonian cycle if and only if G does.
Observe that it is possible that G′ is not a grid graph.
The main question is whether G′ has properties that
enable us to determine its Hamiltonicity in polynomial
time.

One of the properties that differentiates state graphs
from grid graphs is that state graphs have forbidden
configurations. One example of a forbidden configura-
tion is a cycle of length 4 on a 2×2 grid. Other forbidden
configurations are the maximum cycles on 3×2 and 4×2
grids. In fact, the shortest cycle in the state graph has
length 8 and is the maximum cycle on a 3×3 grid. The
cycle with the next shortest length has 10 vertices on
a 5 × 2 grid. It turns out that these forbidden config-
urations disallow a large number of vertices of degree
more than 2 to be packed closely together in the state
graph. Let a blob of the state graph be a maximal set
of connected vertices each having degree at least 3. The
depth of a vertex v of a blob is the length of the shortest
path from v to a vertex that is adjacent to at least one
vertex of degree 2. The depth of a blob is the depth of
the vertex with maximum depth among all vertices of
the blob. We can show the following lemmata:

Lemma 4 The depth of every blob in a state graph is
at most 2.

Lemma 5 After applying the elimination and cutting
operations to every vertex of the state graph, the depth
of every blob in a state graph is at most 1.

Whether the bound on the depth of blobs in state
graphs is enough to determine its Hamiltonicity in poly-
nomial time remains unclear. We conjecture that it is:

Conjecture 1 On boards with labeled and possibly
blocked cells, rollable Hamiltonian cycles can be deter-
mined in polynomial time.
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Figure 6: A labeling of the board containing more than
one Hamiltonian cycle. The dark cells are blocked.

Uniqueness of Cycles? At first we conjectured that, if
a state graph contains a Hamiltonian cycle, then this cy-
cle is unique. If true, this property would possibly make
it easier to determine Hamiltonicity in polynomial time,
as it would increase the restrictions on the Hamiltonian
cycle if one exists. The conjecture, however, is false for
boards that contain blocked cells:

Observation 2 There are boards with labeled and
blocked cells in which rollable Hamiltonian cycles are
not unique.

The state graph in the example of Fig. 6 is composed
of two cycles of length 8, where each cell of the first cycle
is connected by a rollable path to a cell of the second. By
carefully connecting copies of the state graph induced
by the labeling of the board in Fig. 6, we can generate
a state graph containing multiple Hamiltonian cycles.
It is still unclear whether this counterexample leads to
a hardness proof, or whether it can be conquered by
dynamic programming. We believe the latter is the case.

It remains open whether non-uniqueness of Hamil-
tonian cycles holds for fully labeled boards. For such
boards we pursued the following two approaches: enu-
meration for small boards and constructing cycles from
corners. On small fully labeled boards we can test
uniqueness of Hamiltonian cycles by enumerating all
possible solutions by hand or by computer. To achieve
this, we first enumerate all Hamiltonian cycles on the
board; we then check whether the cycles are rollable,
that is, whether a die can be rolled along the cycle, gen-
erating a consistent labeling, and starting and ending at
the same state. For all rollable cycles, we check whether
they are uniquely rollable, that is, given a labeling ob-
tained by rolling a die along the cycle, we check whether
this labeling can also be obtained by a different cycle.

Observation 3 All rollable Hamiltonian cycles in fully
labeled boards with side lengths at most 8 are unique.

We explored how border obsessiveness (a term used
to describe a strategy for solving jigsaw puzzles) can be
applied to rolling cube puzzles. The following propo-

sition shows that this strategy works at least to some
extent. It can be proved by case analysis. Define the
k-neighborhood of a cell be all cells that can be reached
in k steps ignoring the labels of the cells.

Proposition 6 If a labeling of an n×n board admits a
Hamiltonian cycle, then the path of the die within the 3-
neighborhoods of the corners is unique (up to direction).
For n = 4, the rolling pattern at a corner is determined
by the 2-neighborhood of this corner. For n > 4, the
5-neighborhood determines the pattern.

Finding Long Rollable Cycles. Suppose we are given
a fully labeled board and we ask for a rollable cycle that
visits the maximum number of cells, without necessarily
visiting them all. We show that finding a maximum
cycle on a fully labeled board is NP-complete.

Theorem 7 Deciding whether a die can roll along a
cycle of length K over a board with labeled cells is NP-
complete, even given starting position and orientation.
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