
Maintaining Secrecy when Information Leakage is

Unavoidable

by

Adam Davison Smith

B.Sc. Mathematics and Computer Science, McGill University, 1999,
S.M. Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, 2001

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2004

c© Massachusetts Institute of Technology 2004. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

December 23, 2004

Certified by. .
Madhu Sudan

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Maintaining Secrecy when Information Leakage is

Unavoidable

by

Adam Davison Smith

Submitted to the Department of Electrical Engineering and Computer Science
on December 23, 2004, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

Sharing and maintaining long, random keys is one of the central problems in cryp-
tography. This thesis provides about ensuring the security of a cryptographic key
when partial information about it has been, or must be, leaked to an adversary. We
consider two basic approaches:

1. Extracting a new, shorter, secret key from one that has been partially compro-
mised. Specifically, we study the use of noisy data, such as biometrics and personal
information, as cryptographic keys. Such data can vary drastically from one mea-
surement to the next. We would like to store enough information to handle these
variations, without having to rely on any secure storage—in particular, without
storing the key itself in the clear.

We solve the problem by casting it in terms of key extraction. We give a precise
definition of what “security” should mean in this setting, and design practical,
general solutions with rigorous analyses. Prior to this work, no solutions were
known with satisfactory provable security guarantees.

2. Ensuring that whatever is revealed is not actually useful. This is most relevant when
the key itself is sensitive—for example when it is based on a person’s iris scan or
Social Security Number. This second approach requires the user to have some
control over exactly what information is revealed, but this is often the case: for
example, if the user must reveal enough information to allow another user to correct
errors in a corrupted key. How can the user ensure that whatever information the
adversary learns is not useful to her?

We answer by developing a theoretical framework for separating leaked information
from useful information. Our definition strengthens the notion of entropic security,
considered before in a few different contexts. We apply the framework to get new
results, creating (a) encryption schemes with very short keys, and (b) hash functions
that leak no information about their input, yet—paradoxically—allow testing if a
candidate vector is close to the input.

One of the technical contributions of this research is to provide new, cryptographic
uses of mathematical tools from complexity theory known as randomness extractors.

3

Thesis Supervisor: Madhu Sudan
Title: Professor of Electrical Engineering and Computer Science

4

Acknowledgements

Several people acted as mentors—at various levels of formality—during my gradu-
ate studies. They provided advice, research ideas, encouragement and support. In
chronological order: Claude Crépeau, Shafi Goldwasser, Madhu Sudan, Silvio Micali,
Rafi Ostrovsky and Cynthia Dwork. Without their help I would not have (respec-
tively) gotten started in computer science research, made it through my first year
at MIT, had the flexibility to pursue my own research ideas, had the confidence to
push those ideas as far as possible, gotten into cutting edge research on cryptographic
protocols, or learned taste and discrimination in my choice of research projects. For
their help, support and patience, my thanks.

I am also grateful to the collaborators who have helped with my research, or
allowed me to help them with theirs: Andris Ambainis, Howard Barnum, Shuchi
Chawla, Claude Crépeau, Yevgeniy Dodis, Giovanni Di Crescenzo, Cynthia Dwork,
Matthias Fitzi, Daniel Gottesman, Martin Hirt, Thomas Holenstein, Jon Katz, Silvio
Micali, Frank McSherry, Moses Liskov, Anna Lysyanskaya, Rafail Ostrovsky, Chris
Peikert, Charlie Rackoff, Leo Reyzin, Amit Sahai, Ronen Shaltiel, abhi shelat, Alain
Tapp, Luca Trevisan, Hoeteck Wee, and Ke Yang.

Most importantly, I thank the many friends and family members who have made
my graduate studies such a pleasure. They are too numerous to mention all here, but a
few stick out: abhi shelat (who taught me, by example, the value of originality and to
a lesser extent of the Lower Case), Adam Holt, April Rasala, Ayesha Islam, Alexandra
London-Thompson, Bobby Sampson, Eliot, Rebecca, Simone, and my parents.

Finally, I thank my future wife Sofya for her friendship and her love. Her contri-
bution to my life is too large to fit on this page.

5

Bibliographic Note

The results of the first part of the thesis were published as joint work with Yev-
geniy Dodis and Leonid Reyzin [30]. That work, in turn, came out of important
initial discussions with Rafail Ostrovsky and later conversations with Piotr Indyk on
embeddings of the edit metric.

The results of the second part of the thesis are more recent, and not yet published
elsewhere. They appear for now in a pair of manuscripts which were written jointly
with Yevgeniy Dodis [31, 32].

Finally, I thank the many people who helped with this research through dis-
cussions, observations and thoughtful objections: Rafi Ostrovsky, Piotr Indyk, Salil
Vadhan, Avi Wigderson, Madhu Sudan, Jonathan Katz, Xavier Boyen, Noga Alon,
Venkat Guruswami, Yehuda Lindell, Alex Samorodnitsky, Henry Cohn, Pim Tuyls,
Jonathan Connell, and Chris Peikert.

6

Contents

Acknowledgements . 5
Bibliographic Note . 6

1 Introduction 9
1.1 Fuzzy Extractors: Cryptography with Noisy Data 12

1.1.1 Contributions of This Research 15
1.1.2 Related Work . 18

1.2 Entropic Security: Hiding All Partial Information 20
1.2.1 Two Games for Measuring Information Leakage 21
1.2.2 Contributions on Entropic Security 22
1.2.3 Composability and Semantic Security 25

1.3 Organization of This Thesis . 26

2 Mathematical Preliminaries 27
2.1 Probability Distributions and Entropy 27

2.1.1 Three Measures of Entropy 28
2.2 Randomness Extractors . 31
2.3 Metric Spaces and Error-Correcting Codes 32

I Cryptography with Noisy Data 35

3 Secure Sketches and Fuzzy Extractors:
Cryptographic Keys from Noisy Data 37
3.1 New Definitions . 38
3.2 Fuzzy Extractors from Secure Sketches 39
3.3 Two Generic Constructions . 40
3.4 Constructions for Hamming Distance 41
3.5 Constructions for Set Difference . 42

3.5.1 Small Universes . 43
3.5.2 Improving the Construction of Juels and Sudan 45
3.5.3 Large Universes via the Hamming Metric: Sublinear-Time De-

coding (Revised December ’04) 47
3.5.4 Syndrome Decoding in Sublinear Time

(Revised December ’04) . 49
3.6 Constructions for Edit Distance . 52

7

3.7 Alternate Error Models and List-Decoding 54
3.7.1 Example: Random Errors in the Hamming Metric 55
3.7.2 Improved Error-Correction via List Decoding 55

3.8 Application: Password Authentication 57

4 Lower Bounds from Coding 61
4.1 Bounds on Loss of Min-Entropy . 62
4.2 Bounds on Loss of Shannon Entropy 63

II Secrecy for High-Entropy Data 67

5 Entropic Security, Prediction and Indistinguishability 69
5.1 Entropic Security, Prediction of Functions and Indistinguishability . . 70

5.1.1 Proving Theorem 5.1 . 71
5.2 From Entropic Security to Indistinguishability 74
5.3 From Indistinguishability to Entropic Security 75

5.3.1 Entropic Security for Predicates 75
5.3.2 From Predicates to General Functions 77

6 Encryption of High-Entropy Sources 81
6.1 Background . 81
6.2 Using Expander Graphs for Encryption 85
6.3 A Random Hashing Construction . 87
6.4 Lower Bounds on the Key Length . 89

7 Entropically-Secure Sketches and
Noise-resilient “Perfect” Hash Functions 91
7.1 Entropic Secrecy for Secure Sketches and Extractors 92

7.1.1 A Non-Explicit Solution: Codes With Limited Bias 93
7.1.2 Efficient, Explicit Solutions via Randomization 94
7.1.3 Constructing Small-Bias Families of Linear Codes 96
7.1.4 Constructions of Small-Bias Families from Specific Codes . . . 101
7.1.5 Secrecy for Fuzzy Extractors 103

7.2 Perfectly One-Way Hash Functions 104
7.2.1 Definitions of Perfect One-way-ness 105
7.2.2 Constructing Noise-resilient POWFs 107
7.2.3 Improved Construction of Ordinary POWFs 108
7.2.4 Putting It All Together . 109

Bibliography 111

A Variants on the Left-over Hash (Privacy Amplification) Lemma 119
A.1 Composing Hashing with Arbitrary Functions 119
A.2 XOR of Product Distributions . 121
A.3 Conditional Min-Entropy . 122

8

Chapter 1

Introduction

Generating shared secret keys and passwords is one of the central tasks in cryptog-
raphy. A key is typically a long, random string of bits known only to a few people,
and it can be used for various cryptographic tasks; the most common examples are
encrypting a message so that it cannot be read by others, authenticating a message to
ensure that it comes from the correct sender, and identifying a user as the possessor
of a copy of the key. A password is similar, but is used only for access control. For
now, we will use “key” and “password” interchangeably.

Sharing—and maintaining—a long, random secret key is difficult: whoever gen-
erates the key must communicate it to the other parties, and the parties must have
some way of storing the key (or some derived information) reliably and securely. If
the “key” in question is a person’s password, this means memorizing a long string
and later remembering it exactly—something that most people are not easily capable
of. The main issues addressed in this thesis are handling keys that cannot be stored
reliably, and making use of a very short key when a longer one would normally be
required.

More generally, this thesis provides new results about modeling and ensuring
provable security when partial information about a key has been, or must be, leaked
to an adversary. For example, when a user’s storage is not reliable, one must reveal
some information to allow correction of the errors which appear in the key; when the
storage is not fully secure, then whatever information is stored may be learned by an
adversary.

The main goal is to understand—and limit—exactly what information has been
leaked. We consider two basic approaches:

1. Extracting a new, shorter, secret key from one that has been partially compro-
mised. This is relevant when some information is leaked about a key, but the
users still need it for encryption, authentication or identification.

2. Ensuring that whatever is revealed is not actually useful. This is most relevant
when the key itself is sensitive—for example when it is based on a person’s
fingerprint, iris scan or Social Security Number. This second approach requires
the user to have some control over exactly what information is revealed, but

9

this is often the case: for example, if the user must reveal enough information
to allow another user to correct errors in a corrupted key.

Specifically, this thesis proposes new models and new techniques for several prob-
lems with a (perhaps surprisingly) similar flavor. The main results of this thesis can
be divided into two areas, following the two approaches above:

• The first rigorous framework for using noisy data, such as biometrics and per-
sonal information, as cryptographic keys. Biometrics are characteristics that
are inherent to a person’s body. Fingerprints, face images, voice recordings, and
iris scans are all common examples. Using such data as keys has been proposed
to save users from the task of remembering long keys.

The main challenge is that biometrics vary drastically from one measurement
to the next. A fingerprint, for example, varies due to the position of the finger,
humidity, swelling, etc. One must store enough information to correct these
variations, without storing the key itself in the clear. Prior to this work, no
solutions were known with satisfactory provable security guarantees.

We solve the problem by casting it in terms of key extraction problem, as in
approach (1) above. We propose a rigorous definition of exactly what “security”
should mean in this setting. This allows us to analyze existing constructions and
compare their performance. We also provide new, provably secure constructions
which improve on existing ones, and prove lower bounds on the achievable
parameters.

• A formalization of approach (2) above: we develop a theoretical framework for
separating leaked information from useful information. Our definition strength-
ens the notion of entropic security, considered before in a few different contexts.
Roughly, the definition goes as follows: revealing information Y about secret
X is safe if there is no function of X which is easier to predict with Y than
without it (i.e. Y may leak some global information about X, but there is no
function of X — in particular, no substring or parity check — that becomes
easier to predict).

We characterize entropic security in terms of mathematical tools from complex-
ity theory (“randomness extractors,” explained below). This insight allows us
to design (1) new encryption schemes with a short key, and (2) hash functions
which leak nothing useful about their inputs, yet—paradoxically—allow testing
if a candidate vector is close to the input.

The thesis is divided into two parts, following the bullets above. This introduction
chapter also consists of two corresponding main sections (1.1 and 1.2).

The basic philosophy of both sections is the same. We focus on provably secure
protocols. The contributions of the thesis are thus at three levels: rigorous definitions
of security, new protocols, and proofs that those protocols satisfy the definition. Each
of these pieces is important. The definitions, in particular, allow one to understand
what types of attacks the protocol is known to be secure against, and what attacks

10

were not considered. They also allow one to understand the exact assumptions under
which the proof holds. Beyond these practical advantages, precise definitions of secu-
rity allow one to understand the limits of a particular notion, say by proving bounds
on the resources (computing time, interaction, etc) that are needed for a protocol to
satisfy a definition, or bounds on the parameters (error probabilities, attack success
probabilities) that are possible.

A Few Words on Information-Theoretic Cryptography The security of many
cryptographic protocols depends on assuming that a particular problem is computa-
tionally hard, for example “the probability that the adversary can factor a random
product of two primes of length k is negligibly small.” There are in fact two assump-
tions hidden in such a statement, one about the resources necessary to factor large
integers, and another about the adversary’s computing power. Such hypotheses are
bunched under the umbrella of “computational” assumptions. While it is reason-
able to assume that an adversary does not have time to execute 21000 instructions
on a computer (for thermodynamic reasons—there is not enough time and energy
in the universe), no one has yet proven any good lower bounds on the number of
steps required to solve a particular problem, and computational assumptions remain
problematic.

Protocols whose security does not depend on computational assumptions are
called “unconditionally” or “information-theoretically” secure. Such protocols are
studied since they avoid assuming unproven lower bounds on the resources required
to solve particular problems. They make good building blocks for larger protocols,
since they can be plugged into any other context without having to make additional
assumptions. There are also many situations where it is not known how to apply
techniques from “computational” cryptography, and so information-theoretic tools,
which are generally easier to work with, become very valuable.

There are a few mathematical tools from information-theoretic cryptography which
will be used many times in the thesis. A key concept, introduced by Shannon [73], is
the entropy, or uncertainty, of a random variable. We use several measures of entropy,
but all agree in the simplest case where a random variable is distributed uniformly
over some subset of its possible values. If it takes on N different values with equal
probability, then the entropy of the variable is log(N) (in the thesis, logarithms are
in base 2 by default); a variable which takes on a single value with probability 1 has
no entropy at all, and a variable which is distributed uniformly over all binary strings
of length n has entropy n.

Another key tool, much more recent, is a randomness extractor. Informally, an
extractor is a function which takes as input some imperfect source of randomness
(the various bits of which may be biased or correlated), and produces as output a
short, uniformly random string, ideally with length equal to the entropy of the input.
The magic of an extractor is that it should work for any “source” (i.e. probability
distribution on inputs) which has sufficient entropy. To work on such a large class
of distributions, a randomness extractor actually needs an additional input: a short,
uniformly random “seed.” The ideal output length is thus the sum of the length

11

of the seed and the entropy of the input. Extractors first arose in cryptography
and in complexity theory, and have since had many applications in both areas—see
[72, 85, 86] for surveys.

One of the contributions of this research is to provide new uses of the tools above in
cryptography. First, we apply them to the problem of error-prone keys. We essentially
construct noise-resilient extractors. The resulting protocols can provably handle any
distribution on passwords that has sufficient entropy. Previous proofs of security
required the system designer to know the distribution of, say, human fingerprints,
exactly.

Second, the chapters on entropic security demonstrate a new use for extractors.
The main result of Chap. 5 is that the output of an extractor reveals no useful infor-
mation — in a precise sense — about the imperfect random source used as input. This
theorem allows us to give several new protocols, lower bounds, and proofs of security.
By using known constructions of extractors, we also simplify current protocols and
proofs of security for encryption of high-entropy messages and “perfectly one-way”
hash functions. The final chapter combines both uses of extractors, constructing
entropically-secure fuzzy extractors.

The next two sections of this introduction (Sections 1.1 and 1.2) discuss the results
of each part of the thesis in more detail, as well as the related literature.

1.1 Fuzzy Extractors: Cryptography with Noisy

Data

Cryptography traditionally relies on uniformly distributed random strings for its se-
crets. Reality, however, makes it difficult to create, store, and reliably retrieve such
strings. Strings that are neither uniformly random nor reliably reproducible seem to
be more plentiful. For example, a random person’s fingerprint or iris scan is clearly
not a uniform random string, nor does it get reproduced precisely each time it is
measured. Similarly, a long pass-phrase (or answers to 15 questions [39] or a list of
favorite movies [48]) is not uniformly random and is difficult to remember for a human
user. Part I of this thesis is about using such nonuniform and unreliable secrets in
cryptographic applications.

An Application: Biometrics The focus of this research is theoretical, but much
of the previous work is specific to biometrics, and so we begin with some background
and terminology.

The term biometrics originally meant any measurement of biological system; the
term later came to mean physiological or behavioral characteristics that could be used
to identify a person.1 The concept is by no means new—we instinctively recognize

1This is still the source of some confusion. The journal Biometrics (International Biometric
Society) covers statistical issues in biology and has little to do with the term “biometrics” as used
in the media today.

12

other people by face and voice, although doing so from a photograph or recording is
harder. Signatures and handwriting (and handwriting recognition experts) have been
used for a long time as a means of identifying people. Even finger- and palm-prints are
quite old, having been recognized as unique identifiers in fourteenth century Persia
[71].

Recognition via biometrics was traditionally performed by a human expert, and
was considered sufficiently accurate to carry legal weight. Automated recognition
has proven less reliable — recently, computer fingerprint matching based on poor
scans lead to a man being mistakenly jailed for the Madrid train bombing in early
2004 [65]. Nevertheless, automated biometric authentication is now widely deployed.
The US-VISIT program takes digital fingerprints and photographs of visitors from
certain countries as they enter the United States [84, 35], and many countries will
integrate electronic biometric information directly into passports by mid-2006 [15].

The most common biometrics currently used are face and voice recognition, finger-
and palm-prints, hand geometry, iris scans, signatures (not just the shape but also
the timing and pressure of strokes), dental records and, to a lesser extent, keystroke
timing and walking gait [10]. Of these, iris scans and fingerprints have been the most
successfully automated.

The basic structure of a biometric authentication system is the same with all
these techniques. When a user enrolls in the system, a measurement is taken and
some derived information (the “template”) is stored in a database. To authenticate
the user at a later time, a new measurement is taken and compared to the template.
Depending on the exact application, it may be more or less easy to recover the original
biometric measurement from the template.

There are many difficulties that come with the use of biometrics for keys or pass-
words. The main challenge is that biometric measurements are noisy: depending on
the exact conditions and positioning of the measuring device, fingerprints, iris scans,
face images can all come out very differently. There are also other, broader issues.
Biometrics are difficult to change — fingers, irises and vocal cords cannot be revoked
— so basing a key on only them is inherently problematic. Because fingerprints and
face images, for example, can be measured without a person’s consent, their use raises
many fundamental privacy concerns. These concerns are particularly valid when the
measurements (or templates) are stored in a centralized database which can later
be used to identify people without their knowledge. See [75, 69, 34, 81] for longer
discussions of these issues.

This research provides a mathematical framework for approaching the first issue:
how to deal with noise in the measurement without storing biometric data “in the
clear” on a server. (The broader issues remain wide open.)

A Motivating Example: Password Authentication To illustrate the use of
random strings let us consider the task of password authentication. A user Alice has
a password w and wants to gain access to her account. A trusted server stores some
information y = f(w) about the password. When Alice (or someone else) enters w′,
the server lets her in only if f(w′) = y. In this simple application, we assume that

13

it is safe for Alice to enter the password for the verification. However, the server’s
long-term storage is not assumed to be secure (e.g., y is stored in a publicly readable
/etc/passwd file in UNIX [63]). The goal, then, is to design an efficient f that is
hard to invert (i.e., given y it is hard to find w′ s.t. f(w′) = y), so that no one can
figure out Alice’s password from y. Such functions f are called one-way functions.

Unfortunately, the solution above has several problems when used with passwords
w available in real life. First, the definition of a one-way function assumes that w
is truly uniform, and guarantees nothing if this is not the case. In contrast, human-
generated and biometric passwords are far from uniform, although they do have some
unpredictability in them. Second, Alice has to reproduce her password exactly each
time she authenticates herself. This restriction severely limits the kinds of passwords
that can be used. Indeed, a human can precisely memorize and reliably type in only
relatively short passwords, which do not provide an adequate level of security. Greater
levels of security are achieved by longer human-generated and biometric passwords,
such as pass-phrases, answers to questionnaires, handwritten signatures, fingerprints,
retina scans, voice commands, and other values selected by humans or provided by
nature, possibly in combination (see [38] for a survey). However, two biometric read-
ings are rarely identical, even though they are likely to be close; similarly, humans are
unlikely to precisely remember their answers to multiple question from time to time,
though such answers will likely be similar. In other words, the ability to tolerate a
(limited) number of errors in the password while retaining security is crucial if we are
to obtain greater security than that provided by typical user-chosen short passwords.

The password authentication problem described above is just one example of a
cryptographic application where the issues of nonuniformity and error tolerance nat-
urally come up. The same issues arise in any cryptographic application, such as
encryption, digital signatures, or identification, where the secret key comes in the
form of “biometric” data.

.

Two Simple Approaches Which Fail We would like to design a function to
replace the one-way function f in the UNIX-style password authentication scheme.
One approach that immediately comes to mind is quantization: rather than using w,
use some point w̄ close to w that comes from a small set of possibilities. For example,
if w is a vector in Rn, then one could imagine rounding off all the coordinates of w to
the nearest integer and applying f() to the resulting vector w̄. The hope is that when
Alice goes to authenticate herself, the data w′ which has been measured will round off
to the same vector as the original w (roughly, we hope w̄′ = w̄). Unfortunately, this
type of scheme will fail for most “interesting” types of data. In our example, some
of the components of w are likely to lie near some half-integer, e.g. 0.5, 1.5, 2.5, etc.
Even if w′ is very close to w, those components stand a good chance of lying on the
other side of the boundary in the perturbed vector w′. It is very unlikely then to have
w̄′ = w̄. This sort of phenomenon occurs with most high-dimensional data (it is due
to the fact that most of the volume of a high-dimension shape lies near its boundary).
Csirmaz and Katona [25] discuss these issues in a sligthly different context. We refer

14

the interested reader to [25] or a text on discrete geometry. Four our purposes, it
suffices to observe that quantization does not really solve the problem at hand.

A second common approach to this problem is to change the model and use
encrypted data: instead of storing f(w), one could just store an encryption of w,
and then store the corresponding key on a different server. The problem here is that
the entity verifying Alice’s identity must know the key, and if that entity’s storage
is compromised then Alice’s data is available in the clear. The goal is to allow the
verification information to be distributed easily, as in the UNIX-style storage of f(w).

1.1.1 Contributions of This Research

Assumptions Our techniques apply to any key material with the following prop-
erties:

1. Any two measurements of the same input (say, a particular person’s fingerprint)
are “close” to each other. The meaning of “close” depends on the application,
but we assume that there is some metric on possible results, and that two
measurements will be close in that metric.

2. The distribution of measurement outcomes is sufficiently random. Specifically,
we assume that an adversary’s a priori probability of guessing the input is not
too high.

The users and designers of the system do not need to know the distribution
itself, but only a lower bound on its entropy.

The New Definitions, Informally We propose two primitives, termed secure
sketch and fuzzy extractor.

A secure sketch addresses the problem of error tolerance. It is a (probabilistic)
function outputting a public value v about its biometric input w, that, while reveal-
ing little about w, allows its exact reconstruction from any other input w′ that is
sufficiently close. The price for this error tolerance is that the application will have to
work with a lower level of entropy of the input, since publishing v effectively reduces
the entropy of w. However, in a good secure sketch, this reduction will be small, and
w will still have enough entropy to be useful, even if the adversary knows v. A secure
sketch, however, does not address nonuniformity of inputs.

A fuzzy extractor addresses both error tolerance and nonuniformity. It reliably
extracts a uniformly random string R from its biometric input w in an error-tolerant
way. If the input changes slightly, the extracted R remains the same. To assist in
recovering R from w′, a fuzzy extractor outputs a public string P (much like a secure
sketch outputs v to assist in recovering w). However, R remains uniformly random
even given P .

Our approach is general: our primitives can be naturally combined with any cryp-
tographic system. Indeed, the string R extracted from w by a fuzzy extractor can
be used as a key in any cryptographic application but, unlike a traditional key, need
not be stored (because it can be recovered from any w′ that is close to w). We define

15

our primitives to be information-theoretically secure, thus allowing them to be used
in combination with any cryptographic system without additional assumptions (how-
ever, the cryptographic application itself will typically have computational, rather
than information-theoretic, security).

For a concrete example of how to use fuzzy extractors, in the password authenti-
cation case, the server can store 〈P, f(R)〉. When the user inputs w′ close to w, the
server recovers the actual R and checks if f(R) matches what it stores. Similarly,
R can be used for symmetric encryption, for generating a public-secret key pair, or
any other application. Secure sketches and extractors can thus be viewed as provid-
ing fuzzy key storage: they allow recovery of the secret key (w or R) from a faulty
reading w′ of the password w, by using some public information (v or P). In partic-
ular, fuzzy extractors can be viewed as error- and nonuniformity-tolerant secret key
key-encapsulation mechanisms [76].

Because different biometric information has different error patterns, we do not
assume any particular notion of closeness between w′ and w. As mentioned above,
the definitions simply assume that w comes from some metric space, and that w′ is
no more that a certain distance from w in that space. We only consider particular
metrics when building concrete constructions.

General Results Before proceeding to construct our primitives for concrete met-
rics, we describe several general observations:

• Fuzzy extractors can be built out of secure sketches using strong randomness
extractors [66], such as pairwise-independent hash functions.

• The existence of secure sketches and fuzzy extractors over a particular metric
space implies the existence of certain error-correcting codes in that space, thus
producing lower bounds on the best parameters a secure fingerprint and fuzzy
extractor can achieve.

• For a special class of (finite) metric spaces, called transitive, one can construct
a secure sketching scheme from any error-correcting code (e.g. the construction
for Hamming distance, below).

Transitive finite metric spaces include the Hamming cube, set difference, and
transposition distance on orderings of a list.

• For a metric space M′ without nice properties such as transitivity, one can
nonetheless construct fuzzy extractors from certain “metric embeddings”—these
are maps from one metric space to another which approximately preserve dis-
tances. Specifically, the existence of a fuzzy extractor in the target space, com-
bined with a biometric embedding of the source into the target, implies the
existence of a fuzzy extractor in the source space.

We need weaker properties from the embedding than those normally required
in algorithmic applications. We call maps which satisfy the relaxed definition
biometric embeddings.

These general results help us in building and analyzing our constructions.

16

Constructions We describe constructions of secure sketches and extractors in three
metrics: Hamming distance, set difference, and edit distance.

Hamming distance (i.e., the number of bit positions that differ between w and
w′) is perhaps the most natural metric to consider. We observe that the “fuzzy-
commitment” construction of Juels and Wattenberg [47] based on error-correcting
codes can be viewed as a (nearly optimal) secure sketch. We then apply our general
result to convert it into a nearly optimal fuzzy extractor. While our results on the
Hamming distance essentially use previously known constructions, they serve as an
important stepping stone for the rest of the work.

The set difference metric (i.e., size of the symmetric difference of two input sets w
and w′) comes up naturally whenever the biometric input is represented as a subset
from a universe of possible features.Using the transitivity of the metric space, we
demonstrate the existence of optimal (with respect to entropy loss) secure sketches,
and therefore also fuzzy extractors, for this metric. However, this result is mainly
of theoretical interest, because (1) it relies on optimal constant-weight codes, which
we do not know how construct and (2) it produces sketches of length proportional to
the universe size. We then turn our attention to more efficient constructions for this
metric, and provide two of them.

First, we observe that the “fuzzy vault” construction of Juels and Sudan [48] can
be viewed as a secure sketch in this metric (and then converted to a fuzzy extractor
using our general result). We provide a new, simpler analysis for this construction,
which bounds the entropy lost from w given v. Our bound on the loss is quite high
unless one makes the size of the output v very large. We then provide an improvement
to the Juels-Sudan construction to reduce the entropy loss to near optimal, while
keeping v short (essentially the same length as w).

Second, we note that in the case of a small universe, a set can be simply encoded
as its characteristic vector (1 if an element is in the set, 0 if it is not), and set
difference becomes Hamming distance. However, the length of such a vector becomes
unmanageable as the universe size grows. Nonetheless, we demonstrate that this
approach can be made to work efficiently even for exponentially large universes. This
involves a result that may be of independent interest: we show that BCH codes can
be decoded in time polynomial in the weight of the received corrupted word (i.e., in
sublinear time if the weight is small). The resulting secure sketch scheme compares
favorably to the modified Juels-Sudan construction: it has the same near-optimal
entropy loss, while the public output v is even shorter (proportional to the number
of errors tolerated, rather than the input length).

Finally, edit distance, that is, the number of insertions and deletions needed to
convert one string into the other, naturally comes up, for example, when the pass-
word is entered as a string, due to typing errors or mistakes made in handwriting
recognition. We construct a biometric embedding from the edit metric into the set
difference metric, and then apply our general result to show that such an embedding
yields a fuzzy extractor for edit distance, because we already have fuzzy extractors
for set difference. The edit metric is quite difficult to work with, and the existence of
such an embedding is not a priori obvious: for example, low-distortion embeddings
of the edit distance into the Hamming distance are unknown and seem hard to con-

17

struct [4]. It is the particular properties of biometric embeddings, as we define them,
that make the construction feasible.

Lower Bounds As mentioned above, we also show that the existence of secure
sketches or fuzzy extractors for a particular metric implies the existence of error-
correcting codes for that metric with related parameters. Thus we can use existing
bounds on the parameters achievable for codes to get bounds on what parameters
are achievable for our new primitives. The end result is a set of lower bounds on
how much information must be leaked about the input to allow error-correction. We
prove two kinds of bounds. The first kind of bound, on the min-entropy loss, tells us
limits on the length of a key which can be extracted from the input given that the
adversary has learned the public output P (resp. secure sketch). The second kind of
bound, on the loss of Shannon entropy gives a more intuitively significant result: the
mutual information between the input and the public information must be high.

1.1.2 Related Work

Relation to Previous Work Since this topic combines elements of error correc-
tion, randomness extraction and password authentication, there is a lot of related
work.

The need to deal with nonuniform and low-entropy passwords has long been re-
alized in the security community, and many approaches have been proposed. For
example, Kelsey et al [49] suggest using f(w, r) in place of w for the password au-
thentication scenario, where r is a public random “salt,” to make a brute-force at-
tacker’s life harder. While practically useful, this approach does not add any entropy
to the password, and does not formally address the needed properties of f . Another
approach, more closely related to ours, is to add biometric features to the password.
For example, Ellison et al. [36] propose asking the user a series of n personalized
questions, and use these answers to encrypt the “actual” truly random secret R. A
similar approach using user’s keyboard dynamics (and, subsequently, voice [60, 61])
was proposed by Monrose et al [62]. Of course, this technique reduces the question
to that of designing a secure “fuzzy encryption”. While heuristic approaches were
suggested in the above works (using various forms of Shamir’s secret sharing), no
formal analysis was given. Additionally, error tolerance was addressed only by brute
force search.

Soutar et al.[78, 79, 77] took a different approach, based on techniques from signal
processing. Their technique is the basis for a commercial implementation (Bioscrypt,
Inc) but we don’t know of a rigorous security analysis of their scheme.

A more formal approach to error tolerance in biometrics was taken by Juels and
Wattenberg [47] (for less formal solutions, see [26, 27, 62, 36]), who provided a simple
way to tolerate errors in uniformly distributed passwords. Frykholm and Juels [39]
extended this solution; our analysis is quite similar to theirs in the Hamming dis-
tance case. Almost the same construction appeared implicitly in earlier, seemingly
unrelated, literature on information reconciliation and privacy amplification (see, e.g.,

18

[7, 8, 24]). We discuss the connections between these works and our work further in
Section 3.4.

Juels and Sudan [48] provided the first construction for a metric other than Ham-
ming: they construct a “fuzzy vault” scheme for the set difference metric. The main
difference is that [48] lacks a cryptographically strong definition of the object con-
structed. In particular, their construction leaks a significant amount of information
about their analog of R, even though it leaves the adversary with provably “many
valid choices” for R. In retrospect, their notion can be viewed as an (information-
theoretically) one-way function, rather than a semantically-secure key encapsulation
mechanism, like the one considered in this work. Nonetheless, their informal notion is
very closely related to our secure sketches, and we improve their construction in Sec-
tion 3.5. Clancy et al. [21] used the Juels-Sudan scheme as the basis of a smartcard-
based biometric authentication system. They provide an analysis of the scheme’s
security against some specific attacks, one based on brute force search and the other
on Berlekamp-Welch decoding. Our improvements to the Juels-Sudan scheme extend
more or less directly to [21].

The work of Linnartz and Tuyls [52] is the closest to ours in approach. They define
and construct a primitive called a “shielding function”, similar to a fuzzy extractor
(that line of work was continued in [87].) In two works of similar flavor, Cohen and
Zémor [22] and Tuyls and Goseling [82] derive specific channel-capacity bounds on
biometric authentication systems by assuming particular distributions on both inputs
and error patterns in the biometric inputs. The main difference between those works
and ours is that they assume that the exact distribution on the biometric inputs
is simple and known to the designer (either the uniform distribution over strings
of a given length or a known, multivariate Gaussian in Rn). Another difference is
that [52, 87] focus on the continuous space Rn, whereas we focus on discrete metric
spaces. We learned of these works after having completed the research described in
this chapter.

Other, very different approaches have also been taken for guaranteeing the pri-
vacy of noisy data. Csirmaz and Katona [25] consider quantization for correcting
errors in “physical random functions,” essentially proving that in most metric spaces
this approach is difficult, if not impossible, to use. (In the language of our paper,
quantization corresponds to secure sketches with no public storage). Barral, Coron
and Naccache [5] proposed a system for off-line, private comparison of fingerprints.
Ratha, Connell and Bolle [68] proposed “cancelable” biometrics, the idea of using
distorted versions of the same biometric on different servers, to prevent the leaking
of one version from making the other versions known to an attacker. Although seem-
ingly similar, the approaches of [5, 68] are complimentary to ours, and the solutions
can be combined to yield systems which enjoy the benefits of all of them.

A nice summary of much of the previous work on biometric cryptosystems, along
with an experimental evaluation of the technique of Juels and Sudan [48] appears in
a survey by Uludag et al [83]. Our improvement to the Juels-Sudan scheme extends
directly to the results of [83].

Finally, work on privacy amplification [7, 8], as well as work on de-randomization
and hardness amplification [44, 66], also addressed the need to extract uniform ran-

19

domness from a random variable about which some information has been leaked (see
Chap. 2). A major focus of research in that literature has been the development of
(ordinary, not fuzzy) randomness extractors with short seeds (see Section 1 for an in-
formal definition). We use randomness extractors, though for our purposes, pairwise
independent hashing [7, 44] is sufficient.

Subsequent Work There have been several works subsequent to ours which built
on these ideas. Van Dyjk and Woodruff [28] worked on improving the entropy loss of
secure sketches using computational assumptions. Burnett, Duffy and Dowling [16]
used fuzzy extractors as the basis of an implementation, in Java, of an identity-based
signature scheme. Boyen [12] extended the definition of fuzzy extractors to allow re-
usability of the same biometric for generating many different keys. The results hold
in a model where the errors which occur are independent of the biometric data itself.
The existence of re-usable fuzzy extractors without the independence assumption
remains an interesting open question.

On a different tack, our work has been applied to privacy amplification: Fuzzy
extractors may be seen as noise-resilient versions of randomness extractors, and Ding
[29] used this idea for noise tolerance in Maurer’s bounded storage model [57].

1.2 Entropic Security:

Hiding All Partial Information

The second part of the thesis considers a more general setting, in which information
must be leaked, yet we want to ensure—in some information-theoretic sense—that
the leaked information is not useful. We describe general conditions which guarantee
that leaked information cannot be used to help predict any function of the input, and
use the insights gained to find new constructions of various cryptographic primitives
with this property.

Let Y () be a probabilistic map, and X a random variable distributed over strings
of bits. Normally, one formalizes the statement “Y (X) leaks no information about
X” by requiring that X and Y (X) be very close to statistically independent ran-
dom variables. Equivalently, one can require that the Shannon mutual information2

I(X;Y (X)) be very small.

However, we’ll consider situations where information leakage is unavoidable—that
is I(X;Y) is quite large, and X and Y are very far from being independent. For
example, if X is an iris scan and Y is a secure sketch of X which can correct τ flipped
bits (see the previous section), then by Proposition 4.3 there are necessarily at least
τ bits of mutual information between X and Y (i.e. I(X;Y) ≥ τ).

2The mutual information between two random variables measures how far they are from being
completely independent. The exact definition is not important for this introduction; it is given in
Section 2.1.

20

Entropic Security Since the usual notion of secrecy is unattainable, we propose
an alternative, inspired by semantic security of encryptions [40]: For every function
f , it should be hard to predict f(X) given Y (that is, learning Y should not change
the adversary’s probability of guessing f(X) by more than some small parameter ε).
A map Y () that satisfies this condition is said to hide all functions of X. Pictorially,
the direction of the diagonal arrow should be hard to compute:

X −→ Y (X)
↓ ↙

f(X)

More precisely, the information leakage is at most ε if for all functions, seeing
Y (X) increases the probability of guessing f(X) by at most ε. The map Y () is
entropically secure if the condition holds for all input distributions X of sufficiently
high min-entropy3

Definition 1.1 (Entropic Security). The probabilistic map Y hides all functions

of X with leakage ε if for every adversary A, there exists some adversary A′ such that

for all functions f ,∣∣Pr[A(Y (X)) = f(X)]− Pr[A′() = f(X)]
∣∣ ≤ ε.

The map Y () is called (t, ε)-entropically secure if Y () hides all functions of X, when-

ever the min-entropy of X is at least t.

This notion of security was introduced by Canetti, Micciancio and Reingold [17,
18], and subsequently and independently by Russell and Wang [70]. Both of those
works discussed a weaker-seeming version of this definition (one of our results is the
near-equivalence of their notion of security to the one described here—see below).

1.2.1 Two Games for Measuring Information Leakage

In order to explain the relation between entropic security and the standard notion
of security, we formulate two abstract games. Both games attempt to capture the
meaning of the statement “Y (X) leaks no information about X” by allowing an
adversary to guess the value of a function f(X) based on Y = Y (X).

In this discussion, the pairs (X, Y) and (X ′, Y ′) are sampled independently ac-
cording to the same joint distribution (i.e. Y = Y (X) and Y ′ = Y (X ′)). Let X
denote the range of X.

Game 1, on input y: The adversary receives y as input and outputs the description
of a function fy : X → {0, 1}∗, and a string g. The adversary’s gain is:

Pr[fy(X) = g | Y = y]− Pr[fy(X
′) = g]

3The min-entropy of a random variable is one of several measures of the inherent uncertainty
about the value of the variable. The min-entropy of X is the negative logarithm of the probability
of guessing the value of X ahead of time, that is H∞(X) = −log(maxx Pr[X = x]).

21

Game 2, on input y: The adversary produces the description of a function f :
X → {0, 1}∗ before seeing y. The adversary then sees y and outputs a string g. The
adversary’s gain is:

Pr[f(X) = g | Y = y]− Pr[f(X ′) = g]

Now consider the adversary’s expected gain in each of these games when the input
Y is chosen at random. We’ll say that Y leaks a-posteriori information about X if
there exists an adversary who has a non-negligible expected advantage in Game 1,
since the adversary gets to decide what he wants to learn after seeing Y . Similarly,
we’ll say that Y leaks a priori information about X if there’s an adversary who has a
non-negligible advantage in Game 2—there, the adversary must decide ahead of time
what information about X is of interest.

The adversary’s expected advantage in the a-posteriori game is the standard mea-
sure of information leakage, and is well understood. In particular, it can be bounded
by the statistical difference4 between the joint distribution (X, Y) and the product
of marginals (X ′, Y) (where X ′ is independent of Y). One can also ensure that no
a-posteriori information is leaked by requiring that I(X;Y) ≤ ε, where ε is some
“negligible” quantity (and I is the mutual information). On the other hand, the
adversary’s advantage in Game 2 is less well understood. One gets some insight by
thinking of it as a simplified, information-theoretic reformulation of semantic security
of encryptions [40].

1.2.2 Contributions on Entropic Security

This thesis considers situations in which we simply cannot prevent an adversary
from having a large advantage in Game 1—that is, we cannot prevent non-negligible
Shannon information about X from being leaked by Y—and yet we can still satisfy
a strong definition of secrecy by ensuring that no a-priori information is leaked, i.e.
no advantage is possible in Game 2. We provide a general technique for proving
that Game 2 cannot be won—namely, it is necessary and sufficient to show that the
map Y (·) is some kind of randomness extractor. We then construct special-purpose
extractors to suit three different applications.

As with entropy loss for secure sketches, we bound the leakage ε by assuming that
X itself is hard to predict. We show that in many situations, one can construct maps
Y () which hide all functions of X as long as H∞(X) ≥ I(X;Y)+2 log

(
1
ε

)
. The quan-

tity log
(

1
ε

)
is the number of “bits of security,” a standard measure in cryptography.

A Strong Definition of Security The definition we propose (Definition 1.1) is
stronger than previously studied formulations of entropic security [17, 18, 70], which
only considered the adversary’s ability to predict predicates instead of all possible

4The statistical difference, or total variation distance, between two probability distributions mea-
sures how easy it is to distinguish samples from one distribution from samples from the other. See
Section 2.1.

22

functions of the secret input. (Recall that a predicate is a “yes”/”no” question, that
is, a function that outputs a single bit.)

For example, the definition in terms of predicates does not directly imply that
the adversary’s chance of recovering the message itself remains low! The implication
does in fact hold, but requires some proof. If we assume that the adversary can guess
the input with non-trivial probability, we can obtain a contradiction by choosing a
“Goldreich-Levin” predicate at random, that is by choosing gr(x) = r � x where r is
a random n-bit string and � is the binary inner product r�x =

∑
i rixi mod 2. We

omit a detailed proof; we prove much more general implications below, for which the
GL predicates do not suffice.

An Equivalence to Indistinguishability The key result behind all our construc-
tions is the equivalence of the following statements:

• The map Y () hides all functions of X, as long as H∞(X) ≥ t.

• For any two random variables X1, X2 which both have min-entropy at least t−2,
the random variables Y (X1) and Y (X2) are statistically indistinguishable.

There are two main pieces to the result. First, we show that indistinguishability
is equivalent to entropic security for predicates (the definition of [17, 70]). This is the
easier of the two parts. Second, we show that if the adversary can gain advantage
ε at predicting some function f(X) given Y , then there exists a predicate g, which
depends on f and the distribution of X such that the adversary gets nearly the
same advantage at guessing g(X) given Y . This last result may be of independent
interest. It is an information-theoretic converse to the Goldreich-Levin hardcore bit
construction, which states converts a good predictor for a particular predicate into a
good predictor for some underlying function.

This equivalence provides a new application of randomness extractors to cryp-
tography; namely, we show that an extractor’s output reveals very little about its
source. 5 (Recall that an extractor takes as input an arbitrary, high entropy ran-
dom source and outputs a small number of uniformly random bits.) The equivalence
simplifies many existing proofs of security and also strengthens them—existing tech-
niques only proved that no predicate of the secret X was leaked (as opposed to no
function of any kind).

Finally, the result parallels—and was inspired by—a similar equivalence due to
Goldwasser and Micali for the case of computationally secure encryption schemes
[40]—see below.

We also obtain new constructions, lower bounds and tighter analyses for the following
settings:

5This use of extractors has been around implicitly in complexity theory for many years, for
example in the use of hash functions for approximate counting. However, our abstraction, and
cryptographic perspective, are novel.

23

Symmetric encryption with a short key Suppose one wants to encrypt a n-bit
message using k bits of secret key. Shannon’s famous lower bound [73] states that
without computational assumptions, one cannot encrypt securely using fewer than n
bits of key. Russell and Wang [70] showed that one can nonetheless hide all predicates
of the message with a much shorter key. We provide several new results:

• A stronger definition of security, based on the equivalence between entropic
security for all functions and indistinguishability of encryptions for message
spaces with high min-entropy.

• Two general frameworks for constructing entropically secure encryption schemes,
one based on expander graphs and the other on XOR-universal hash functions.
These schemes generalize the schemes of Russell and Wang, yielding simpler
constructions and proofs as well as improved parameters.

• Lower bounds on the key length k for entropic security and indistinguishability.
In particular, we show near tightness of Russell-Wang constructions: k > n− t.
(In fact, for a large class of schemes k ≥ n− t+ log

(
1
ε

)
.)

Noise-resilient Perfectly One-Way Hash Functions Canetti, Micciancio and
Reingold [17, 18] showed that it is possible to construct randomized hash functions
Y () such that Y (X) hides all predicates of X, but nonetheless Y () is verifiable: given
x and y, one can check whether or not Y (x) = y, yet it is not feasible to find x1, x2

such that Y (x1) = Y (x2).

• We show how to construct “fuzzy”—that is, noise-resilient—perfect hash func-
tions. The hash value for w allows one to verify whether a candidate string w′

is close to w, but reveals nothing else about w. The main technical tools are
constructions of entropically-secure sketches and fuzzy extractors.

This result is a significant departure from the approach of Canetti et al. The
motivation behind [17, 18] was to formalize the properties of an ideal “random
oracle” which might be achievable by a real computer program. In contrast,
even given a random oracle, it is not at all clear how to construct a proximity
oracle for a particular value w (i.e. an oracle that accepts an input if and
only if it is sufficiently close to w). In that sense, the result is also about code
obfuscation: noise-resilient POWFs might best be viewed as obfuscated versions
of a proximity oracle.

• We strengthen the results of [18] on information-theoretically-secure POWF’s.
Following the general results on entropic securiy, we strengthen the definition
of perfect one-way-ness to preclude the adversary from improving her ability
to predict any function of the input. We also improve the analysis of the [18]
construction, obtaining better parameters (roughly half the entropy loss) and
reducing the assumptions necessary for security.

24

1.2.3 Composability and Semantic Security

Composing Entropically-Secure Constructions—Towards Robust Security
A desirable property of definitions of security of cryptographic primitives is compos-
ability : once some protocol or algorithm has been proven secure, you would like to be
able to use it as a building block in other protocols with your eyes closed—without
having to worry about effects that violate the intuitive notion of security, but which
are not covered by the original definition.

Composability is difficult to guarantee, since it is not clear how to translate it into
a mathemetical property. There are various formalizations of composability, most no-
tably “Universal Composability” [19] and several frameworks based on logic algebras
for automated reasoning (see [45] and the references therein). Finding protocols that
are provably secure in these general frameworks is difficult, and sometimes provably
impossible. A more common approach is to prove that a particular definition remains
intact under a few straightforward types of composition, say by proving that it is still
secure to encrypt the same message many times over.

The main weakness of entropic security, as defined above, is that it does not ensure
composability, even in this straightforward sense. If Y () and Y ′() are independent
versions of the same entropically-secure mapping, then the map which outputs the
pair Y (X), Y ′(X) may be completely insecure, to the point of revealing X completely.
In the case of encryption, this may mean that encrypting the same message twice is
problematic. The reason is that given the first value Y (X), the entropy of X may be
very low, too low for the security guarantee of Y ′() to hold.

For example, suppose that Y (x) consists of the pair M,Mx, where M is a random
3n
4
× n binary matrix M and x ∈ {0, 1}n. We will see in later chapters that Y ()

is entropically secure whenever the entropy of X is close to n. However, the pair
Y (x), Y ′(x) provides a set of 3n

2
randomly chosen linear constraints on x. With high

probability, these determine x completely, and so the pair Y (), Y ′() is insecure under
any reasonable definition.

Given these issues, entropically-secure primitives must be used with care: one
must ensure that the inputs truly have enough entropy for the security guarantee to
hold. When the inputs are passwords, the requirement of high entropy is natural,
but the issue of composability raises a number of intersting open questions for future
work.

On Semantic Security and Indistinguishability In a seminal paper, Gold-
wasser and Micali [40] introduced two notions of security for encryption schemes
against computationally bounded eavesdroppers. They showed that seeing an encryp-
tion of a message gives a computationally bounded eavesdropper no useful information
(roughly in the sense defined above) if and only if there is no pair of messages m1,m2

such that the eavesdropper can distinguish the encryption of m1 from the encryption
of m2.

Our result can be seen as a parallel of that equivalence for high-entropy distri-
butions. The Goldwasser-Micali equivalence can be stated as follows: if security
holds for all flat distributions with 1-bit of entropy — that is, distributions over pairs

25

(m1,m2) — then no information is leaked for any distribution whatsoever. Our result
provides a limited generalization: if you can prove that encryptions of messages from
all distributions of min-entropy at least t are indistinguishable, then no information
is leaked to the eavesdropper when the message has min-entropy at least t+1. There
are significant differences: the original equivalence of [40] holds for both computation-
ally bounded adversaries and unbounded ones, whereas our equivalence only holds for
computationally unbounded adversaries. The proof techniques are also very different.

1.3 Organization of This Thesis

The thesis is divided into two parts: the first part describes the new definitions
and constructions for the secure use of biometric passwords; the second, longer part
presents the results on entropic security.

Chapter 2 presents the background definitions material and notation.
Chapter 3 deals with the secure use of biometric passwords. We define secure

sketches and extractors, which give us an abstract framework for dealing with noisy
data, and present the constructions for three measures of distance: Hamming distance,
set difference and edit distance. We discuss improvements to the error-tolerance which
are possible using “list-decoding” of codes, and conclude the chapter with the details
applying our framework to the problem of password authentication.

In Chapter 4, we show a further relationship between our new primitives and error-
correcting codes. We use this to establish various lower bounds on the information
that must be leaked by our primitives, both in terms of min-entropy and Shannon
entropy.

Chapter 5 presents our general results on entropic security. The main result of this
section is the equivalence of entropic security to indistinguishability of encryptions of
high-entropy message distributions.

Chapter 6 applies these general results to entropically-secure encryption schemes.
We describe two new encryption schemes, each with a simple proof of security, and
give lower bounds which show that the key length of our schemes is nearly optimal.

Chapter 7 describes our results on entropically-secure hash functions, called “per-
fectly one-way” hash functions (POWHF). First, we construct entropically-secure
fuzzy extractor and secure sketches for Hamming distance, and use those to build
“fuzzy” (i.e. noise-resilient) POWHF. The new construction also simplifies and im-
proves the known constructions of ordinary (not noise-resilient) POWHF.

Finally, Appendix A gives the proofs of several lemmas on universal hash functions
(variants on the “left-over hash lemma”, or “privacy amplification lemma”). The
proofs are collected together for easy reference, and since they are all quite similar.

26

Chapter 2

Mathematical Preliminaries

2.1 Probability Distributions and Entropy

Notation Unless explicitly stated otherwise, logarithms, denoted log(x) are base 2.

When defining a new quantity x, we will often use x
def
= x′. The set of binary strings

lf length n is denoted {0, 1}n. Bitwise XOR of strings is denoted by ⊕, and inner
product mod 2, that is the standard inner product on {0, 1}n, is denoted with the
symbol �.

Random variables will typically take on values either in R or in a finite, discrete
space such as {0, 1}n, and are denoted with capital letters in bith cases. The probabil-
ity that a random variable X takes on a particular x. E [X] denotes the expectation
of a real-valued random variables and Var [X], its variance. Conditional probabilites,
exectations and variance will be denoted in the standard way: conditioned on event
E, we write Pr[X = x|E],E [X|E] ,Var [X|E]. In many cases, we will use the same
symbol both for a random variable and the distribution according to which it is drawn.

If X is a probability distribution (or random variable), the notation x← X means
“draw x according toX.” We will sometimes use x ∼ X to denote the same thing. If S
is a finite set, we write x← S to denote “draw S from the uniform distribution of S.”
Since it comes up very often, we use U` to a random variable distributed uniformly on
`-bit binary strings, i.e. the set {0, 1}`. The same notation will also be used for more
complex experiminets: x ← A(y) means that the (possibly probabilistic) algorithm
A is run on input y and the output is assigned to x. If A is probabilistic and we wish
to make the random bits R explicit, we write x← A(y;R).

We will often want to discuss the asymptotics of various constructions, in which
case the construction will be parametrized by an integer (typically an input length).
If On refers to the instantiation of some construction with parameter n, we call a
sequence On0 , On0+1, Ono+2, ... an ensemble, and abuse notation slightly by writing
{On}n∈N.

A non-negative function ε : N→ R is called negligible if ε(n) = O(1/nc) for every
constant c ∈ N. The input n to ε is frequently omitted.

27

Distance Measures on Probability Distributions The statistical distance (some-
times called total variation distance, or simply L1 distance) between two probability
distributions A and B on the same space is

SD (A,B)
def
=

1

2

∑
v

∣∣Pr[A = v]− Pr[B = v]
∣∣

(that is, half the L1 distance between the probability mass functions). Statistical dif-
ference measures an adversary’s probability of telling samples from two distributions
apart: if one flips a fair coin and samples from either A or B according to the coin,
then an adversary’s best possible probability of guessing the value of the coin given
the sample is exactly 1

2
+ 1

2
SD (A,B).

The L2 distance between two distributions A and B is

‖A−B‖2
def
=

√∑
v

(Pr[A = v]− Pr[B = v])2.

This does not have a natural interpretation in the way that statistical difference does,
but it is often easier to compute. We will use:

Fact 2.1. If A,B are distributions on {0, 1}n with ‖A − B‖22 ≤ ε2/2n, then the

statistical difference SD (A,B) is at most ε.

2.1.1 Three Measures of Entropy

Informally, the entropy of a probability distribution is the amount of inherent uncer-
tainty in the outcome of drawing a value from the distribution. There are various
ways to define entropy, and typically each formulation is useful in different contexts.
In the thesis, we will work with three formulations of entropy. In a seminal work,
Shannon introduced the concept of entropy to probability theory and signal process-
ing [73]. The notion of entropy he defined is called Shannon entropy, and is probably
the most commonly used definition. We will mostly make use of two different notions,
which turn out to be more convenient when one works with randomness extraction
from an unknown source: min-entropy and collision entropy. We will define these
two first.

Min-Entropy The min-entropy H∞(A) of a random variable A is the logarithm of
the most probable element in the distribution:

H∞(A)
def
= − log(max

a
Pr(A = a)).

This measures how hard it is to predict the outcome of a draw from A: the probability
of successfully guessing the outcome ahead of time is exactly the mass of the most
likely element. This is cryptographically useful: it is the probability that an adversary
can guess the value of A on the first try.

28

For a pair of (possibly correlated) random variables A,B, a conventional notion
of “average min-entropy” of A given B would be Eb←B [H∞(A | B = b)]. However,
for our purposes, the following slightly modified notion will be more robust: we let

H̃∞(A | B) = − log
(
Eb←B

[
2−H∞(A|B=b)

])
.

Namely, we define average min-entropy of A given B to be the logarithm of the
average probability of the most likely value of A given B. This definition is the right
one to use when one is interested in the statistical difference from uniform, as becomes
clear, for example, in Lemma 3.2.

The following simple lemma explains why our choice is more convenient. The
lemma is not new, but we do not know of a convenient reference and so we provide a
proof here.

Lemma 2.2. For any random variables A,B, and for any δ > 0, the conditional

entropy H∞(A|B = b) is at least H̃∞(A|B)− log(1/δ) with probability at least 1− δ
(the probability here is taken over the choice of b).

Moreover, if B is an `-bit string, then H̃∞(A | B) ≥ H∞(A)− `.

Proof. Let p = 2−H̃∞(A|B) = Eb

[
2−H∞(A|B=b)

]
. By the Markov inequality, 2−H∞(A|B=b) ≤

p/δ with probability at least 1−δ. Taking logarithms, we get the first claim. Next, let

q = 2−H∞(A), so that q is the maximum probability in A’s distribution. Conditioned

on any event E of some probability α > 0, this max probability can go up by at most

1/α, since q ≥ Pr[A = a] ≥ Pr[(A = a) ∧ E] = α · Pr[A = a | E]. Thus, we have:

Eb←B

[
2−H∞(A|B=b)

]
≤
∑

b

Pr[B = b]

(
q

Pr[B = b]

)
= q ·# {b | Pr[B = b] > 0} ≤ q · 2`.

But this means that H̃∞(A | B) ≥ − log(q · 2`) = H∞(A)− `.

Collision Entropy The collision probability of a distribution A is the probability
that two independent draws from the same distribution will yield the same value:

Col(A) = Pr
a,b←A

[a = b] =
∑

a

Pr[A = a]2 = ‖A‖22.

It is well known [46] that if A has support on some setA and Col(A) ≤ (1+ε2)/|A|,
then A is ε-close to the uniform distribution UA on A: SD (A,UA) ≤ ε. (This is a
direct consequence of Fact 2.1.)

The collision entropy (sometimes called Renyi entropy) of A, is defined as the
logarithm of the collision probability:

H2(A)
def
= − log2 Col(A)

29

Collision entropy is very closely related to the min-entropy:

H∞(A) ≤ H2(A) ≤ 2H∞(A).

By another useful lemma for which I have no good reference, any distribution with
collision entropy t is within statistical difference ε of a distribution with min-entropy
at least t− log(1/ε) (proof omitted).

Shannon Entropy The Shannon entropy of a distribution is given by:

Hsh(A)
def
=
∑

a

Pr[A = a] log
1

Pr[A = a]
.

Similarly, the conditional entropy of A given B is Hsh(A | B)
def
= Eb [Hsh(A | B = b)].

Alternatively, it can computed as the difference between the entropy of the pair A,B
and the entropy of B alone: Hsh(A | B) = Hsh(A,B)−Hsh(B).

Finally, the mutual information between A and B measures the drop in the entropy
of A which is caused by learning B:

I(A;B)
def
= Hsh(A)−Hsh(A | B) = Hsh(A,B)−Hsh(A)−Hsh(B).

The mutual information is thought of as measuring the amount of information aboutA
which is revealed byB. The formula is symmetric, so it also represents the information
about B which is revealed by A.

The Shannon information can differ a lot from collision and min-entropy. For
example, consider a distribution A which takes a particular value with probability 9

10
,

and is uniform over all strings of length n with the remaining probability 1
10

. Then
in fact the Shannon entropy of A is quite large, about n/10. On the other hand, the
min-entropy is only log(10/9) ≈ 0.15.

There are, however, several useful relationships of Shannon entropy with other
measures. First, it is always an upper bound:

Hsh(A) ≥ H2(A) ≥ H∞(A).

Second, when the mutual information between two random variables X, Y is very
small, then they are very close to uniform, and vice versa. We will only need the
reverse implication in this thesis:

Lemma 2.3 (Theorem 16.3.2 in [23]). If A,B are distributions over {0, 1}n, and

SD (A,B) ≤ ε, then |Hsh(A)−Hsh(B)| ≤ ε(n+ log
(

1
ε

)
).

Now let X, Y be two correlated random variables on {0, 1}n, and let X be sampled
according to the same distribution as X, but independently of Y . Let A = (X,Y)
and B = (X ′, Y), i.e. B is the product of the marginals. By the lemma above, if
SD (A,B) ≤ ε, then I(X, Y) ≤ ε (n+ log

(
1
ε

)
+ 1).

Conversely, if I(X;Y) is large (with even a single bit of information), then the
pair X, Y cannot be very close to being independent.

30

2.2 Randomness Extractors

Randomness extractors were mentioned in the introduction as an important tool in
information-theoretic cryptography. Informally, an extractor is a function which takes
as input some imperfect source of randomness (the various bits of which may be biased
or correlated), and produces as output a short, uniformly random string.

Definition 2.1. An efficient (n, t′, `, k, ε)-extractor is a polynomial time function

Ext : {0, 1}n × {0, 1}k → {0, 1}`+k such that for all min-entropy t′ distributions W ,

we have SD (Ext(W ;S) , U`+k) ≤ ε, where Ext(W ;S) stands for applying Ext to W

using (uniformly distributed) randomness S.

The difference t′− (`+ k) is usually called the entropy loss of the extractor (it is,
informally, the difference between the entropy going in and the entropy coming out).
The number of extra random bits k is usually called the seed length of the extractor
and S, the seed.

Strong extractors are an important special class of extractors, which include their
seed explicitly in the output. We include a separate definition for ease of reference:

Definition 2.2. An efficient (n, t′, `, ε)-strong extractor is a polynomial time proba-

bilistic function Ext : {0, 1}n → {0, 1}` such that for all min-entropy t′ distributions

W , we have SD (〈Ext(W ;S), S〉 , 〈U`, S〉) ≤ ε, where Ext(W ;S) stands for applying

Ext to W using (uniformly distributed) randomness S.

Strong extractors can extract at most ` = t′−2 log(1/ε)+O(1) nearly random bits
[67]. Many constructions match this bound (see Shaltiels’ survey [72] for references).
Extractor constructions are often complex since they seek to minimize the length of
the seed X. For our purposes, the length of S will be less important, so pairwise
independent hash functions will already give us optimal ` = t′−2 log(1/ε) [44, 8]—we
explain that construction now.

Pairwise Independence and XOR Universality Wegman and Carter [20, 88]
defined pairwise independence of families of functions from one finite set to another.
We will use a relaxation, often called XOR universality [50].

Definition 2.3. Let H = {hi}i∈I is a set of functions from {0, 1}n to {0, 1}`, indexed

by a set I. Suppose we choose H uniformly from H.

• The family of functions H is pairwise independent (or 2-universal) if, for all

possible pairs of distinct inputs x, y the random variables H(x), H(y) are inde-

pendent and uniformly distributed over {0, 1}`, that is

∀x, y ∈ {0, 1}n, x 6= y, ∀a, b ∈ {0, 1}` : Pr
I←I

[hI(x) = a and hI(y) = b] =
1

22`

• The family H is called XOR-universal if for all pairs of distinct inputs x, y, the

difference H(x)⊕H(y) is uniformly distributed over {0, 1}`.

31

Pairwise independence clearly implies XOR-universality. The reverse is not quite
true; for example, it could be that some particular input is left fixed by all functions
in the family. In this work, we can almost always substitute pairwise independent
families with XOR-universal families, and we state the main lemmas below using
XOR-universality.

A simple example of a XOR-universal family is the set of all functions from n bits
to ` bits. A more commonly used family is the set of all linear functions from n bits
to ` bits (here linearity is over Z2 equipped with XOR, denoted ⊕). A linear function
can be described by a `× n matrix of bits; the function requires n` bits to store.

One gains some efficiency by viewing {0, 1}n as the larger field GF (2n). The family
consists of functions ha(x) = ax where multiplication is in GF (2n). This produces
only n bits of output. If ` is shorter than n then one can simply truncate the output
to the first ` bits. If ` is greater than n, the one can simply work over GF (2`) instead.

The easiest construction of strong extractors is given by the “left-over hash”
lemma, also called the “privacy amplification” lemma [7, 44, 46, 8].

Lemma 2.4 (Left-over hash / privacy amplification). If {hi}i∈I is a family of

pairwise independent hash functions from n bits to ` bits, and X is a random variable

in {0, 1}n with collision entropy H2(X) ≥ `+ 2 log
(

1
ε

)
+ 1, then

〈I, hi(X)〉 ≈ε 〈I, U`〉

where I ← I, U` ← {0, 1}` (both drawn uniformly), and I, X and U` are independent.

The lemma is stated in terms of collision entropy; this implies the same result for
min-entropy since H∞(X) ≤ H2(X). The seed length of this extractor is n, and the
entropy loss is 2 log

(
1
ε

)
+ 1, as stated above.

2.3 Metric Spaces and Error-Correcting Codes

Metric Spaces A metric space is a setM with a distance function dis :M×M→
R+ = [0,∞) which obeys various natural properties (the exact properties are not
important; our results are specific to the three metrics below).

In this thesis, M will usually be a finite set, and the distance function will only
take on integer values (we will also discuss continous metrics, but only briefly). The
size of theM will always be denoted N = |M|. We will assume that any point inM
can be naturally represented as a binary string of appropriate length O(logN).

We concentrate on the following metrics.

1. Hamming metric. Here M = Fn over some alphabet F (we will mainly use
F = {0, 1}), and dis(w,w′) is the number of positions in which they differ.

2. Set Difference metric. Here M consists of all s-element subsets in a universe
U = [n] = {1, ..., n}. The distance between two sets A,B is the number of
points in A that are not in B. Since A and B have the same size, the distance
is half of the size of their symmetric difference: dis(A,B) = 1

2
|A4B|.

32

3. Edit metric. Here againM = Fn, but the distance between w and w′ is defined
to be one half of the smallest number of character insertions and deletions
needed to transform w into w′.

All three metrics seem natural for biometric data.

Coding Since we want to achieve error tolerance in various metric spaces, we will
use error-correcting codes in the corresponding metric spaceM. A code C is a subset
{w1, . . . , wK} of K elements of M (for efficiency purposes, we want the map from i
to wi to be polynomial-time). The minimum distance of C is the smallest d > 0 such
that for all i 6= j we have dis(wi, wj) ≥ d. In our case of integer metrics, this means
that one can detect up to (d − 1) “errors” in any codeword. The error-correcting
distance of C is the largest number τ > 0 such that for every w ∈ M there exists at
most one codeword wi in the ball of radius τ around w: dis(w,wi) ≤ τ for at most
one i. Clearly, for integer metrics we have τ = b(d− 1)/2c. Since error correction
will be more important in our applications, we denote the corresponding codes by
(M, K, τ)-codes. For the Hamming and the edit metrics on strings of length n over
some alphabet F , we will sometimes call k = log|F |K the dimension on the code, and
denote the code itself as an [n, k, d = 2τ + 1]-code. 1

We will use a few definitions specific to the Hamming metric when proving lower
bounds. Let A(n, d) to be the largest k for which their exists an (n, k, d) code, and let
A(n, d, b) be the largest such k for a code all of whose codewords lie within a Hamming
ball of radius b (denoted Balln(b)). More generally, given any set S of 2m points in
{0, 1}n, letA(n, d, S) be the largest k such that all the codewords of C belong to the set
S. Finally, we let L(n, d,m) denote min|S|=2m A(n, d, S). Of course, when n = m, we
get L(n, d, n) = A(n, d). In general, we can say L(n, d,m) ≤ min(A(m, d), A(n, d, b)),
where b is such that Balln(b) has volume 2m. The last inequality follows by choosing
S = {0, 1}m0n−m and S = B respectively.

The exact determination of quantities A(n, d) and A(n, d, b) form the main prob-
lem of coding theory (see [1] for a summary of results about the latter). To the best of
our knowledge, the quantity L(n, d,m) was not explicitly studied earlier, but its exact
determination seems very hard as well. We conjecture it is very close to A(n, d, b)
above for essentially all “natural” settings of n, d,m.

Finally, we will work a lot with linear codes for the Hamming metric. A code in
{0, 1}n is linear if it forms a linear subspace of {0, 1}n equipped with bitwise XOR,
that is if the XOR of any two codewords is also a codeword. If C is a linear code of
dimension k, then the syndrome of C, denoted synC(·) is a linear map from n bits to
n − k bits such that synC(w) = 0n−k if and only if w ∈ C. In the Hamming metric,
the syndrome captures the error pattern which has been applied to a codeword. That
is, if w = c ⊕ e, where c ∈ C, then synC(w) = synC(e). Thus, to find the smallest
vector e for which w⊕ e is a codeword, it is not necessary to have w in hand; simply
knowing synC(w) is sufficient.

1In this thesis, the square brackets [] do not mean that the code is linear, although this is
sometimes used as a convention in the literature.

33

34

Part I

Cryptography with Noisy Data

35

Chapter 3

Secure Sketches and Fuzzy

Extractors: Cryptographic Keys

from Noisy Data

This chapter introduces the primitives discussed earlier for handling noisy data: secure
sketches and fuzzy extractors. We begin with formal definitions of the primitives
(Section 3.1), and then turn to illustrating them with several constructions.

Constructions First, we discuss generic techniques for building secure sketches and
fuzzy extractors. In Section 3.2, we show that given a secure sketch for a particular
metric space, one can construct a fuzzy extractor with similar parameters. Section 3.3
describes two geometric constructions of the primitives. (1) In a transitive metric
space, the existence of an efficiently decodable error-correcting code immediately
leads to a secure sketch with related parameters. (2) More generally, embeddings
from a source metric space into a target space allow one to construct fuzzy extractors
for the target space into fuzzy extractors from the source.

Second, we describe constructions for the three specific metric spaces described
in the Introduction—Hamming distance, set difference, and edit distance (Sections
3.4, 3.5, and 3.6, respectively). The next chapter (Chap. 4) investigates lower bounds
on the performance of our primitives. Those results show that the constructions for
the Hamming and set difference metrics are optimal, at least for some settings of the
parameters.

Extensions and Applications The definitions of Section 3.1 are quite strict, and
require a noisy input to be accepted as long as it is close to the original data, even
though the exact error pattern may have been chosen adversarially. In Section 3.7,
we consider several relaxations of the error model and show in each relaxation, we
can change our constructions slightly to tolerate a larger numbers of errors.

Finally, Section 3.8 gives further details of the secure use of biometric data for
password authentication. This is probably the main application of the framework
presented in this chapter.

37

3.1 New Definitions

LetM be a metric space on N points with distance function dis.

Definition 3.1. An (M, t, t′, τ)-secure sketch is a randomized map SS :M→ {0, 1}∗
with the following properties.

1. There exists a deterministic recovery function Rec allowing to recover w

from its sketch SS(w) and any vector w′ close to w: for all w,w′ ∈M satisfying

dis(w,w′) ≤ τ , we have Rec(w′, SS(w)) = w.

2. For all random variables W over M with min-entropy t, the average min-

entropy of W given SS(W) is at least t′. That is, H̃∞(W | SS(W)) ≥ t′.

The secure sketch is efficient if SS and Rec run in time polynomial in the represen-

tation size of a point in M. We denote the random output of SS by SS(W), or by

SS(W ;X) when we wish to make the randomness explicit.

We will have several examples of secure sketches when we discuss specific metrics.
The quantity t − t′ is called the entropy loss of a secure sketch. Our proofs in fact
bound t− t′, and the same bound holds for all values of t.

Definition 3.2. An (M, t, `, τ, ε) fuzzy extractor is a given by two procedures (Gen,Rep).

1. Gen is a probabilistic generation procedure, which on input w ∈ M outputs an

“extracted” string R ∈ {0, 1}` and a public string P . We require that for any

distribution W on M of min-entropy t, if 〈R,P 〉 ← Gen(W), then we have

SD (〈R,P 〉, 〈U`, P 〉) ≤ ε.

2. Rep is a deterministic reproduction procedure which allows one to recover R from

the corresponding public string P and any vector w′ close to w: for all w,w′ ∈
M satisfying dis(w,w′) ≤ τ , if 〈R,P 〉 ← Gen(w), then we have Rep(w′, P) = R.

The fuzzy extractor is efficient if Gen and Rep run in time polynomial in the repre-

sentation size of a point in M.

In other words, fuzzy extractors allow one to extract some randomness R from
w and then successfully reproduce R from any string w′ that is close to w. The
reproduction is done with the help of the public string P produced during the initial
extraction; yet R looks truly random even given P . To justify our terminology, notice
that strong extractors (as defined in Section 2.2) can indeed be seen as “nonfuzzy”
analogs of fuzzy extractors, corresponding to τ = 0, P = X (andM = {0, 1}n).

38

3.2 Fuzzy Extractors from Secure Sketches

Not surprisingly, secure sketches come up very handy in constructing fuzzy extractors.
Specifically, we construct fuzzy extractors from secure sketches and strong extractors.
For that, we assume that one can naturally represent a point w inM using n bits. The
strong extractor we use is the standard XOR-universal hashing construction, which
has (optimal) entropy loss 2 log

(
1
ε

)
. The lemma, combined with secure sketches, will

often produce nearly optimal fuzzy extractors.

Lemma 3.1. Assume SS is a (M, t, t′, τ)-secure sketch with recovery procedure Rec,

and let Ext be the (n, t′, `, ε)-strong extractor based on XOR-universal hashing (in

particular, ` = t′ − 2 log
(

1
ε

)
). Then the following (Gen,Rep) is a (M, t, `, τ, ε)-fuzzy

extractor:

• Gen(W ;X1, X2): set P = 〈SS(W ;X1), X2〉, R = Ext(W ;X2), output 〈R,P 〉.

• Rep(W ′, 〈V,X2〉): recover W = Rec(W ′, V) and output R = Ext(W ;X2).

Lemma 3.1 follows directly from the intermediate result below (Lemma 3.2), which
explains our choice of the measure H̃∞(A|B) for the average min-entropy. Lemma 3.2
says that XOR-universal hashing extracts randomness from the random variable A
as if the min-entropy of A given B = b were always at least H̃∞(A|B). If one wants
to use a generic extractor, there is some additional loss in the parameters (see the
remark after the proof of the lemma).

Lemma 3.2. If A,B are random variables such that A ∈ {0, 1}n and H̃∞(A|B) ≥ t′,

and H is a random member of a XOR-universal hash family from n bits to ` bits,

then SD (〈B,H,H(A)〉 , 〈B,H,U`〉) ≤ ε as long as ` ≤ t′ − 2 log
(

1
ε

)
.

This is a special case of Lemma A.6, but we give a (direct) proof here.

Proof. The particular extractor we chose has a smooth tradeoff between the entropy

of the input and the quality of the output. For any random variable X, the left-over

hash/privacy amplification lemma [7, 44, 8] states:

SD (〈H,H(X)〉 , 〈H,U`〉) ≤
√

2−H∞(X)2`

In our setting we have a bound on the expected value of 2−H∞(A|B=b), namely

E
[
2−H∞A | B)

]
≤ 2−t′ .

Using the fact that E
[√

Z
]
≤
√

E [Z], for any non-negative r.v. Z we get:

Eb [SD (〈H,H(A|B = b)〉 , 〈H,U`〉)] ≤
√

2`−t′ .

39

Now the distance of 〈B,H,H(A)〉 from 〈B,H,U`〉 is the average over values of B of

the distance of 〈H,H(A)〉 from 〈H,U`〉. This average is exactly what was bounded

above:

SD (〈B,H,H(A)〉, 〈P,U`〉) = EB [SD (〈H,H(A)〉 , 〈H,U`〉)] ≤
√

2`−t′ .

The extractor we use always has ` ≤ t′ − 2 log
(

1
ε

)
, and so the statistical difference is

at most ε.

Remark 3.1. One can prove an analogous form of Lemma 3.2 using any strong

extractor. However, in general, the resulting reduction leads to fuzzy extractors with

min-entropy loss 3 log
(

1
ε

)
instead of 2 log

(
1
ε

)
. This may happen in the case when

the extractor does not have a convex tradeoff between the input entropy and the

distance from uniform of the output. Then one can instead use a high-probability

bound on the min-entropy of the input (that is, if H̃∞(X|Y) ≥ t′ then the event

H∞(X|Y = y) ≥ t′ − log
(

1
ε

)
happens with probability 1− ε).

3.3 Two Generic Constructions

Sketches for Transitive Metric Spaces We give a general technique for building
secure sketches in transitive metric spaces, which we now define. A permutation π on a
metric spaceM is an isometry if it preserves distances, i.e. dis(a, b) = dis(π(a), π(b)).
A family of permutations Π = {πi}i∈I acts transitively onM if for any two elements
a, b ∈ M, there exists πi ∈ Π such that πi(a) = b. Suppose we have a family Π
of transitive isometries for M (we will call such M transtive). For example, in the
Hamming space, the set of all shifts πx(w) = w ⊕ x is such a family (see Section 3.4
for more details on this example).

Let C be an (M, K, τ)-code. Then the general sketching scheme is the following:
given a input w ∈ M, pick a random codeword b ∈ C, pick a random permutation
π ∈ Π such that π(w) = b, and output SS(w) = π. To recover w given w′ and the
sketch π, find the closest codeword b′ to π(w′), and output π−1(b′). This works when
dis(w,w′) ≤ τ , because then dis(b, π(w′)) ≤ τ , so decoding π(w′) will result in b′ = b,
which in turn means that π−1(b′) = w.

A bound on the entropy loss of this scheme, which follows simply from “counting”
entropies, is |“π′′| − logK, where |“π′′| is the size, in bits, of a canonical description
of π. (We omit the proof, as it is a simple generalization of the proof of Lemma 3.4.)
Clearly, this quantity will be small if the family Π of transifitive isometries is small
and the code C is dense. (For the scheme to be usable, we also need the operations
on the code, as well as π and π−1, to be implementable reasonably efficiently.)

Constructions from Biometric Embeddings We now introduce a general tech-
nique that allows one to build good fuzzy extractors in some metric space M1 from
good fuzzy extractors in some other metric space M2. Below, we let dis(·, ·)i de-
note the distance function in Mi. The technique is to embed M1 into M2 so as to
“preserve” relevant parameters for fuzzy extraction.

40

Definition 3.3. A function f :M1 →M2 is called a (τ1, τ2, t1, t2)-biometric embed-

ding if the following two conditions hold:

• For all w1, w
′
1 ∈M1 such that dis(w1, w

′
1)1 ≤ τ1, we have dis(f(w1), f(w2))2 ≤ τ2.

• For all W1 on M1 of min-entropy at least t1, f(W1) has min-entropy at least t2.

The following lemma is immediate:

Lemma 3.3. If f is (τ1, τ2, t1, t2)-biometric embedding of M1 into M2

and (Gen1(·),Rep1(·, ·)) is a (M2, t2, `, τ2, ε)-fuzzy extractor, then (Gen1(f(·)),
Rep1(f(·), ·)) is a (M1, t1, `, τ1, ε)-fuzzy extractor.

Notice that a similar result does not hold for secure sketches, unless f is injective
(and efficiently invertible).

We will see the utility of this particular notion of embedding (as opposed to
previously defined notions) in Section 3.6.

3.4 Constructions for Hamming Distance

In this section we consider constructions for the space M = {0, 1}n under the Ham-
ming distance metric.

The Code-Offset Construction Juels and Wattenberg [47] considered a notion
of “fuzzy commitment.”1 Given a binary [n, k, 2τ + 1] error-correcting code C (not
necessarily linear), they fuzzy-commit to X by publishing W⊕C(X). Their construc-
tion can be rephrased in our language to give a very simple construction of secure
sketches: for random X ← {0, 1}k, set

SS(W ;X) = W ⊕ C(X) . (3.1)

(Note that if W is uniform, this secure sketch direcly yields a fuzzy extractor with
R = X).

When the code C is linear, this is equivalent to revealing the syndrome of the
input w, and so we do not need the randomness X. Namely, in this case we could
have set

SS(w) = synC(w) (3.2)

(as mentioned in the introduction, this construction also appears implicitly in the
information reconciliation literature, e.g. [7, 8, 24]: when Alice and Bob hold secret
values which are very close in Hamming distance, one way to correct the differences
with few bits of communication is for Alice to send to Bob the syndrome of her word
w with respect to a good linear code.)

Since the syndrome of a k-dimensional linear code is n − k bits long, it is clear
that SS(w) leaks only n− k bits about w. In fact, we show the same is true even for
nonlinear codes.

1In their interpretation, one commits to X by picking a random W and publishing SS(W ;X).

41

Lemma 3.4. For any [n, k, 2τ+1] code C and any t, SS above is a (M, t, t+k−n, τ)
secure sketch. It is efficient if the code C allows decoding errors in polynomial time.

Proof. Let D be the decoding procedure of our code C. Since D can correct up to τ

errors, if v = w ⊕ C(x) and dis(w,w′) ≤ τ , then D(w′ ⊕ v) = x. Thus, we can set

Rec(w′, v) = v ⊕ C(D(w′ ⊕ v)).
Let A be the joint variable (X,W). Together, these have min-entropy t+ k when

H∞(W) = t. Since SS(W) ∈ {0, 1}n, we have H̃∞(W,X | SS(W)) ≥ t+ k − n. Now

given SS(W), W and X determine each other uniquely, and so H̃∞(W | SS(W)) ≥
t+ k − n as well.

In Chap. 4, we present some generic lower bounds on secure sketches and extrac-
tors. Let A(n, d) denote the maximum number of codewords possible in a code of
distance d in {0, 1}n. Then Proposition 4.1 implies that the entropy loss of a secure
sketch for the Hamming metric is at least n − logA(n, 2τ + 1), when the input is
uniform (that is, when t = n). This means that the code-offset construction above is
optimal for the case of uniform inputs. Of course, we do not know the exact value of
A(n, d), never mind any efficiently decodable codes which meet the bound, for most
settings of n and d. Nonetheless, the code-offset scheme gets as close to optimality
as is possible in coding.

Getting Fuzzy Extractors As a warm-up, consider the case when W is uniform
(t = n) and look at the code-offset sketch construction: V = W ⊕ C(X). Setting
R = X, P = V and Rep(W ′, V) = D(V ⊕W ′), we clearly get an (M, n, k, τ, 0) fuzzy
extractor, since V is truly random when W is random, and therefore independent
of X. In fact, this is exactly the usage proposed by Juels-Wattenberg, except they
viewed the above fuzzy extractor as a way to use W to “fuzzy commit” to X, without
revealing information about X.

Unfortunately, the above construction setting R = X only works for uniform W ,
since otherwise V could leak information aboutX. However, by using the construction
in Lemma 3.1, we get

Lemma 3.5. Given any [n, k, 2τ + 1] code C and any t, ε, we can get an (M, t, `,

τ, ε) fuzzy extractor, where ` = t+ k− n− 2 log(1/ε). The recovery Rep is efficient if

C allows decoding errors in polynomial time.

3.5 Constructions for Set Difference

Consider the collection of all sets of a particular size s in a universe U = [n] =
{1, ..., n}. The distance between two sets A,B is the number of points in A that
are not in B. Since A and B have the same size, the distance is half of the size of
their symmetric difference: 1

2
dis(A,B) = |A4B|. If A and B are viewed as n-bit

characteristic vectors over [n], this metric is the same as the Hamming metric (scaled
by 1/2). Thus, the set difference metric can be viewed as a restriction of the binary

42

Hamming metric to all the strings with exactly s nonzero components. However, one
typically assumes that n is much larger than s, so that representing a set by n bits is
much less efficient than, say writing down a list of elements, which requires (s log n)
bits.

Large Versus Small Universes Most of this section studies situations where
the universe size n is super-polynomial in the set size s. We call this the large
universe setting. By contrast, the small universe setting refers to situations in which
n = poly(s). We want our various constructions to run in polynomial time and use
polynomial storage space. Thus, the large universe setting is exactly the setting in
which the n-bit string representation of a set becomes too large to be usable. We
consider the small-universe setting first, since it appears simpler (Section 3.5.1). The
remaining subsections consider large universes.

3.5.1 Small Universes

When the universe size is polynomial in s, there are a number of natural construc-
tions. Perhaps the most direct one, given previous work, is the construction of Juels
and Sudan [48]. Unfortunately, that scheme achieves relatively poor parameters (see
Section 3.5.2).

We suggest two possible constructions: first, to represent sets as n-bit strings and
use the constructions of the previous section (with the caveat that Hamming distance
is off by a factor of 2 from set difference). The second construction, presented below,
goes directly through codes for set difference, also called “constant-weight” codes.

In order to be able to compare the constructions, and for consistency with the
coding theory literature, we will in fact work with the Hamming metric here. Thus,
codes which correct any τ errors in set difference will have minimum distance at least
4τ + 1.

Permutation-based Sketch Recall the general construction of Section 3.1 for
transitive metric spaces, and observe that the set difference space is transitive. Specif-
ically, the family of permutations Π we use is simply the one induced by the set of all
permutations on the universe [n]. Let C ⊆ {0, 1}n be any [n, k, d] code (nonlinear) in
which all words have weight exactly s, and view elements of the code as sets of size
s. We obtain the following scheme, which produces a sketch of length n log n:

Algorithm 3.1 (Permutation-based sketch). Input: a set A ⊆ U = [n] of size s.

1. Choose B ⊆ [n] at random from the code C.

2. Choose a random permutation π : [n]→ [n] such that π(A) = B:

(That is, choose a random matching between A and B and a random matching

between [n]− A and [n]−B.)

3. Output SS(A) = π (say, by listing π(1), ..., π(n)).

43

Lemma 3.6. Suppose that C is a [n, k, d] constant-weight-s code (for Hamming dis-

tance), then:

1. If d ≥ 4τ + 1, there is an algorithm Rec() such that Rec(A′, SS(A)) = A for

any sets A,A′ such that 1
2
|A4A′| ≤ τ . The algorithm is efficient if C has an

efficient decoding algorithm.

2. The left-over entropy is H̃∞(A | SS(A)) ≥ H∞(A) + k − log
(

n
s

)
.

Proof. (1) Given π and A′, we can compute B′ = π−1(A′). The intersection of B and

B′ is the same size as A∩A′, and so the Hamming distance between the characteristic

vectors of B and B′ is at most 2τ . Since the code has minimum distance d ≥ 4τ + 1,

it can correct 2τ errors, and so the closest codeword is B = π−1(A). All operations

are n log n-time except for (possibly) the random choice of B in the algorithm and

the decoding.

(2) Let X be the randomness used by the sketching algorithm. There are s!

possibilities for the matching from A to B and (n− s)! possibilities for the matching

from [n]−A to [n]−B. Hence, the min-entropy of the pair (A,X) is H∞(A)+log(s!(n−
s)!). There are n! possibilities for the sketch π, and so the average min-entropy of

(A,X) given SS(A) is at least H∞(A) + log(s!(n− s)!)− log(n!) = H∞(A)− log
(

n
s

)
.

Given A and SS(A) we can recover X exactly, and so H̃∞(A | SS(A)) is the same as

H̃∞(A,X | SS(A)).

Comparing the Hamming Scheme with the Permutation Scheme In order
to get a feeling for how the random permutation technique compares to simply using
Hamming-based schemes directly, we recall some notation from the coding theory
literature. Let A(n, d, s) denote the maximum size of a binary code for which all
codewords have weight exactly s. Here n is the length of the code and d is the
minimum distance. Let A(n, d) denote the maximum size of an (unrestricted) binary
code of length n and minimum distance d. In all cases, we’re interested in codes with
minimum distance d ≥ 4τ + 1, since we want to correct τ errors in the set difference
metric.

The code-offset construction was shown to have entropy loss n − logA(n, d) if
an optimal code is used; the random permutation scheme can have entropy loss
log
(

n
s

)
− logA(n, d, s) for an optimal code. The Bassalygo-Elias inequality (see [53])

shows that the bound on the random permutation scheme is always at least as good

as the bound on the code offset scheme: A(n, d) ·2−n ≤ A(n, d, s) ·
(

n
s

)−1
. This implies

that n− logA(n, d) ≥ log
(

n
s

)
− logA(n, d, s). Moreover, standard packing arguments

give better constructions of constant-weight codes than they do of ordinary codes. 2

In fact, the random permutations scheme is optimal for this metric, just as the code-
offset scheme is optimal for the Hamming metric: Proposition 4.1 shows that the

2This comes from the fact that the intersection of a ball of radius d with the set of all words of
weight s is much smaller than the ball of radius d itself.

44

min-entropy loss of a secure sketch must be at least log
(

n
s

)
− logA(n, d, s), in the

case of a uniform secret set A. Thus in principle, it is better to use the random
permutation scheme. Nonetheless, there are caveats. First, we do not know of explic-
itly constructed constant-weight codes that beat the Elias-Bassalygo inequality and
would thus lead to better entropy loss for the random permutation scheme than for
the Hamming scheme (see [14] for more on constructions of constant-weight codes and
[1] for upper bounds). Second, much more is known about efficient implementation
of decoding for ordinary codes than for constant-weight codes; for example, one can
find off-the-shelf hardware and software for decoding many binary codes. In practice,
the Hamming-based scheme is likely to be more useful.

3.5.2 Improving the Construction of Juels and Sudan

We now turn to the large universe setting, where n is super-polynomial in s. Juels
and Sudan [48] proposed a secure sketch for the set difference metric (called a “fuzzy
vault” in that paper). They assume for simplicity that n = |U| is a prime power and
work over the field F = GF (n). On input set A, the sketch they produce is a set of
r pairs of points (xi, yi) in F , with s < r ≤ n.

Algorithm 3.2 (Juels-Sudan Secure Sketch). Input: a set A ⊆ U .

1. Choose p() at random from the set of polynomials of degree at most k = s−2τ−1

over F .

Write A = {x1, ..., xs}, and let yi = p(xi) for i = 1, ..., s.

2. Choose r − s distinct points xs+1, ..., xr at random from F − A.

3. For i = s+ 1, ..., r, choose yi ∈ F at random such that yi 6= p(xi).

4. Output SS(A) = {(x1, y1), ..., (xr, yr)} (in lexicographic order of xi).

The parameter r dictates the amount of storage necessary, one on hand, and also
the security of the scheme (that is, for r = s the scheme leaks all information and
for larger and larger r there is less information about A). Juels and Sudan actually
propose two analyses for the scheme. First, they analyze the case where the secret A
is distributed uniformly over all subsets of size s. Second, they provide an analysis
of a nonuniform password distribution, but only for the case r = n (that is, their
analysis only applies in the small universe setting, where Ω(n) storage is acceptable).
Here we give a simpler analysis which handles nonuniformity and any r ≤ n. We get
the same results for a broader set of parameters.

Lemma 3.7. The entropy loss of the Juels-Sudan scheme SS() above is at most

2τ log n+ log
(

n
r

)
− log

(
n−s
r−s

)
.

Proof. As for the code-offset, we can simply count entropies. Let X denote the

random bits used by the algorithm to generate SS(A). Choosing the polynomial p

45

requires s − 2τ random choices from F . The choice of the remaining xi’s requires

log
(

n−s
r−s

)
bits, and choosing the y′is requires r − s random choices from F (we will

ignore the difference between F and F − {xi} here since it doesn’t affect the result

significantly). The min-entropy of the pair A,X is thus H̃∞(A,X) = H̃∞(A) + (r −
2τ) log(n) + log

(
n−s
r−s

)
. The output can be described in log

((
n
r

)
nr
)

bits, and hence we

get that H̃∞(A,X | SS(A)) = H̃∞(A) − 2τ log n + log
(

n−s
r−s

)
− log

(
n
r

)
. Finally, note

that X is entirely determined by A and SS(A), so the entropy of A,X given SS(A) is

the same as the entropy of A given SS(A).

In the large universe setting, we will have r � n (since we wish to have storage
polynomial in s). In that setting, the bound on the entropy loss of the Juels-Sudan
scheme is in fact very large. We can rewrite the entropy loss as 2τ log n − log

(
r
s

)
+

log
(

n
s

)
, using the identity

(
n
r

)(
r
s

)
=
(

n
s

)(
n−s
r−s

)
. Now the entropy of A is at most

(
n
s

)
,

and so our lower bound on the remaining entropy is (log
(

r
s

)
−2τ log n). To make this

quantity large requires making r very large.

Improved JS Sketches We suggest a modification of the Juels-Sudan scheme with
entropy loss at most 2τ log n and storage s log n. Our scheme has the advantage of
being even simpler to analyze. As before, we assume n is a prime power and work
over F = GF (n). An intuition for the scheme is that the numbers ys+1, ..., yr from
the JS scheme need not be chosen at random. One can instead evaluate them as
yi = p′(xi) for some polynomial p′. One can then represent the entire list of pairs
(xi, yi) using only the coefficients of p′.

Algorithm 3.3 (Modified JS Secure Sketch). Input: a set A ⊆ U .

1. Choose p() at random from the set of polynomials of degree at most k = s−2τ−1

over F .

2. Let p′() be the unique monic polynomial of degree exactly s such that p′(x) =

p(x) for all x ∈ A.

(Write p′(x) = xs+
∑s−1

i=0 aix
i. Solve for a0, ..., as−1 using the s linear constraints

p′(x) = p(x), x ∈ A.)

3. Output the list of coefficients of p′(), that is SS(A) = (a0, ..., as−1).

First, observe that solving for p′() in Step 2 is always possible, since the s con-
straints

∑s−1
i=0 aix

i = p(x)−xs are in fact linearly independent (this is just polynomial
interpolation).

Second, this sketch scheme can tolerate τ set difference errors. Suppose we are
given a set B ⊆ U which agrees with A in at least s− τ positions. Given p′ = SS(A),
one can evaluate p′ on all the points in the set B. The resulting vector agrees with p
on at least s−τ positions, and using the decoding algorithm for Reed-Solomon codes,
one can thus reconstruct p exactly (since k = s− 2τ − 1). Finally, the set A can be
recovered by finding the roots of the polynomial p′ − p: since p′ − p is not identically

46

zero and has degree exactly s, it can have at most s roots and so p′ − p is zero only
on A.

We now turn to the entropy loss of the scheme. The sketching scheme invests
(s− 2τ) log n bits of randomness to choose the polynomial p. The number of possible
outputs p′ is ns. If X is the invested randomness, then the (average) min-entropy
(A,X) given SS(A) is at least H̃∞(A)−2τ log n. The randomness X can be recovered
from A and SS(A), and so we have H̃∞(A | SS(A)) ≥ H̃∞(A) − 2τ log n. We have
proved:

Lemma 3.8 (Analysis of Modified JS). The entropy loss of the modified JS

scheme is at most 2τ log n. The scheme has storage (s + 1) log n for sets of size s

in [n], and both the sketch generation SS() and the recovery procedure Rec() run in

polynomial time.

The short length of the sketch makes this scheme feasible for essentially any ratio
of set size to universe size (we only need log n to be polynomial in s). Moreover, for
large universes the entropy loss 2τ log n is essentially optimal for the uniform case
t = log

(
n
s

)
. Proposition 4.1 shows that for a uniformly distributed input, the best

possible entropy loss is t − t′ ≥ log
(

n
s

)
− logA(n, s, 4τ + 1), where A(n, s, d) is the

maximum size of a code of constant weight s and minimum Hamming distance d.
Using a bound of Agrell et al ([1], Theorem 12), the entropy loss is at least:

t− t′ ≥ log

(
n

s

)
− logA(n, s, 4τ + 1)

≥ log

(
n

s

)
− log

((
n

s− 2τ

)/(s

s− 2τ

))
= log

(
n− s+ 2τ

2τ

)
When n ≥ s, this last quantity is roughly 2τ log n, as desired.

3.5.3 Large Universes via the Hamming Metric: Sublinear-

Time Decoding (Revised December ’04)

In this section, we show that code-offset construction can in fact be adapted for small
sets in large universe, using specific properties of algebraic codes. We will show that
BCH codes, which contain Hamming and Reed-Solomon codes as special cases, have
these properties.

Syndromes of Linear Codes For a [n, k, d] linear code C over GF (q) with parity
check matrix H, recall that the syndrome of a word w ∈ GF (q)n is syn(w) = Hw.
The syndrome has length n− k, and the code is exactly the set of words c such that
syn(c) = 0n−k. The syndrome captures all the information necessary for decoding.
That is, suppose a codeword c is sent through a channel and the word w = c + e is
received. First, the syndrome of w is the syndrome of e: syn(w) = syn(c) + syn(e) =
0 + syn(e) = syn(e). Moreover, for any value u, there is at most one word e of weight
less than d/2 such that syn(e) = u (the existence of a pair of distinct words e1, e2

47

would mean that e1−e2 is a codeword of weight less than d). Thus, knowing syndrome
syn(w) is enough to determine the error pattern e if not too many errors occurred.

As mentioned before, we can reformulate the code-offset construction in terms of
syndrome: SS(w) = syn(w). The two schemes are equivalent: given syn(w) one can
sample from w+C(X) by choosing a random string v with syn(v) = syn(w); conversely,
syn(w+C(X)) = syn(w). This reformulation gives us no special advantage when the
universe is small: storing w + C(X) is not a problem. However, it’s a substantial
improvement when n� n− k.

Syndrome Manipulation for Small-Weight Words Suppose now that we have
a small set A ⊆ [n] of size s, where n� s. Let xA ∈ {0, 1}n denote the characteristic
vector of A. If we want to use syn(xA) as the sketch of A, then we must choose a
code with n− k ≤ log

(
n
s

)
≈ s log n, since the sketch has entropy loss (n− k) and the

maximum entropy of A is log
(

n
s

)
.

Binary BCH codes are a family of [n, k, d] linear codes with d = 4τ + 1 and
k = n − 2τ log n (assuming n + 1 is a power of 2) (see, e.g. [53]). These codes are
optimal for τ � n by the Hamming bound, which implies that k ≤ n− log

(
n
2τ

)
[53].3

Using the code-offset sketch with a BCH code C, we get entropy loss n−k = 2τ log n,
just as we did for the modified Juels-Sudan scheme (recall that d ≥ 4τ + 1 allows us
to correct τ set difference errors).

The only problem is that the scheme appears to require computation time Ω(n),
since we must compute syn(xA) = HxA and, later, run a decoding algorithm to recover
xA. For BCH codes, this difficulty can be overcome. A word of small weight x can
be described by listing the positions on which it is nonzero. We call this description
the support of x and write supp(x) (that is supp(xA) = A).

Lemma 3.9. For a [n, k, d] binary BCH code C one can compute:

1. syn(x), given supp(x), and

2. supp(x), given syn(x) (when x has weight at most (d− 1)/2),

in time polynomial in |supp(x)| = weight(x) · log(n) and |syn(x)| = n− k.

The proof of Lemma 3.9 requires a careful reworking of the standard BCH de-
coding algorithm. The details are presented in Section 3.5.4. For now, we present
the resulting sketching scheme for set difference. The algorithm works in the field
GF (2m) = GF (n+1), and assumes a generator α for GF (2m) has been chosen ahead
of time.

Algorithm 3.4 (BCH-based Secure Sketch). Input: a set A ⊆ GF (2m)∗ of size

s (that is, n = 2m − 1).

3The Hamming bound is based on the observation that for any code of distance d, the balls of
radius b(d− 1)/2c centered at various codewords must be disjoint. Each such ball contains

(
n

b(d−1)/2c
)

points, and so 2k
(

n
b(d−1)/2c

)
≤ 2n. In our case d = 4τ + 1 and so the bound yields k ≤ n− log

(
n
2τ

)
.

48

1. Let Ai =
∑

x∈A x
i.

2. Output SS(A) = (A1, A3, A5, ..., A4τ+1) (computations in GF (2m)).

Lemma 3.9 yields the algorithm Rec() which recovers A from SS(A) and any set
which intersects A in at least s − τ points. However, the bound on entropy loss is
easy to see: the output is 2τ log n bits long, and hence the entropy loss is at most
2τ log n. We obtain:

Theorem 3.10. The BCH scheme above is a [t, t−2τ log n, t] secure sketch scheme for

set difference with storage 2τ log n. The algorithms SS and Rec both run in polynomial

time.

3.5.4 Syndrome Decoding in Sublinear Time

(Revised December ’04)

We show that the standard decoding algorithm for BCH codes can be modified to
run in time polynomial in the length syndrome. This works for BCH codes over any
field GF (q), which include Hamming codes in the binary case and Reed-Solomon
for the case n = q − 1. BCH codes are handled in detail in many textbooks (e.g.,
[53]); our presentation here is quite terse. For simplicity, we only discuss primitive,
narrow-sense BCH codes here; the discussion extends easily to the general case.

The algorithm discussed here has revised due to an error pointed out by Ari
Trachtenberg.

We’ll use a slightly non-standard formulation of BCH codes, in which the positions
of the code are listed in a different order than usual.

Definition 3.4. Let n = qm−1. We will work in two finite fields: GF (q) and a larger

extension field F = GF (qm). The (narrow-sense, primitive) BCH code of designed

distance δ over GF (q) (of length n) is given by the set of vectors of the form
(
cx
)

x∈F∗
such that each cx is in the smaller field GF (q), and the vector satisfies the constraints∑

x∈F∗ cxx
i = 0, for i = 1, . . . , δ − 1, with arithmetic done in the larger field F .

To explain this definition, let us fix a generator α of the multiplicative group of
the large field F∗. For any vector of coefficients

(
cx
)

x∈F∗ , we can define a polynomial

c(z) =
∑

x∈GF (qm)∗

cxz
dlog(x)

where dlog(x) is the discrete logarithm of x with respect to α. The conditions of the
definition above then reduce to the requirement that c(αi) = 0 for i = 1, . . . , δ − 1.

We can simplify this somewhat. Because the coefficients cx are in GF (q), they
satisfy cqx = cx. Using the identity (x + y)q = xq + yq, which holds even in the large
field F , we have c(αi)q =

∑
x 6=0 c

q
xx

iq = c(αiq). Thus, roughly a 1/q fraction of the
conditions in the definition are redundant: we only need to check that they hold for
i ∈ {1, ..., δ − 1} such that q 6 |i.

49

The syndrome of a word (not necessarily a codeword) (px)x∈F∗ ∈ GF (q)n with
respect to the BCH code above is the vector

syn(p) = p(α1), . . . , p(αδ−1), where p(αi) =
∑
x 6=0

pxx
i.

As mentioned above, we do not in fact have to include the values p(αi) such that q|i.

Representation Issues Because we are interested in algorithms that run in time
much less than the size of the field, the exact representation of field elements is impor-
tant. The elements of a finite field are typically represented as strings of m symbols
from an alphabet of size q (for simplicity, think of q = 2). This representation allows
one to add and multiply field elements relatively efficiently (in time Õ(m log q), where
the Õ notation hides polylogarithmic factors). We can define a canonical ordering
lex : F∗ → {1, . . . , n} corresponding to lexicographic ordering of the strings repre-

senting field elements. This allows us to write F∗ = {x1, ..., xn} where xi
def
= lex−1(i).

The important point here is that both lex() and lex−1() are efficiently computable (in
fact, in the case q = 2, the binary representations of x and lex(x) could simply be
taken to be identical).

Note that in the typical formulation of BCH codes, one orders elements according
to the discrete logarithm (i.e. xi = αi). The problem is that computing the discrete
logarithm is generally thought to require much more than polynomial time (here the
length of the input is m log q). We will need to compute i from xi and vice versa,
and so the lexicographic ordering of the field elements is more appropriate. A wrong
of ordering was the source of an error in an earlier version of this work, and so we’ve
taken particular care to make the issue explicit here.

Computing with Low-Weight Words A low-weight word p ∈ GF (q)n can be
represented either as a long string or, more compactly, as a list of positions where it
is nonzero and its values at those points. We call this representation the support list
of p and denote it supp(p) = {(x, px)}x:px 6=0.

Lemma 3.11. For a q-ary BCH code C of designed distance δ, one can compute:

1. syn(p), given supp(p), and

2. supp(p), given syn(p) (when p has weight at most (δ − 1)/2),

in time polynomial in |supp(p)| = weight(p)·log(n)·log(q) and |syn(p)| = (n−k) log q.

Note that |syn(p)| ≤ m d(δ − 2)(q − 1)/qe ≈ δ ·m ·(1−1/q) log(q). In particular, when

q = 2 we get |syn(p)| = m(δ − 1)/2.

Proof. Recall that syn(p) = (p(α), ..., p(αδ−1)) where p(αi) =
∑

x 6=0 pxx
i. Part (1) is

easy, since to compute the syndrome we only need to compute the powers of x. This

requires about δ ·weight(p) multiplications in F . For Part (2), we adapt the standard

50

BCH decoding algorithm, based on its presentation in [53]. LetM = {x ∈ F∗|px 6= 0},
and define

σ(z)
def
=
∏
x∈M

(1− xz) and ω(z)
def
= σ(z)

∑
y∈M

pjyz

(1− yz)

Since (1 − yz) divides σ(z) for j ∈ M , we see that ω(z) is in fact a polynomial of

degree at most |M | = weight(p) ≤ (δ − 1)/2. The polynomials σ(z) and ω(z) are

known as the error locator polynomial and evaluator polynomial, respectively.

We will in fact work with our polynomials modulo zδ. In this arithmetic the

inverse of (1 + xz) is
∑δ

`=1(xz)
`−1, that is

(1 + xz)
δ∑

`=1

(xz)`−1 ≡ 1 mod zδ.

We are given p(α`) for ` = 1, ..., δ. Let S(z) =
∑δ−1

`=1 p(α
`)z`. Note that S(z) ≡∑

x∈M px
xz

(1+xz)
mod zδ. This implies that

S(z)σ(z) ≡ ω(z) mod zδ.

The algorithm will consist of finding any non-zero solution w′(z), σ′(z) to this

congruence. This will be good enough since the solution ω(), σ() is “unique” in the

following sense: any other solution ω′(z), σ′(z) satisfies w′(z)/σ′(z) = ω(z)/σ(z). To

see why this is, multiply the initial congruence by σ′() to get ω(z)σ′(z) ≡ σ(z)ω′(z)

mod zδ. Since the both sides of the congruence have degree at most δ − 1, they are

in fact equal as polynomials.

Thus it is sufficient to find any solution σ′(), ω′() to the congruence S(z)σ′(z) =

ω′(z) mod zδ and reduce the resulting fraction ω′(z)/σ′(z) to obtain a solution ω(), σ()

of minimal degree. Finally, the roots of σ(z) are the points x−1 for x ∈ M , and the

exact value of px can be recovered using the equation ω(x−1) = px

∏
y∈M,y 6=x(1−yx−1).

Solving the congruence only requires solving a system of δ − 1 linear equations

involving δ variables, which is certainly polynomial in δ log(qm). The reduction of the

fraction ω′(z)/σ′(z) requires only running Euclid’s algorithm for finding the g.c.d. of

two polynomials. Finally, finding the roots of σ() can be done in time quadratic in the

degree of σ(), which is at most δ/2. The overall running time of the decoding proce-

dure is Õ(δ3m log q). This yields an improvement over standard decoding algorithms

(which run in time Õ(n) = Õ(qm)) roughly whenever δ = o(3
√
n/log(n)).

A Dual View of the Algorithm Readers may be used to seeing a different for-
mulation of BCH codes, in which a codeword is the vector c(x1), . . . , c(xn) given by
polynomials over the large field F of degree at most n − δ such that c(xi) ∈ GF (q)
for all i. The equivalence of the two formulations is standard.

The syndrome and algorithm above have a natural interpretation in this evaluation-
based formulation. For any polynomial P (z) over F of degree at most n − 1, the

51

syndrome of the vector (P (x1), . . . , P (xn)) is in fact the top δ − 1 coefficients of P .
That is, ∑

x∈F∗
P (x)xi = −p(n−i), where P (z) =

n−1∑
i=0

p(i)zi.

This is an example of a remarkable duality between evaluations of polynomials and
their coefficients: the syndrome can be viewed both as the evaluation of a polynomial
whose coefficients are given by the vector, or as the the coefficients of the polynomial
whose evaluations are given by a vector.

The algorithm from the previous lemma can also be viewed naturally in this dual
world: given syn(P (x1), ..., P (xn)), the goal is to find a polynomial σ(z), of degree
at most (δ − 1)/2, such that the product P (z)σ(z) is equivalent to a polynomial of
degree at most n− (δ−1)/2. The equivalence here comes from the fact that in a field
of size qm the relation xqm−1 = 1 always holds for x 6= 0, and so we may work with
polynomials modulo the relation zqm−1−1 (the normal relation would be zqm−z, but
we are not evaluating the polynomials at the point 0 so we may use a more restricted
relation). It is easy to see why such a polynomial σ must exist when (P (x1), ..., P (xn))
has weight at most (δ− 1)/2, since the error locator polynomial σ(z) =

∏
x∈M(z− x)

will satisfy the requirement. Finding a non-zero solution involves solving the same
system of linear equations as bofre, except that now we may view them as setting the
top coefficients of P (z)σ(z) mod (zqm−1 − 1) to zero (instead of the top coefficients
of S(z)σ(z) mod zδ).

As before, the roots of σ(z) give a super-set of M (the proof is very similar to the
one above). The exact set M and the values of P (x) inside M can then be recovered
by solving the linear system of equations implied by the value of the syndrome.

A more detailed version of the standard decoding algorithm in the “evaluation-
based” view of BCH codes may be found in Sudan’s lecture notes, Chapter 10.

3.6 Constructions for Edit Distance

First we note that simply applying the same approach as we took for the transitive
metric spaces before (the Hamming space and the set difference space for small uni-
verse sizes) does not work here, because the edit metric does not seem to be transitive.
Indeed, it is unclear how to build a permutation π such that for any w′ close to w, we
also have π(w′) close to x = π(w). For example, setting π(y) = y ⊕ (x⊕ w) is easily
seen not to work with insertions and deletions. Similarly, if I is some sequence of
insertions and deletions mapping w to x, it is not true that applying I to w′ (which
is close to w) will necessarily result in some x′ close to x. In fact, then we could even
get dis(w′, x′) = 2dis(w, x) + dis(w,w′).

Perhaps one could try to simply embed the edit metric into the Hamming met-
ric using known embeddings, such as conventionally used low-distorion embeddings,
which provide that all distances are preserved up to some small “distortion” factor.
However, there are no known nontrivial low-distortion embeddings from the edit met-
ric to the Hamming metric. Moreover, it was recently proved by Andoni et al [4] that

52

no such embedding can have distortion less than 3/2, and it was conjectured that a
much stronger lower bound should hold.

Thus, as the previous approaches don’t work, we turn to the embeddings we
defined specifically for fuzzy extractors: biometric embeddings. Unlike low-distortion
embeddings, biometric embeddings do not care about relative distances, as long as
points that were “close” (closer than τ1) do not become “distant” (farther apart than
τ2). The only additional requirement of biometric embeddings is that they preserve
some min-entropy: we do not want too many points to collide together, although
collisions are allowed, even collisions of distant points. We will build a biometric
embedding from the edit distance to the set difference.

A c-shingle [13], which is a length-c consecutive substring of a given string w. A
c-shingling [13] of a string w of length n is the set (ignoring order or repetition) of
all (n − c + 1) c-shingles of w. Thus, the range of the c-shingling operation consists
of all nonempty subsets of size at most n − c + 1 of {0, 1}c. To simplify our future
computations, we will always arbitrarily pad the c-shingling of any string w to contain
precisely n distinct shingles (say, by adding the first n − |c-shingling| elements of
{0, 1}c not present in the given c-shingling). Thus, we can define a deterministic map
SHc(w) which maps w into n substrings of {0, 1}c, where we assume that c ≥ log2 n.
Let Edit(n) stand for the edit metric over {0, 1}n, and SDif(N, s) stand for the set
difference metric over [N] where the set sizes are s. We now show that c-shingling
yields pretty good biometric embeddings for our purposes.

Lemma 3.12. For any c > log2 n, SHc is a (τ1, τ2 = cτ1, t1, t2 = t1− n log2 n
c

)-biometric

embedding of Edit(n) into SDif(2c, n).

Proof. Assume dis(w1, w
′
1)ed ≤ τ1 and that I is the smallest set of 2τ1 insertions and

deletions which transforms w into w′. It is easy to see that each character deletion

or insertion affects at most c shingles, and thus the symmetric difference between

SHc(w1) and SHc(w2) ≤ 2cτ1, which implies that dis(SHc(w1), SHc(w2))sd ≤ cτ1, as

needed.

Now, assume w1 is any string. Define gc(w1) as follows. One computes SHc(w1),

and stores n resulting shingles in lexicographic order h1 . . . hn. Next, one naturally

partitions w1 into n/c disjoint shingles of length c, call them k1 . . . kn/c. Next, for

1 ≤ j ≤ n/c, one sets pc(j) to be the index i ∈ {1 . . . n} such that kj = hi. Namely, it

tells the index of the j-th disjoint shingle of w1 in the ordered n-set SHc(w1). Finally,

one sets gc(w1) = (pc(1) . . . pc(n/c)). Notice, the length of gc(w1) is n
c
· log2 n, and

also that w1 can be completely recovered from SHc(w1) and gc(w1).

Now, assume W1 is any distribution of min-entropy at least t1 on Edit(n). Since

gc(W) has length (n log2 n/c), its min-entropy is at most this much as well. But since

min-entropy of W1 drops to 0 when given SHc(W1) and gc(W1), it means that the

min-entropy of SHc(W1) must be at least t2 ≥ t1 − (n log2 n)/c, as claimed.

We can now optimize the value c. By either Lemma 3.8 or Theorem 3.10, for arbi-
trary universe size (in our case 2c) and distance threshold τ2 = cτ1, we can construct a

53

secure sketch for the set difference metric with min-entropy loss 2τ2 log2(2
c) = 2τ1c

2,
which leaves us total min-entropy t′2 = t2 − 2τ1c

2 ≥ t1 − n log n
c
− 2τ1c

2. Apply-
ing further Lemma 3.1, we can convert it into a fuzzy extractor over SDif(2c, n) for
the min-entropy level t2 with error ε, which can extract at least ` = t′2 − 2 log

(
1
ε

)
≥

t1− n log n
c
−2τ1c

2−2 log
(

1
ε

)
bits, while still correcting τ2 = cτ1 of errors in SDif(2c, n).

We can now apply Lemma 3.3 to get an (Edit(n), t1, t1− n log n
c
−2τ1c

2−2 log
(

1
ε

)
, τ1, ε)-

fuzzy extractor. Let us now optimize for the value of c ≥ log2 n. We can set
n log n

c
= 2τ1c

2, which gives c = (n log n
2τ1

)1/3. We get ` = t1− (2τ1n
2 log2 n)1/3− 2 log

(
1
ε

)
and therefore

Theorem 3.13. There is an efficient (Edit(n), t1, t1 − (2τ1n
2 log2 n)1/3 − 2 log

(
1
ε

)
,

τ1, ε) fuzzy extractor. Setting τ1 = t31/(16n
2 log2 n), we get an efficient (Edit(n), t1,

t1
2
−2 log

(
1
ε

)
,

t31
16n2 log2 n

, ε) fuzzy extractor. In particular, if t1 = Ω(n), one can extract

Ω(n) bits while tolerating Ω(n/ log2 n) insertions and deletions.

3.7 Alternate Error Models and List-Decoding

The error model considered so far in this work is very restrictive: we required that
secure sketches and fuzzy extractors accept any secret w′ within distance d of the
original input w.

This model is simple to reason about and work with but seems too stringent
for many applications. If the data in question is an iris scan, there is no reason to
assume that the error would be adversarial: if the adversary could control the reader,
she could simply learn the original iris scan completely and be done with it.

In this section, we consider a several more realistic error models and show how the
constructions of the previous sections can be tweaked to gain greater error-correcting
in each model.

Random Errors There is a simple, known distribution on the errors which occur
in the data. For the Hamming metric, the most common model is the binary
symmetric channel BSCp: each bit of the input is flipped with probability p
and left untouched with probability 1− p.

Data-only-dependent Errors The errors are adversarial, bounded to a maximum
magnitude of d, but depend only on w, and not, for example, on the particular
value of a secure sketch SS(w).

Computationally-bounded Errors The errors are adversarial and may depend
on both w and the publicly stored information (e.g. SS(w)). However, there
is a probabilistic circuit of polynomial size which computes w′ from w. The
adversary cannot, for example, forge a digital signature and base the error
pattern on the signature. (We’d like to thank Chris Peikert for pointing out
this model to us.)

54

Hamming Metric Each of these three models has been studied in literature on
error-correcting codes for the Hamming metric. The random and computationally-
bounded error models both make obvious sense in the coding context [74, 59]. The
second model doesn’t immediately make sense in a coding situation, since there is no
data other than the transmitted codeword on which errors could depend. The model
can be made logical by allowing the sender and receiver to share either (1) common,
secret random coins (see [51] and references therein) or (2) a side channel with which
they can communicate a small number of noise-free, secret bits [42].

Existing results on these three models for the Hamming metric can be transported
directly to our context using the code-offset construction(Eqn. 3.1, page 41):

SS(W ;X) = W ⊕ C(X) .

Roughly, any code which corrects errors in the models above will lead to a secure
sketch (resp. fuzzy extractor) which corrects errors in the model.

3.7.1 Example: Random Errors in the Hamming Metric

The random error model was famously considered by Shannon [74]. He showed that
for any discrete, memoryless channel, the rate at which information can be reliably
transmitted is characterized by the maximum mutual information between the inputs
and outputs of the channel. For the binary symmetric channel with crossover proba-
bility p, this means that there exist codes encoding k bits into n bits, tolerating errror
probability p in each bit if and only if

k

n
< 1− h(p)− δ(n)

where h(p) = −p log p − (1 − p) log(1 − p) and δ(n) = o(1). Computationally effi-
cient codes achieving this bound were found later, largely due to pioneering work of
Forney [37]. Thus, we can state the following:

Proposition 3.14. For any error rate 0 < p < 1/2 and constant δ > 0, for large

enough n there exist secure sketches with entropy loss (h(p)+ δ)n, which correct error

rate of p in the data with high probability.

The quantity h(p) is less than 1 for any p in the range (0, 1/2). In particular,
one can get non-trivial secure sketches even for a very high error rate p < 1/2. Note
that several other works on biometric cryptosystems consider the model of random-
ized errors and obtain similar results, though they are only stated for the uniform
distribution on inputs [82, 22].

3.7.2 Improved Error-Correction via List Decoding

As mentioned above, the results on codes for other error models in the Hamming
space [42, 51, 59] extend easily to secure sketches. Several of those constructions

55

work by transformations list decodable codes, defined below, into uniquely decodable
codes for a particular error model.

As discussed below, the transformations of [42, 51, 59] can also be used in the
setting of secure sketches, leading to better bounds on the number of tolerated errors
in the second and third models above (errors which depend only on the data, or errors
which are introduced by a computationally bounded adversary).

A code C in a metric spaceM is called list-decodable with list size L and distance
τ if for every point x ∈ M, there are at most L codewords within distance τ of M.
A list-decoding algorithm takes as input a word x and returns the corresponding list
c1, c2, ... of codewords. The most interesting setting is when L is a small polynomial
(in the description size log |M|), and there exists an efficient list-decoding algorithm.
It is then feasible for an algorithm to go over each word in the list and accept if it has
some desirable property. There are many examples of such codes for the Hamming
space; for a survey see Guruswami’s thesis [43].

Similarly, we can define a list-decodable secure sketch with size L and distance τ
as follows: for any pair of words w,w′ ∈ M at distance at most τ , the algorithm
Rec(w′, SS(w)) returns a list of at most L points inM; if dis(w,w′) ≤ τ , then one of
the words in the list must be w itself. The simplest way to obtain a list-decodable
secure sketch is to use the code-offset construction of Section 3.4 with a list-decodable
code for the Hamming space. One obtains a different example by running the modified
Juels-Sudan scheme, replacing ordinary decoding of Reed-Solomon codes with list
decoding. This yields a significant improvement in the number of errors tolerated at
the price of returning a list of possible candidates for the original secret.

Sieving the List Given a list-decodable secure sketch SS, all that’s needed is to
store some additional information which allows the receiver to disambiguate w from
the list. Let’s suggestively name the additional information Tag(w). We describe two
transformations inspired by [42, 51, 59].

1. If the errors in the data w′ do not depend on the value of Tag(w), then one
can store Tag(w) = I, hI(w) where {hi}i∈I comes from an XOR-universal hash
family from M to {0, 1}`, where ` = log

(
1
ε

)
+ logL and ε is the probability of

an incorrect decoding.

The proof is simple: the values w1, ..., wL do not depend on I, and so for any
value wi 6= w, the probability that hI(wi) = hI(w) is 2−`. There are at most L
possible candidates, and so the probability that any one of the elements in the
list is accepted is at most L · 2−` = ε

The additional entropy loss incurred is at most ` = log
(

1
ε

)
+ log(L).

2. If the corrupted word w′ depends on both w and SS(w), but w′ is computed by
a polynomial time circuit, then one can store Tag = hash(w), where w is drawn
from a collision-resistant function family. The adversary succeeds only if he can
find a value wi 6= w such that hash(wi) = hash(w), that is only by finding a
collision for the hash function.

56

The additional entropy loss of this scheme is equal to the output length of the
hash function. If we think of ε as the probability of a decoding error, then for
standard assumptions on hash functions this loss will be polynomial in log(1/ε).

3.8 Application: Password Authentication

One of the key applications discussed in the Introduction was password authentication—
a server would like to store information which allows it to verify the identity of a user,
but wants to ensure that if the stored information is ever made public, the password
is not leaked.

Specifically, we would like to construct a pair of (possibly randomized) functions
Store() and V erify(). Given the password w the server will compute and store
s← Store(w). When a user presents a potential password w′, the server accepts the
user if and only if V erify(w′, s) = 1. Informally, we would like to guarantee two
conditions:

1. (Completeness) If s ← Store(w) is computed correctly, then for any w′ within
distance d of w, running V erify(w′, s) returns “accept” with high probability.

2. (Soundness) The adversary succeeds at breaking the scheme if, given only s =
Store(w), she can produce a value w̃′ such that V erify(s, w̃′) = 1. This event
should happen with probability at most ε, where the probability is over w, the
randomness used in computing s, and the randomness used by the adversary.

Such a statement can only hold for computationally bounded adversaries, since
given enough time one can always try all possible words w until the right one
is found.

Suppose we’re given a cryptographic hash function hash() from n bits to ` bits.
Given the discussion in the introduction, the natural solution is to store a secure
sketch of w as well as the hash. Let SS be a secure sketch.

Store(w) = SS(w), hash(w) (3.3)

This solution satisfies the first condition above (completeness): given w′ close to
w, the verification algorithm uses SS(w) to recover w and then checks that the hash
value yields what it should.

Ensuring soundness is more delicate. If the adversary finds a string w̃′ which passes
verification, then the adversary has in fact found string w̃ = Rec(w̃′, SS(w)) which
hashes to the same value as the original w. Depending on the exact assumptions on
the function hash(), this may or may not yield a contradiction.

We consider three different “strengths” of the assumption on hash(). Assume that
the conditional entropy H̃∞(W |SS(W)) = m′.

• If we assume that hash() acts like a completely random function (the “random
oracle” model), then the natural solution always works. If the output length

57

of the random oracle is `, then the adversary’s probability of breaking the
soundness condition is O((2−m′

+ 2−`) · T), where T is number of queries made
to the function hash() by the adversary.

(In particular, if the adversary is polynomial time, and m and ` are large, say√
n, then the adversary’s chance of succeeding is O(poly(n) · 2−

√
n), which is

negligible for large values of n.)

• If we assume that hash() was drawn from a collision-resistant function family,
then the solution in Eqn. 3.3 can be proven secure as long as the output of
hash() function is sufficiently short.

If the output length ` is at most m′− log
(

1
ε

)
+1, and the adversary’s probability

of finding collisions for hash() is bounded above by δ,4 then the probability that
the adversary with similar computation time can break the soundness is O(ε+δ).
No restriction on the input length of hash() is necessary, except that it must be
at least n to take w as input.

• Finally, if we only assume that hash() is a one-way function, then we actually
have to modify the scheme for the proof to through, since the definition of
a one-way function only gives a guarantee when the input to the function to
be uniformly distributed. Let hi : {0, 1}n → {0, 1}N a family of XOR-universal
hash functions. Consider the storage function:

Store(w) = SS(w), I, hash(hI(w)) (3.4)

If the adversary’s chance of inverting the function hash() on a random input
is δ, and the output length ` of hash() is at most m′ − 2 log

(
1
ε

)
+ 1, then an

adversary with similar computation time can break the soundness condition
of with probability O(ε + δ). No restriction on the input length of hash() is
necessary, except that it must be at least n to take w as input.

We only explain the last of these three statements in detail, since it is the most
complicated. We leave the first two as exercises for the interested reader.

Assume that hash : {0, 1}n → {0, 1}` is a (strongly) one-way function. Since
we are interested in security against polynomial-time adversaries, we should, strictly
speaking, talk about families of one-way functions (for infinitely many input lengths)
and also about families of authentication storage schemes. However, for simplicity,
we will avoid this discussion here and assume that an adversary with some particular
running time T (say T = nlog n to capture polynomial-time adversaries) cannot find
a pre-image of a randomly chosen image with probability better than δ. That is,

For all probabilistic circuits A′ of size at most T ,

Pr[u← {0, 1}n, y = hash(u), u′ ← A′(y) : hash(u′) = y] ≤ δ (3.5)

4There is also an implicit lower bound on `. If an adversary’s probability of finding a collision is
at most δ, then the output length of the function must be at least log

(
1
δ

)
since otherwise a simple

sampling attack would succeed with probability better than δ.

58

In order to reduce the soundness of the password authentication scheme to the
one-way-ness of hash(), suppose there is an adversary circuit A which can break the
soundness condition. That is, given the tuple Store(w) = 〈SS(w), I, hash(hI(w)〉), the
circuit A produces w̃′ which passes verification. It is sufficient to prove that Store(w)
is indistinguishable from a tuple SS(w), I, hash(u), where u is selected randomly from
{0, 1}n, independently of w.

This doesn’t follow immediately from the left-over hash lemma 2.2, since the
functions hash(hi(·)) are not really strong enough (the distribution on the outputs of
hash() may not be uniformly random). However, in the appendix we prove a variant
of the leftover hash lemma which does cover such functions (Lemma A.2). We obtain:

Corollary 3.15 (from Lemma A.2). If ` < H̃∞(W |SS(W))− 2 log
(

1
ε

)
− 1, then

Store(W) ≈ε 〈SS(W), I, hash(Un)〉

where Un ← {0, 1}N is independent of W .

To complete the proof, we’ll make an additiional assumption: sampling from the
distribution W should be polynomial time (this assumption isn’t strictly necessary,
but makes the reduction uniform).

Given an circuit A which breaks the soundness condition, we build A′ for inverting
hash() as follows: on input y, sample w ← W , sample i ← I, compute SS(w) and
output

A′(y) = hi(Rec(A(SS(w), i, y) , SS(w))).

By the corollary above, A behaves almost identically on inputs Store(w) and the
tuple SS(w), I, hash(Un). If A succeeds at breaking soundness with probability β,
then with probability β − ε (since the inputs are within statistical difference ε), the
algorithm A′ will invert hash(). This yields a contradiction if A’s success rate is more
than ε+δ and the running time of A′ is less than T . Since the reduction is polynomial
time (the algorithm A has very little computation to do beyond running A′), we get
a contradicition when the running time of A is bounded above by T − poly(n) for
some sufficiently large polynomial. If T = nlog n then, for example, we can limit the
running time of A to T/2.

59

60

Chapter 4

Lower Bounds from Coding

This section specifies and proves the lower bounds on secure sketches and fuzzy ex-
tractors which were discussed in the previous sections. We in fact discuss two kinds
of lower bounds.

First, we address the min-entropy loss. By Proposition 4.1 (resp. 4.2), if there ex-
ists a secure sketch (resp. fuzzy extractor) with error correction radius τ and entropy
loss t, then there exists a code with minimum distance 2τ+1 and redundancy slightly
less than τ . The redundancy of a code C in a metric spaceM is log(frac|C|M). For
a block code from k bits to n bits, the redundancy is n− k.

This implies that the constructions we describe for the Hamming and set difference
metrics are optimal when the input distribution is uniform: both constructions have
entropy loss tied to the redundancy of a code. In the code-offset construction, one can
use a code with optimal redundancy. In the case of set difference, both constructions
have entropy loss equal to the redundancy of BCH codes, which are optimal among
codes with redundancy o(n) [53].

The second set of lower bounds addresses loss of Shannon entropy. Separate
proofs are necessary since, even though the min-entropy of W may drop significantly
given SS(W), this does not directly imply a significant drop in Shannon entropy—the
relation between the two notions of entropy is too weak (the only general relationship
is H∞(W) ≤ Hsh(W). Nonetheless, Propositions 4.3 and 4.5 show that in certain
cases, a good deal of Shannon information must be leaked.

Informally, the first set of bounds is “operational”: bounds on min-entropy loss
show that bounds on how much key material can be derived using the sorts of tech-
niques in this work. Their main use is to understand which constructions are essen-
tially optimal, and which ones leave room for improvement. The bounds on Shannon
entropy, on the other hand, are “semantic”: they show that information about W—in
its commonly accepted mathematical formulation— is leaked by SS(W). We will use
the second set of bounds in the next part of the thesis as intuition for the notion of
entropically-secure fuzzy fingerprints.

61

4.1 Bounds on Loss of Min-Entropy

First, some notation: Recall that an (M, K, τ) code is a subset of the metric space
M which can correct τ errors (this is slightly different from the usual notation of the
coding theory literature.

Let K(M, τ) be the largest K for which there exists an (M, K, τ)-code. Given
any set S of 2t points inM, we let K(M, τ, S) be the largest K such that there exists
an (M, K, τ)-code all of whose K points belong to S. Finally, we let L(M, τ, t) =
log(min|S|=2m K(n, τ, S)). Of course, when t = log |M| = logN , we get L(M, τ, n) =
logK(M, τ). The exact determination of quantities K(M, τ) and K(M, τ, S) form
the main problem of coding theory, and is typically very hard. To the best of our
knowledge, the quantity L(M, τ, t) was not explicitly studied in any of three metrics
that we study, and its exact determination seems very hard as well.

The two following propositions give lower bounds (one for secure sketches, the
other for fuzzy extractors) which show that the constructions for the Hamming and
Set Difference metrics are essentially optimal, at least when the original input distri-
bution is uniform.

The basic idea is the same in both cases: the existence of secure sketches (resp.
fuzzy extractors) with small entropy lossimplies the existence of codes with small
redundancy. We can then rely on existing lower bounds on the redundancy of codes
to get bounds on sketches and extractors. The case of codes over {0, 1}n with the
Hamming metric is certainly the best-studied, and the known bounds can be found
in textbooks, e.g. [53].

Proposition 4.1. The existence of (M, t, t′, τ) secure sketch implies that t′ ≤ L(M, τ, t).

In particular, when t = logN (i.e., when the password is truly uniform), t′ ≤
logK(M, τ).

Proof. Assume SS is such secure sketch. Let S be any set of size 2t inM, and let W

be uniform over S. Then we must have H̃∞(W | SS(W)) ≥ t′. In particular, there

must be some particular value v such that H∞(W | SS(W) = v) ≥ t′. But this means

that conditioned on SS(W) = v, there are at least 2t′ points w in S (call this set T)

which could produce SS(W) = v. We claim that these 2t′ values of w form a code of

error-correcting distance τ . Indeed, otherwise there would be a point w′ ∈ M such

that dis(w0, w
′) ≤ τ and dis(w1, w

′) ≤ τ for some w0, w1 ∈ T . But then we must

have that Rec(w′, v) is equal to both w0 and w1, which is impossible. Thus, the set T

above must form an (M, 2t′ , τ)-code inside S, which means that t′ ≤ logK(M, τ, S).

Since S was arbitrary, the bound follows.

Proposition 4.2. The existence of (M, t, `, τ, ε)-fuzzy extractors implies that ` ≤
L(M, τ, t)− log(1−ε). In particular, when t = logN (i.e., when the password is truly

uniform), ` ≤ logK(M, τ)− log(1− ε).

Proof. Assume (Gen,Rep) is such a fuzzy extractor. Let S be any set of size 2t in

M, and let W be uniform over S. Then we must have SD (〈R,P 〉, 〈U`, P 〉) ≤ ε. In

62

particular, there must be some particular value p of P such that R is ε-close to U`

conditioned on P = p. In particular, this means that conditioned on P = p, there are

at least (1 − ε)2` points r ∈ {0, 1}` (call this set T) which could be extracted with

P = p. Now, map every r ∈ T to some arbitrary w ∈ S which could have produced

r with nonzero probability given P = p, and call this map C. We claim that C must

define a code with error-correcting distance τ . Indeed, otherwise there would be a

point w′ ∈ M such that dis(C(r1), w
′) ≤ t and dis(C(r2), w

′) ≤ τ for some r1 6= r2.

But then we must have that Rep(w′, p) is equal to both r1 and r2, which is impossible.

Thus, the map C above must form an (M, 2`+log(1−ε), τ)-code inside S, which means

that ` ≤ logK(M, τ, S)− log(1− ε). Since S was arbitrary, the bound follows.

Observe that, as long as ε < 1/2, we have 0 < − log(1−ε) < 1, so the lowerbounds
on secure sketches and fuzzy extractors differ by less than a bit. In contrast, our
construction of fuzzy extractors loses an additional 2 log

(
1
ε

)
bits of entropy over the

corresponding secure sketch, incurred by smoothing the input distribution with a
randomness extractor (see Lemma 3.1).

4.2 Bounds on Loss of Shannon Entropy

In this section, we show that secure sketches and fuzzy extractors must leak informa-
tion about the input in the sense of Shannon. For concreteness, we focus on the case
where data is from {0, 1}n equipped with the Hamming (or Set Difference) metric.

The proof techniques are quite different from the previous section. The bound for
secure sketches is quite simple, and holds for any metric space where the number of
points within distance τ grows exponentially in τ . Both the Hamming metric and edit
metric satisfy this, though we only state the proposition for the Hamming metric.

The second result, on fuzzy extractors, is the main result of this section. The proof
depends on the particular geometry of {0, 1}n. Extending the results to the edit metric
seems not too difficult, but requires a better understanding of the geometry of that
metric space. The result on secure sketches (Proposition 4.3) may be thought of as a
warm-up for the bound on fuzzy extractors (Proposition 4.5).

Proposition 4.3. Assume SS is a secure sketch correcting τ errors and E is a

uniform distribution over {v | ‖v‖ ≤ τ}. Then for any distribution W , we have

I(W ; SS(W)) ≥ Hsh(W | W ⊕ E). In particular, if W is uniform over {0, 1}n,
then I(W ; SS(W)) ≥ Hsh(E) ≈ nh2(τ/n), where h2 is the binary entropy function.

Proof. Let W ′ = W ⊕ E, so that ‖W −W ′‖ ≤ τ . For any random variables A,B,C

it is easy to check the following inequality:

I(A;B,C) = I(A;B) + I(A;C) + I(B;C | A)− I(B;C)

≤ I(A;B) + I(A;C) + I(B;C | A).

63

Set A = W,B = W ′, C = SS(W). Since SS(W) is independent of W ′ conditioned

on W , we know that I(SS(W);W ′ | W) = 0. We obtain:

I(W ;W ′, SS(W)) ≤ I(W ; SS(W)) + I(W ;W ′) + I(W ′; SS(W) | W)

= I(W ; SS(W)) + I(W ;W ′)

On the other hand, since W ′ and SS(W) determine W , we have

I(W ;W ′, SS(W)) = Hsh(W)−Hsh(W | W ′, SS(W)) = Hsh(W)

Combining, we get I(W ; SS(W)) ≥ Hsh(W)− I(W ;W ′) = Hsh(W | W ′).

A Bound for Fuzzy Extractors A more delicate argument than the one above
shows that fuzzy extractors must also leak a certain amount of Shannon information
about their inputs. Since we are proving a lower bound, we will restrict our attention
to the uniform distribution, which is a valid min-entropy t distribution for any t.1

The simplest consequence to take away from the result (Proposition 4.5, below) is
that as soon as the number of errors τ to be tolerated becomes large (say

√
n), then

the public part of the fuzzy extractor leaks Ω(n) bits of information about the secret
input.

The proof uses the isoperimetric inequality on the hypercube {0, 1}n (see [11],
theorem 16.6), so we first introduce some notation. Given a set S ∈ {0, 1}n and a
number τ , we let Out τ (S) = {y | ∃w ∈ S s.t. ‖w − y‖ ≤ τ} be the τ -th shadow of
S, i.e. the set of points of distance at most τ from some point in S. Then the
isoperimetric inequality states that balls have the smallest outshadows, for every τ .
This allows one to lower bound |Out τ (S)| in terms of |S|. Since we want to find
a closed expression bounding Hsh(W | P) above, we will only use the following
corollary of the isoperimetric inequality. Here h2 is the binary entropy function,
h2(p) = p log(1

p
)− (1− p) log(1

1−p
).

Fact 4.4. For every set S ⊂ {0, 1}n such that |Out τ (S)| ≤ 2n−1, we have

|S| ≤ Aτ · |Out τ (S)|, where Aτ ≤
∑n/2−τ−1

i=0

(
n
i

)
2n−1

≤ 2n(h2(1
2
− τ

n
)−1) (4.1)

In particular, when τ = Ω(
√
n), the ratio is exponentially small, i.e. Aτ = 2−Ω(n).

Proposition 4.5. Assume (Gen,Rep) is a (n, t, `, τ, ε) fuzzy extractor, and let the

output of the generation algorithm Gen(W) be P,Z, where P is the public part and

Z, the extracted key. Then for the uniform distribution W ← {0, 1}n, we have

I(W ;P) ≥ log

(
1

Aτ

)
− 2−`n− ε(n+ `) ≈ n

(
1− h2

(
1

2
− τ

n

))
where ατ is as in Fact 4.4. If τ = Ω(

√
n), ` = ω(1) and ε = o(1), then we can use

the bounds on Aτ to conclude P reveals Ω(n) bits of information about W .

1Even though our technique works for more general distributions, the particular bounds we get
do not appear to be much stronger, while the exact estimates become intractable.

64

Since H̃∞(W | P) ≤ Hsh(W | P), the result also implies that average min-entropy
of W is reduced.

Proof. Since W and P determine Z, we have

Hsh(W | P) = Hsh(W,Z | P) = Hsh(Z | P) + Hsh(W | Z, P).

We will bound each of the two last terms separately. We begin with Hsh(Z|P). Let

g(x) = −x log x. Recall that the Shannon entropy of a distribution with probabilities

q1, ..., qL is
∑

i g(qi). We’ll use a simple approximation, which can be derived by

computing the derivative of g(): for δ ≥ 0, g(2−` + δ) ≤ g(2−`) + `δ.

We expect the distribution of the pair Z conditioned on most values p of P to

be essentially uniform over {0, 1}`. In order to manipulate the small deviations from

uniformity, we let

δp,r = max[Pr(Z = r | P = p)− 2−`, 0].

Since SD (〈Z, P 〉, 〈U`, P 〉) ≤ ε, we have
∑

p,r δp,r ≤ ε. Now, we can upper bound

Hsh(Z | P) as follows:

Hsh(Z | P) =
∑

p

Pr(P = p)Hsh(Z | P = p)

=
∑

p

Pr(P = p)
∑

r

g(Pr(Z = r | P = p)) ≤
∑

p

Pr(P = p)
∑

r

g(2−` + δp,r)

≤
∑

p

Pr(P = p)
∑

r

(
g(2−`) + `δp,r

)
≤ `+ `

∑
p

Pr(P = p)
∑

r

δp,r

≤ `(1 + ε)

Next, given p and r, denote by Sp,r the set of w for which Rep(w, p) = r. Note that

Hsh(W |P = p, Z = r) ≤ log |Sp,r|.

We wish to bound the size of the sets Sp,r. To do so, let Tp,r = Out τ (Sp,r) be the

τ -th shadow of Sp.r. For any r0 6= r1, their τ -th shadows must be disjoint (Why? If

w′ ∈ Tp,r0 ∩ Tp,r1 , then error correction property of fuzzy extractors would imply that

Rep(w′, p) is equal to both r0 and r1, which is impossible.) This allows us to use the

following lemma:

Claim 4.6. For any 2` subsets S1, ..., S2` of {0, 1}n, if the τ -th shadows Outτ (Si) are

mutually disjoint, then the product of the sizes is bounded above:

log(
∏

i

|Si|) ≤ n+ 2`(log(Aτ) + n− `) (4.2)

65

We will prove the claim below. For now, we can bound Hsh(W | P,Z):

Hsh(W | P,Z)

=
∑

p

Pr(P = p)
∑

r

Pr(Z = r | P = p)Hsh(W | P = p, Z = r)

≤
∑

p

Pr(P = p)
∑

r

(2−` + δp,r) log |Sp,r|

≤ n
∑

p

Pr(P = p)(
∑

r

δp,r) + 2−`
∑

p

Pr(P = p) log

(∏
r

|Sp,r|

)

The first of the terms in the last equation is at most ε, since the probabilities

Pr[P = p] are each bounded by 1, and the sum
∑

p,r δp,r is at most ε. To bound

the second term, we can apply the claim, once for each value of p, to the collection

{Sp,r}r∈{0,1}` :

Hsh(W |P,Z) ≤ εn+ 2−`
∑

p

Pr[P = p](n+ 2`(log(Aτ) + n− `))

= n− `+ log(Aτ) + n(2−` + ε)

Combining the bounds for Hsh(Z | P) and Hsh(W | P,Z), and replacing n with

Hsh(W), completes the proof. We get Hsh(W |P) ≤ Hsh(W)+log(Aτ)+n2−`+ε(n+`),

which implies the main statement.

Proof of Claim 4.6. By hypothesis, the τ -th shadows Outτ (Si) are all disjoint, and

hence at most one of them can have more than 2n−1 points. For all the remaining

sets, we have |Si| ≤ Aτ |Outτ (Si)|. For the one “exceptional” set i∗ of large size, we

can bound log |Si∗| by n. Thus

log(
2`∏

i=1

|Si|) ≤ n+ log(A2`

τ

∏
i

|Outτ (Si)|) = n+ 2` log(Aτ) + log(
∏

i

|Outτ (Si)|).

The sets Outτ (Si) are all disjoint, and so their sizes sum to at most 2n. If one has

2` numbers ai whose sum is less than 2n, their product is maximized by setting all ai

to 2n−`. This gives us log(
∏2`

i=1 |Si|) ≤ n+ 2` log(Aτ) + 2` log(2n−`), as desired.

66

Part II

Secrecy for High-Entropy Data

67

Chapter 5

Entropic Security, Prediction and

Indistinguishability

This chapter presents the general results on entropic security discussed in the intro-
duction. In later chapters, we’ll apply these ideas to get new results on encryption,
“perfectly one-way” hash functions, and the fuzzy extractors introduced in Chap. 3.

The main contributions are:

• A new, stronger formulation of entropic security. Previous formulations [17, 18,
70] guaranteed only that no predicate of the secret input is leaked. We require
that the adversary have no advantage at predicting any function whatsoever of
the input.

• The introduction of indistinguishability on high-entropy distributions as a no-
tion of security. This notion is technically much easier to work with than
entropic security, since it is very close to randomness extraction and can be
addressed with similar tools.

• The equivalence of indistinguishability to entropic security. There are actually
two main pieces of this result: first, that indistinguishability is equivalent to
entropic security for predicates (the definition of [17, 18, 70]) and second, that
the adversary’s ability to predict some function of the input implies the ability to
predict a predicate. These equivalences are inspired by the original equivalence
of semantic security and indistinguishability of encryptions [40], though the
proof techniques are quite different.

The next section defines entropic security (in two variants), and a notion of in-
distinguishability. The main result of the section is the equivalence of these notions
(Theorem 5.1). Our presentation refers several times to the parallel with a similar
equivalence due to Goldwasser and Micali [40]—see Section 1.2.3 for a brief explana-
tion of that result. The remainder of the chapter gives the details of the proof of the
equivalence.

69

5.1 Entropic Security, Prediction of Functions and

Indistinguishability

This section formulates the various notions of security we work with, and states
the equivalences which are the main technical results of the chapter. To unify the
discussion, let Y (m;R) be some randomized map. Here m ∈ {0, 1}n is the input and
R is a string of uniformly random bits, independent of m. In the case of encryption,
Y = E is the encryption function, and R = 〈κ, i〉 consists of the key and any extra
randomness i used by the encryption. In the setting of hashing, Y will be the hash
function and R the randomness used by the hash. When the random string R is
implicit, we will simply write Y (m) instead of Y (m;R).

Recall that a predicate is a “yes”/“no” question, that is, a function that outputs
a single bit. Entropic security was first formulated in terms of predicates by Canetti,
Micciancio and Reingold [17, 18] in the context of hash functions and, subsequently
but independently, by Russell and Wang [70] in the context of encryption schemes.

Definition 5.1 ([17, 18, 70]). The probabilistic map Y hides all predicates of

X with leakage ε if for every (randomized) adversary A, there exists some random

variable GA on {0, 1}, independent of X, such that for all predicates g : {0, 1}n →
{0, 1}, ∣∣Pr[A(Y (X)) = g(X)]− Pr[GA = g(X)]

∣∣ ≤ ε.

The map Y () is called (t, ε)-entropically secure for predicates if Y () hides all predi-

cates of X, whenever the min-entropy of X is at least t.

This definition may not seem quite satisfying from several points of view. First,
it states only that no predicate of the input is leaked, and provides no explicit guar-
antees about other functions. In contrast, the original semantic security definition of
Goldwasser and Micali held for all functions, not only predicates. Second, there is no
guarantee that the distribution for GA is easy to compute or sample from in the case
where, say, A runs polynomial time and M is samplable in polynomial time. Finally,
the definition is somewhat hard to work with.

We introduce two new definitions which we prove are equivalent to entropic secu-
rity for predicates. First, we show that Definition 5.1 can be extended to hold for all
functions, not only predicates. This is the definition discussed in the introduction.

Definition 5.2 (Entropic Security, same as Definition 1.1). The probabilistic

map Y hides all functions of X with leakage ε if for every adversary A, there exists

some adversary A′ with no access to X such that for all functions f : {0, 1}n →
{0, 1}∗, ∣∣Pr[A(Y (X)) = f(X)]− Pr[A′() = f(X)]

∣∣ ≤ ε.

The map Y () is called (t, ε)-entropically secure if Y () hides all functions of X, when-

ever the min-entropy of X is at least t.

70

Second, we show that the entropic security of Y () is equivalent to the indistin-
guishability of Y ()’s outputs on certain pairs of distributions on the inputs. This
notion is inspired by that of Goldwasser and Micali [40], which required that the
output of an encryption scheme on any pair of inputs (as opposed to pair of distri-
butions over inputs) be indistinguishable by polynomial-time adversaries. One nice
consequence of this equivalence is that in Definition 5.1 we can take GA = A(E(U)),
where U is the uniform distribution on {0, 1}n. This definition is also much easier to
work with, as we will see in later sections.

Definition 5.3. A randomized map Y () is (t, ε)-indistinguishable if there is a random

variable G such that for every distribution on messages M over {0, 1}n with min-

entropy at least t, we have

SD (Y (M), G) ≤ ε.

There are two main intuitions behind this part of the thesis. First is that in-
distinguishability is related to extraction of randomness from distributions of high
min-entropy. We will return to this in the construction and lower bounds. The sec-
ond intuition is that entropic security and indistinguishability are related. This leads
to the main result of the chapter:

Theorem 5.1. Let Y be a randomized map with inputs of length n. Then

1. (t, ε)-entropic security for predicates implies (t− 1, 4ε)-indistinguishability.

2. (t−2, ε)-indistinguishability implies (t, ε/8)-entropic security for all functions

when t ≥ 2 log
(

1
ε

)
+ 1.

Entropic security with respect to predicates is trivially implied by entropic security
for all functions, and so Theorem 5.1 states that all three notions of security discussed
above are equivalent up to small changes in the parameters.

Randomness Extraction and Entropic Security Taking the distribution G
in Definition 5.3 to be the uniform distribution, then we recover the definition of
randomness extraction—for any input distribution of high-enough entropy, the output
is very close to uniform. Thus, Theorem 5.1 implies that an extractor for t-sources
hides all partial information about sources of min-entropy at least t+ 2.

5.1.1 Proving Theorem 5.1

The remainder of this section gives an overview of the proof of Theorem 5.1.
First, some notation. Fix a distribution X on {0, 1}n. For a function f : {0, 1}n →

{0, 1}∗, let predf,X be the maximum probability of any particular outcome, that is
the maximum probability of predicting f(X) without having any information about
X:

predf,X = max
z

Pr[f(X) = z]

71

(When X is clear from the context, we may simply write predf .) We may rephrase
entropic security as follows: for every function f and adversary A, the probability of
predicting f(X) given Y (X) is at most predf + ε:

Pr[A(Y (X)) = f(X)] ≤ predf,X + ε

From Entropic Security to Indistinguishability The first statement of Theo-
rem 5.1 is the easier of the two to prove, and we give the intuition here: given two
distributions X0, X1, we can define a predicate g(x) which captures the question “is
x more likely to have come from X0 or X1?” If X is a equal mixture of X0 and X1,
then the adversary which makes the maximum likelihood guess at g(X) given Y (X)
will have success probability 1

2
+ 1

2
SD (Y (X0), Y (X1)). On the other hand, with

no access to Y (X), the adversary can succeed with probability at most predP = 1
2
.

Entropic security implies that the advantage over random guessing, and hence the
statistical distance, must be small. The formal proof is more involved, and is given
in Section 5.2.

From Indistinguishability to Entropic Security Proving that indistinguisha-
bility implies entropic security is considerably more delicate. Although the statement
is a high-entropy version of the equivalence between semantic security and indistin-
guishability of encryptions due to Goldwasser and Micali [40], the proof techniques
are quite different and so we begin with an overview of the main ideas and notation.

The Case of Balanced Predicates We say a function f is balanced (w.r.t. X) if it
takes on all its possible values with equal probability, i.e. there are 1

predf
possible values

and each occurs with probability predf . The reductions we consider are much easier
for balanced functions—most of the effort will be in reducing unbalanced functions
to balanced ones without losing too much in the prediction probability.

For example, suppose that g() is a balanced predicate for distribution X, that is
Pr[g(X) = 0] = Pr[g(X) = 1] = 1

2
, and that that A is an adversary contradicting

entropic security for min-entropy t = H∞(X), that is Pr[A(Y (X)) = g(X)] = 1
2

+ ε.
For b ∈ {0, 1}, let Xb be the distribution of X conditioned on g(X) = b. The
adversary’s advantage over random guessing in distinguishing Y (X0) from Y (X1) is
ε. However, that same advantage is also a lower bound for the statistical difference.
We get:

1
2

+ ε = Pr[A(Y (X)) = g(X)]

= Pr[b← {0, 1} : A(Y (Xb)) = b] ≤ 1
2

+ 1
2
SD (Y (X0), Y (X1)) ,

and so the distance between Y (X0) and Y (X1) is at least ε/2. To see that this
contradicts indistinguishability, note that since g(X) is balanced, we obtain X0 and
X1 by conditioning on events of probability at least 1

2
. Probabilities are at most

doubled, and so the min-entropies of both X0 and X1 are at most H∞(X)− 1.

72

Balancing Predicates If the predicate g() is not balanced on X, then the previous
strategy yields a poor reduction. For example, Pr[g(X) = 0] may be very small
(potentially as small as ε). The probabilities in the distribution X0 would then be
a factor of 1/ε bigger than their original values, leadding to a loss of min-entropy
of log(1/ε). This argument therefore proves a weak version of Theorem 5.1: (t, ε)
indistinguishability implies (t+ log

(
1
ε

)
, 2ε) entropic security for predicates.

This entropy loss is not necessary. We give a better reduction in Section 5.2. The
idea is that to change the predicate g() into a balanced predicate by flipping the value
of the predicate on points on which the original adversary A performed poorly. By
greedily choosing a set of points in g−1(0) of the right size, we show that there exists
a balanced predicate g′() on which the same adversary as before has advantage at
least ε/2, if the adversary had advantage ε for the original predicate.

From Predicates to Arbitary Functions In order to complete the proof of Theo-
rem 5.1, we need to show that entropic security for predicates implies entropic security
for all functions. The reduction is captured by the following lemma, which states that
for every function with a good predictor (i.e. a predictor with advantage at least ε),
there exists a predicate for which nearly the same predictor does equally well. This
is the main technical result of this chapter.

The reduction uses the predictor A(Y (X)) as a black box, and so we will simply
use the random variable A = A(Y (X)).

Lemma 5.2 (Main Lemma). Let X be any distribution on {0, 1}n such that t ≥
3
2
log
(

1
ε

)
, and let A be any random variable (possibly correlated to X). Suppose there

exists a function f : {0, 1}n → {0, 1}∗ such that Pr[A = f(X)] ≥ predf + ε. Then

there exists a predicate g : {0, 1}n → {0, 1} and an algorithm B(·) such that

Pr[B(A) = g(X)] ≥ predg + ε/4.

There are two main steps to proving the lemma:

• If A is a good predictor for an (arbitrary) function f(·), then there is a (almost)
balanced function f ′(·) and a good predictor A′s of the form g(A).

• If f(·) is a balanced function (or almost balanced) and A is a good predictor
for f(X), then there is a predicate g(·) of the form g′(f(·)) such that g′(A) is a
good predictor for g(X).

The proof itself is in Section 5.3.2.

A More Efficient Reduction Lemma 5.2 says nothing about the running time of
B(·)—in general, the reduction may yield a large circuit. Nonetheless, we may indeed
obtain a polynomial-time reduction for certain functions f . If no value of f occurs
with probability more than ε2, then inner product with a random vector provides a
good predicate.

73

Proposition 5.3. Let X be any random variable distributed in {0, 1}n. Let f :

{0, 1}n → {0, 1}N be a function such that predf,X ≤ ε2/4, and let A be a random

variable with advantage ε at guessing f(X). For r ∈ {0, 1}N , let gr(x) = r� f(x). If

r is drawn uniformly from {0, 1}N , then

Er

[
Pr[r � A = gr(X)]− predgr

]
≥ ε/4.

In particular, there exists a value r and a O(N)-time algorithm B such that

Pr[B(A) = gr(X)] ≥ predgr
+ ε/4.

We prove Proposition 5.3 in Section 5.3.2, and use it as motivation for the proof
of Lemma 5.2.

5.2 From Entropic Security to Indistinguishability

Lemma 5.4. (t, ε)-entropic security for predicates implies (t−1, 4ε)-indistinguishability.

Proof. It is sufficient to prove indistinguishability for all distributions which are uni-

form on some set of 2t−1 points. To see why, recall that any distribution of min-

entropy at least t − 1 can be written as a convex combination of such flat distri-

butions. If X0 =
∑
λ0,iX0,i and X1 =

∑
j λ1,jX1,j, where the X0,i and X1,j are all

flat distributions, then the statistical distance SD (Y (X0), Y (X1)) is bounded above

by
∑

i,j λ0,iλ1,jSD (Y (X0,i), Y (X1,j)) (by the triangle inequality). If each of the pairs

Y (X0,i), Y (X1,j) has distance at most ε, then the entire sum will be bounded by ε.

Now let X0, X1 be any two flat distributions over disjoint sets of 2t−1 points each

(we will deal with non-disjoint sets below), and let X be an equal mixture of the two.

That is, to sample from X, flip a fair coin B, and sample from XB. Take g to be

any predicate which is 0 for any sample from X0 and 1 for any sample from X1. A

good predictor for g will be the adversary A who, given a string y as input, guesses

as follows:

A(y) =

{
0 if y is more likely under the distribution Y (X0) than under Y (X1)

1 otherwise

By the definition of statistical difference (Section 2.1), this adversary guesses the

predicate with probability exactly:

Pr
[
A(Y (X)) = B = g(X)

]
= 1

2
+ 1

2
SD (Y (X0), Y (X1)) . (5.1)

We can now apply the assumption that Y () is (t, ε)-entropically secure to bound

SD (Y (X0), Y (X1)). First, for any random variable G over {0, 1} which is indepen-

dent of X, the probability that G = g(X) is exactly 1
2
. Now the distribution X has

74

min-entropy t by construction, and so by entropic security the probability that A(y)

can guess g(X) is bounded:

Pr[A(Y (X)) = g(X)] ≤ maxG {Pr[G = g(X)]}+ ε = 1
2

+ ε. (5.2)

Combining the last two equations, the statistical difference SD (Y (X0), Y (X1)) is

at most 2ε. This takes care of the case where X0 and X1 have disjoint supports.

To get the general indistinguishability condition, fix any X̃0 as above (flat on

2t−1 points). For any other flat distribution X̃1, there is some third flat distribu-

tion X ′ which is disjoint from both X̃0 and X̃1. By the previous reasoning, both

SD
(
Y (X̃0), Y (X ′)

)
and SD

(
Y (X ′), Y (X̃1)

)
are less than 2ε. By the triangle in-

equality SD (Y (X0), Y (X1)) ≤ 4ε (a more careful proof avoids the triangle inequality

and gives distance 2ε even when the supports of X0, X1 overlap.

5.3 From Indistinguishability to Entropic Security

5.3.1 Entropic Security for Predicates

Lemma 5.5. (t− 2, 2ε)-indistinguishability implies (t, ε)-entropic security for pred-

icates for t ≥ 2.

Proof. Suppose that the scheme is not (t, ε)-entropically secure. That is, there is a

message distribution X with min-entropy at least t, a predicate g and an adversary

A such that

Pr[A(Y (X)) = g(X)] > ε+ max
i=0,1
{Pr[g(X) = i]} (5.3)

We wish to choose two distributions of min-entropy t − 2 and use the adversary

to distinguish them, thus contradicting indistinguishability. It’s tempting to choose

the sets g−1(0) and g−1(1), since we know the adversary can predict g reasonably

well. That attempt fails because one of the pre-images g−1(0), g−1(1) might be quite

small, leading to distributions of low min-entropy. Instead, we partition the support

of X into sets of (almost) equal measure, making sure that the smaller of g−1(0) and

g−1(1) is entirely contained in one partition.

Now let:

p = Pr[h(X) = 1]

q0 = Pr[A(Y (X)) = 1|g(X) = 0]

q1 = Pr[A(Y (X)) = 1|g(X) = 1]

Suppose without loss of generality that p ≥ 1/2, i.e. that g(X) = 1 is more likely

than, or as likely as, g(X) = 0 (if p < 1/2, we can just reverse the roles of 0 and 1).

The violation of entropic security (Eq. 5.3) can be re-written:

75

pq1 + (1− p)(1− q0) > p+ ε

In particular, p− pq1 > 0 so we get:

(1− p)(q1 − q0) > ε (5.4)

Now we wish to choose two distributions A,B, each of min-entropy t−2. For now,

fix any set S ⊆ g−1(1), where g−1(1) = {m ∈ {0, 1}n|g(m) = 1}. We make the choice

of § more specific below. Let AS be the conditional distribution of X conditioned on

X ∈ S, and let BS be distributed as X conditioned on X ∈ {0, 1}n \ S. That is, AS
and BS have disjoint supports and the support of BS covers g−1(0) entirely.

The first property we will need from S is that it split the mass of X somewhat

evenly. If the probability mass p′ of S under X was exactly 1/2, then the min-

entropies of AS and BS would both be exactly t− 1. Depending on the distribution

X, it may not be possible to have such an even split. Nonetheless, we can certainly

get 1
2
≤ p′ < 1

2
+ 2−t, simply by adding points one at a time to § until it gets just

below 1/2. The order in which we add the points is not important. For t > 2 (which

is a hypothesis of this proof), we get 1
2
≥ p′ ≥ 3

4
. Hence, we can choose S so that the

min-entropies of AS and BS are both at least t− 2.

We will also need that S have other properties. For every point x in the support

of X, we define qx = Pr[A(Y (x)) = 1]. The average over x← X, restricted to g−1(1),

of qx is exactly q1, that is

Ex←X [qx] = q1

If we now the choose the set S greedily, always adding points which maximize qx, we

are guaranteed that the average over X, conditioned on X ∈ S, is at least q1. That

is, there exists a choice of S with mass p′ ∈ [1
2
, 3

4
] such that

Pr[A(Y (AS)) = 1] = Ex←AS [qx] ≥ q1.

We can also now compute the probability that A(Y (BS)) is 1:

Pr[A(Y (BS)) = 1] =
1− p
1− p′

q0 +
p− p′

1− p′
Pr[A(Y (X)) = 1|X 6∈ S and g(X) = 0]

Now Pr[A(Y (X)) = 1|X 6∈ S and g(X) = 0] is at most q1 (since by the greedy

construction of S, this is the average over elements in g−1(1) with the lowest values

of qm). Using A as a distinguisher for the distributions Y (AS) and Y (BS), we get:∣∣ Pr
[
A(Y (AS)) = 1

]
− Pr

[
A(Y (BS)) = 1

] ∣∣ ≥ q1−
1− p
1− p′

q0−
p− p′

1− p′
q1 =

1− p
1− p′

(q1−q0)

Since entropic security is violated (Eq. 5.4), we have (1−p)(q1−q0)/(1−p′) > ε/(1−p′).
By construction, we have p′ > 1

2
so the advantage of the predictor is at least 2ε, that

is:

SD (Y (AS), Y (BS)) ≥
∣∣ Pr

[
A(Y (AS)) = 1

]
− Pr

[
A(Y (BS)) = 1

] ∣∣ ≥ 2ε

76

Since A and B each have min-entropy at least t − 2, this contradicts (t − 2, 2ε)-

indistinguishability, completing the proof.

5.3.2 From Predicates to General Functions

This section contains the proofs of Lemma 5.2 and Proposition 5.3. We begin with
Proposition 5.3, since the proof is straightforward and provides some intuition for the
proof of Lemma 5.2.

Proof of Proposition 5.3. We can calculate the expected advantage almost directly.

Note that conditioned on the event A = f(X), the predictor r�A always agrees with

gr(X). When A 6= f(X), they agree with probability exactly 1
2
. Hence, we have

Er [Pr[r � A = gr(X)]] =
1

2
+

1

2
Pr[A = f(X)] ≥ 1

2
(1 + predf + ε)

We must still bound the expected value of predgr
. Let rz = (−1)z�r. For any partic-

ular, r, we can compute predgr
as 1

2
+ 1

2
|
∑

z pzrz|. Using the fact E [|Z|] ≤
√

E [Z2]

for any random variable Z, we get:

Er

[
predgr

]
=

1

2
+

1

2
Er

[∣∣∣∣∣∑
z

pzrz

∣∣∣∣∣
]
≤ 1

2
+

1

2

√√√√√Er

(∑
z

pzrz

)2

By pairwise independence of the variables rz, we have E [rzra] is 1 if z = a and 0

otherwise.

Er

[
predgr

]
≤ 1

2
+

1

2

√∑
z

p2
z ≤

1

2
+

1

2

√
predf .

The last inequality holds since predf is the maximum of the values pz, and the expres-

sion
∑

z p
2
z is maximized when pz = predf for all z (note that this sum is the collision

probability of f(X)). Combining the two calculations we have

Er

[
Pr[r � A = gr(X)]− predgr

]
≥ 1

2

(
predf + ε−

√
predf

)
Using the hypothesis that predf ≤ ε2/4, we see that the expected advantage is at

least ε/4.

We now turn to the proof of Lemma 5.2. It is tempting, as before, to consider
predicates of the form g(x) = g′(f(x)) (this is certainly the form of the predicates
given by Proposition 5.3). This approach cannot work in general: suppose that
Z = f(X) takes on values in {0, 1, 2} with equal probability, and suppose that A
takes the value of f(X) with probability 1/3+ε, and each of the other two values with
probability 1/3 − ε/2. Now any predicate of Z takes on some value with probabilty
at least 2/3. A straightforward calculation shows that no matter what value of A is

77

observed, the best strategy is to guess the more likely value of the predicate. Hence,
to prove Lemma 5.2 we’ll have to consider a richer set of predicates.

Nonetheless, in the special case where f is balanced over an even number of
outputs, we can consider the simpler predicates of the previous proof. We say
f : {0, 1}n → {1, ..., F} is δ-far from balanced with respect to X if for every value
z ∈ [F] = {1, ..., F} we have |pz − 1/F | ≤ δ. Sub-Lemma 5.6 shows that essentially
the same approach as before works for a balanced function; that is, it is sufficient to
choose a random balanced predicate.

SubLemma 5.6 (Nearly balanced functions). Suppose F is even and f : {0, 1}n →
[F] is δ-almost-balanced. If Pr[A = f(X)] ≥ predf + ε, then there is a predicate

g(x) = g′(f(x)) such that

Pr[g′(A) = g(X)] ≥ predg + ε/2− δ
√
F .

In particular, when F ≤ 2/ε and δ ≤ ε3/2/8 the predictor g′(A) has advantage at least

ε/4 over random guessing.

Proof. It is sufficient to consider a random predicate G′ : [F]→ {−1,+1} subject to

the constraint that G′(z) = −1 on exactly half the elements of [F]. (The constraint

can be satisfied F is even.) As in the proof of Proposition 5.3, we will compute the

expected prediction probability of G′(A) and the expectation of predG′ separately.

We first compute the expected probability that G′(A) = G′(f(X)). Conditioned

on the event A = f(X), we always have G′(A) = G′(f(X)), and conditioned on

A 6= f(X), we have G′(A) = G′(f(X)) with probability 1
2
− 1

2(F−1)
(the difference

from 1
2

comes from the fact that we choose G′ only from functions which are balanced

on [F]).

Let p̂ = Pr[A = f(X)]. The expected prediction probability is given by

EG′ [Pr[G′(A) = G′(f(X))]] = p̂+ (1− p̂)(1
2
− 1

2(F − 1)
) =

1

2
+

1

2
(p̂− 1− p̂

F − 1
).

By hypothesis p̂ ≥ predf+ε ≥ 1/F+ε. Simplifying, we get EG′ [Pr[G′(A) = G′(f(X))]] ≥
1
2

+ ε/2.

We can also compute the expectation of predG (as in the proof of Proposition 5.3).

Note that if f is perfectly balanced, predG′ is always exactly 1/2. More generally,

for each z, let δz = pz − 1
2

(recall that |δz| ≤ δ by hypothesis). Since G′ is always

balanced on [F], for any particular g′ we have predg′ = 1
2

+ 1
2
|
∑

z δzg
′(z)| (using the

convention that g′ maps into {±1}). In expectation, we can apply the inequality

E [|Z|] ≤
√

E [Z2] to get:

EG′ [predG′] ≤
1

2
+

1

2

√√√√√EG′

(∑
z

δzG′(z)

)2
 =

1

2
+

1

2

√∑
z,z′

δzδz′EG′ [G′(z)G′(z′)].

78

We know that EG′ [G
′(z)G′(z′)] is 1 for z = z′ and is −1

F−1
otherwise. Using |δz| ≤ δ

we get:

EG′ [predG′] ≤
1

2
+

1

2

√∑
z

δ2 +
∑
z 6=z′

δ2

F − 1
≤ 1

2
+

1

2
δ
√

2F .

The expectation of Pr[G′(A) = G′(f(X))]−predG′ is at least ε/2−δ
√
F , as desired.

SubLemma 5.7 (Balancing Functions). Let f be any function such that Pr[A =

f(X)] ≥ predf + ε. If H∞(X) ≥ log(1/δ), then there is a function f ′ such that

1. f ′ takes values in [F], for F ≤ min
{

2
predf

, 4
ε

}
+ 2, and

2. f ′ is δ-almost-balanced.

3. ∃B(·) such that Pr[B(A) = f ′(X)] ≥ predf ′ + ε/4.

We can prove Sub-Lemma 5.7 using two claims: the first reduces the number
of possible outputs simply by “bucketing” certain outputs together. The second
claim shows that a function with not too many output can be made almost perfectly
balanced, as long as the entropy of X is high enough.

Claim 5.8. Let f be any function such that Pr[A = f(X)] ≥ predf + ε. Then there’s

a function b such that f ′(x) = b(f(x)) satisfies predf ′ ≤ predf + ε/2, and such that f ′

takes values in [F], for F ≤ min
{

2
predf

, 4
ε

}
+ 2.

Proof. We can gradually reduce the number of possible values f can take without

decreasing the advantage of the predictor. Let pz = Pr[f(X) = z]. If there are two

values z, z′ such that both pz and p′z are at most predf/2 + ε/4, then we can identify

those two outputs. Note that the combined value has probability at most predf + ε/2.

We can continue to combine pairs of values with combined mass at most predf + ε/2

until there is at most one value z with mass less than predf/2 + ε/4.

Let F =
⌈
min

{
2

predf
, 4

ε

}⌉
+ 1. At the end of these successive combinations, we

will have at most F different outputs remaining. We can thus summarize the previous

steps in a single function b with range [F] such that b(z) = b(z′) if and only if the

outputs z and z′ we’re identified at some stage. This b satifies the conditions of the

theorem: by contruction, we have Pr[b(f(X)) = w] is at most predf + ε/4 for any

value w. Moreover, Pr[b(A) = b(f(X))] ≥ Pr[A = f(X)] ≥ predf + ε.

Claim 5.9. Let f : {0, 1}n → [F] be any function such that Pr[A = f(X)] ≥ predf +ε.

If H∞(X) ≥ log(1/δ), then there is a function f ′ : {0, 1}n → [F] such that

1. f ′ is δ-almost-balanced, and

2. Pr[A = f ′(X)] ≥ 1
F

+ 1/F
predf
· ε.

In particular, if F ≤ 2
predf

, then the advantage of A at predicting f ′(X) is ε/2.

79

Proof. We may imagine the function f as dividing the points x ∈ {0, 1}n into F

buckets. Our goal is to move some of these points between buckets so that all the

buckets have approximately the same size. Since no point has mass more than δ, we

will be able to have all buckets with mass within δ of 1/F .

The problem is that moving points between buckets will (in general) decrease

the chances that A will predict the function (i.e. bucket identifier) accurately. For-

tunately, we’re interested in the difference between the predicition probability and

the maximum bucket size. As long as the two decrease proportionately, then A will

remain a good predictor for the modified function.

We now formalize our intuition. Let pz = Pr[f(X) = z], and let S ⊆ [F] be the

set of z such that pz ≥ 1/F . We will change the function f on inputs x such that

f(x) ∈ S, and assign instead a value not in S. We keep moving points as long as

some bucket remains with mass above 1/F + δ. Note that buckets in S will all have

mass in [1/F, 1/F + δ] at the end of this process.

Consider a large bucket given by value z. To decide which points to move out of

the bucket, let wx = Pr[A = f(x)|X = x], and let qz = Pr[A = f(X)|f(X) = z]. The

value qz is the average of wx over all x in the bucket given by z:

qz = EX|f(X)=z [wX]

By always moving points with the smallest possible values of wx, we can ensure that

the average wx in the bucket always remains at least qz. Specifically, let f ′ be the

new function obtained by balancing the buckets, and let q′z = Pr[A = z|f ′(X) = z].

Then by moving x’s with small wx we can ensure that q′z ≥ qz for all z ∈ S.

At the end of this process we will have

Pr[A = f ′(X)] ≥
∑
z∈S

1

F
q′z +

∑
z 6∈S

pzqz ≥
1

F

∑
z∈S

qz +
∑
z 6∈S

pzqz

(The contribution of a bucket not in S can be bounded below by pzqz, since it’s

contribution to the prediction probability can only increase with re-balancing.)

The original prediction probability was
∑

z pzqz. Thus the coefficients of the qz
in the new success probability have gone down by a factor of at most 1/F

predf
(that is,

only coefficients in S have changed, and those have decreased from at most predf to

at least 1/F). Hence, we have

Pr[A = f ′(X)]

Pr[A = f(X)]
≥ 1/F

predf

Thus the new probability is at least 1
F

+ 1/F
predf

ε, as desired.

Combining the lemmas above, we can prove Lemma 5.2.

80

Chapter 6

Encryption of High-Entropy

Sources

In this chapter, we discuss the results on entropic security to the encryption of mesages
which are guaranteed to come from a high-entropy distribution. Roughly: if the
adversary has only a small chance of guessing the message ahead of time, then one can
design information-theoretically secure encryption (in the sense of hiding all functions,
Definition 5.2) using a much shorter key than is usually possible—making up for the
small entropy of the key using the entropy inherent in the message.

Section 6.1 gives some background on symmetric encryption schemes and states
the main results of the chapter. The proofs and exact statement are given in Sec-
tions 6.2, 6.3 and 6.4.

6.1 Background

The problem which ignited the formal study of cryptography is that of symmetric-key
one-time encryption. Alice and Bob share a secret key K and Alice wants to securely
send some message M to Bob over a public channel. M is assumed to come from
some a-priori distribution on {0, 1}n (e.g., uniform), and the goal is to compute a
ciphertext E which: (a) allows Bob to extract M from E using K; (b) reveals “no
information” about M to the adversary Eve beyond what she already knew. Below,
we write E ← E(M,K) and M = D(E,K).

Perfect and Computational Security The first formalization of this problem
came in a fundamental work of Shannon [73], who defined “no information” by requir-
ing that M and E be independent as random variables: using information theoretic
notation (see Section 2.1.1), I(M ;E) = 0, where I is the mutual information. He
showed a lower bound on key length for his definition: encrypting messages of length
n requires at least n bits of shared key (more formally, the Shannon entropy of the
key must be at least that of the message distribution: Hsh(K) ≥ Hsh(M)). This
bound is tight when the message is chosen uniformly from all strings of a fixed length

81

n, since one can use a one-time pad. This bound was extended to the interactive
setting by Maurer [58].

Goldwasser and Micali [40] relaxed the notion of perfect security to the com-
putational setting: namely, any efficient Eve can extract only negligible “informa-
tion” about M from E. They had to properly redefine the notion of “information”,
since mutual information or conditional probabilities do not make much sense in a
computationally-bounded world. They suggested two now classical definitions. Con-
sider the following, equivalent version of Shannon’s definition: the encryption of any
two messages yield the same distribution on ciphertexts, that is E(m0) = E(m1). The
first definition of Goldwasser and Micali, called computational indistinguishability of
encryptions, generalizes this version of perfect security: they require that no efficient
(polynomial-time adversary) can distinguish the encryptions of m0 and m1 with ad-
vantage more than ε over random guessing, where ε is some negligible quantity. Their
second notion is called semantic security : for any distribution on messages M and
any function f(), the adversary can predict f(M) given E(M) with probability only
negligibly better than she could without seeing E(M). The first definition is easier
to work with, but the second definition seems to capture a stronger, more intuitive
notion of security: for example, indistinguishability is the special case of semantic
security when the message distribution M is restricted to uniform distributions over
two points {m0,m1}. In fact, Goldwasser and Micali showed that the two definitions
are equivalent. Thus, min-entropy 1 distributions1 are in some sense the hardest to
deal with for semantic security.

Statistical Security? A natural intermediate notion of security between perfect
and computational security would be some kind of statistical security: Eve is again
allowed to be unbounded, as in the perfect setting, but can potentially get some
negligible “information” ε, as in the computational setting. At the first glance, it
seems there there is no gain in this notion, no matter how we interpret “information”.
For example, following Shannon’s approach we could require that I(M ;E) ≤ ε instead
of being 0. Unfortunately, Shannon’s proof still implies that Hsh(K) ≥ Hsh(M)− ε.
Similarly for indistinguishability: since E(m) should look almost the same for any
fixed m, one can argue that I(E;M) = Hsh(E(M))− Em [Hsh(E(m))] still has to be
negligible, and so the key must again have entropy almost Hsh(M). The same bound
also holds for semantic security.

In his original work Shannon envisioned applications where Eve has a lot of uncer-
tainty about the message. Indeed, to get a pessimistic bound that Hsh(K) ≥ n, one
only has to consider the uniform distribution on M . In the perfect setting the secu-
rity against the uniform (i.e., min-entropy n) distribution implies the security against
any distribution. On the other hand, the notions of indistinguishability and semantic
security primarily deal with min-entropy 1 distributions, and the straightforward ex-
tension of Shannon’s bound to the statistical versions of these notions crucially uses
this fact. Thus, it is natural to ask if we can meaningfully define (statistical) semantic

1As defined in Section 2.1.1, the min-entropy of a distribution A is H∞(A) = − log(maxa Pr(A =
a)).

82

security and/or indistinguishability for high min-entropy distributions (say, uniform),
similar in spirit to the original work of Shannon. And if yes,

1. How do these notions relate to Shannon’s (statistical) notion, I(M ;E) ≤ ε? Most
importantly, does the pessimistic bound on the key length still extend to these
notions?

2. How do these notions relate to each other? In particular, are they still equivalent?

The work of Russell and Wang [70] Russell and Wang [70] introduced the idea
of statistical security for encryption of high-entropy message spaces. They considered
the first question above, though they focused on weakened version of semantic security.
They proposed entropic security for predicates (Definition 5.1) as a definition for the
high-entropy setting. Remarkably, Russell and Wang showed that Shannon’s lower
bound does not extend to this new notion.

Specifically, they presented two schemes beating Shannon’s bound on key length.
First, a deterministic scheme of the form E(M,K) = M ⊕ p(K), which is secure
only when M is uniformly distributed on {0, 1}n, where K has length only k =
2 log n+3 log

(
1
ε

)
+O(1) and p(·) is some carefully designed function from k to n bits.2

Thus, p(K) could be viewed as a very “sparse one-time pad” which nevertheless hides
any a-priori specified predicate g(M). Second, for general min-entropy t, Russell and
Wang gave a very different looking randomized scheme of the form (ψ, ψ(M)+K)←
E(M,K), where ψ is chosen at random from some special class of permutations3 (and
the addition is defined over some appropriate space). To achieve entropic security for
distributions of min-entropy t, this second scheme needs key length n− t+3 log

(
1
ε

)
+

O(1). While less than n for nontrivial settings of n− t, this key length again becomes
Ω(n) when n − t = Ω(n). [70] left it open whether such dependence on n − t is
necessary.

Our Results Our results on entropically-secure encryption can be divided into four
areas:

• A stronger definition of security. As shown in the previous chapter (Theo-
rem 5.1), entropic security for predicates implies entropic security for all func-
tions.

• The equivalence of entropic security and indistinguishability of encryptions for
message spaces with high-min-entropy. The results of the previous chapter
imply that E(m,K) is an entropically secure encryption scheme if and only if
E(m,K) satisfies indistinguishability on high-entropy input distributions.

• Lower bounds on the key length k for entropic security and indistinguishability.
In particular, we show near tightness of Russell-Wang constructions: k > n− t.
(In fact, for a large class of schemes k ≥ n− t+ log

(
1
ε

)
.)

2Namely, it samples a random point p(K) from an appropriate δ-biased spaces [64] (where [70]
used δ = ε3/2).

3Specifically, Russell and Wang required a family of 3-wise indepepndent permutations.

83

• Two general frameworks for constructing entropically secure encryption schemes,
one based on expander graphs and the other on XOR-universal hash functions.
These schemes generalize the schemes of Russell and Wang, yielding simpler
constructions and proofs as well as improved parameters.

Just like in the computational setting [40], the equivalence of security and indis-
tinguishability allows us to concentrate on a simpler definition of indistinguishability,
which immediately gives several benefits.

On one hand, we use it to show that the general construction of Russell and Wang
is nearly optimal: any entropically secure scheme must have k > n − t. In fact, for
a special case of public-coin schemes, where the ciphertext contains the randomness
used for encryption,4 we get an even stronger bound: k ≥ n− t+ log

(
1
ε

)
. The latter

result is proven by relating the notion of indistinguishability to that of randomness
extractors [66]: namely, any indistinguishable public-coin scheme almost immediately
yields a corresponding extractor. Using the optimal lower bounds on extractors [67],
we get our stronger bound as well. We notice that all the schemes in [70] and this
work are indeed public-coin.

On the other hand, the indistinguishability view allows us to give a general frame-
work for constructing entropically secure encryption schemes. Specifically, assume we
have a d-regular expander G on 2n vertices V with the property that for any subset
T of 2t vertices, picking a random vertex v of T and taking a random neighbor w,
we obtain an almost uniform distribution on V . Then, we almost immediately get
an encryption scheme with key length k = log d which is indistinguishable for mes-
sage spaces of min-entropy t. Looking at this from another perspective, the above
encryption scheme corresponds to a randomness extractor which takes a source M of
length n and min-entropy t, invests log d extra random bits K, and extracts n almost
random bits E (with the additional property that the source M is recoverable from E
and K). From this description, it is clear that the key length of this paradigm must
be at least n − t (which we show is required in any entropically secure encryption
scheme). However, using optimal expanders we can (essentially) achieve this bound,
and in several ways. First, using Ramanujan expanders [55], we get the best known
construction with key length k = n− t+ 2 log

(
1
ε

)
. Second, using δ-biased spaces [64]

(for appropriate δ = δ(ε, n, t) explained later) and their expansion properties (e.g.,
see [9]), we get a general construction with slightly larger but still nearly optimal key
length k = n−t+2 log n+2 log

(
1
ε

)
. This last result generalizes (and slightly improves)

to any value of t the special case of the uniform message distribution (n− t = 0) ob-
tained by Russell and Wang [70]. Our approach also gives clearer insight as to why
small-biased spaces are actually useful for entropic security.

While the above deterministic constructions are nearly optimal and quite efficient,
we also observe that one can get simpler constructions by allowing the encryption
scheme to be probabilistic. In our approach, this corresponds to having a family of
“average case” expanders {Gi} with the property that for any set T of size at least 2t,
picking a random graphGi, a random v in T and taking a random neigbor w of v inGi,

4In particular, this includes all the deterministic schemes.

84

we get that w is nearly uniform, even given the graph index i. By using any family of
pairwise independent hash functions hi (resp. permutations ψi) and a new variant of
the leftover hash lemma [46], we get a probabilistic scheme of the form 〈i, M ⊕ hi(K)〉
(resp. 〈i, ψi(M)⊕K〉) with a nearly optimal key length k = n − t + 2 log

(
1
ε

)
.

As a concrete example of this approach, we get the following simple construction:
E(M,K; i) = (i,M + i · K), where the local randomness i is a random element in
GF (2n), K ∈ {0, 1}k is interpreted as belonging to GF (2k) ⊆ GF (2n), and addition
and multiplication are done in GF (2n).

Once again, the result above (with permutations ψi) improves and simplifies the
intuition behind the second scheme of Russell and Wang [70]. Indeed, the latter work
had to assume that the ψi’s come from a family of 3-wise independent permutations
— which are more compicated and less efficient than 2-wise independent permutations
(or functions) — and presented a significantly more involved analysis of their scheme.

6.2 Using Expander Graphs for Encryption

Formally, a symmetric encryption scheme is a pair of randomized maps (E ,D). The
encryption takes three inputs, an n-bit message m, a k-bit key κ and r random bits
i, and produces a N -bit ciphertext y = E(m,κ; i). Note that the key and the random
bits are expected to be uniform random bits, and when it is not necessary to denote
the random bits or key explicitly we use either E(m,κ) or E(m). The decryption takes
a key κ and ciphertext y ∈ {0, 1}N , and produces the plaintext m′ = D(y, κ). The
only condition we impose for (E ,D) to be called an encryption scheme is completeness:
for all keys κ, D(E(m,κ), κ) = m with probability 1.

In this section, we discuss graph-based encryption schemes and show that graph
expansion corresponds to entropically secure encryption schemes.

Graph-based Encryption Schemes Let G = (V,E) be a d-regular graph, and
let N(v, j) denote the j-th neighbor of vertex v under some particular labeling of
the edges. We’ll say the labeling is invertible if there exists a map N ′ such that
N(v, j) = w implies N ′(w, j) = v.

By Hall’s theorem, every d-regular graph has an invertible labeling.5 However,
there is a large class of graphs for which this invertibility is much easier to see. The
Cayley graph G = (V,E) associated with a group G and a set of generators {g1, ..., gd}
consists of vertices labeled by elements of G which are connected when they differ by
a generator: E = {(u, u · gi)}u∈V,i∈[d]. When the set of generators contains all its
inverses, the graph is undirected. For such a graph, the natural labeling is indeed
invertible, since N(v, j) = v · j and N ′(w, j) = w · j−1. All the graphs we discuss in
this paper are in fact Cayley graphs, and hence invertibly labeled.

5We thank Noga Alon for pointing out this fact. If G = (V,E) is a d-regular undirected graph,
consider the bipartite graph with |V | edges on each side and where each edge in E is replaced by
the corresponding pair of edges in the bipartite graph. By Hall’s theorem, there exist d disjoint
matchings in the bipartite graph. These induce an invertible labelling on the original graph.

85

Now suppose the vertex set is V = {0, 1}n and the degree is d = 2k, so that
the neighbor function N takes inputs in {0, 1}n × {0, 1}k. Consider the encryption
scheme:

E(m,κ) = N(m,κ). (6.1)

Notice, E is a proper encryption scheme if and only if the labeling is invertible. In
that case, D(y, κ) = N ′(y, κ) = m. For efficiency, we should be able to compute N
and N ′ in polynomial time. We will show that this encryption scheme is secure when
the graph G is a sufficiently good expander. The following definition is standard:

Definition 6.1. A graph G = (V,E) is a (t, ε)-extractor if, for every set S of 2t

vertices, taking a random step in the graph from a random vertex of S leads to a

nearly uniform distribution on the whole graph. That is, let US be uniform on S, J

be uniform on {1, ..., d} and UV be uniform on the entire vertex set V . Then for all

sets S of size at least 2t, we require that:

SD (N(US, J) , UV) ≤ ε.

The usual way to obtain extractors as above is to use good expanders. This is
captured by the following lemma.

Lemma 6.1 (Expander Smoothing Lemma [41]). A graph G with second largest

(normalized) eigenvalue λ ≤ ε2−(n−t)/2 is a (t, ε)-extractor.

The equivalence between entropic security and indistinguishability (Theorem 5.1)
gives us the following result:

Proposition 6.2. For a 2k-regular, invertible graph G as above, the encryption

scheme (E ,D) given by N,N ′ is (t, ε)-entropically secure if G is a (t−2, 2ε)-extractor

(in particular, if G has second eigenvalue λ ≤ ε · 2−(n−t−2)/2).

Proof. By Theorem 5.1, it suffices to show that (t − 2, ε)-indistinguishability. And

this immediately follows from the lemma above and the fact that any min-entropy

(t− 2) distribution is a mixture of flat distributions.

We apply this in two ways. First, using optimal expanders (Ramanujan graphs) we
obtain the best known construction of entropically-secure encryption schemes (Corol-
lary 6.3). Second, we give a simpler and much stronger analysis of the original scheme
of Russell and Wang (Corollary 6.4).

Corollary 6.3. There exists an efficient deterministic (t, ε)-entropically secure scheme

with k = n− t+ 2 log
(

1
ε

)
+ 2.

Proof. We apply Proposition 6.2 to Ramanujan graphs. These graphs are optimal for

this particular construction: they achieve optimal eigenvalue λ = 2
√
d− 1 for degree

d [55]. The bound on k now follows.

86

The main drawback of Ramanujan graphs is that explicit constructions are not
known for all sizes of graphs and degrees. However, large families exist (e.g. graphs
with q + 1 vertices and degree p + 1, where p and q are primes congruent to 1 mod
4). Below we also show that the construction from Russell and Wang [70] using
small-biased spaces is actually a special case of Proposition 6.2 as well.

Using Small-biased Sets A set S in {0, 1}n is δ-biased if for all nonzero α ∈
{0, 1}n, the binary inner product α � s is nearly balanced for s drawn uniformly in
S:

Pr
s←S

[α� s = 0] ∈
[
1− δ

2
,
1 + δ

2

]
or, equivalently,

∣∣Es←S

[
(−1)α�S

]∣∣ ≤ δ. (6.2)

Alon et al. [2] gave explicit constructions of δ-biased sets in {0, 1}n with size
O(n2/δ2). Now suppose the δ-biased set is indexed

{
sκ|κ ∈ {0, 1}k

}
. Consider the

encryption scheme: E(m,κ) = m ⊕ sκ. Russell and Wang introduced this scheme
and showed that it is (n, ε)-entropically secure when δ = ε3/2, yielding a key length
of k = 2 log n + 3 log

(
1
ε

)
. However, their analysis works only when the message is

drawn uniformly from {0, 1}n.

We propose a different analysis: consider the Cayley graph for Zn
2 with gener-

ators S, where S is δ-biased. This graph has second eigenvalue λ ≤ δ [64, 3, 9].
Hence, by Proposition 6.2 the scheme above is (t, ε)-entropically secure as long as
δ ≤ ε2−(n−t−2)/2. This gives a version of the Vernam one-time pad for high-entropy
message spaces, with key length k = n − t + 2 log n + 2 log

(
1
ε

)
+ O(1). Unlike [70],

this works for all settings of t, and also improves the parameters in [70] for n = t.

Corollary 6.4. If
{
sκ|κ ∈ {0, 1}k

}
is a δ-biased set, then the encryption scheme

E(m,κ) = m⊕sκ is (t, ε) indistinguishable when ε = δ2(n−t−2)/2. Using the costruction

of [2], this yields a scheme with key length k = n− t+2 log
(

1
ε

)
+2 log(n)+O(1) (for

any value of t).

6.3 A Random Hashing Construction

This section presents a simpler construction of entropically secure encryption based
on pairwise independent hashing. Our result generalizes the construction of Russell
and Wang [70] for nonuniform sources, and introduces a new variant of the leftover-
hash/privacy-amplification lemma [7, 46].

The idea behind the construction is that indistinguishability is the same as extrac-
tion from a weak source, except that the extractor must in some sense be invertible:
given the key, one must be able to recover the message.

Let {hi}i∈I be some family of functions hi : {0, 1}k → {0, 1}n, indexed over the
set I = {0, 1}r. We consider encryption schemes of the form

87

E(m,κ; i) = (i, m⊕ hi(κ)) (for general functions hi), or (6.3)

E ′(m,κ; i) = (i, hi(m)⊕ κ) (when the functions hi are permutations)(6.4)

Notice that this schemes are special low-entropy, probabilistic one-time pads. De-
cryption is obviously possible, since the description of the function hi is public. For the
scheme to be (t, ε)-secure, we will see that it is enough to have k = n−t+2 log

(
1
ε

)
+2,

and for the function family to be pairwise independent. (This matches the result in
Corollary 6.3.) In fact, a slightly weaker condition (XOR-universality) is sufficient.
We repeat the definitionn from the introduction here:

Definition 6.2 (XOR-universal function families, also Definition 2.3). A

collection of functions {hi}i∈I from n bits to n bits is XOR-universal if:

∀a, x, y ∈ {0, 1}n, x 6= y : Pri←I [hi(x)⊕ hi(y) = a] ≤ 1
2n−1

.

It is easy to construct XOR-universal families. Any (ordinary) pairwise indepen-
dent hash family will do, or one can save some randomness by avoiding the “off-
set” part of constructions of the form h(x) = ax + b. Specifically, view {0, 1}n as
F = GF (2n), and embed the key set {0, 1}k as a subset of F . For any i ∈ F , let
hi(κ) = iκ, with multiplication in F . This yields a family of linear maps {hi} with
2n members. Now fix any a ∈ F , and any x, y ∈ F with x 6= y. When i is chosen
uniformly from {0, 1}n, we have hi(x)⊕hi(y) = i(x− y) = a with probability exactly
2−n. If we restrict i to be nonzero, then we get a family of permutations, and we get
hi(x)⊕ hi(y) = a with probability at most 1

2n−1
.

Proposition 6.5. If the family {hi} is XOR-universal, then the encryption schemes

E(m,κ; i) = (i,m⊕ hi(κ)) and E ′(m,κ; i) = (i, hi(m)⊕ κ)

are (t, ε)-entropically secure, for t = n − k + 2 log
(

1
ε

)
+ 2. (However, E ′ is a proper

encryption scheme only when {hi} is a family of permutations.)

This proposition proves, as a special case, the security of the Russell-Wang con-
struction, with slightly better parameters (their argument gives a key length of
n − t + 3 log

(
1
ε

)
since they used 3-wise independent permutations, which are also

harder to construct). It also proves the security of the simple construction E(m,κ; i) =
(i,m+ iκ), with operations in GF (2n).

Proposition 6.5 follows from the following lemma of independent interest, which is
closely related to the to the leftover hash lemma [44] (also called privacy amplification;
see, e.g. [7, 8]), and which conveniently handles both the E and the E ′ variants. The
proof of the lemma is in Appendix A.2.

Lemma 6.6. If A,B are independent random variables such that H∞(A)+H∞(B) ≥
n+2 log

(
1
ε

)
+1, and {hi} is a XOR-universal family, then SD (〈i, hi(A)⊕B〉 , 〈 i, Un〉) ≤

ε, where Un and i are uniform on {0, 1}n and I.
The Lemma above gives a special “extractor by XOR” which works for product

distributions A×B with at least n bits on min-entropy between them.

88

6.4 Lower Bounds on the Key Length

Proposition 6.7. Any encryption scheme which is (t, ε)-entropically secure for inputs

of length n requires a key of length at least n− t.

Proof. We can reduce our entropic scheme to Shannon-secure encryption of strings of

length n − t + 1. Specifically, for every w ∈ {0, 1}n−t+1, let Mw be the uniform over

strings with w as a prefix, that is the set {w}× {0, 1}t−1. Since Mw has min-entropy

t − 1, any pair of distributions E(Mw), E(Mw′) are indistinguishable, and so we can

use E() to encrypt strings of length n− t+1. When ε < 1/2, we must have key length

at least (n− t+1)− 1 = n− t by the usual Shannon-style bound (the loss of 1 comes

from a relaxation of Shannon’s bounds to statistical security).

Bounds for Public-Coin Schemes via Extractors In the constructions of Rus-
sell and Wang and that of Section 6.2 and Section 6.3, the randomness used by the
encryption scheme (apart from the key) is sent in the clear as part of the ciphertext.
That is, E(m,κ; i) = (i, E ′(m.κ; i)). For these types of schemes, called public-coin
schemes, the intuitive connection between entropic security and extraction from weak
sources is pretty clear: encryption implies extraction. As a result, lower bounds on
extractors [67] apply, and show that our construction is close to optimal.

Proposition 6.8. Any public-coin, (t, ε)-entropically secure encryption has key length

k ≥ n− t+ log
(

1
ε

)
−O(1).

To prove the result, we first reduce to the existence of extractors:

Lemma 6.9. Let (E ,D) be a public-coin, (t, ε)-entropically secure encryption scheme

with message length n, key length k and r bits of extra randomness. Then there exists

an extractor with seed length k + r, input length n and output length n+ r − log
(

1
ε

)
,

such that for any input distribution of min-entropy t+1, the output is within distance

3ε of the uniform distribution.

Proof. We combine three observations. First, when U is uniform over all messages in

{0, 1}n, the entropy of the distribution E(U) must be high. Specifically: H∞(E(U)) =

n + r. To see this, notice that there is a function (D) which can produce R,K,U

from K, E(U,K;R). Since the triple (R,K,U) is uniform on {0, 1}r+k+n, it must be

that (K, E(U,K)) also has min-entropy r + k + n, i.e. that any pair (κ, c) appears

with probability at most 2−(n−k−r). Summing over all 2k values of κ, we see that any

ciphertext value c appears with probability at most
∑

κ 2−n−r−k = 2−n−r, as desired.

The second observation is that there is a deterministic function φ which maps

ciphertexts into {0, 1}n+r−log
“

1
ε

”
such that φ(E(U)) is within distance ε of the uniform

distribution. In general, any fixed distribution of min-entropy t can be mapped into

{0, 1}t−log(1/ε) so that the result is almost uniform (Simply assign elements of the

original distribution one by one to strings in {0, 1}t−log(1/ε), so that at no time do two

89

strings have difference of probability more than 2−t. The total variation from uniform

will be at most 2t−log(1/ε) · 2−t = ε.). Note that φ need not be efficiently computable,

even if both E and D are straightforward. This doesn’t matter, since we are after a

combinatorial contradiction.

Finally, by Theorem 5.1, for all distributions of min-entropy t − 1, we have

SD (E(U), E(M)) ≤ 2ε, and so SD (φ(E(U)), φ((E(M))) ≤ 2ε. By the triangle in-

equality, φ(E(M)) is within 3ε of the uniform distribution on n + r − log
(

1
ε

)
bits,

proving the lemma.

We can now apply the lower bound of Radhakrishnan and Ta-Shma [67], who
showed that any extractor for distributions of min-entropy t, distance parameter δ
and d extra random bits, can extract at most t+d−2 log(1/δ)+O(1) nearly random
bits. From Lemma 6.9, we get and extractor for min-entropy t+1, δ = 3ε, k+r extra
random bits, and output length n + r − log(1/ε). Thus, n + r − log(1/ε) is at most
t+ 1 + k + r − 2 log(1/ε) +O(1), which immediately gives us Proposition 6.8.

Remark 6.1. We do not lose log(1/ε) in the output length in Lemma 6.9 when the

encryption scheme in indistinguishable from the uniform distribution (i.e., ciphertexts

look truly random). For such public-coin schemes, we get k ≥ n− t+2 log
(

1
ε

)
−O(1).

Since all of our constructions are of this form, their parameters cannot be improved at

all. In fact, we conjecture that k ≥ n− t+ 2 log
(

1
ε

)
−O(1) for all entropically-secure

schemes, public-coin or not.

90

Chapter 7

Entropically-Secure Sketches and

Noise-resilient “Perfect” Hash

Functions

In this chapter, we focus on constructing noise-resilient (“fuzzy”) perfectly one-way
hash functions [17, 18].

First, we focus on strengthening the definition of secure sketches and fuzzy extrac-
tors, introduced in Chapter 3. These primitives allow the secure use of noisy data
as cryptographic keys. The current definitions are sufficient for most cryptographic
applications: the idea is to leak a small amount of information about the noisy data
to allow error-correction, and then extract a new key which is completely secret.

Unfortunately this approach fails to address a major concern for sensitive pass-
words: because it requires only unpredictability of the password given the stored
information, it does not rule out revealing large amounts of the password in the clear.
For example, if the password is a pair 〈voice print, retinal scan〉, the definition does
not rule out a secure sketch which reveals the retinal scan entirely, as long as it leaves
much of the voice print hidden.

It is tempting to attempt to remedy this by requiring that a secure sketch (resp.
fuzzy extractor) reveal no information at all about its input. This is impossible: we
proved in Section 4.2 that both secure sketches and fuzzy extractors must reveal a lot
of Shannon information about their input, that is I(X; SS(X)) (resp. I(X;PFE(X)))
will be quite large.

Surprisingly, we show that a strong information-theoretic notion of privacy can
still be achieved: we construct secure sketches and fuzzy extractors which leak no
function of their input, in the sense of entropic security Definition 5.2. This means
we can guarantee that SS(w) will be useful for error-correction, and nothing else.
Although we focus on the Hamming metric, the results extend to any metric which
can be embedded into it (in the weak sense of “biometric embeddings,” Section 3.3).

The latter part of the chapter uses these ideas to construct “fuzzy” (noise-resilient)
perfectly one-way hash functions [17, 18]. Along the way, we get simpler constructions
of the ordinary, non-fuzzy version of the primitive.

91

7.1 Entropic Secrecy for Secure Sketches and Ex-

tractors

This section focuses on the construction of secure sketches which hide all functions
of their input. Recall that a secure sketch SS(w) of some secret w can be stored in
the clear, revealing little information about w yet allowing one to recover w from any
close candidate w′ ≈ w. A typical construction of a secure sketch is

SS(W) = synC(w)

where synC(·) is the syndrome function with respect to some good linear code C (see
Section 3.4). A typical use of the primitive is for password authentication: roughly,
a server stores SS(w), Hash(w). The identity of a legitmate user who presents a
corrpupted password w′ is verified by first using SS(w) to recover w and then verifying
that this candidate password hashes to the correct value (see Section 3.8).

Unfortunately, this stored data 〈SS(w), Hash(w)〉 inevitably leaks information
about its input, in two senses: both the min-entropy and the Shannon entropy of the
password w will drop when SS(w) is learned by the adversary. If the server’s storage
is publicly readable, the leakage could cause several kinds of problems:

1. The information might help the adversary find a string w̃ which the server
would accept as a valid password. This possibility can be guarded against by
bounding the loss of min-entropy (even a losse bound will do) and choosing the
hash function carefully; see Section 3.8 for details.

2. The information which is leaked may itself be sensitive, for example if the
password w consists of personal or biometric data. Proposition 4.3 states that
the loss of Shannon information will be large, and so the only option is to prove
that whatever information is leaked is not useful.

This section shows how one can achieve such a guarantee: we construct secure
sketches (and fuzzy extractors) which leak no function of W as long as the input
W has sufficiently high entropy to begin with. This property is far from trivial to
ensure: for example, in the “typical” construction above, the adversary always learns
the syndrome of the W with respect to the code C.

Most of the section is devoted to constructing entropically-secure sketches. The
existence of entropically-secure fuzzy extractors then follows by combining a secure
sketch with pariwise-independent hash functions. (Section 7.1.5).

The main result of the section is summarized here.

Theorem 7.1. . There exist (families of) (n, t, t′, τ) efficient secure sketch schemes

which are also (t, ε)-entropically secure, such that

– the tolerated error τ and the residual entropy t′ are linear in n, and

– the information leakage ε is exponentially small

92

whenever the original min-entropy t is linear in n. (That is, whenever t = Ω(n) then

we can find schemes where τ , t′ and log
(

1
ε

)
are Ω(n)).

Before proving the result, a word about parameters: the original entropy t of the
input W is given by the context in which W arises. The error tolerance τ will also
typically be specified externally—it is the amount of noise to which W will likely be
subject. Thus, the goal is to get both the (entropic) security log

(
1
ε

)
and the residual

min-entropy t′ as high as possible. The quantity log
(

1
ε

)
measures the difficulty of

learning some function of W , while t′ measures the difficulty of guessing W exactly. In
particular, t′ is bounded below by log

(
1
ε

)
, since by the definition of entropic security

the adversary’s probability of predicting the identity function f(W) = W is at most ε
as long as t itself was small to begin with. Thus, it is sufficient to look for sketches will
tolerate τ errors and are (t, ε)-entropically secure for τ, log

(
1
ε

)
= Ω(n). Theorem 7.1

guarantees that such secure sketches do indeed exist.

7.1.1 A Non-Explicit Solution: Codes With Limited Bias

Our starting point for the construction of secure sketches is (perhaps surprisingly)
the encryption scheme based on δ-biased sets at the end of Section 6.2. Recall that
the bias of a random variable A over {0, 1}n is the maximum bias of the parity of
any subset of bits of A. Formally, the set is δ-biased if for every non-zero vector α in
{0, 1}n, the dot product of α with A is within δ of being a fair coin, that is

biasα(A)
def
= E

[
(−1)α�A

]
= 2

∣∣Pr[α� A = 1]− 1
2

∣∣ ≤ δ.

The bias of a set S is the bias of the uniform distribution over that set. In Section 6.2,
we showed that the map Y (X) = X⊕S is (t, ε)-entropically secure whenever the bias
of S is sufficiently small (δ ≤ ε2−(n−t−1)/2).

With that in mind, consider the “code-offset” construction of secure sketches,
from Section 3.4: if C : {0, 1}k → {0, 1}n is a code correcting τ errors, then set
SS(w) = w⊕C(R). If the distribution C(R) is itself δ-biased, with δ sufficiently low,
then the sketch is entropically secure. We obtain an initial result on entropic security:

Definition 7.1. An error-correcting code C : {0, 1}k → {0, 1}n is δ-biased if the set

of codewords forms a δ-biased set, i.e. if R is a random string of length k, then for

all n-bit vectors α 6= 0n, we have 2|Pr[α� C(R)]− 1
2
| ≤ δ.

Proposition 7.2. If C : {0, 1}k → {0, 1}n is an error-correcting code with bias

δ ≤ ε2−(n−t−1)/2, then SS(w) = w⊕C(R) is an (n, t, t− (n− k)) secure sketch which

is (t, ε)-entropically secure.

To apply the proposition we need, at the least, a code (or rather ensemble of
codes, since we deal with asymptotics) with good minimum distance and negligible
bias. These may not be easy to construct (in particular, a code with bias less than 1
cannot be linear). Nevertheless, such codes do exist. If we choose a subset C ⊆ {0, 1}n

93

of size 2k completely at random from {0, 1}n, then two events will occur with high
probability: (1) the set C will form an error-correcting code with minimum distance
d, where k/n ≈ (1− h2(d/n))/2 [56], and (2) the set C will have bias approximately
2−(k−log n)/2 [64]. By a union bound, the set C is likely to have both properties. It is
not necessary to choose the set completely at random; 3-wise independence suffices.1

Thus the code can be described using only 3n bits.
Of course, the random construction does not solve our problem: we would like to

the recovery procedure of our secure sketch to be efficient, but it is not known how
to decode random codes decoded efficiently. This raises a natural question:

Does there exist an explicitly-constructible ensemble of good codes with
small bias and poly-time encoding and decoding algorithms (ideally, codes
with linear rate and minimum distance, and negligible bias)?

To the best of our knowledge, the problem remains open.

7.1.2 Efficient, Explicit Solutions via Randomization

In the remainder of this section, we circumvent this diffculty and construct efficient
entropically-secure sketches. We show that the code-offset construction can be made
indistinguishable (even with linear codes) when the choice of error-correcting code is
randomized as opposed to always using the same fixed code.

Suppose that we have a family of k-dimensional linear error-correcting codes
{Ci}i∈I indexed by some set I. We consider sketching schemes of the form (below
synCi

(w) is the syndrome of w in Ci).

SS(w; i, x) = (i, w ⊕ Ci(x)) , for i← I, x← {0, 1}k

or, equivalently, SS(w; i) = (i, synCi
(w)) , for i← I

(7.1)

Below, we establish a necessary condition on the code family for the construction
to leak no partial information about the input w.

Bias and Secrecy Recall from Equation (6.2) that a single set S is called δ-biased
if it has bias at most δ for all α 6= 0n. We generalize this to a family of sets by
requiring that on average, the square of the bias with respect to every α is low (at
most δ2):

Definition 7.2. A family of random variables (or sets) {Ai}i∈I is δ-biased if, for all

α 6= 0n, √
Ei←I [biasα(Ai)2] ≤ δ.

Note that this is not equivalent, in general, to requiring that the expected bias be
less than δ. There are two important special cases:

1. If S is a δ-biased set, then {S} is a δ-biased set family with a single member. As
mentioned above, we do not know of explicitly constructed codes with small bias.

1The 3-wise independence construction is due to Venkat Guruswami.

94

2. A family of linear codes {Ci}i∈I is δ-biased if there is no word which is often in
the dual C⊥i of a random code Ci from the family. Specifically, the bias of a linear
space with respect to a vector α is always either 0 or 1:

biasα(Ci) =

{
0 if α 6∈ C⊥i
1 if α ∈ C⊥i

Hence a family of codes is δ-biased if and only if Pri←I [α ∈ C⊥i] ≤ δ2, for every
α 6= 0n.

Note that for linear codes the expected bias must be at most δ2, while for a single
set the bias need only be δ.

The general theorem below will allow us to prove that the randomized code-offset
construction is indistinguishable (and hence entropically-secure). We will mainly use
Corollary 7.5, which states that even if the adversary knows the index of the code Ci

in a small-bias family of codes, the distribution of synCi
(W) will be close to uniform

in expectation over i.

Theorem 7.3. Let {Ai}i∈I be a δ-biased family of random variables over {0, 1}n,
with δ ≤ ε · 2−n−t−1

2 . Let B be an independent random variable with min-entropy at

least t. Then SD ((I, AI ⊕B) , (I, Un)) ≤ ε.

Proof. Theorem 7.3 The proof uses elementary Fourier analysis over the hypercube

Zn
2 . The intuition comes from the proof that Cayley graphs based on ε-biased spaces

are good expanders: adding a δ-biased family of random variables to B will cause all

the Fourier coefficients of B to be reduced by a factor of δ, which implies that the

collision probability of B (see below) gets multiplied by δ also.

Let Di be the distribution Ai ⊕B. Recall that for any probability distribution D

on a set of size K, if Col(D) ≤ (1+ε2)/K, then D is within statistical distance ε of the

uniform distribution (see Preliminaries, Section 2.1.1). Hence to prove the theorem it

is sufficient to show that the collision probability of the pair D = (i,Di) = (i, Ai +B)

is bounded above by (1+2ε2)
|I|2n .

Claim: Col(D) = 1
|I|Ei←I [Col(Di)] .

Proof. We can write out the probability of a collision (here prime ′ denotes an inde-

pendent copy):

Pr[(I,DI) = (I ′, D′I′] =
∑

i

Pr[I = I ′ = i] Pr[Di = D′i]

Factoring out 1
|I| , we get Col(D) = 1

|I|
∑

i
1
|I|Col(Di), as desired.

To bound Col(D), we need only bound the average collision probability of Di. To

do so, we use a standard fact from Fourier analysis over the hypercube:

95

Fact 7.4. For any distribution Di on {0, 1}n, the collision probability Col(Di) is given

by the sum of the squared biases of Di with respect to all possible vectors:

Col(Di) =
1

2n

∑
α∈{0,1}n

biasα(Di)
2 =

1

2n
+

1

2n

∑
α 6=0

biasα(Di)
2.

Since Di = Ai⊕B (that is, the distribution of Di is the convolution of Ai and B),

we can compute the bias of Di as a product of the biases of Ai and B:

biasα(Di) = E
[
(−1)α�(Ai⊕B)

]
= E

[
(−1)α�(Ai)

]
E
[
(−1)α�B

]
= biasα(Ai)biasα(B).

We now want to bound the bias of Di. We don’t know how this bias will behave

for particular values of i, but we can use the fact that {Ai} is δ-biased family to

bound the average squared bias:

Ei

[
biasα(Di)

2
]
≤ Ei

[
biasα(Ai)

2
]
biasα(B)2 ≤ δ2biasα(B)2.

Finally, we can combine these bounds:

Col(D) = 1
|I|Ei

[
1
2n + 1

2n

∑
α 6=0

biasα(Di)
2

︸ ︷︷ ︸
Col(Di)

]
=

1

|I|2n
(1 + δ2

∑
α 6=0

biasα(B)2)

By the fact above, the sum of squared biases of B is at most 2nCol(B). Since the

min-entropy of B is at least t, its collision probability is at most 2−t, and we get the

bound Col(D) ≤ 1
|I|2n (1 + δ22−t+n). By hypothesis, δ ≤ ε2−(n+t)/2, which implies the

desired bound Col(D) ≤ 1
|I|2n (1 + ε2).

Corollary 7.5 (Small-Bias Codes Yield Entropically-Secure Sketches). The

randomized code-offset construction (Equation (7.1)) is a (n, t, t− (n− k), τ) secure

sketch which is (t, ε) entropically secure, as long as {Ci}i∈I is a family of [n, k, 2τ +1]

linear codes such that

δ2 = max
α∈{0,1}n,α 6=0n

Pr
i←I

[α ∈ C⊥i] ≤ ε22−(n−t−1) (7.2)

7.1.3 Constructing Small-Bias Families of Linear Codes

To instantiate the construction of the previous section (Corollary 7.5), we need fam-
ilies of linear codes {Ci} in {0, 1}n such that:

1. All of the Ci have dimension k, with k as high possible. Recall that the entropy
loss of the secure sketch is given by n− k, i.e. if the input has initial entropy t
then the residual entropy is t′ = t+ k − n.

96

2. Each of the codes Ci can efficiently decode up to τ errors, with τ as large as
possible. This corresponds to the number of errors corrected by the sketch.

3. The squared bias δ2 = maxα 6=0n Pri←I [α ∈ C⊥i] of the code family is as small as
possible. The sketch is then (t, ε)-entropically secure where log

(
1
ε

)
= log

(
1
δ

)
−

(n− t)/2.

The main result of the section is a construction based on algebraic-geomtric codes:

Lemma 7.6. For any constant rate R = k/n, there exists an explicitly constructible

ensemble of code families which efficiently correct τ = Ω(n) errors and have bias

log
(

1
δ

)
= Ω(n).

We begin with an easy lower bound, which gives us a bar by which to measure
the construction we find:

Proposition 7.7. Any family of [n, k, d] linear codes {Ci} has bias δ2 ≥ 2−k(1−o(1)).

Proof. Let p(α) be the probability that a particular non-zero vector α ∈ {0, 1}n is in

the dual of a random code from the family. If we choose α itself at random, then we

can reverse the order of the experiment: first choose i, then choose α. The probability

that a random α will lie in the dual C⊥i is exactly 2n−k−1
2n−1

≥ 2k(1 − 2−(n−k)), since

the dual is a space of dimension n− k. This probability is in fact the expectation of

p(α) (over {0, 1}n \{0n}), and so there exists a non-zero α for which p(α) exceeds the

bound.

The bound means that log
(

1
δ

)
< k/2, and for any family of linear codes, the

entropic security

log
(

1
ε

)
= log

(
1
δ

)
− (n− t)/2 ≤ (k + t− n)/2 = t′/2.

Hence, in general the residual entropy t′ bounds the level of entropic security (this is
not surprising, since the adversary’s chance of guessing the message itself is then 2−t′

on average).

We first observe that we can match this bound using random linear codes. The
construction is explicit, but not useful since it is not known how to decode random
linear codes efficiently. We then turn to efficient constructions based on random
binary images of codes over slightly higher alphabets. For very large alphabets,
a construction based on Reed-Solomon codes yields optimal bias, but poor error-
correction in the binary Hamming cube. Applying the same construction to algebraic-
geometric codes yields the main construction of this section, which corrects a linear
number of errors and has exponentially small bias.

97

Inefficient Construction: Random Linear Codes An easy observation is that
the family of all linear codes of a particular dimension k is a very good δ-biased family,
albeit not an efficiently decodable one. Since the family is invariant under invertible
linear transformations, the probability that any fixed word α 6= 0 is contained in the
dual of a random linear code is

δ2 =
#
{
x ∈ C⊥ : x 6= 0

}
{x ∈ {0, 1}n : x 6= 0}

=
2n−k − 1

2n − 1
< 2k.

This matches the lower bound on bias above (Proposition 7.7): for any initial
entropy t > n− k, the corresponding secure sketch will be t, ε)-entropically scure for
log
(

1
ε

)
= t′/2 = (k + t− n)/2.

Random linear codes also exhibit the best known tradeoff between rate and dis-
tance for binary codes. With overwhelming probability, a random linear code will
have minimum distance d where k/n ≈ 1 − h2(d/n) (this is the Gilbert-Varshamov
bound [56]). Of course, this solution is not useful since decoding random linear codes
is thought to be very hard (it is known to be NP -hard for some parameter set-
tings [33], and little is known about other settings). Nonetheless, it gives us a point
of reference with which to measure other constructions.

Efficient Constructions via Randomizing Known Codes A natural approach
to construct small-bias codes consists of taking a known binary code C and consider-
ing all n! codes resulting from permuting the n coordinates of {0, 1}n (that is, apply
the same permutation to the bits of every codeword in C). This approach works
reasonably well if C⊥ has no words of either very high or very low weight. Unfortu-
nately, such codes are tricky to construct with very good parameters, and so we turn
to codes over a larger alphabet.

Let F = GF (q), where q = 2e. Taking a [n′, k′, d]q code C ′ over F , we can
construct a binary code by taking the binary image of C ′, that is by writing down
the codewords of C ′ using some canonical e-bit binary representation for elements of
F . Fix a basis of F . For f ∈ F , let bin(f) ∈ {0, 1}e be the binary representation of
f . By extension, for a vector α = (a1, ..., an′) ∈ Fn′ , let bin(α) be the concatenation
(bin(a1), ..., bin(an′)). Finally, the binary image of C ′ is denoted bin(C ′).

We can randomize the code C ′ by

1. permuting the n′ coordinates of Fn′ , and

2. multiplying each coordinate of the code by some random non-zero scalar in F .

3. taking the binary image of the result.

These operations affect neither the dimension nor the decodability of C ′: they are
invertible and preserve Hamming distances in Fn′ . Describing the particular opera-
tions that were applied to the code requires O(n′ log n′ + n′ log(q − 1)) bits (we must
describe a permutation of n′ positions and n′ non-zero scalars).

We show below that using these basic randomization steps and then taking bi-
nary images produces good small-bias code families. We then apply the result to

98

Reed-Solomon codes and to algebraic-geometric codes to get our main construction
(Lemma 7.6).

Lemma 7.8 (Random binary images). Let C ′ be a linear [n′, k′, d]q code over

F = GF (q), with q = 2e. Let {C ′i} be the set of [n′, k′, d]q codes over F obtained by

permuting the coordinates and multiplying each coordinate by a non-zero scalar in F .

Let Ci = bin(C ′i). Then

1. The Ci are [n, k, d]2 codes with n = n′e and k = k′e. (In particular, the rate

k/n = k′/n′ does not change).

2. If C ′ can correct τ errors in Fn′ efficiently, than each Ci can efficiently correct

τ errors in {0, 1}n.

3. If (C ′)⊥ has minimum distance d⊥, then the average square bias of {Ci} is

δ2 = max
α∈{0,1}n,α 6=0n

{
Pr
i
[α ∈ C⊥i]

}
≤ 1/(q − 1)d⊥−1.

Note that in the last statement, the dual code (C ′)⊥ is taken with respect to the dot

product in Fn′, while the dual code C⊥i is taken with respect to the dot product in

{0, 1}n.

Proof. (1),(2): The first two statements are straightforward since the multiplication

by non-zero scalars in one component and permutations of positions are easily invert-

ible isometries of Fn′ .

(3): There are really two separate stages to proving this statement. In the first

stage, we have to relate the dual of a q-ary code to the dual of a binary code. Second,

we will bound the bias of the q-ary codes {C ′i}.
To clarify the notion of “dual” code, let �2 denote binary inner product on {0, 1}n,

and let �F denote the standard inner product in Fn′ . The duals of the codes Ci ⊆
{0, 1}n are defined with respect to the binary inner product, while the duals of the

C ′i ∈ Fn′ are defined w.r.t. the dot product over Fn′ :

C⊥i = {y ∈ {0, 1}n : y �2 x = 0 (∀x ∈ Ci)}
(C ′i)

⊥ = {y′ ∈ Fn′ : y′ �F x′ = 0F (∀x′y ∈ C ′i)}

For the rest of the proof, fix some α ∈ {0, 1}n, and let α′ be the corresponding

vector in Fn′ , that is α = bin(α′). The statement to be proved follows from two

claims:

Claim 1: For all α ∈ {0, 1}n, there exists α′ ∈ Fn′ s.t. Pri[α ∈ C⊥i] = Pri[α
′ ∈ (C ′i)

⊥].

Claim 2: For all α′ ∈ Fn′ , we have: Pri[α
′ ∈ (C ′i)

⊥] ≤ 1/(q − 1)d⊥−1.

99

Proof of Claim 1. The first claim is mostly a careful unwinding of the definitions.

We will use the trace function Tr : F → {0, 1}. The exact definition of the trace

is not important here (see, e.g. [56]). All we require is that the trace is linear, i.e.

Tr(a + b) = Tr(a) + Tr(b), and not identitically zero. Tr(ab) is a bilinear map from

F ×F to {0, 1}, and so there exists an invertible linear transformation B : {0, 1}e →
{0, 1}e such that for all scalars a, b ∈ F , we have B(bin(a))�2 bin(b) = Tr(ab).

Fix α ∈ {0, 1}n. We can choose the unique vector α′ in Fn′ such that α is the

concatenation of the e-bit vectors B(bin(α′i)). Then for any vector x′ ∈ Fn′ , we have:

α�2 bin(x′) = Tr(α′ �F x′)

Sub-Claim: α is in C⊥i if and only if α′ is in (C ′i)
⊥.

One direction of the sub-claim is easy: suppose α′ ∈ (C ′i)
⊥. Then for any vector

x ∈ Ci, we have α �2 x = Tr(α′ �F bin−1(x)). Now the image of x in Fn′ is in C ′i,

and so Tr(α′ �F bin−1(x)) = Tr(0F) = 0. In the other direction (of the sub-claim),

suppose that α ∈ C⊥i . Suppose, to get a contradiction, that there is some x′ ∈ C ′i
such that α′ �F x′ 6= 0F . Then there exists some non-zero scalar b ∈ F , such that

0 6= Tr(b(α′�F x′)) = Tr(α′�F (bx′)) = α�2 bin(bx′). But the vector bx′ is in C ′i since

C ′i is a linear code, and so the inner product of its binary image with α should be 0.

Thus, we get a contradiction and conclude that α′ ∈ (C ′i)
⊥, completing the proof of

the sub-claim.

Based on the sub-claim, we can conclude that Pri[α ∈ C⊥i] = Pri[α
′ ∈ (C ′i)

⊥].

Proof of Claim 2. The main observation behind this proof is that the randomization

operations we use behave nicely in the dual space. Permuting the coordinates of

the code C ′ induces the same permutation on the coordinates of C ′. Similarly, if we

multiply the n′ coordinates by non-zero scalars b1, ..., bn′ ∈ F , then we multiply the

dual code by the inverses b−1
1 , ..., b−1

n . Thus we get the same family of q-ary codes C ′i
by applying the randomization procedure to the dual instead of the primal code.

Now fix some vector α′ ∈ Fn′ . By symmetry, we can imagine that the randomizing

operation is applied to the target word α′ instead of to the code itself. This maps α′

to a random word in Fn′ of the same weight as α. The probability that this hits a

codeword is exactly the fraction of words of a given weight w which are in the code.

We call the set of words in Fn′ with weight exactly w the w-slice. To complete the

proof, we need only prove the following:

Sub-Claim: For a linear code over F = GF (q) of minimum distance d⊥, the

fraction of codewords in any slice of Fn′ is bounded above by (q−1)/(q−1)d
⊥ (except

for the singleton slice
{
0n′
}
).

To prove the sub-claim, fix some weight 0 < w ≤ n′. We can partition the slice

of weight w according to which w positions in a word are non-zero. Each of these

partitions can further be subidivided into pieces where all but d⊥ of the non-zero

100

values are fixed, i.e. sets of the form

(0, ..., 0︸ ︷︷ ︸
n−w times

, b1, ..., bw−d⊥︸ ︷︷ ︸
non-zero scalars

, ∗, ..., ∗︸ ︷︷ ︸
d⊥ times

),

up to permutation of coordinates, where ∗ may take any non-zero value.

Now within any such piece, there can be at most q − 1 codewords (since the

codewords must differ in d⊥ positions). There are (q− 1)d words in the piece, and so

overall the fraction of codewords in any constant-weight slice is at most (q−1)d−1.

This completes the proof of Lemma 7.8.

Remark 7.1. The key piece of the proof above is a bound on the number of codewords

of a given weight, based only on the minimum distance of the code. This bound is

tight in some cases, such as for Reed-Solomon codes. However, it is quite loose in

cases where the alphabet size is small. It is sufficient for our purpose: we are mainly

interested in proving that reasonable families of codes exist (rather than trying to

optimize the parameters).

7.1.4 Constructions of Small-Bias Families from Specific Codes

We can now use Lemma 7.8 to construct small-bias families from known code families.

Warm-up: Reed-Solomon-Based Constructions Reed-Solomon (RS) codes
are a class of efficiently-decodable [n′, k′, d]q linear codes over a large alphabet: q = 2e

must be at least n. They have distance d = n′−k′+1 and, because the dual of a Reed-
Solomon code is another Reed-Solomon code, they have dual distance d⊥ = k′ + 1
(see, e,g., [53]).

Consider the family {Ci} of binary images of a fixed RS code C ′. By Lemma 7.8,
the probability that a non-zero word a lies in the dual is at most δ2 = (q− 1)−d⊥+1 =
(q−1)−k′ . Since k < q and (1−1/q)q > 1/3, we can in fact write δ2 ≤ 3q−k′ = 3 ·2−k.
Thus, binary images of RS codes (often called “generalized Reed-Solomon codes”)
have optimal bias: log

(
1
δ

)
= k/2−O(1), as with random linear codes, matching the

lower bound Proposition 7.7.
Unfortunately, the conversion to a binary alphabet increases the code length and

dimension without increasing the distance. Thus, these codes are only guaranteed
to correct about n−k

2 log n
errors. Nevertheless, for large alphabets, these codes do very

well. That is, if the metric in which we care about error-correction for the sketch is
Hamming distance in GF (q)n′ , then we get as good a secure sketch as possible, with
as small a bias as possible.

Proposition 7.9 (RS-based Families for Large Alphabets). For all k < n ≤
q = 2e, there exists a family {Ci} of [n, k, d]q linear codes for q ≥ n with bias δ ≤
2−k/2+1, correcting τ ≥ n−k

2
errors efficiently.

101

Algebraic-Geometric Constructions We now turn to our main construction.
Our starting point is a construction of “algebraic-geometric” (AG). We get binary
codes with exponentially small bias and linear minimum distance. We will need the
following fact:

[Algebraic-geometric codes] Let q ≥ 4 be an even power of a prime, q ≥
16. There exists an infinite ensemble of [n′, k′, d]q linear codes C ′ (over
GF (16)) with minimum distance at least d = n′ − k′ − n′√

q−1
and dual

minimum distance d′ ≥ k′ − n′√
q−1

. Moreover, these codes have efficient

algorithms for decoding up to b(d− 1)/2c errors.

This follows from well-known bounds on algebraic-geometric codes (see, e.g., [80],
section II.2). The main fact we need is that the dual of an AG code is an AG code for
the same curve, and the distance of an AG code is bounded below by n− k + 1− g,
where g is the genus of the underlying curve. For infinitely many n, there exist curves
over GF (16) with n′ points and genus at most n′/3.

We can now prove Lemma 7.6, which we restate here:

Lemma 7.10 (Good Code Families). For any constant rate R = k/n, there exists

an explicitly constructible ensemble of code families which efficiently correct τ = Ω(n)

errors and have bias log
(

1
δ

)
= Ω(n).

In fact, the codes can be made arbitrarily close to optimal, at some cost in error-
correction. That is, for any γ > 0, we can have log

(
1
δ

)
> k/2(1− γ) but the fraction

of errors corrected τ/n will decrease with γ.

Proof. Suppose that R > 1/2 (this is the interesting case, since it corresponds to

small entropy loss; the case R < 1/2 is similar). Let q be any (constant) even power

of a prime. By the facts above on AG codes, there exist [n′, k′, d]q codes with rate

k′/n′ = R, minimum distance at least d = n′(1−R− 1√
q−1

) ≥ n′(1−R)/2, and dual

distance d⊥ ≥ n′(R− 1√
q−1

) ≥ n′(3R− 1)/2.

We can now apply Corollary 7.5 to get a family of codes which correct τ errors

and have bias δ, where:

τ ≥ n

log q

(
1−R− 1

√
q − 1

)
and

log
(

1
δ

)
≥ 1

2
(d⊥ − 1)(log(q − 1))

=
n

2

(
R− 1

√
q − 1

)(
1− log q

q − 1

)
=

k

2

(
1− 1

R(
√
q − 1)

)(
1− log q

q − 1

)
By choosing q to be large enough (but constant), we get codes with constant error-

correction rate and exponentially small bias, as desired. In fact, we can get log
(

1
δ

)
as

close as we want to the bound of Proposition 7.7, at some price in error-correction.

102

Combining Lemma 7.10 with Corollary 7.5 proves Theorem 7.1. We conclude the
section with an example.

Example: Consider the case k = n/2. Using Lemma 7.8, we get a ensemble of
efficiently decodable binary codes with linear minimum distance d = n

4

(
1
2
− 1

3

)
= n

24
,

with squared bias δ2 = Pri[a ∈ C⊥i] ≤ (1/15)d′−1 ≤ 2−n/7. Applying now Corol-
lary 7.5, we get an efficient entropically secure construction tolerating linear number
of errors:

There exists efficient (n, t, t− n
2
, n

48
) secure sketches with entropy loss n/2,

correcting a linear number of errors τ = n/48 and which are (t, ε) entrop-
ically secure as long as t ≥ 6

7
n + 2 log

(
1
ε

)
. In particular, one can have

n− t = Ω(n) without losing either secrecy or error-tolerance.

Remark 7.2. There are various places in this section where the analysis can be

improved substantially. First of all, the bounds on weight enumerators in the proof

of Lemma 7.8 can be improved when the alphabet size q is a constant. Second, there

are recent, better constructions of AG codes than those used in Fact 7.1.4. However,

those codes are not linear (!), and as far as we know good bounds do not yet exist on

their bias.

7.1.5 Secrecy for Fuzzy Extractors

Recall that for secure sketches, we required that Y (W) = SS(W) be entropically
secure. For fuzzy extractors, we will in fact require that the pair Y (W) = 〈P,Z〉
satisfy the definition of security. This is somewhat counter-intuitive: we think of P
as being published and Z as being used as a secret key in some other application.
However, we cannot guarantee that no information about Z will be leaked in the
other application (indeed, if Z is used to encrypt a known string it may be leaked
completely). Requiring that the pair 〈P,Z〉 be entropically secure protects against
arbitrary information being revealed about Z.

Nevertheless, if we consider fuzzy extractors built from a sketch scheme and a
hash family (Lemma 3.1), then the requirement that 〈Z, P 〉 be entropically secure
reduces to the requirement that SS(W) be entropically secure. The following lemma
follows from a standard hybrid argument:

Lemma 7.11. Suppose that SS is a secure sketch with entropy loss t − t′, and H

is drawn from a 2-universal hash family from n bits to t′ − 2 log
(

1
ε

)
bits. Let P =

〈H, SS(W)〉 and Z = H(W) as in Lemma 3.1.

If Y1(W) = SS(W) is (t, ε)-indistinguishable, then Y2(W) = 〈P,Z〉 is (t, 2ε)-

indistinguishable.

Hence, it is sufficient to build secure sketch schemes which are entropically secure—
the resulting fuzzy extractors will inherit the property.

103

7.2 Perfectly One-Way Hash Functions

“Perfectly one-way” hash functions (POWFs) were introduced by Canetti [17] to
attempt the formalize the common intuition that cryptographic hash functions reveal
very little about their input. We will adopt the somewhat simplified version of the
definition used in the subsequent paper of Canetti, Micciancio and Reingold [18]; see
[17, 18] for further motivation and discussion.

Informally, POWFs are randomized hash functions w 7→ H(w;R) which satisfy
two properties:

1. Given w and y, one can verify that y = H(w; r) for some value of the randomness
r. This means that a computationally bounded adversary cannot produce a pair
w′ 6= w which would pass the same test.

2. If R is random, then H(w;R) reveals no information about w.

The intuition that the hash leaks no information about the input was formalized
using a definition almost identical to entropic security for predicates. Thus, we can
apply the results of this thesis to the problem of designing perfectly one-way hash
functions.

Contributions Our results apply in two different ways:

1. We show how to construct “fuzzy”—that is, noise-resilient—perfect hash func-
tions. The hash value for w allows one to verify whether a candidate string w′

is close to w, but reveals nothing else about w.

This is a significant departure from the approach of Canetti et al. The motiva-
tion behind [17, 18] was to formalize the properties of an ideal “random oracle”
which might be achievable by a real computer program. In contrast, even given
a random oracle, it is not at all clear how to construct a proximity oracle for
a particular value w (i.e. an oracle that accepts an input if and only if it is
sufficiently close to w).

In that sense, the result is also about code obfuscation: noise-resilient POWFs
might best be viewed as weakly obfuscated versions of a proximity oracle (this
is all the more interesting since strong obfuscation is not possible, see [6]).

2. We strengthen the results of [18] on information-theoretically-secure POWF’s.
First, following Chap. 5, we strengthen the definition of perfect one-way-ness
to preclude the adversary from improving her ability to predict any function
whatsover of the input when she sees the hash value.

Second, we reduce the assumptions necessary for security: Canetti, Micciancio
and Reingold [18] assume the existence of a collision-resistant hash function with
an extra combinatorial property—regularity (a.k.a. balancedness)—in order for
their proof of security to g through. We show how to modify the proof so the
extra condition is unnecessary.

104

Finally, we improve the parameters of the [18] construction, roughly halving the
requirement on the min-entropy of the input for the same level of security.

7.2.1 Definitions of Perfect One-way-ness

Recall the two informal conditions on PWOF’s. Formalizing the first requirement
is simple, though we note that the hash function requires a key in order to get full
collision resistance. We denote by Rn the space of random coins required by the hash,
and by Kn the space of keys (for input lengths n). A family of keyed randomized
hash function H(n) with input length n and output length `(n) is a family of functions{
Hk : {0, 1}n ×Rn → {0, 1}`(n)

}
k∈Kn

. An ensemble of such functions H =
{
H(n)

}
n∈N

consists of one such family for every input length n.

Definition 7.3 ([17, 18]). A ensemble of keyed randomized functionsH = {Hk}k∈Kn,n∈N
as above is publicly verifiable if there is a polynomial-time verification algorithm Ver

such that

• For all keys k ∈ Kn, inputs w ∈ {0, 1}n, and strings r ∈ Rn, Ver(k, w,Hk(w; r)) =

acc.

• For any PPT adversary A, the probability over k ∈ Kn that A(k) outputs a

triple (w, y, c) such that Ver(k, w, c) = Ver(k, y, c) = acc is negligible in n.

The intuition that the hash leaks no information about the input was formalized
using a definition almost identical to entropic security for predicates. Given the
equivalence of entropic security with respect to predicates and functions, we formulate
the definition in terms of functions.

The main difference was that in the definitions of [17, 18], the adversary’s ability
to predict a predicate g(W) given the (randomized) hash value H(w) = Hk(w;R))
is compared the adversary’s ability to predict g(W) given only polynomially many
accesses to an identity oracle Idw(·) which answers outputs “yes” on input w and
“no” on any other input.

We’ll say an adversary AO(·) with access to an oracle O(·) is poly-limited if there
is some polynomial p(·) such that on inputs of length n, the adversary makes at
most p(n) queries to the oracle. A ensemble {Wn}n∈N of t(n)-sources consists of
distributions on {0, 1}n with min-entropy at least t(n).

Definition 7.4 (Perfect One-Way-ness, [17, 18]). A ensemble of keyed ran-

domized functions H = {Hk}k∈Kn,n∈N is (t(n), ε(n))-perfectly one-way if for every

adversary A, for every ensemble {Wn}n∈N of t(n)-sources, and for every function

f : {0, 1}∗ → {0, 1}∗, there exists a poly-limited oracle adversary A·∗ such that, for

every n and k ∈ Kn:

Pr
w←Wn,r←Rn

[A(Hk(w; r)) = f(w)]− Pr
w←Wn,r←Rn

[AIdw(·)(1n)) = f(w)] ≤ ε(n)

105

Note that adding the identity oracle makes no significant difference when the min-
entropy of W is very high and hence the chance that the adversary queries the oracle
on W is negligible. We encapsulate the equivalence as follows:

If, for sufficiently large n ∈ N and all k ∈ Kn, the map Y (w) = Hk(w;R) is
(t(n), ε(n))-entropically secure, then the hash function ensemble is (t(n), ε(n))-
semantically perfectly one-way.

Moreover, the converse is true when t > log
(

1
ε

)
+1 (since then the adver-

sary has probability at most ε/2 of succeeding to use the oracle).

Despite this equivalence, the formulation in terms of the identity oracle makes sense
in the context, since the public verifiability makes one able to verify if a particular
value is indeed w. We retain the “oracle” flavor in the definition of noise-resilient
POWFs.

Noise-resilient POWFs

We can now define the new primitive which we construct in this section. A proximity
oracle Bw,τ (·) accepts its input w′ if and only if the distance between w and w′ is
less than τ . Implicit here is a measure of distance between strings. We will only
discuss constructions for the Hamming distance, but we formulate the definitions in
more generality. We will assume that the distance function dis(,) is in fact a metric
(that is, it satisfies the triangle inequality) on the space {0, 1}∗. For simplicity we
also assume that the distance between strings of different lengths is +∞.

An ensemble of hash functions is called a one-time (t(n), ε(n), τ(n))-noise-resilient
POWF (in the space dis(·, ·)) if it satisfies the following two conditions:

Definition 7.5 (Proximity Verifiability). A ensemble of keyed randomized func-

tions H = {Hk}k∈Kn,n∈N is (dis(,), τ(n))-publicly proximity-verifiable if there is a

polynomial-time verification algorithm Ver such that

• For all pairs of inputs w,w′ ∈ {0, 1}n such that dis(w,w′) ≤ τ(n), keys k ∈ Kn,

and strings r ∈ Rn, Ver(k, w,Hk(w; r)) = acc.

• For any PPT adversary A, the probability over k ∈ Kn that A(k) outputs a triple

(w, w̃, c) such that Ver(k, w, c) = Ver(k, w̃, c) = acc and dis(w, w̃) ≥ 2τ(n) is

negligible in n.

Definition 7.6 (Proximity-Semantic-Security). A ensemble of keyed random-

ized functions H = {Hk}k∈Kn,n∈N is (t(n), ε(n))-semantically perfectly one-way for

(dis(,), τ(n)) if for every adversary A, for every ensemble {Wn}n∈N of t(n)-sources,

and for every function f : {0, 1}∗ → {0, 1}∗, there exists a poly-limited oracle adver-

sary A·∗ such that, for every n and k ∈ Kn:

Pr
w←Wn,r←Rn

[A(Hk(w; r)) = f(w)]− Pr
w←Wn,r←Rn

[ABw,τ(n)(·)(1n) = f(w)] ≤ ε(n)

where Bw,τ (·) is the proximity oracle which accepts its input w′ iff dis(w,w′) ≤ τ .

106

Unlike in the case of an identity oracle, proving that the proximity orace is not
useful to the adverary requires much stronger bounds on the initial value of the min-
entropy t. See the proof of security of the main construction, below.

Note: All the constructions discussed in this chapter are one-time secure, that
is they provide no guarantee of secrecy when many hashes of the same input are
given to the adversary. In fact, for any constant t, it is fairly easy to get t-time
security (depending on the exact parameters). However, in the case of ordinary (non-
noise-resilient) POWFs, [18] showed that it is possible to construct poly-time secure
function ensembles (that is, the adversary may see as many hashes of the same input
w as she wishes, and then try to predcit some predicate of w). Generalizing the result
to noise-resilient POWFs is a fascinating open problem.

7.2.2 Constructing Noise-resilient POWFs

Our main construction is stated below. The basic idea is that entropically-secure se-
cure sketches compose well with any ordinary POWF, as long as we have a guarantee.
Note that the proof we give here applies only to the Hamming metric (we will use
lower bounds on the volume of balls in the Hamming cube).

Theorem 7.12 (Generic Construction). Suppose that

– {SSn}n∈N is an ensemble of (n, t − 1, t′, τ) sketches which are (t, ε)-entropically

secure,

– {Hk}k∈Kn,n∈N is a (ordinary) POWF as defined above which is (t′− log
(

1
ε

)
+1, ε)-

perfectly one-way,

Then the ensemble {H ′k}k∈Kn,n∈N of randomized hash functions given by

H̃k(w; r1, r2︸ ︷︷ ︸
r

)
def
= SS(w; r1), Hk(w; r2)

is τ -proximity-verifiable and (t+1, 2ε)-perfectly one-way. (Here t, t′, τ, ε are functions

of n.)

Proof. The fact that the construction in the preceding theorem is proximity-verifiable

is easy to check. Given a candidate string w̃, and a string (s, c) which is a correctly

generated hash of w, then the verification alogrithm Ver′(k, w̃, (s, c)) does the following

(a) Run the recovery procedure for SS() on the pair (w̃, s), get back a candidate string

w′ for w, and (b) check if dis(w̃, w′) ≤ τ and Ver(k, w′, c) = acc, where Ver() is the

verification function for the original (nonfuzzy) POWF.

If w̃ is indeed close to w, then this test will always succeed. 2 On the other hand, if

a poly-time adversary can produce a values w̃, z̃ which both pass verification with the

2Similarly, if the sketch only corrects errors with high probability, then the test will succeed with
high probability, achieving a sligthly relaxed version of the definition of verifiability.

107

same string c, then there are corresponding values w, z within distance τ of w̃ (resp.

z̃) such that Ver(k, w, c) = Ver(k, z, c) = acc. By the verifiability of the original

POWF-scheme, it must be that w = z, and so dis(w̃, z̃) ≤ dis(w̃, w) + dis(z, z̃) ≤ 2τ ,

as desired.

We now turn to the proof that the scheme is semantically perfectly one-way in

the sense of Definition 7.6. We’ll use the following general lemma on composing

entropically-secure maps:

Lemma 7.13. If (1): Y1() is a (t, ε)-entropically-secure map, (2): for all distributions

W of min-entropy at least t−1 we have H̃∞(W | Y1(W)) ≥ t′ and (3): Y2() is a (t′−
log
(

1
ε

)
+ 1, ε) secure map, then the map which outputs the pair Y (w) = Y1(w), Y2(w)

is (t+ 1, 2ε)-entropically-secure.

The lemma can be proven using a simple hybrid argument (see below). For now,

we can use it to complete the proof of security of the noise-resilient POWF. Let

Y1 = SS() and Y2 = Hk(). By the definition of a secure sketch and the hypotheses

of the theorem statement, the conditions of the lemma are satisfied, and we get that

the map H ′k(·;R) is (t+1, 2ε)-entropically-secure. Entropic security implies semantic

perfect one-way-ness with the same parameters.

We can now prove the composition lemma used above:

Proof of Lemma 7.13. The proof follows a careful hybrid argument. In order to prove

t + 1-entropic security, we will prove t − 1-indistinguishability and then apply the

equivalence (Theorem 5.1). Suppose that W has min-entropy at least t − 1. With

probability 1− ε over the values of SS(W), the min-entropy H∞(W | SS(W)) will be

at least te′ − log
(

1
ε

)
(recall that t′ = H̃∞(W | Y1(W)), so 2−t′ is the average value of

2−H∞(W |Y1(W))). Since Y1(W) is t′−log
(

1
ε

)
+1-entropically secure, it is (t′−log

(
1
ε

)
, 4ε)

indistinguishable and so with probability 1− ε (over values of Y1(W)), the statistical

difference between Y1(W), Y2(W) and Y1(W), Y2(Un) is at most 4ε. Hence, the overall

statistical difference between the two distributions is at most 5ε. Finally, the distance

between Y1(W), Y2(Un) and Y1(U
′
n), Y2(Un) is at most 4ε since Y1() is (t − 1, 4ε)-

indistinguishable. By the triangle inequality, the distance between Y1(W), Y2(W)

and Y1(U
′
n), Y2(Un) is at most 9ε, and so the scheme is (t − 1, 9ε)-indistinguishable.

Applying Theorem 5.1 in the other direction completes the proof.

7.2.3 Improved Construction of Ordinary POWFs

Before we can apply the generic construction of the previous section, we need to
constructions of ordinary, non-noise-resilient POWF’s.

Canetti et al. [18] gave the following simple construction of perfect one-way hash
functions which achieves (information-theoretic) entropic secrecy. Given a family

108

of “regular” collision-resistant hash functions {crhfk}k∈Kn
, and a family of pairwise

independent permutations {πi}i∈I , we can define a probabilistic map

Hk(w; i) = i, crhfk(πi(w)).

[18] proved that the construction is (t, ε)-entropically secure as long as the output
length `(n) of the functions crhfk satisfies `(n) ≤ (t− 2logeps)/2. Their analysis also
required an additional assumption on the crhf, namely that the functions be “regular”
(a.k.a. balanced), that is for all k, every point in the image of crhfk must have the
same number of pre-images.

Here we improve on the analysis in several ways. First, we remove the assump-
tion of regularity. This is based on a version of the left-over hash lemma in which a
pairwise independent hash function is fed through an arbitrary function before pro-
ducing output (Lemma A.2). Second, we improve the parameters: we show that their
construction only requires `(n) ≤ t − 2 log

(
1
ε

)
(that is, we may leak twice as many

bits about the input without compromising entropic security). Finally, we provide a
stronger security guarantee, namely that the adversary may not learn any function
of the input. We encapsulate these improvements in the following proposition.

Proposition 7.14. Suppose that

– {crhfk(·)}k∈Kn,n∈N is a collision-resistant hash family from n bits to `(n) bits,

– ` < t− 2 log
(

1
ε

)
,

–
{
{πi}i∈I

}
n∈N is an ensemble of XOR-universal permutations of {0, 1}n.

Then the ensemble of randomized hash functions given by: Hk(w; i) = i, crhfk(πi(w))

is (t, ε)-entropically secure. (Here t, t′, τ, `, ε are all functions of n.)

To prove entropic security, it suffices to prove that the scheme is indistinguish-
able. The statement follows directly from a variant of the left-over hash lemma
(Lemma A.2), which basically states that combining XOR-independent permutations
with any arbitrary functions yields a “crooked” strong extractor: that is, the output
may not be look random, but it will look the same for all input distributions of suf-
ficiently high entropy. Contrary to intuition, this statement does not follow directly
from the left-over hash lemma.

7.2.4 Putting It All Together

We can now combine the results of this chapter so far. Our initial goal was a non-
trivial family of noise-resilient POWF’s. As mentioned above, these can be viewed as
obfuscated code for proximity queries. We would like to combine Theorem 7.1 with
the generic constructions of this section. For this purpose, we will use the fact that
if there are length-reducing collision-resistant hash functions, then for for any output
length `(n) = Ωn, there exists a hash family {crhfk}k∈Kn,n∈N with output length `(n)
for which no PPT adversary can find collisions with non-negligible probability. We
obtain:

109

Theorem 7.15. If collision-resistant hash functions exist, then for any initial en-

tropy t = Ω(n), there exists a noise-resilient POWF ensemble which tolerates a lin-

ear number of errors τ = Ω(n), is (t, ε)-entropically-secure for ε = 2−Ω(n) and is

proximity-publicly verifiable with negligible soundness error.

We conclude with a caveat and a question. The noise-resilient POWF’s of The-
orem 7.15 are only one-time secure, that is they do not bear up to revealing many
hashes of the same secret input.

Is it possible to construct poly-time entropically-secure noise-resilient
POWF’s (for which an arbitrary polynomial number of hashes of the same
input may be revealed)?

110

Bibliography

[1] E. Agrell, A. Vardy, and K. Zeger. Upper bounds for constant-weight codes.
IEEE Transactions on Information Theory, 46(7), pp. 2373–2395, 2000. Cited
on p. 33, 45, 47

[2] Noga Alon, Oded Goldreich, Johan H̊astad, René Peralta: Simple Constructions
of Almost k-Wise Independent Random Variables. FOCS 1990: 544-553. Cited
on p. 87

[3] Noga Alon and Yuval Roichman. Random Cayley graphs and expanders. Random
Structures & Algorithms 5 (1994), 271–284. Cited on p. 87

[4] A. Andoni, M. Deza, A. Gupta, P. Indyk, S. Raskhodnikova. Lower bounds for
embedding edit distance into normed spaces. In Proc. ACM Symp. on Discrete
Algorithms, 2003, pp. 523–526. Cited on p. 18, 52

[5] C. Barral and J.-S. Coron and D. Naccache. Externalized Fingerprint Matching.
Cryptology ePrint Archive, Report 2004/021, 2004. Cited on p. 19

[6] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, K. Yang.
On the (Im)possibility of Obfuscating Programs. In Advances in Cryptology —
CRYPTO 2001, pp. 1–18. Cited on p. 104

[7] C. Bennett, G. Brassard, and J. Robert. Privacy Amplification by Public Dis-
cussion. SIAM J. on Computing, 17(2), pp. 210–229, 1988. Cited on p. 19, 20,
32, 39, 41, 87, 88

[8] C. Bennett, G. Brassard, C. Crépeau, and U. Maurer. Generalized Privacy
Amplification. IEEE Transactions on Information Theory, 41(6), pp. 1915-1923,
1995. Cited on p. 19, 31, 32, 39, 41, 88

[9] Eli Ben-Sasson, Madhu Sudan, Salil P. Vadhan, Avi Wigderson: Randomness-
efficient low degree tests and short PCPs via epsilon-biased sets. STOC 2003:
612-621 Cited on p. 84, 87

[10] R.M. Bolle, J.H. Connell, S. Pankanti, N.K. Ratha, A.W. Senior. Guide to Bio-
metrics, Springer Professional Computing Series, 2004, 364 p. Cited on p. 13

[11] B. Bollobás. Combinatorics. Cambridge University Press, 1986. Cited on p. 64

111

[12] X. Boyen. Reusable Fuzzy Extractors. In ACM CCS 2004. Cited on p. 20

[13] A. Broder. On the resemblence and containment of documents. In Compression
and Complexity of Sequences, 1997. Cited on p. 53

[14] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith, “A new table
of constant weight codes,” IEEE Transactions on Information Theory, 36, p.
1334–1380, 1990. Cited on p. 45

[15] BBC News. “Facing a biometric future,” 13 January, 2004. “US passport deadline
is extended,” 27 July 2004. Cited on p. 13

[16] Andrew Burnett and Adam Duffy and Tom Dowling. A Biometric Identity
Based Signature Scheme. Unpublished manuscript, 2004. http://eprint.iacr.
org/2004/176 Cited on p. 20

[17] R. Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In Advances in Cryptology — CRYPTO 1997. Cited on p. 21, 22,
23, 24, 69, 70, 91, 104, 105

[18] R. Canetti, D. Micciancio, O. Reingold. Perfectly One-Way Probabilistic Hash
Functions. In Proc. 30th ACM Symp. on Theory of Computing, 1998, pp. 131–
140. Cited on p. 21, 22, 24, 69, 70, 91, 104, 105, 107, 108, 109

[19] Ran Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. Proc. IEEE Symp. on Foundations of Computer Science,
2001, pp. 136-145. Cited on p. 25

[20] J. L. Carter, M. N. Wegman. Universal Classes of Hash Functions. Journal of
Computer and System Sciences, 18, 1979, pp. 143–154. Cited on p. 31

[21] T. Clancy, N. Kiyavash, D. Lin. Secure Smartcard-Based Fingerprint Authenti-
cation. In Proc. of the 2003 ACM SIGMM workshop on Biometric Methods and
Applications. http://www.cs.umd.edu/~clancy/docs/bio-wbma2003.pdf Cited
on p. 19

[22] G. Cohen, G. Zémor. Generalized Coset Schemes for the Wire-Tap Channel:
Application to Biometrics. In International Symp. on Information Theory, June
2004. Cited on p. 19, 55

[23] T. Cover, J. Thomas. Elements of Information Theory. Wiley series in telecom-
munication, 1991, 542 pp. Cited on p. 30

[24] C. Crépeau. Efficient Cryptographic Protocols Based on Noisy Channels. In Ad-
vances in Cryptology — EUROCRYPT 1997, pp. 306–317. Cited on p. 19,
41

[25] L. Csirmaz and G.O.H. Katona. Geometrical Cryptography. In Proc. Interna-
tional Workshop on Coding and Cryptography, 2003. Cited on p. 14, 15, 19

112

http://eprint.iacr.org/2004/176
http://eprint.iacr.org/2004/176
http://www.cs.umd.edu/~clancy/docs/bio-wbma2003.pdf

[26] G. Davida, Y. Frankel, B. Matt. On enabling secure applications through off-
line biometric identification. In Proc. IEEE Symp. on Security and Privacy, pp.
148–157, 1998. Cited on p. 18

[27] G.I. Davida, Y. Frankel, B.J. Matt and R. Peralta. On the relation of error
correction and cryptography to an online biometric based identication scheme.
In Proceedings of WCC99, Workshop on Coding and Cryptography, 1999. Cited
on p. 18

[28] M. van Dijk, D. Woodruff. Manuscript, 2004. Cited on p. 20

[29] Y.Z. Ding. Manuscript. Cited on p. 20

[30] Y. Dodis, L. Reyzin and A. Smith. Fuzzy Extractors and Cryptography, or How
to Use Your Fingerprints. In Advances in Cryptology — EUROCRYPT 2004.
Originally appeared as IACR Eprint Report 2003/235, November 2003. Cited
on p. 6

[31] Y. Dodis and A. Smith. Entropic Security and the Encryption of High-Entrop
Messages. Manuscript, 2004. Cited on p. 6

[32] Y. Dodis and A. Smith. Obfuscating Proximity Queries: Fuzzy Extractors Which
Hide All Partial Information. Manuscript, 2004. Cited on p. 6

[33] Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximat-
ing the minimum distance of a linear code, IEEE Transactions on Information
Theory, 49(1), pp. 22–37, 2003. Cited on p. 98

[34] Electronic Privacy and Information Center (EPIC). Web page on Biometric Iden-
tifiers. http://www.epic.org/privacy/biometrics/ Cited on p. 13

[35] Electronic Privacy Information Center (EPIC). Web page on US-VISIT program.
http://www.epic.org/privacy/us-visit/ Cited on p. 13

[36] C. Ellison, C. Hall, R. Milbert, B. Schneier. Protecting Keys with Personal
Entropy. Future Generation Computer Systems, 16, pp. 311–318, 2000. Cited
on p. 18

[37] D. Forney. Concatenated Codes. MIT Press, 1966. Cited on p. 55

[38] N. Frykholm. Passwords: Beyond the Terminal Interaction Model. Master’s
Thesis, Umea University. Cited on p. 14

[39] N. Frykholm, A. Juels. Error-Tolerant Password Recovery. In Proc. ACM Conf.
Computer and Communications Security, 2001, pp. 1–8. Cited on p. 12, 18

[40] S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, 28(2), pp. 270–299,
April 1984. Cited on p. 21, 22, 23, 25, 26, 69, 71, 72, 82, 84

113

http://www.epic.org/privacy/biometrics/
http://www.epic.org/privacy/us-visit/

[41] Oded Goldreich, Avi Wigderson: Tiny families of functions with random prop-
erties: A quality-size trade-off for hashing. Random Structures and Algorithms
11(4): 315-343 (1997) Cited on p. 86

[42] Venkatesan Guruswami. List Decoding with Side Information. In IEEE Confer-
ence on Computational Complexity 2003, p.300-309. Cited on p. 55, 56

[43] V. Guruswami, M. Sudan. Improved Decoding of Reed-Solomon and Algebraic-
Geometric Codes. In Proc. 39th IEEE Symp. on Foundations of Computer Sci-
ence, 1998, pp. 28–39. Cited on p. 56

[44] J. H̊astad, R. Impagliazzo, L. Levin, M. Luby. A Pseudorandom generator from
any one-way function. In Proc. 21st ACM Symp. on Theory of Computing, 1989.
Cited on p. 19, 20, 31, 32, 39, 88

[45] Jonathan Herzog. Computational Soundness for Standard Assumptions of Formal
Cryptography. Ph.D. Thesis, Massachusetts Institute of Technology, May 2004.
Cited on p. 25

[46] R. Impagliazzo and D. Zuckerman. How to Recycle Random Bits. In Proc. 30th
IEEE Symp. on Foundations of Computer Science, 1989. Cited on p. 29, 32, 85,
87, 122

[47] A. Juels, M. Wattenberg. A Fuzzy Commitment Scheme. In Proc. ACM Conf.
Computer and Communications Security, 1999, pp. 28–36. Cited on p. 17, 18,
41

[48] A. Juels and M. Sudan. A Fuzzy Vault Scheme. In IEEE International Sympo-
sium on Information Theory, 2002. Cited on p. 12, 17, 19, 43, 45

[49] J. Kelsey, B. Schneier, C. Hall, D. Wagner. Secure Applications of Low-Entropy
Keys. In Proc. of Information Security Workshop, pp. 121–134, 1997. Cited on
p. 18

[50] H. Krawczyk. LFSR-Based Hashing and Authentication. In Advances in Cryp-
tology — CRYPTO ’94, p. 129–139, 1994. Cited on p. 31

[51] M. Langberg. Private codes or Succinct random codes that are (almost) perfect.
Proc. IEEE Symp. on Foundations of Computer Science, 2004. Cited on p. 55,
56

[52] J.-P. M. G. Linnartz, P. Tuyls. New Shielding Functions to Enhance Privacy and
Prevent Misuse of Biometric Templates. In AVBPA 2003, p. 393–402. Cited on
p. 19

[53] J.H. van Lint. Introduction to Coding Theory. Springer-Verlag, 1992, 183 pp.
Cited on p. 44, 48, 49, 51, 61, 62, 101

114

[54] C. Lu, O. Reingold, S. Vadhan and A. Wigderson. Extractors: Optimal Up to
Constant Factors. In Proc. ACM Symp. on Theory of Computing, 2003. Cited
on p.

[55] A. Lubotzky, R. Phillips, P. Sarnak: Ramanujan graphs. Combinatorica 8(3):
261-277 (1988). Cited on p. 84, 86

[56] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes,
North-Holland, Amsterdam, New York, Oxford, 1978. Cited on p. 94, 98, 100

[57] U. Maurer. Conditionally-Perfect Secrecy and a Provably-Secure Randomized
Cipher. J. Cryptology, 5(1), pp. 53–66, 1992. Cited on p. 20

[58] U. Maurer. Secret Key Agreement by Public Discussion. IEEE Trans. on Info.
Theory, 39(3):733–742, 1993. Cited on p. 82

[59] Silvio Micali, Chris Peikert, Madhu Sudan, and David Wilson. Cryptographic
Sieving: Optimal Error Correction Against Computationally Bounded Noise.
Manuscript, 2004. Cited on p. 55, 56

[60] F. Monrose, M. Reiter, Q. Li, S. Wetzel. Cryptographic key generation from
voice. In Proc. IEEE Symp. on Security and Privacy, 2001. Cited on p. 18

[61] F. Monrose, M. Reiter, Q. Li, S. Wetzel. Using voice to generate cryptographic
keys. In Proc. of Odyssey 2001, The Speaker Verification Workshop, 2001. Cited
on p. 18

[62] F. Monrose, M. Reiter, S. Wetzel. Password Hardening Based on Keystroke
Dynamics. In Proc. ACM Conf. Computer and Communications Security, 1999,
p. 73–82. Cited on p. 18

[63] R. Morris, K. Thomson. Password Security: a case history. In Comm. ACM,
22(11), pp. 594–597, 1979. Cited on p. 14

[64] J. Naor, M. Naor. Small-Bias Probability Spaces: Efficient Constructions and
Applications. In SIAM J. Comput. 22(4): 838-856 (1993). Cited on p. 83, 84,
87, 94

[65] New York Times. “Arrest in Bombing Inquiry Was Rushed, Officials Say”, May
8, 2004. Cited on p. 13

[66] N. Nisan, D. Zuckerman. Randomness is Linear in Space. In JCSS, 52(1), pp.
43–52, 1996. Cited on p. 16, 19, 84

[67] J. Radhakrishnan and A. Ta-Shma. Tight bounds for depth-two superconcen-
trators. In Proc. 38th IEEE Symp. on Foundations of Computer Science, 1997,
pp. 585–594. Cited on p. 31, 84, 89, 90

115

[68] Enhancing security and privacy in biometrics-based authentication systems N.
Ratha, J. Connell, R. Bolle IBM Systems Journal, vol. 40, no. 3, 2001, pp. 614-
634. Cited on p. 19

[69] Ron Rivest. Lecture notes from lecture 21 of MIT course 6.857, Fall 2001. http:
//web.mit.edu/6.857/OldStuff/Fall01/handouts. Cited on p. 13

[70] A. Russell and Wang. How to Fool an Unbounded Adversary with a Short Key.
In Advances in Cryptology — EUROCRYPT 2002. Cited on p. 21, 22, 23, 24,
69, 70, 83, 84, 85, 87

[71] Sagem Morpho Inc, “The History of Fingerprinting,”
http://www.dia.unisa.it/professori/ads/corso-security

/www/CORSO-9900/biometria/Fingerprinting.htm. Cited on p. 13

[72] R. Shaltiel. Recent developments in Explicit Constructions of Extractors. Bul-
letin of the EATCS, 77, pp. 67–95, 2002. Cited on p. 12, 31

[73] C. Shannon. Communication Theory of Secrecy systems. In Bell Systems Tech-
nical J., 28:656–715, 1949. Note: The material in this paper appeared originally
in a confidential report ‘A Mathematical Theory of Cryptography’, dated Sept.
1, 1945, which has now been declassified. Cited on p. 11, 24, 28, 81

[74] C. Shannon. A Mathematical Theory of Communication. Bell System Technical
J., 27 (July and October 1948), pp. 379-423 and 623-656. Reprinted in D. Slepian,
editor, Key Papers in the Development of Information Theory, IEEE Press, NY,
1974. Cited on p. 55

[75] Bruce Schneier. Biometrics: Uses and Abuses.Iside Risks 110, Comm. ACM,
42(8), Aug. 1999. Cited on p. 13

[76] V. Shoup. A Proposal for an ISO Standard for Public Key Encryption. Available
at http://eprint.iacr.org/2001/112, 2001. Cited on p. 16

[77] C. Soutar, D. Roberge, S. A. Stojanov, R. Gilroy, and B.V.K. Vijaya Kumar.
Biometric Encryption (tm). Chapter 22 of ICSA Guide to Cryptography, ed.
Randall Nichols, McGraw-Hill, 1999. www.bioscrypt.com/assets/Biometric_
Encryption.pdf Cited on p. 18

[78] C. Soutar, D. Roberge, S. A. Stojanov, R. Gilroy, and B.V.K. Vijaya Kumar.
Biometric encryption using image processing. Proc. of SPIE, Vol. 3314, 178-188,
1998. Cited on p. 18

[79] C. Soutar, D. Roberge, S. A. Stojanov, R. Gilroy, and B.V.K. Vijaya Kumar.
Biometric encryption - Enrollment and Verification Procedures. Proc. of SPIE,
Vol. 3386, 24-35, April 1998. Cited on p. 18

[80] H. Stichtenoth. Algebraic Function Fields and Codes. Springer-Verlag, Berlin,
1993. Cited on p. 102

116

http://web.mit.edu/6.857/OldStuff/Fall01/handouts
http://web.mit.edu/6.857/OldStuff/Fall01/handouts
www.bioscrypt.com/assets/Biometric_Encryption.pdf
www.bioscrypt.com/assets/Biometric_Encryption.pdf

[81] George Teomko. Biometrics as a Privacy-Enhancing Technology: Friend or Foe
of Privacy? Presented at Privacy Laws & Business 9th Privacy Commissioners’
/ Data Protection Authorities Workshop, September 15th, 1998. http://www.
dss.state.ct.us/digital/tomko.htm Cited on p. 13

[82] Pim Tuyls, Jasper Goseling. Capacity and Examples of Template-Protecting
Biometric Authentication Systems. IACR Eprint 2004/106, May 2004. http:

//eprint.iacr.org/2004/106 Cited on p. 19, 55

[83] U. Uludag, S. Pankanti, S. Prabhakar and A. K. Jain. Biometric Cryptosystems:
Issues and Challenges. Proc. of the IEEE, Special Issue on Multimedia Security
for Digital Rights Management, vol. 92, no. 6, pp. 948-960, June 2004. http:

//biometrics.cse.msu.edu/Uludagetal_Cryptosystems_ProcIEEE04.pdf Cited
on p. 19

[84] US Department of Homeland Security. US-VISIT (United States Visitor and
Immigrant Status Indicator Technology) FAQs. See http://www.dhs.gov/

dhspublic/interapp/editorial/editorial_0444.xml Cited on p. 13

[85] Salil Vadhan. Randomness Extractors and their Many Guises. Tutorial from
FOCS 2002. http://www.eecs.harvard.edu/~salil/extractors-focs02.

ppt Cited on p. 12

[86] Salil Vadhan (and students). Lecture Notes from Harvard course CS225. http:
//www.courses.fas.harvard.edu/~cs225/Lectures/ Cited on p. 12

[87] E. Verbitskiy, P. Tuyls, D. Denteneer, J.-P. Linnartz. Reliable Biometric Au-
thentication with Privacy Protection. In Proc. 24th Benelux Symposium on In-
formation theory, 2003. Cited on p. 19

[88] Mark N. Wegman, Larry Carter. New Hash Functions and Their Use in Au-
thentication and Set Equality. Journal of Computer and System Sciences, 22(3),
265-279, 1981. Cited on p. 31

117

http://www.dss.state.ct.us/digital/tomko.htm
http://www.dss.state.ct.us/digital/tomko.htm
http://eprint.iacr.org/2004/106
http://eprint.iacr.org/2004/106
http://biometrics.cse.msu.edu/Uludagetal_Cryptosystems_ProcIEEE04.pdf
http://biometrics.cse.msu.edu/Uludagetal_Cryptosystems_ProcIEEE04.pdf
http://www.dhs.gov/dhspublic/interapp/editorial/editorial_0444.xml
http://www.dhs.gov/dhspublic/interapp/editorial/editorial_0444.xml
http://www.eecs.harvard.edu/~salil/extractors-focs02.ppt
http://www.eecs.harvard.edu/~salil/extractors-focs02.ppt
http://www.courses.fas.harvard.edu/~cs225/Lectures/
http://www.courses.fas.harvard.edu/~cs225/Lectures/

118

Appendix A

Variants on the Left-over Hash

(Privacy Amplification) Lemma

Randomness extractors are key tools in this thesis, and we will use several variants
on a classic construction of extractors, referred to as the “left-over hash” or “privacy
amplication” lemma. These variants will be useful in our constructions of special-
purpose extractors. We gather them here for easy reference, and because their proofs
are very similar.

Recall the basic left-over hash lemma:

Lemma A.1 (Also Lemma 2.4). If {hi}i∈I is a family of pairwise independent

hash functions from n bits to ` bits, and X is a random variable in {0, 1}n with Renyi

entropy H2(X) ≥ `+ 2 log
(

1
ε

)
+ 1, then

〈I, hi(X)〉 ≈ε 〈I, U`〉

where I ← I, U` ← {0, 1}` (both drawn uniformly), and I, X and U` are independent.

A.1 Composing Hashing with Arbitrary Functions

The first variant will be useful for composing the pairwise-independent extractor
with a function whose design is beyond our control (a cryptographic hash function,
for example).

The lemma deals with first hashing X into a string that may be very long (using
pairwise-independent functions) and then shrinking its length (down to about H2(X))
using an arbitrary function.

Lemma A.2 (Composing with an arbitrary function). Let f : {0, 1}N → {0, 1}`
be an arbitrary function. If {hi}i∈I is a family of pairwise independent hash functions

from n bits to N bits and X is a random variable in {0, 1}n with Renyi entropy

H2(X) ≥ `+ log
(

1
ε

)
+ 1, then

〈I, f(hi(X))〉 ≈ε 〈I, f(UN)〉

119

where I ← I, UN ← {0, 1}N (both drawn uniformly), and I, X and UN are indepen-

dent.

This lemma requires a fresh proof—it does not follow directly from the original left-
over hash lemma: because N may be much larger than n and H2(X), the distributions
〈I, hI(X)〉 and 〈I, UN〉 need not be indistinguishable. In fact, when N > n they will
have statistical distance almost 1.

The idea behind the proof is to show that for all non-zero strings α ∈ {0, 1}`, the
inner product modulo two α�f(hI(X)) is distributed almost identically to α�f(UN).
Elementary Fourier analysis then shows that the distributions f(hI(X)) and f(UN)
are close (even given I). Details follow.

Proof. The bias of a distribution A over {0, 1}` with respect to a string α is defined

to be biasα(A) =
∣∣ EA

[
(−1)α�A

] ∣∣ = |2 Pr[α� A = 0]− 1|.
The following fact about the hypercube {0, 1}` will be useful below: For any

random variables (distributions) A and B on {0, 1}`, we have:

SD (A,B) ≤
√ ∑

α∈{0,1}`
(biasα(A)− biasα(B))2. (A.1)

Claim A.3. For every α ∈ {0, 1}`, the expectation, over i← I, of the expression

(biasα(f(hi(X)))− biasα(f(UN)))2

is at most Col(X) = 2−H2(X) ≤ ε22−`.

We first show that this claim implies the lemma, and then prove the claim further

below. For every i ∈ I, let Di = f(hi(X)). The first observation is that the distance

we are seeking to bound is the average, taken over i, of the distance between Di and

the target distribution f(hi(X)).

SD (〈I,DI〉 , 〈I, f(UN)〉) = EI [SD (DI , f(UN))]

We can now bound the statistical difference using the biases (Eqn. A.1):

SD (〈I,DI〉 , 〈I, f(UN)〉) ≤ EI

√∑
α

(biasα(DI)− biasα(f(UN)))2

For any random variable, E

[√
X
]
≤
√

E [X] (Jensen’s inequality). Hence

SD (〈I,DI〉 , 〈I, f(UN)〉) ≤
√∑

α

EI

[
(biasα(DI)− biasα(f(UN)))2]

By the main claim above, the term inside the square root sign is at most
∑

α ε
22` = ε2,

and so the statistical difference which we want to bound is at most ε2.

120

To complete the proof above, we just have to prove the claim.

Proof of Claim A.3. For α = 0`, the claim is trivial since the difference of biases is

always 0. Fix α 6= 0`. Let

µ = biasα(f(UN)) = EUN

[
(−1)α�f(UN)

]
Let px = Pr[X = x]. Then we can write biasα(f(hI(X)))− biasα(f(UN)) as

biasα(f(hI(X)))− biasα(f(UN)) =
∑

x∈{0,1}n
px((−1)α�f(hI(x)) − µ︸ ︷︷ ︸

Zx

)

Now let Zx be the random variable (−1)α�f(hI(x)) − µ (this is a function of I).

Since {hi} is a pairwise independent family of hash functions, the expectation of Zx

taken over I is exactly 0 (that is, for any fixed x, hI(x) is uniformly distributed over

{0, 1}N). Moreover, the variables Zx and Zy are independent for every pair of strings

x 6= y, so that EZxZy [=] 0. Thus

EI

[
(biasα(f(hI(X)))− biasα(f(UN)))2] =

∑
x,y∈{0,1}n

pxpyEI [ZxZy] =
∑

x

p2
xE
[
Z2

x

]
The variance EI [Z2

x] = Var [Zx] is at most half of the range of Zx, that is 1. Thus the

expected square of the difference of biases is at most
∑

x p
2
x = Col(X).

A.2 XOR of Product Distributions

The second variant on the left-over hash lemma has to do with product distributions.
Suppose we have two independent random variables A,B, with at least n bits of
Renyi entropy (or min-entropy) between them, where B ∈ {0, 1}n. Then we can
build a strong extractor which maps the product distribution A,B to something
nearly uniform, but which allows one to recover B given A and the output of the
extractor. Thus, we can think of A as a “key”, which allows one to recover the
“message” B.

Definition A.1 (XOR-universal function families (also in Definition 2.3).

A collection of functions {hi}i∈I , where hi : {0, 1}n → {0, 1}n, is XOR-universal if:

∀a, x, y ∈ {0, 1}n, x 6= y : Pri←I [hi(x)⊕ hi(y) = a] ≤ 1
2n−1

.

Lemma A.4. If A,B are independent random variables in {0, 1}n such that H2(A)+

H2(B) ≥ n + 2 log
(

1
ε

)
+ 1, and {hi} is a XOR-universal family (from {0, 1}n to

{0, 1}n), then

SD (〈I, hI(A)⊕B〉 , 〈 I, Un〉) ≤ ε,

where Un and I are independent and uniform on {0, 1}n and I.

121

The Lemma above gives a special “extractor by XOR” which works for product
distributions A×B with at least n bits on min-entropy between them.

Proof of Lemma A.4. Consider the collision probability of (i, hi(A)⊕B). A collision

only occurs if the same function hi is chosen both times. Conditioned on that, one

obtains a collision only if hi(A)⊕hi(A
′) = B⊕B′, for A′, B′ i.i.d. copies of A,B. We

can use the XOR-universality to bound this last term:

Pr[(i, hi(A)⊕B) = (i, hi(A
′)⊕B′)] =

Pr[i = i′]
(

Pr[B = B′] · Pr[hi(A) = hi(A
′)]

+
∑
a 6=0

Pr[B ⊕B′ = a] · Pr[hi(A)⊕ hi(A
′) = a]

)
(A.2)

Now let ta = H2(A), tb = H2(B). For a 6= 0, we have Pr[hi(A) ⊕ hi(A
′) = a] ≤

1/(2n− 1), by the conditions on {hi}. On the other hand, by a union bound we have

Pr[hi(A) = hi(A
′)] ≤ Pr[A = A′] +

1

2n − 1
≤ 2−ta +

1

2n − 1

Hence, Eqn. A.2 reduces to

1

|I|

(
2−tb

(
2−ta +

1

2n − 1

)
+

1

2n − 1

(∑
a 6=0

Pr[B ⊕B′ = a]

))

≤ 1

|I|2n

(
1 + 2n−ta−tb + 2−tb +

2

2n − 1

)
Now 2n−ta−tb ≤ ε2/2 by assumption, and we also have 2−n ≤ 2−tb ≤ ε2/2, since

ta, tb ≤ n and ta + tb ≥ n + 2 log
(

1
ε

)
(similarly, n ≥ 2 log

(
1
ε

)
). Hence Eqn. A.2

reduces to (1 + 2ε2)/|I|2n. As we mentioned, any distribution on a finite set S with

collision probability (1+2ε2)/|S| is at statistical distance at most ε from the uniform

distribution [46]. Thus, (i, hi(A)⊕B) is ε-far from uniform.

A.3 Conditional Min-Entropy

The parameters of extractors are usually given as in Definition 2.1: for a particular
bound t on the min-entropy of the input, one is guaranteed a bound ε on the dis-
tance from uniform of the output. However, if we are only given a guarantee on the
conditional min-entropy of the input, then, in general, we get lose an additive factor
of log

(
1
ε

)
in the entropy. Recall that if the conditional min-entropy H̃∞(X|Y) is t,

then with probability 1 − ε/2 over y ← Y , the min-entropy of X given Y = y is at
least m− log

(
1
ε

)
− 1. This gives us the following bound:

Fact A.5. If Ext is a (n, t, `, ε/2) extractor, and if H̃∞(X|Y) ≥ t+ log
(

1
ε

)
+ 1, then

SD (〈Y,Ext(X;S)〉 , 〈Y, U`+k〉) ≤ ε.

122

Typically, in the extractors literature log
(

1
ε

)
is very small, and so losing that

much in the parameters is not a problem. However, in our settings log
(

1
ε

)
will be the

security parameter (say 100, roughly), while the entropies we deal with as inputs are
only on the order of a few hundred. Ensuring tight tradeoffs between parameters is
therefore important.

For a particular function Ext, let ε(p) denote the maximum distance from uniform
of Ext(X;S) when the min-entropy of X is at least log(1/p) (that is, p = 2−H∞(X)).
Note that ε() will increase with p, and will be 1 when p is large. If the function ε(·)
is convex-∩, then we lose nothing by switching to conditional min-entropy:

Lemma A.6. If Ext is an extractor with error function ε(p) which is convex-∩, then

if H̃∞(X|Y) ≥ t′, we have

SD (〈Y,Ext(X;S)〉 , 〈Y, U`+k〉) ≤ ε(2−t′).

In particular, we get “conditional” versions of the left-over hash lemma, as well
Lemmas A.2 and A.4, with no loss of parameters (that is, to ensure statistical differ-
ence ε one only needs H̃∞(X|Y) ≥ `+ 2 log

(
1
ε

)
, as opposed to `+ 3 log

(
1
ε

)
).

Proof. We can write the statistical difference as an average:

SD (〈Y,Ext(X;S)〉, 〈Y, U`+k〉) = Ey←Y [SD (Ext(X|Y =y;S), U`+k)]

Let py = 2−H∞(X|Y =y). We can simplify the expression. By the definition of ε():

SD (〈Y,Ext(X;S)〉, 〈Y, U`+k〉) ≤ Ey←Y [ε(py)]

By Jensen’s inequality, we have Ey [ε(py)] ≤ ε(Ey [py]) since ε(·) is convex-∩. The

expectation of py over y is exactly 2−t′ .

123

	Acknowledgements
	Bibliographic Note
	Introduction
	Fuzzy Extractors: Cryptography with Noisy Data
	Contributions of This Research
	Related Work

	Entropic Security: Hiding All Partial Information
	Two Games for Measuring Information Leakage
	Contributions on Entropic Security
	Composability and Semantic Security

	Organization of This Thesis

	Mathematical Preliminaries
	Probability Distributions and Entropy
	Three Measures of Entropy

	Randomness Extractors
	Metric Spaces and Error-Correcting Codes

	I Cryptography with Noisy Data
	Secure Sketches and Fuzzy Extractors: Cryptographic Keys from Noisy Data
	New Definitions
	Fuzzy Extractors from Secure Sketches
	Two Generic Constructions
	Constructions for Hamming Distance
	Constructions for Set Difference
	Small Universes
	Improving the Construction of Juels and Sudan
	Large Universes via the Hamming Metric: Sublinear-Time Decoding (Revised December '04)
	Syndrome Decoding in Sublinear Time (Revised December '04)

	Constructions for Edit Distance
	Alternate Error Models and List-Decoding
	Example: Random Errors in the Hamming Metric
	Improved Error-Correction via List Decoding

	Application: Password Authentication

	Lower Bounds from Coding
	Bounds on Loss of Min-Entropy
	Bounds on Loss of Shannon Entropy

	II Secrecy for High-Entropy Data
	Entropic Security, Prediction and Indistinguishability
	Entropic Security, Prediction of Functions and Indistinguishability
	Proving Theorem 5.1

	From Entropic Security to Indistinguishability
	From Indistinguishability to Entropic Security
	Entropic Security for Predicates
	From Predicates to General Functions

	Encryption of High-Entropy Sources
	Background
	Using Expander Graphs for Encryption
	A Random Hashing Construction
	Lower Bounds on the Key Length

	Entropically-Secure Sketches and Noise-resilient ``Perfect'' Hash Functions
	Entropic Secrecy for Secure Sketches and Extractors
	A Non-Explicit Solution: Codes With Limited Bias
	Efficient, Explicit Solutions via Randomization
	Constructing Small-Bias Families of Linear Codes
	Constructions of Small-Bias Families from Specific Codes
	Secrecy for Fuzzy Extractors

	Perfectly One-Way Hash Functions
	Definitions of Perfect One-way-ness
	Constructing Noise-resilient POWFs
	Improved Construction of Ordinary POWFs
	Putting It All Together

	Bibliography
	Variants on the Left-over Hash (Privacy Amplification) Lemma
	Composing Hashing with Arbitrary Functions
	XOR of Product Distributions
	Conditional Min-Entropy

