
Conveyer-Belt Alphabet

Erik D. Demaine∗ Martin L. Demaine∗ Belén Palop†

Mathematics is often pursued purely for mathematical outcomes: theorems, proofs, open prob-
lems, conjectures. The open problems beg to be answered, and the quest to solve them is tantalizing
and difficult—sometimes provably impossible. When successful, solving a problem is extremely re-
warding, because mathematical proof offers (a small part of) the ultimate truth. But the pursuit
toward this truth is equally interesting, and the field becomes richer if we allow research on math-
ematical problems to produce all sorts of outcomes, from art to puzzles to design. By exploring
these connections between mathematics and diverse fields outside science, we see a new side to the
original problems, leading to inspiration and, hopefully, solution.

The first two authors have found this open-ended approach to be both productive and en-
joyable. Some examples are mathematical results in hinged dissection [DDEFF05, DDLS05] that
later inspired a new mathematical font design [DD03] and an interactive sculpture [DDP06]; study
of pleated origami that led to algorithmic sculpture [DDL99] and just recently culminated in a
mathematical surprise that the objects we worked with do not in fact exist as we thought them to
[DDHPT08]; study of curved-crease origami that led to sculpture at MoMA [DD08a] and architec-
turally relevant designs [KDD08]; pursuit of open problems in computational origami that remain
unsolved but have led to a series of puzzle designs [DD08b].

Here we describe one such open-ended exploration, on a mathematical problem of wrapping an
elastic loop around given wheels, and the mathematics, font design, and puzzles that resulted.

Conveyer-Belt Problem

Suppose we are given several disjoint disks pinned at their centers in the two-dimensional plane,
and a closed elastic band, as in Figure 1. We think of the disk as a wheel that can spin freely
around its center (but cannot otherwise move), and the band as a conveyer belt or rubber band,
modeled as a stretchable closed loop in the plane that, at rest, tries to contract its length. Now we
are asked to wrap the band around the disks in such a way that (1) the band touches every disk
and (2) the band is taut, unable to contract in length given the disk obstacles. (Refer to Figure 2.)
Equivalently, we want the band to wrap the disks so that rolling the band like a conveyer belt
simultaneously turns all of the disks like wheels. More specifically, if the band rolls clockwise in
the plane, then disks interior to the belt will rotate clockwise, while disks exterior to the belt will
rotate counterclockwise.

The central mathematical question here is “what arrangements of disks have this kind of proper
band wrapping?” Are there simple characterizations of when it is possible, or an efficient algorithm
to tell whether given disks have a proper band wrapping? This seemingly simple geometrical
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Figure 1: The input: Disks and an elastic band.

Figure 2: The goal: A valid wrapping of the elastic band around the disks.

problem has been posed by computational geometer Manuel Abellanas at several workshops, the
earliest being the 1st Taller de Geometŕıa Computacional in Cercedilla, Spain (2001), where the
third author learned of the problem, and the most recent being the Workshop on Computational
Geometry in Girona, Spain (2006), where the first author learned of the problem. The problem
also recently appeared in print [Abe08]. By now dozens if not hundreds of researchers know of the
problem, yet still surprisingly little is known.

The only result so far is that a proper band wrapping does not always exist. Javier Tejel and
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Alfredo Garćıa found the seven-disk example in Figure 3. Note that the disks have vastly different
sizes.

Figure 3: Seven disks of different sizes with no valid wrapping. [Javier Tejel and Alfredo Garćıa]

This example led Manuel Abellanas to pose the following more specific version of the conveyer-
belt problem: do equal-size disks always have a proper band wrapping? This question has tantalized
many researchers, and many attempts have been made to prove that the answer is “yes”, though
so far all have failed. Still, most conjecture that the answer is “yes”, despite our lack of algorithm
or proof.

Mathematical Quest

The authors met at M.I.T. in 2007 to discuss the conveyer-belt problem. We followed a common
technique in mathematics of exploring special cases or easier variations to make partial steps toward
a larger solution to the whole problem. We invented two interesting variations to the problem and
made partial progress on each.

Our first variation allows the addition of extra (“Steiner”) disks. How many disks do we need
to add to a given arrangement of disks to guarantee that all disks together have a valid band
wrapping? It is relatively easy that, given n disks, we might need to add at least Θ(n) disks: just
repeat an example like Figure 3 Θ(n) times. What would be interesting is if this is roughly the
worst case:
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Conjecture 1 Every arrangement of n disks can be augmented by Θ(n) additional disks so that
the resulting arrangement has a valid band wrapping.

We make this conjecture because the following algorithmic approach seems promising, though
we have not yet been able to formalize it into a solution. Start from a traveling salesman tour, a
closed path that visits each disk exactly once, but may not be taut. One way to compute such a tour
is to compute the visibility graph of the given disks (which disks can see each other, unobscured by
other disks), compute a spanning tree of that graph (a minimal set of visibility connections that
form a connected network), and take an Euler tour of this tree (walking around the tree) but avoid
revisiting a disk by taking detours around it. Now the idea is to turn this tour into a valid band
wrapping by adding tiny disks at key locations to effectively navigate the band where desired. The
details of this process remain vague, but they seem feasible.

The bigger challenge is to determine how few disks can be added. We can afford to add a
few disks for every turn in the tour, but the worry would be that navigating tight gaps between
disks could require more than just a few disks. Nonetheless, we believe that this challenge is
surmountable, at least for some tour. The conjecture should also be easier to prove for equal-size
disks. At worst, it should be relatively easy to find an algorithm adding Θ(n2) disks, because
navigating a gap among n disks should require at most Θ(n) added disks, and the tour requires
only Θ(n) such navigations.

Our second variation is to suppose that all disks are both the same size and “separated”, for
an appropriate definition of separation. The idea for such a definition is to require that every two
disks can see each other (in some sense) without unobstruction by other disks. In the weakest form,
we can require just that there is a visibility line between the two disks; or we can require that every
point on half of one disk can see some point on the other disk; or, in the strongest form, we can
require that every point on half of one disk can see every point on half of the other disk. In these
situations, or similar restrictions, it may be possible to follow a tour without adding any extra
disks. Indeed, Manuel Abellanas has shown this result for the strongest of the three definitions
of separation, and for any tour. This gives a positive solution to a special case of the equal-size
conveyer-belt problem.

In the long term, our plan for this second variation is to pursue a hierarchical solution to
the equal-size conveyer-belt problem, whereby we treat tightly packed clusters of disks separately
from separated clusters of disks. We feel that these two extremes pose different challenges, each
surmountable by themselves, hopefully in a way that can be combined. With separated clusters of
disks, we can hope to use a solution to our second variation. With tightly packed clusters of disks,
there are rather severe restrictions on how equal-size disks can be placed, and our hope is to exploit
these constraints to find wrapping algorithms. This third variation is rather vague and probably
the most difficult step in our plan.

Puzzle and Font Design

Having made some (but not a lot of) mathematical progress, we turned to challenging each other
with puzzles along the lines of the conveyer-belt problem. The puzzle designer stuck identical push
pins (representing equal-size disks) into a cork board, and the puzzle solver had to wrap a rubber
band validly around the pins. To make the puzzle more challenging, however, the solution had to
have one additional property: that it formed an English letter or word. The puzzle solver did not
know which letter to aim for; the designer of course had one in mind, and aimed to ensure that the
answer was unique. Figure 4 shows a few examples.
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Figure 4: Some letters of the alphabet made with push pins and rubber bands.

This game quickly led to a series of puzzles and designs for making every letter and digit of
the English alphabet. Figure 5 shows our preferred designs. The solved designs with the bands
can be used as a new font with a mathematical backstory, as we have in the title of this paper.
Alternatively, the puzzle designs without the bands can be used as a “secret code” that is most
easily readable by those familiar with the mathematical problem. Figure 6 provides a simple coded
puzzle for the reader.
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Figure 5: Our conveyer-belt alphabet, and the underlying disks.

Figure 6: Concluding remark.
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