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Abstract

We will look at the existence of schedules which are simultaneously near-optimal for two
criteria. First, we will present some techniques for proving existence theorems, in a very general
setting, for bicriterion scheduling problems. We will then use these techniques to prove existence
theorems for a large class of problems. We will consider the relationship between objective
functions based on completion time, flow time, lateness and the number of on-time jobs. We
will also present negative results first for the problem of simultaneously minimizing the maximum
flow time and average weighted flow time and second for minimizing the maximum flow time
and simultaneously maximizing the number of on-time jobs. In some cases we will also present
lower bounds and algorithms that approach our bicriterion existence theorems. Finally we will
improve upon our general existence results in one more specific environment.

1 Introduction

This thesis will focus on the issue of scheduling a set of jobs on a set of resources to simultane-
ously minimize two criteria. This work builds both on ideas from the literature of single criterion
scheduling and also on some recent work in bicriterion scheduling. Scheduling has been studied
formally for nearly half a century and has been motivated by the common problem of having a
limited number of resources on which to efficiently process jobs or requests. This general problem
has been broken into many specific scheduling models that allow for various machine environments,
optimality criteria and additional constraints to be considered. Some surveys on the existing work
in scheduling theory have been done by Lawler, Lenstra, Rinnooy Kan and Shmoys [17], Graham,
Lawler, Lenstra and Rinnooy Kan[8], Karger, Stein and Wein[14] and Pinedo|[22].

Many natural scheduling problems that arise are concerned with only optimizing a single objec-
tive. Consider for instance the example of scheduling a single machine to complete a set of tasks as
quickly as possible. In this case the only objective is to finish all jobs in the shortest possible amount
of time. Another criterion that has been extensively studied is the average weighted completion
time of a schedule. This is often used in situations where the resources that are being scheduled
are shared among a group of users. In this setting one particular user may not care about the
total length of the schedule but may be very concerned with how quickly his own tasks or requests
are completed. If the scheduler is only worried about insuring that all users feel their requests are
being completed reasonably fairly then an approach that minimizes the average completion time
of all jobs will probably be best.

At times problems occur that require that more than one optimality criterion be considered.
Suppose in the last example that the resources being scheduled were actually a group of people



with a variety of skills and multiple bosses. This group of people wants to keep all the bosses happy
by completing requests as promptly as possible and also wants to insure that the total time needed
to complete all requests will not exceed the end of the work day. In essence this group of workers
is concerned with both the average completion time of all the jobs received over the course of the
day and also with the total length of time it will take to complete this set of jobs. If the workers
relied on either criterion by itself, the resulting schedule could turn out to be far from optimal in
terms of the other criterion.

While the workers in the previous example are most concerned with knowing how to schedule
themselves to come close to meeting both objectives, the first question that needs to be answered
is whether such a schedule exists. This thesis will primarily address the question of existence and
show that in most bicriterion settings, schedules exists which are simultaneously close to optimal
for both criteria.

The organization of this thesis is as follows. In the next section we will briefly mention some
of the related work. In the third section we will look at some new results and two pieces of related
work that present general methods for proving bicriterion existence results, finding lower bounds
that match these results and finally in some cases finding approximation algorithms that come
close to achieving the best possible bicriterion schedules. The fourth section will extend these
ideas to new bicriterion scheduling problems. In examining new problems we will also consider two
instances in which no schedule exists that is simultaneously a constant factor approximations for
both criteria. While the existence results from the third and fourth sections apply to a very general
class of scheduling problems, the fifth section will briefly look at one specific environment and prove
a better existence theorem for this restricted case. Finally we will conclude by presenting some
open problems.

2 Background

2.1 Notation

Very generally, this thesis deals with scheduling n jobs on a set of m resources. Each job j requires
some non-negative processing time, p;, on one of the machines. We define a schedule S to be an
assignment of jobs to machines over time. For a schedule § we will denote the completion time
of 7in S as CJS . We may omit the superscript S when the schedule is obvious from the context.
In some cases we will consider instances in which each job j may have an associated non-negative
weight wj, release date r; and/or a due date d;. By weighting jobs differently we can designate
the relative importance between jobs. Release dates allow us to model situations where jobs arrive
over time and are therefore not all available for processing at the start of the schedule. Due dates
represent a time at which we would preferably like the job completed. We will consider models in
which the lateness of a job is of importance or others in which we are only concerned with whether
or not a job finishes after its due date.

2.1.1 Optimality Criteria

Optimality Criteria Based on Completion Times: The average weighted completion time
(ACT) of S is defined to be %ijCf. Notice that minimizing %ijCJS is equivalent to min-
imizing the total weighted completion time which is given by ijC]S . We will use the terms
average weighted completion time and total weighted completion time interchangeably since they



are equivalent objectives. We will let C} denote the completion time of job j in the optimal ACT
schedule and therefore the optimal value is written 3, w;C’.

The makespan, or schedule length, is defined to be the maximum completion time of any job in
the schedule. We define the makespan of a schedule S to be C.. = max; 0]5 . For a given problem
instance we will denote the minimum makespan, over all possible schedules S, as

opt __ .. .: S
Cmax - HlSIII Cmax'

Optimality Criteria Based on Lateness: When each job j has a deadline d;, then the lateness
of j is defined to be L; = C; — d;. Just as the average completion time and maximum completion
time of a schedule are of interest, similarly the average weighted lateness denoted }_; w;L; and the
maximum lateness given by Lyax = max; L; are also natural objective functions. Unfortunately,
L; as defined above can be difficult to work with. Since L; can be zero or negative, the optimal
value of either criteria could likewise be zero or negative. Therefore L;, in this form, does not easily
lend itself to meaningful approximation techniques.

One way to avoid this is to insure that all jobs have a positive lateness in the optimal schedule.
Consider the problem instance created by subtracting from each d; a uniform positive constant
0. Let d; = d; — 6. If ¢ is large enough, say § > max;d;, then each job j will have d;- < 0. As
a result, when we compute the lateness of each job based on the new deadline d;- every job will
have an optimal lateness of strictly positive value. Also notice that an optimal solution for the new
deadlines is also an optimal solution for the old deadlines. However, having negative deadlines is a
somewhat unnatural construction. Note also that by taking ¢ to be arbitrarily large, we can prove
arbitrarily good approximation ratios for any algorithm.

Now suppose that instead of associating deadlines with jobs we associate delivery times. We
let g; be the non-negative delivery time required by job j. Problems involving delivery times occur
naturally in many production environments. Consider a pizza shop that guarantees that all pizzas
will arrive at your home within 30 minutes of an order being placed. We can let C; be the time that
the j** pizza finishes cooking, and g; be the amount of time it will take for that pizza to be delivered
to the costumer. In this case, the pizza shop is not looking at minimizing the maximum completion
time but instead is minimizing the maximum completion time plus delivery time. Therefore, the
pizza shop wants to know that they can guarantee that

max(C; + ¢;) < 30 minutes
j

in order to meet the customer’s expectations. One may wonder why we don’t just adjust the
processing time of each job to include the delivery time required by that job. The reason for
keeping p; and g; separate is that one could consider p; to be the amount of time that the job
requires a scarce resource. In our pizza shop example imagine that ovens are very expensive but we
can hire many inexpensive teenagers to deliver the pizzas. Therefore we want to be able to schedule
the oven based on knowing how long each pizza is going to need to actually be in the oven.

We will now see the connection between delivery time problems and problems involving lateness.
Recall that we made our deadlines negative to insure that all jobs had optimal positive lateness.
Suppose that we transform an instance involving due dates to one involving delivery times as
follows. For each job j we let ¢; = —d;-. As stated above, an optimal solution in terms of adjusted
deadlines will also be an optimal solution for our original lateness problem. Therefore we know that
if we find an optimal solution in the delivery time model of lateness it is also an optimal solution for
the corresponding lateness problem. While the delivery time model does not solve the problem of



determining the quality of an approximate schedule in terms of approximating an optimal lateness
solution, we will use it since it does have another natural interpretation. We will overload notation
and let L; = C;j + ¢j. We will let L' be the optimal maximum lateness and L7 be the lateness
of j in the optimal average lateness schedule with value ) w; L.

For the rest of this paper when we talk about lateness we will mean lateness as used in the
delivery time model of lateness.

Optimality Criteria Based on the Number of On-Time Jobs: While measuring the lateness
of a job can be of importance, in some cases one is only interested in whether or not a job is late.
For this problem we will define the variable U; for each job j. For a particular schedule S, we will
use UJS to indicate whether or not job j meets its deadline in schedule S. In other words UJS will
have the following value

. S )
Uf:{o if C7 < d
1 otherwise.

Using U; we will look at maximizing the number of jobs that meet their deadline. For a
particular schedule S we compute the total number of jobs that complete on-tome as Y (1 — UJS ). If
we have an optimal schedule $* we will let U} be 0 if job j meets its deadline in S* and 0 otherwise.
We will then define the optimal number of jobs finishing on time to be 3>(1 — UY).

Optimality Criteria Based on Flow Time: Lastly, the flow time of a job j is defined to be
F; = C; —rj. The flow time can be thought of as representing the amount of time a job actually
spends in the system before it is completed. Flow time is considered an accurate measure of the
responsiveness of a system. Again, two interesting criteria are the maximum flow time of any job
in schedule S, denoted F3, = max; FJS , and the average weighted flow time of S which is given

by > w;F;. We will let

: S
Fggt = min Fi,,
be the minimum over all possible schedules of the maximum flow time of a set of jobs. We will also
define F to be the flow time of job j in the optimal average flow time schedule and denote the
value of this optimal schedule as }; w; F.

2.1.2 Environments

When we need to specify an environment, we will follow the notation of Graham, Lawler, Lenstra
and Rinnooy Kan[8] and use a triplet «|8|y to define the problem. In this notation « contains
1 entry and represents the machine environment and 8 contains anywhere from zero to multiple
entries and specifies any additional constraints such as release dates or precedence constraints. We
will extend the notation to allow the <y field, which is used for the optimization criterion, to contain
1 or more entries.

2.1.3 Definitions

For simplicity when stating many of the existence theorems we will not specify a particular environ-
ment but say instead that the result applies to any scheduling problem. We borrow the definition
of any from Stein and Wein[25] and mean any problem that meets the following two conditions:



1. Truncation at time ¢: If we take a valid schedule S and remove from it all jobs that complete
after time ¢, the schedule remains a valid schedule for those jobs that remain.

2. Composition: Given two valid schedules S; and S5 for two sets J; and Jo of jobs (where J; N Jo
is potentially nonempty), the composition of S; and Ss, obtained by appending S to the end
of S1, and removing from S5 all jobs that are in J; N Js, is a valid schedule for J; U Js.

These two conditions encompass most environments. For instance, although we have specified a
jobs’ release time as r; in order to simplify notation, these two conditions also allow for jobs to have
machine dependent release dates. However, the Composition condition is violated by problems in
which the processing time of a job is not constant over time or a job is required to run at a specific
time. Strict precedence constraints that require anything of the form job j must immediately
precede job ¢ could violate either of the two conditions.

2.14 Combine(Sl, S2,t)

Suppose we have two valid schedules S; and So for a set of jobs J. Then we will use the following
construction to create a valid schedule S’ for J.

Combine(S1, Sa,1)
1. Let K be the set of jobs which complete after time ¢ in schedule Ss.
2. Create schedule S} from schedule Sy by removing from S5 all jobs in K.
3. Create schedule S| by removing from S; all jobs in J — K.
4. Create schedule S’ by appending S} to the end of S5.

Clearly S’ runs all jobs in J. Since jobs are only delayed with respect to their start time in
either S; or Sy, we know that S’ does not violate any release dates. Furthermore S’ also respects
precedence constraints. If we consider any pair of jobs j; and j; with the constraint that job j;
must complete before j can start then we know by our construction that either both jobs will be
run according to either schedule Sy or Sy or the j; will run according to S and finish before time
t in S’ and j; will run according to S; and therefore will not start before time ¢ in S’. In general
our two conditions on any scheduling problem are enough to show that S’ is a valid schedule.

2.1.5 Bicriterion Approximations

When working with single criterion minimization problems, we say that an algorithm is a p-
approximation algorithm if, in the worst case, the solution returned is within a multiplicative
factor of p from optimal. In other words if we have an objective function f(z) with optimal value
OPT, then solution s is a p-approximation if it has the property that

f(8) < pOPT.

Note that this definition only makes sense for p > 1. Likewise we call an algorithm A a p-
approximation for the f if even in the worst case the solution S returned by A is a p-approximation
for OPT. For bicriterion optimization, Stein and Wein [25] introduced the following notation.
Suppose we have criteria (A, B), then we say that S is an («, 8)-schedule if S’ is simultaneously at



most an a-approximation for A and a S-approximation for B. Similarly an (a, 8)-approximation
algorithm returns a schedule that, in the worst case, is within « of optimal for criterion A and (8 of
optimal for criterion B. While most of the problems that we consider are minimization problems,
suppose that A is a criterion that is optimized by being maximized. Then we say that a schedule
or an algorithm is an («, 8)-approximation if it is simultaneously at least a é-approximation for A
and a B-approximation for B. Similarly if B is a maximization problem.

2.1.6 Negative Results

In this thesis we will be presenting some negative results and therefore it is necessary for us to
define what we mean by a negative result or lower bound for a bicriterion scheduling problem.
Suppose we are concerned with optimizing two criteria A and B. Then a negative result for the
bicriterion problem «|8|(A4, B) will be any result that shows that for some a and b instances exist
for which no (z,y)-schedule exists with < a and simultaneously y < b.

2.2 Related Work

While some papers have explicitly set out to address bicriterion scheduling problems, other results
have been the byproduct of work on single criterion scheduling problems. For instance, Graham
showed in 1966 that using any list scheduling algorithm for the problem of scheduling jobs on
parallel identical machines will produce a schedule of length at most twice optimal[7]. One list-
scheduling algorithm schedules jobs according to non-increasing ratio of weight to processing time.
This turns out to produce a schedule with average weighted completion time at most (/2 + 1)/2
times the optimal average weighted completion time[15]. In the special case where the weights are
all equal this actually achieves the optimal value[5].

Motivated by the results of a report by Panwalkar, Dudek and Smith[20], which concluded that
many managers use multiple objectives when creating schedules, Van Wassenhove and Gelders [27]
looked at the problem of simultaneously minimizing the average completion time and lateness of a
schedule on one machine. A set of schedules is said to be “Pareto optimal” if no schedule exists
that is simultaneously better, in terms of both criteria, than any of the schedules in that set. Van
Wassenhove and Gelders outlined a polynomial time algorithm that found the set of bicriterion
schedules which are Pareto optimal for the problem of minimizing the average completion time and
lateness of a schedule. Hoogeveen and Velde [12] extended these results to show that the number
of distinct schedules in the set of Pareto optimal schedules is polynomial. Other papers dealing
with Pareto optimal sets of schedules are due to Nelson et al.[19], Garey et al.[6], McCormick and
Pinedo [18], and Hoogeveen [10, 11].

Other papers have approached bicriterion scheduling by fixing the value of one of the criteria
and then optimizing the other criterion. Shmoys and Tardos [23] considered the problem of fixing
the makespan of a schedule at twice optimal and then minimizing the total cost incurred by that
schedule. Smith[24] studied the problem of minimizing the average completion time of a set of
jobs on one machine while maintaining that the maximum lateness of the resulting schedule must
be optimal. While these approaches were both successful, it has been shown by Hurkens and
Coster that when scheduling jobs on unrelated parallel machines there exist instances for which
all optimal average completion time schedules have a makespan of Q(logn) times optimal[13].
By considering schedules that were only close to optimal for both criteria, Chakrabarti, Phillips,
Schulz, Shmoys, Stein and Wein[3] were able to outline general techniques for creating algorithms
to optimize the makespan and average weighted completion time simultaneously of a set of jobs.



More recently, Stein and Wein[25] were able to improve these results by showing for a very general
class of scheduling problems that bicriterion schedules exist that are simultaneous constant factor
approximations for the problem of minimizing the average weighted completion time and makespan.
Specifically Stein and Wein were able to show that for many scheduling problems there exists
schedules which are simultaneously at most 1.88-approximations for both criteria. The proof of
this existence result also suggested a method for creating bicriterion scheduling algorithms. Using
known approximations algorithms for the single criterion schedule problem, they were able to create
simple bicriterion scheduling algorithms for some more specific problems.

This thesis will take the approach of Stein and Wein[25] and consider the problem of showing the
existence of schedules that are simultaneous small constant factor approximations for two criteria.
The ideas presented by Stein and Wein will be examined in more detail in the next section along
with some news methods which are part of joint work with J. Aslam, C. Stein and N. Young][1].
We will also consider lower bounds and algorithms that achieve our existence results. Torng and
Uthaisombut[26] found a matching lower bound for the problem of simultaneously minimizing the
average completion time and makespan of a set of jobs on one machine with release dates. They
also used some properties of a-scheduling to create a deterministic polynomial time algorithm that
meets these bounds. We will look at both their lower bound and algorithm more carefully in order
to extend their results to other bicriterion scheduling problems.

3 General Techniques for Bicriterion Scheduling

In this section we will first look at a technique for proving the existence of good bicriterion schedules
in a very general setting. The method we will use was introduced by Stein and Wein[25] in the
context of simultaneously minimizing the makespan and average weighted completion time of a
schedule. After introducing their technique we will look at some methods which provide a proof of
a slightly stronger existence theorem for the general bicriterion scheduling problem (Crmax, Y- w;Cj).
Next we will present a lower bound found by Torng and Uthaisombut for 1|7;|(Cmax, >, Cj). This
result is of particular interest because it matches our improved existence result. Finally we will
look at an algorithm, for 1|r;|(Cmax, >, w;C;). For the one machine case with release dates, this
algorithm by Torng and Uthaisombut takes advantage of some of the properties of a-scheduling[4]
to achieve the existence results. While the results presented in this section are concerned with the
problem of simultaneously minimizing the makespan and average weighted completion time of a
set of jobs, we will extend these results in Section 4 to other bicriterion scheduling problems.

3.1 Previous Existence Results

Stein and Wein[25] showed that for any scheduling problem there exists schedules which are simul-
taneously good approximations for the makespan and total weighted completion time. While the
optimal average weighted completion time could be very long, the optimal makespan schedule will,
by definition, be the shortest valid schedule. Their method relied on running the optimal average
completion time schedule until some fraction of the weight had completed. Then the remaining
jobs, which already had relatively late completion times in the optimal average completion time
schedule, could be run according to their order in the optimal makespan schedule. Completing the
remaining jobs according to the optimal makespan ordering allows us to limit the length of the
resulting schedule. This clearly provides an upper bound on the total length of the schedule and
therefore a handle for proving approximation results in terms of C°P! . the optimal makespan. We

max>?
will state this formally in the following lemma which is implicit in the work of Stein and Wein[25].



Lemma 1 [25] For any scheduling problem, if we have two valid schedules S1 and S, where the
length of S1 = M, then for any X\ > 0 the length of S’= Combine(S1,S2, A\M) will be at most
(1+X)M.

Proof: By the two conditions of “any” scheduling problem, we know that S’ is a valid schedule.
We also know that the length of S’ will be at most (1 + A\)M since we run Sy for time AM and
then finish the remaining jobs in at most M time. O

By providing an upper bound on the completion time of all jobs, we also bound the increase in a
jobs completion time in terms of the optimal average completion time schedule. Therefore, assum-
ing one had an optimal average weighted completion time schedule S* and an optimal makespan
schedule SM, then one can use Combine(S™, S* t) to create schedule S’. For a good choice of
t, S’ will run most of the critical jobs according to S* and then quickly run the rest of the jobs
according to SM.

Time=2m7
Job 6
Job 6
Job 1 Job 1
Time=M____ N
Job 5 Job 5 Job 5
Job 4
Job 4 Job 4
Job 3
Job 2
Job 3 Job 3
Job 1
Job 2 Job 2
Optimal Optimal (2,2)-Schedule
Makespan ACT
Schedule Schedule

Figure 1: Construction of a (2,2) schedule. We create our (2,2) schedule by truncating the opti-
mal average weighted completion time schedule at time M and appending the optimal makespan
schedule to the truncated average completion time schedule.

In order to demonstrate this, Stein and Wein presented the following simple construction that
shows the existence of a (2, 2)-schedule for any scheduling problem. Let S’ = Combine(S™, S*, M)
where M = C9% is the length of the optimal makespan schedule S™. By construction, S’ will be
the schedule that runs schedule $* until time M and then finishes the remaining jobs according to

SM . By Lemma 1, §’ will have length at most 2M = 2C%% . Now all that remains to show is that

max-*



the total weighted completion time of S’ is at most twice optimal. Let C5 and C]’- be the completion
times of job j in S* and S’, respectively. Since S’ is the same as S* until time M, any job j that
completes before M in §* will have C]'- = C5. Job j with CF > M will run in the second half of
S’ according to SM. Since we’ve already shown that the length of S’ is at most 2M we know any
job j which runs in the second section of S" have C} < 2M < 2C7. Finally, because C} < 2C} for
all jobs, ijC]'- <23 w;C}. Figure 1 shows how a (2,2)-schedule might be created for the single
machine case with release dates. In Figure 1, notice that the length of the (2, 2)-schedule is at most
2M even if we replace all jobs that are run in the first part of the schedule with idle time. In most
cases we would expect that removing this idle time would actually make the resulting schedule
better than a 2-approximation for the makespan.

In the (2,2) construction, M is the breakpoint of S’, or the time at which S’ stops running
according to S* and starts scheduling jobs by their order in S™. By considering more carefully
the distribution of weight in the optimal average completion time schedule and choosing the best
breakpoint out of 3 different possibilities, Stein and Wein were able to improve their results to show
the existence of (2,1.735), (1.785,2) and (1.88,188)-schedules for makespan and average weighted
completion time. Figure 2 shows the same example as used in Figure 1 but now we consider 3
possible breakpoints aM, bM, and ¢cM where 0 <a<b<c<1.

3.2 Improved Existence Results

A natural extension of these results is to consider infinitely many breakpoints and choose the best
one according to the distribution of weight in the optimal average completion time schedule. In
order to do this, we first observe that by normalizing the weights as necessary, we can characterize an
average completion time schedule as a continuous probability density function(pdf). The advantage
of probability density functions is that their continuous nature allows us to consider infinitely many
breakpoints and then calculate an upper bound on the average completion time of the resulting
schedule based on the best possible breakpoint for a given pdf. Since it is possible to map any
average completion time schedule to a unique probability density function, the set of all probability
density functions must contain the set of all possible average completion time schedules. Therefore
finding an upper bound on the worst case pdf for our analysis also provides an upper bound in
terms of schedules.

In this section we will present the details of this new approach as well as consider the applicability
of these methods to other bicriterion scheduling problems.

3.2.1 The details of multiple breakpoints

In this section we will look at some of the details of analyzing multiple breakpoints. The work in
this section was done jointly with J. Aslam, C Stein and N. Young and is also presented in [1]. As
stated above, the first step in considering all possible breakpoints is to map average completion time
schedules, which are discrete functions, to continuous probability density functions. First we notice
that we can normalize the weights so that > w;C} = 1. Although the total weighted completion
time of a schedule is usually expressed as a sum over all jobs of the weighted completion time of
each job, we notice that our worst case analysis is concerned only with the distribution of weight
completing over time. This means that we can also compute the average weighted completion time
of a schedule by taking the sum over all time of the amount of weight completing at that time times
the completion time.

'To simplify notation we overload w; to also denote the new normalized weight.



[] -Jobsthat complete beforet = aM in ACT
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Figure 2: Using multiple breakpoints we can consider more than one time at which we might
truncate the optimal average weighted completion time schedule (ACT). In this example we show
the schedules created by choosing Time = aM and Time = bM as the breakpoint. We create our
new schedules by truncating our optimal ACT schedule at aM and bM respectively and appending
the optimal makespan schedule to the end of each truncated ACT schedule.

Mapping Schedules to Probability Density Functions: Let g(z) = 3°; w;C;6(C} —z) where
d(-) is Dirac’s delta function. Dirac’s delta function is defined to be the function that satisfies the
conditions §(z) = 0 for all z # 0 and [°_d(z)dz = 1. This places an impulse at z = 0. Notice
that this means that for a particular z the sum }_; w;C}6 (C]* — z) will actually only include those
jobs with € = z since for all other completion times not equal to z, 5((]]’-‘ — z) = 0. Having
transformed a schedule into a continuous function, we can then find the total completion time
of that schedule by integrating the corresponding probability density function g(z) over all time.
When we integrate g(z) over all time we get that the area under g(z) at each time is equivalent
to the amount of weight completing in the ACT schedule at time z times the completion time.
Remember that we normalized our weights so that > w;C; = 1. With these normalized weights
we know that [ g(z) dz = > w;C} = 1. Since g(2) > 0 and has integral 1, g is a pdf.

We can conceptualize this transformation from a discrete function to a continuous function
using Dirac’s delta function by thinking of creating, for every time z, a block of width % and area
2j|C’;:z w;C} centered at z. Consider the following 5 job example:
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job | CF  w;

We now rewrite this table to show the schedule indexed by time as opposed to by job.

time t | Jobs w/ C7 =t weight completing at ¢ Eﬂcf:t(ch;-‘)
T 3 10 T
10 8 8
1 1 1
3 4 5 2
1 1&5 st+E=12 2
2 2 = :

For this example, Figure 3 shows what this function looks like. As an impulse function, Dirac’s
delta function is the limit of this “block” as the width approaches 0 but the total area remains the
same. Figure 4 shows how our example can be represented uses Dirac’s delta function. Therefore,
defining g(2) = >°; w;C;6(C} — z) gives us a continuous representation of an average completion
time schedule.

Now that we have shown that we can map schedules to pdfs, we need to see how to analyze a
breakpoint of a schedule using the corresponding probability density function. Although we are
considering the problem of simultaneously minimizing the makespan and average completion time
of our schedule, we will consider multiple breakpoints in a more general setting. Assume that
we have an optimal average completion time S* and we have some other schedule S” of length
T. Suppose we are considering a breakpoint of oI, where 0 < a < 1. Then we define S’ =
Combine(S”, S*, aT). By construction, S’ will run S* until time o7 followed by the remaining
jobs according to ST. By Lemma 1, the makespan of S’ is at most (1 + «)T. The completion
time of any job that completes before oT' in S* will be unchanged in S’. For jobs where C; > aT,
which will be run in the second section of S', C; < (1 + a)T'. This means that for any job with

(14+a)T

CJ‘-‘ = 2, the completion time of j in S’ is at most times optimal. Therefore we can express

the average completion time of S’ as
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Figure 3: Representation of the average weighted completion time using “blocks” of width 5.
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We now want to choose the the best breakpoint to minimize the value of the above ex-
pression. Notice that this corresponds to choosing the breakpoint that minimizes the integral
Ior % g(z) dz. In order to insure that the makespan of S’ is still small we will restrict a to be
in [0, p] where 0 < p < 1. Then we are guaranteed that any breakpoint we choose to minimize the
average completion time will result in a schedule of length no more that (1 + p)7. For a particular

schedule g(z), this step corresponds to the following calculation

o (1 T —
min / wg(z) dz.
0<a<p Jor 2

Our goal is to find an upper bound on this value for all possible schedules. Since the set of all pdfs
includes all possible schedules, finding an upper bound on

max min
9 0<a<p

/gw Cl%;EQZL:;Eg(Z)dz,

T z
where g(z) is a pdf over [0, c0) yields an upper bound on the average weighted completion time of
the worst case schedule as well. Using the change of variables z = T'x we can rewrite this as

/00 14+ a)T -Tx
a Tz

00 1 _
g(Tx)de:/ Mg(Tm)de.

e X
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Figure 4: Representation of the average weighted completion time using Dirac’s delta function.

Now we show that f(z) = T - g(Tz) is a distribution if ¢g is a distribution by showing that
I3 fx)de = 1.

/Ooof(w)da: = /OOOT-g(Tw)d:I:

= /Ooo g(Tz)dTx

So by considering all possible distributions f we notice that our previous problem is equivalent to

) ®lt+a-—x
m?xorsrgrslp/a Tf(a:) dzx. (1)

Now we will show how to solve this problem. Suppose that f,.. is the pdf that achieves the
maximum value, c,,, of this integral. Notice that finding an upper bound on this integral for all
pdfs is equivalent to finding an upper bound on c,,. We observe that f..,, must have the following
characteristics.

Lemma 2 If f,.. is the distribution that mazimizes expression 1, then fpoo fmax(z) dz > 0.

Proof: By contradiction, if we set o = p then, [° H'O‘T_m f(z)dz = 0. Since simple distributions,
such as the uniform distribution over [0,2], exist for which [{° 2= f(z)dz > 0 this contradicts

the claim that f.,. is the distribution achieving the maximum value of expression 1. O
Lemma 2 tells us that [ ;’o fmax(z) dz > 0. By looking at the weighting function in the integral,

l4+a—=z
T

we notice that as z increases strictly decreases for = > 0.
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Lemma 3 If f,.. is the distribution mazimizing expression 1,then fpof fmax(z)dz = 0.

Proof: By contradiction, assume that [ pof fmax(z) dz = ¢ for some ¢ > 0. Create the distribution f’
by moving all weight ¢ to p*. By the preceding discussion, [.° HO‘T_I fl(z)dz > [° MT*“'” Smax () dx
which is a contradiction. O

By Lemma 2 we know that [° f..(2) dz > 0 and by Lemma 3 we can say that [ fua(7) dz =
0. This give us the following corollary.

Corollary 4 The distribution f.., contains a strictly positive point mass at x = p and is 0 for all
T > p.

At this point we know that f..,. will have the following form

f(=z) 0<z<p
fuax(@) = k-0(0) z=0p (2)
0 T > p.

Now we will use this information about f,..(z) to find an upper bound on c,,,,. First we need the
following definition.

Definition 5 If f.x is the distribution mazimizing expression 1, then

Pl—z+ o

Ae) = [T (o).

e} x

By definition, ¢, is the minimum value of A(«) for a € [0, p]. Therefore

p p
/ Coaxda < / A(a)da.
0 0

Now consider
p
/ e*A(a)da.
0
Since e* > 0 for all « € [0, p],
p p
/ €% Caxda < / e“A(a)da.
0 0
If we evaluate the left hand side we get

o
Cmax (€’ — 1) < / e*A(a)da.
0

Now we substitute the definition of A(«) into the right hand side.

Cmax(€” — 1) < /Op e? [/p 1_fomax(:1c)alav] da.

o7 x

Next we switch the order of integration

uae? = 1) < ["| [ (A2 fnn(o)da

14

dr.




Since f... does not depend on «,

Crmax (€’ — 1) < /Op [/Oz e® (H%) da] fmax(x)dx

Now we separate the inner integral into two terms

Pfl—z (7 1 =
Crax(€P — 1) < / [ / e*da + —/ aeada] Jomax(2)dz
0 z 0 T Jo

Evaluating the inside integrals and rearranging terms

Z

Coax(€f — 1) < /Op[l—x(e —1)-{-;( ze® — e )] fmax(x)dx

e.’L‘

_ /p[__e —l—l—l—l-e ——+ ]fmax()

= / Foue (@

Therefore

1

Coax < .
BT — |

Lemma 6 For any pdf f,

o 1 — 1
max min / ita-w :Bf(:v)da: < .
I 0<a<p /o T e —1

Proof: The upper bound follows from the discussion above. O

Since the average completion time of our new schedule is at most

1 + max min
f 0<a<lp Jqo

/°°1+a—x 1 ef
x - ef —1 (et —1)

we know that for any scheduling problem if we choose the best breakpoint oT, between [0, pT]
then the average completion time of our new schedule will be at most (2] Z ) times the optimal
average completion time.

Lemma 7 For any p € [0, 1], for any scheduling problem, if we have an optimal average completion
time schedule S* and another schedule ST where the length of ST is T = max C’T then there ezists

e

a schedule which is an (ep 1) approzimation for Y w;C; and has length at most (14 p)T.

Proof: This is a direct result of Lemmas 1 and 6. |

If we now consider the special case when ST is actually S™, the optimal makespan schedule
of length M, we arrive at the following bicriterion existence result for the makespan and average
completion time of a set of jobs.

Theorem 8 For any p € [0,1], for any scheduling problem, there ezists a (1 + p, ef—il) -approzimation
for (Cmax, X w;Cj).

15



Proof: This is a direct result of Lemma 7.
Od

Using Theorem 8 and picking particular values of p we arrive at the following corollary which
gives improved bounds compared to those presented by Stein and Wein[25].

Corollary 9 For any scheduling problem, there exists a (2,1.582)-schedule, a (1.695,2)-schedule
and a (1.806,1.806)-schedule for (Cmax, Y, w;C;).

Now that we have found an upper bound on c,,. we will also show that a pdf exists which
actually achieves this upper bound. Let h.,, be a pdf for which the optimal value of

. ®lt+a—-z
m?xorsnalgp/a Tf(z) dz (3)

1S Cpax- We know that A, has the form

h(z) 0<z<p
huas(@) = { k-0(0) @ =p ()
0 T > p.

Next we need to determine h,,,, () for the region [0, p) and k. We do this by looking at the function

B(a) = [° 1+‘J“T’whmax(:/lc) dz. We use our knowledge from expression 4 about A, to first write
B(«a) as

B(a) = ———h(z)dz
@ z
| — 1 —
_ O T ) de 4 P,
e T P
P1— P h 1 —
= xh(ac)da:—l—a/ ($)dm+ te Py.
o] x « xz P
Then we take the derivative? of this with respect to «
1-— h P h k
Bla) = — 1% ) —aMe) y [7 0, K
@ o p
h P h
B'(a) = —ﬁ+/ ﬂdm-l—ﬁ.
o o T P

Now we assume that B(«) is constant over all @ and therefore the derivative with respect to a of
B(«) is 0. While this assumption simplifies the calculation considerably, it does not weaken the
result. Therefore

0 = —M+/p_wdm+£

o a T p

Next we substitute g(t) = h(t)/t and G = [ ¢ and say that the above expression holds for h(t) if
and only if

*We assume that B’(a) is defined
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o) - [ g@ds = % (5)
& Ga)-G(p)+Gla) = % (6)
o G +G@) = Frap) (7)

P
We notice that equation 7 is a differential equation of the form
y+y=a

and therefore the solution must look like y(z) = ¢1 + coe™®. We use this to rewrite equation 7 as
k — —z
G(w)z;—i—G(p )+ coe™”.

The above expression holds for all values of z including p~. We can solve for ¢z by setting z = p~.
This yields ¢ = —% and therefore

k e’k
Glz)=—+G(p™) - —e ™~
(z) P (v7) 5

With this expression for G we can use the fact that G = [ g,

g(z) = G'(z)
_ Sk
o

T

Next, to arrive at an equation for h(x) we substitute h(t) =t - g(¢) and obtain

Pk
h(z) = Slgee. (8)
p
Now that we have an expression for h,,.(z) in the range [0,p), we find k& by noticing that
J5 hoax (z) dz = [{ h(z) dz + k and because hy,, is a pdf, [ h(z)dz + k = 1. Solving for k we
get

p
kE = 1—/ h(z) dz

0

P e
= 1—/ ﬁaceﬂ"dac
0 p

Pk
. [_e_e—m”)
P




The last equation yields k = p/(e” — 1). Therefore, by Equations 4 and 8 the form of h,,,, is

{ef—ilze_z 0<z<p

Pnax (T) = L6(0) z=p

el—1

0 T > p.
Since we assumed that B(a) = cpa, for all @ we can compute ¢, using B(p) and
1 — 1
_1tp—p k=

Cmax:B(P)— p T er—1°

Therefore h,,,, is a pdf that achieves the maximum value of

. ®l+a-—=z
m}gxorgrggp/a Tf(m) dz. (9)

3.2.2 Applicability of Existence Results to Other Criteria

The ideas used to arrive at Theorem 8 turn out to apply to many other bicriterion scheduling
problems. Since delivery times are positive, L; will always be at least as large as C; and therefore
in section 4.1 we will be able to prove that Combine(S;, S2,t) also produces a schedule that is a
constant factor approximation for the maximum lateness of schedule S;. We will also relate the
average completion time of any schedule to the average lateness and then apply Theorem 8 to the
problem of minimizing the makespan and average lateness of a set of jobs.

Lemma 6 will be used when exploring the relationship between the makespan of a schedule
and the average flow time. While this problem can be solved using a similar derivation, we will
obtain the results in section 4.2 by noticing that after the release of the last job, minimizing the
average weighted flow time of the remaining jobs is equivalent to minimizing the average weighted
completion time of those jobs with respect to the last release date. Therefore by truncating at some
point after Co* | instead of before it, we can directly apply these results to the average flow time
problem.

Finally, while these methods are very general, we will also present instances in which they fail.
The best example of this is when we consider the case of the maximum flow time of a schedule
verses the average flow time of the same schedule. In this case we can show that instances exist for
which no one schedule is simultaneously a constant factor approximation for both criteria.

3.3 Lower Bounds and Algorithms for Special Cases

In this section we will look at two results from Torng and Uthaisombut[26]. Both results deal with
the special case of scheduling unweighted jobs with release dates on one machine to minimize the
makespan and average completion time simultaneously. This problem is denoted 1|7;|(Cmax, 3 Cj)-
They present a deterministic algorithm that achieves the existence results derived in the last section
and prove a lower bound that matches the upper bound from Theorem 8. We will look at the lower
bound and then explore their algorithm.

3.3.1 Lower Bound for 1|r;|(Cmax, . Cj)

The work presented in this section follows closely from [26]. In this section we will refer to the
average completion time of the schedule and prove a lower bound for 1|7;|(Cmax, % > Cj). As stated
earlier, since % >_Cj and ) C; are equivalent object functions except for the scaling factor %, this
also proves a lower bound for 1|7;|(Cnax, > Cj).
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Theorem 10 [26] For 0 < 8 < 1, there ezists an (infinite-size) instance such that no schedule is
an (z,y)-schedule with xt < 1+ and y < e—fﬁ_—l for (Cmax, > Cj).

Proof: The intuition behind the instance that produces this lower bound is to use the idea of
probability density functions to create a scheduling problem where small jobs are released so that
if they are run immediately the average completion time will be egeB_l. Describing the release of
the small jobs using probability density functions allows us to create an instance where the number
of zero size jobs, jobs with p; = 0, approaches infinity. Since we will be evaluating the average
completion time, we can include 1 unit-size job and claim that as the number of jobs approaches
infinity the average completion time of any schedule need only be calculated based on the completion
times of the zero sized jobs. If this relatively large job is released at time ¢ = 0, then either it can
be run right away, displacing the small jobs, or it can wait until time 8 and begin processing then.
By proving that these two schedules are the schedules with the best bicriterion bounds for this
problem instance, we arrive at the result.

Now we will present the details of the proof. We have n + 1 total jobs, n of which are jobs of
size 0 and the other one job is of size 1. The job of size 1 is released at time 0. The following pdf
f specifies, for some fixed § where 0 < 8 < 1, the release dates and therefore also optimal average
completion times of the n zero sized jobs:

e% 0<z<p
f(m):{5(0)e—lﬁ z=p
0 z > .

Given this specification for f(z), Torng and Uthaisombut then noticed that any schedule can
be described by the parameter s representing the starting time of the job of unit size. All zero
size jobs that are released before s will run at their release date and therefore attain their optimal
completion time in terms of the ACT schedule. Any job released after the job of size 1 is started
will need to wait until it completes before being scheduled. Following their notation, we will let
Cmax and O3, denote the makespan and average completion time of a schedule created with the
unit-sized job starting at s. Notice that the only schedules of interest occur with 0 < s < 5. We
know that the makespan will be C%,. = (1 + s). Since the optimal makespan is 1, we have that
Cs .« = (1+8)CoPt . Next we analyze the effect of s on the average completion time of the schedule.

We will ignore the completion time of the job of size 1 since as n approaches infinity, it becomes
negligible.

Civg = [ af@do+(s+1(1 - [ f@)iz)

0

S x s 1
_ /Oe—zdzz:—l—(s—l—l)(l—/o . dz)
B 1 if0<s< g
- {eﬁeﬂl ifs=p

From the above calculation, it is clear that the optimal average completion time is eigl which is

achieved by a schedule with makespan of 1+ 8. We also notice that any schedule starting the unit
sized job before time 143 will have an average completion time of 1. Therefore all such schedules are
e5—51-approximations for the average completion time. On the other hand, the optimal makespan
schedule starts the job of size 1 at time 0 and has a makespan of 1. Since all schedules that start
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the unit size job before time 8 are eﬂe—il—approximations for the optimal average completion time
and all other schedules must start the unit size job after time § and are therefore at least 1 +
times the optimal makespan we arrive at the theorem. O

3.3.2 A Deterministic Algorithm for 1|r;|(Cmax, > C;)

The previous two sections have shown that for the case of scheduling unweighted jobs on 1 machine
with release dates, the best possible bicriterion schedules for some instances will be a (14, 85—:)-
approximation of (Cmax, . Cj). Torng and Uthaisombut, using ideas from a-scheduling, showed
first a randomized algorithm that achieves these bounds and then described a deterministic poly-
nomial time algorithm with the same bounds. To understand their algorithm, it will first be useful
to describe the general technique of a-scheduling.

The idea behind a-scheduling is to use an optimal preemptive schedule to obtain an ordering of
jobs for the non-preemptive case. Consider the schedule P created by scheduling jobs preemptively
by the shortest remaining precessing time(SRPT). Baker[2] showed in 1974 that SRPT returns
an exact solution for 1|r;,prmt| > C;. For some 0 < a < 1, let CJP(a) be the time at which
an oa-fraction of j completes. A non-preemptive schedule can then be created by list scheduling
jobs according to non-decreasing C]P (a). The idea of scheduling jobs according to the ordering
of fraction completion times in a preemptive schedule appears in Phillips, Stein and Wein[21] and
Hall, Schulz, Shmoys and Wein [9]. Chekuri et al.[4] extended these results by introducing the idea
of choosing a randomly. The intuition behind a randomized choice of « is that while a particular
choice of a could be bad for one job, it won’t be bad for every job. Chekuri et al. [4] provide the
following two lemmas for this approach to a-scheduling.

Lemma 11 [}/ The makespan of any a-schedule is at most 1 + « times the optimal makespan.

The following lemma, refers to the randomized algorithm RAND which chooses a randomly from
a distribution f(z) and then uses that a to create a non-preemptive a-schedule.

Lemma 12 [}] The expected average completion time of RAND is at most 1+ 6 times the optimal
preemptive average completion time where

tl4a—t
5—01235)%/0 —— f(a)da.

Choosing o randomly from the probability distribution

_ eei 0<a<p
f)={g7 05

Torng and Uthaisombut create the randomized algorithm RAND — 3.

Theorem 13 [26] For 0 < 8 < 1, RAND — 8 is a randomized (1 + 3, e—E%)—approa;imation
algorithm for 1|rj|(Cmax, y_ Cj).

Finally using the observation by Chekuri et al.[4] that SRPT creates a preemptive schedule
with at most n — 1 preemptions, we know that there are at most n — 1 interesting choices of a.
This means that there are at most n distinct non-preemptive schedules that can be derived by
using a-scheduling to convert the preemptive schedule to a non-preemptive schedule. Chekuri et
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al.[4] use this to show that by searching all n possible schedules and choosing the best one, we
can in polynomial time, find a non-preemptive schedule that matches the expected bounds for the
randomized algorithm. Torng and Uthaisombut use these ideas to create BEST-4, the deterministic
algorithm that achieves the expected bounds of RAND — S.

In the same way that many of the existence results will prove useful when examining other
criteria, the ideas behind BEST-S will also turn out to provide similar results for the one machine
case with release dates and unweighted jobs. We will look at applying BEST-S to problems
involving lateness in Section 4.1

4 Bounds for other criteria

We will now look at extending the ideas from the previous section to other bicriterion scheduling
problems. We will use the idea of creating a composite schedule from two optimal schedules to
prove existence theorems for models involving lateness, flow time and the number of on-time jobs.

For many of the bicriterion scheduling problems involving lateness we will be able to show
a connection to objectives involving only the completion time. When we consider the flow time
of jobs we will look at five bicriterion objective problems. First we will consider the problem of
simultaneously minimizing the schedule length and average flow time. For this case we will show
that if we choose our breakpoint later in the average flow time schedule than we had in the average
completion time schedule, then this problem reduces to the problem of simultaneously minimizing
the schedule length and average completion time. Next we consider the problem of minimizing the
maximum flow time and average completion time. We will still use the idea of composite schedules
but will have to modify our analysis to provide an upper bound now on the maximum flow time as
opposed to the total schedule length. Next we will present an example for the bicriterion schedule
problem concerned with minimizing the maximum flow time and average flow time to show that
no schedule exists which is a simultaneous constant factor approximation for both criteria. We will
then show that for the problem of minimizing the maximum lateness and average weighted flow and
also for the problem of minimizing the maximum flow time and average weighted lateness of a set
of jobs, we can prove directly from our earlier results that schedules exist which are simultaneously
a constant factor approximation for both criteria. The last objective function we will consider is
the number of on-time jobs. We will prove that for every instance there exists (2, 2)-schedules for
the makespan and the number of on-time jobs. We will then use this result to arrive at a proof that
(2, 2)-schedules exist for maximum lateness and the number of on-time jobs. Finally we will prove
our second negative result which shows that instances exist for which no schedule is simultaneously
a constant factor approximation for the maximum flow time and the number of on-time jobs.

4.1 Lateness

Previously we have looked at models in which our objective was to simultaneously minimize the
maximum completion time and the total completion time of all jobs in a particular schedule.
Likewise, two objectives that arise when we consider problems where each job j has a deadline d;
associated with it, are the maximum lateness over all jobs and the total(or average) lateness of a
particular schedule. As described in Section 2.1.1, we will be working with the delivery time model
of lateness. In this model, each job has a positive delivery time g; which represents an amount of
time which j must wait after it has completed. We define the lateness of j to be L; = Cj + g;.
After presenting some existence results for (Lmax, >, w;jC}), (Cmax, 2 w;L;) and (Lmax, Y w;L;),
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we will see how the lower bounds and algorithmic results from Torng and Uthaisombut[26] apply
to lateness.

4.1.1 Existence Results

We will begin by looking at the problem of simultaneously minimizing the maximum lateness and
average weighted completion time of a schedule.

Maximum Lateness and Average Weighted Completion Time As with our previous re-
sults, we start by assuming that we have an optimal maximum lateness schedule S and an optimal
average weighted completion time schedule S*. We will let CjL be the completion time of job j in

ST and CL, be the length of S¥. Then we consider the schedule S* = Combine(S*, $*, \CL,.).
By construction, S* runs S* until time AC%,, for 0 < XA < 1, then finishes the remaining jobs

according to ST. As with our previous results, we will first upper bound the maximum lateness of
any schedule created using a breakpoint of A\C%Y where 0 < A < p. Given this upper bound, we
will then choose the best breakpoint that minimizes the average weighted completion time of the
resulting schedule. Since we are using a similar construction, once we have an upper bound on the

maximum lateness of S* we can apply Lemma 1 to arrive at a bound for 3 ijJ?‘.

Lemma 14 For any scheduling problem, if we have valid schedules S1 and So, where the length of
Sy is CL.  and the mazimum lateness of any job in Sy is L, then any schedule S* = Combine(S;, So, AC}

max maw)
will have a makespan of at most (1 + \)CL .. and mazimum lateness of at most (1 + \)L.

Proof: We know by Lemma 1 that the length of S* will be C,, < (1+A)CL,,. To find an upper

bound on the maximum lateness of any job in S* we need to consider both the maximum lateness
of the jobs run in the second half of S* and also the maximum lateness of the jobs run according
Sy. We begin by looking at the jobs that complete after A\C%,_ in Sp. This set of jobs is run in S
according to their order in schedule S;. Therefore we know that in the worst case each job j will
complete C} time units after we start running S;. We begin running S; at time AC.,, and as a
result

C} < AChay + Cj. (10)

By the definition of L; we know, in general, that the lateness of job j will be at least as large as
the completion time of j. In particular we know that

L>C!

max?
and by definition

L = max(Cj + g5)-
J
Combing these with inequality 10, we get
A A

J
)\Crlnax + C} +4q;
(I+X)L.

(VANVAN
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Therefore we can say that any job j with C'2 > AC..« will have L? < (14 M)L.
Now we consider the jobs which complete before the breakpoint. These jobs are scheduled in

S according to schedule Sy. If job j is run according to S, then we have that

L;‘ = 02 +q;
< /\Crlnax +qj
< ACmax + Cj +4j
< (1+ ML
Therefore any job j with C7 < ACp,,, will have Lﬁ‘ < (1+ ML O

At this point we know that we can truncate our average completion time schedule at AC}, .
and by Lemma 14 the resulting schedule will have a maximum lateness of at most (1 + A) times
optimal. Therefore for a particular upper bound p € [0,1] on A we can then use Lemma 7 to show
that for any schedule we can find a schedule that is simultaneously a most a (1 + p)-approximation

for the maximum lateness and an -approximation for the average completion time.

_e?
el —1

Theorem 15 For any p € [0, 1], for any scheduling problem, there ezists a (1 + p, (e,, 1)) schedule
for the delivery time model of mazimum lateness and average weighted completion time.

Proof: The result follows directly from Lemma 7 and Lemma 14. O

In deriving Theorem 15 we see how to apply Lemma 7 to the problem of simultaneously minimiz-
ing the maximum lateness and average completion time. Next we will show that any schedule that
is an a-approximation in terms of the optimal average completion time is also an a-approximation
for the average weighted lateness of a schedule. This allows us to prove existence theorems for the
bicriterion scheduling problems (Cmax, Y. wjL;) and (Lmax, > w;Lj).

Lemma 16 Let ) ; w;C and }_; w;L; be the optimal total weighted completion time and lateness
respectively of a set of jobs. If for some a > 1

ijC]S <« ZwJ'C;
J J

for schedule S, then

Z ijf <« Z ijj
J J
Proof: We know by the definition of lateness
ijLj:ZC +gq;) = ZwJC —i—Zw]q]
J J

Suppose we have some schedule S which is an a-approximation for the optimal average com-
pletion time. Then we can say that

ijLf = ZwJC "‘2“’]%
J
aZ'wJC -l-Zw]qJ

IA
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and since a > 1

ijLf < aijC’;—Faijqj
J J J

< aijL;‘-.
J

With Lemma 16, Theorem 15, and Theorem 8 we arrive at the following two theorems.

Theorem 17 For any p € [0,1], for any scheduling problem, there exists a (1 + p, ﬁ)—schedule
fO’I‘ (Cma.xa Z UJij).

Proof: Immediate from Theorem 8 and Lemma 16. a

Theorem 18 For any p € [0,1], for any scheduling problem, there ezists a (1 + p, ﬁ)—schedule
fOT (Lmam Z w]LJ)

Proof: Immediate from Theorem 15 and Lemma 16. d

It is important to point out that Lemma 16 also tells us that minimizing the average weighted
lateness of a schedule in the delivery time model is equivalent to minimizing the average weighted
completion time. This will be useful in Section 4.1.2 when we look at applying the results of Torng
and Uthaisombut [26] to models involving deadlines.

4.1.2 Lower Bounds and Algorithms

As a result of the general existence theorems from the previous section, it is natural to ask if we can
find matching lower bounds. The question of matching lower bounds is easily answered. In the case
where all delivery times are 0 or some small €, the lateness of any job becomes equivalent to the job’s
completion time. Therefore the lower bound of Torng and Uthaisombut [26] for 1|r;|(Cmax, > w;C;)
also provides a lower bound for 1|7;|(Lmax, Y. w;C}), 1|7j[(Cmax, >_ w;L;), and 1|r;|(Lmax, »_ w;L;).

Along with asking about lower bounds, we can also look for algorithms that achieve, or come
close to achieving, our existence results. Torng and Uthaisombut[26] give a deterministic algorithm,
BEST — B that produces a (1 + 3, e—é”i—l)-approximation for 1|7;|(Cmax, > Cj). In section 3.3.2
we examined the algorithm BEST — 8. Now we will see how it can be used as a simultaneous
approximation algorithm for these problems now involving deadlines. By Lemma 16 we get the
following corollary to their result.

Corollary 19 For 0 < 8 <1, BEST — 3 is a deterministic (1+ 3, e—fi—l)—approm'matz'on algorithms
for 1|75|(Cmax, > L;) where Lj is the delivery time formulation of the mazimum lateness problem.

Proof: This is a direct result of the work by Torng and Uthaisombut[26] and Lemma 16. ]

By the following lemma their algorithm also produces a schedule that is a (2 + f, e;—fl)—

approximation for 1|r;|(Lmax, 3. Cj).

Lemma 20 Any (1 4+ B)-schedule for 1|r;j|Cmax s also a (2 + B)-approzimation for 1|rj|Lmax-
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Proof: Recall that

opt opt
L max > Cmax
opt .
L. > mjax qj-

We use these to upper bound the maximum lateness L3 . of a schedule with C'3

max max S (]_-l-ﬂ)COpt
by observing that

max

LS. = m]r;LX(Cj +q;)
< max(Of +0)
< (4O + max(q)
< (14 B)LP + Lfi
< (24 8) Lk

a

Corollary 21 For 0 < <1, BEST — 8 is a deterministic (2+ 3, j—:)—approm'mation algorithm
for 1|7§|(Lmax, 2 Cj).

Proof: This is a direct result of the work by Torng and Uthaisombut[26] and Lemma, 20. O

Finally, by Lemmas 16 and 20 we also know that BEST — fis a (2 + (3, gﬂ‘{—l)—approximation
for 1|r;|(Lmax, > Lj)-

Corollary 22 For 0 < <1, BEST — S is a deterministic (2+ 3, %)—appmximation algorithm
for 1|r|(Lmax, 3 Lj)-

Proof: This is a direct result of the work by Torng and Uthaisombut[26] and Lemmas 16 and 20.
a

Corollaries 21 and 22 show that while BEST —f is an approximation algorithm for 1|r;|(Lmax, Y C;)
and 1|7j|(Lmax, y_ L;) it does not meet the lower bounds given in the beginning of this section. It
is still open whether another deterministic algorithm could do better for 1|r;|(Lmax, >, C;) and

1|7"j|(LmaXa ZLJ)'

4.2 Flow Time

The flow time of a job, given by F; = C; — r;, can be thought of as the amount of time it stays
in the system before being completed. Two optimality criteria associated with flow time are the
average weighted flow time and the maximum flow time of any job.

The average (or total) weighted flow time is ) w;F;. The average flow time is often considered
both a very accurate measure of the responsiveness of a system and also one of the most difficult
optimality criteria to work with. In our existence proofs, we will ignore the problem of actually
finding an optimal average weighted flow time schedule for a set of jobs. Instead, we will assume
that we have an optimal average weighted flow time schedule. The flow time of job j in this
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optimal schedule will be F7. We will denote the value of the optimal schedule as Y w;F ;- The
completion time of j in the schedule achieving the optimal value will be written CJF . The second
criteria that we will consider will be the optimal maximum flow time of a schedule. We will let
F3.. = maxj-(FjS) = max]-(C]S — r;) be the maximum flow time of schedule S and F%% be the
optimal maximum flow time of a set of jobs.

Given the difficulty of approximating the average weighted flow time[16], we will present only
existence results in this section. First we will examine the relationship between the makespan
and average weighted flow time of a schedule. We will prove the existence of schedules which are
simultaneously good approximations for both criteria. Next we will consider the maximum flow
time and average weighted completion time of a schedule. Again we will be able to prove existence
results for this set of criteria. We will use these results and the ideas from section 4.1 to prove
existence results for two bicriterion scheduling problems involving flow time and lateness. Finally,
we will show that instances exist for which no («, 8)-schedule exists, with @ and 8 both constant,
for the maximum flow time and average weighted flow time.

Makespan and Average Weighted Flow Time We will consider the problem of simultane-
ously approximating the makespan and average weighted flow time of a set of jobs. We will use a
similar construction to the one presented when we proved our bicriterion existence result for the
problem of minimizing the makespan and average completion time. In other words, if ST is the
optimal average flow time schedule and S is the optimal makespan schedule of length M, we will
create the schedule S* = Combine(S™, ¥, AM). Immediately we can use Lemma 1 to say that
S* will have length at most (1 4+ A\)M. If we then restrict A to be less than p then we know that
the makespan of the schedule with the best breakpoint will still have a makespan of at most (1+ p)
times the optimal schedule length.

Given this construction we now need to determine an upper bound on the average flow time of
our new schedule.

Lemma 23 Given two schedules SY', the optimal average flow time schedule, and some other
schedule Sy of length K = CL,., for any p € [L,2] there ezists a schedule that is an (z&7)-
approximation for the optimal average flow time and of length at most (2 + p)K.

Proof: One thing to notice about flow time is that the only general lower bound we have for the
flow time of job j is

F; > p;.

If a job has zero processing time, its flow time in the optimal average weighted flow time schedule
could also be zero. As with lateness, this makes approximating the average flow time of a schedule
difficult. We will work around this difficulty as follows. Let rpy,c = max;r;. Therefore we get the
following lower bound on the flow time of job j:

Fj = Cf —r;

Fj > CJF_Tmax-

We know that all jobs must be released before the end of schedule S; and therefore ry,, < K. We

can use this to say
F;>Cf - K. (11)
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Notice that this lower bound will be negative, and therefore somewhat useless, for jobs that complete
before time K in the optimal average weighted flow time schedule. In the case when all jobs complete
before K, then we know that the length of the optimal average flow time is at most K. However,
if some jobs complete after K than this provides a lower bound for their flow time in the optimal
average flow time schedule.

We will create the schedule S* = Combine(S1, S, A\K). In order to take advantage of lower
bound 11, we now consider truncation points between K and (1 + p)K for p € [0,1]. This corre-
sponds to choosing A from the range [1, (1 + p)]. By Lemma 1 we know that a particular choice
of A will result in a schedule S* of length at most (2 + A\)K. Furthermore by Lemma 1, for any
choice of A in the range [1,1 + p] we know that the length of the resulting schedule will be at most
(24 p)K. Therefore, once we have p we need to choose A to minimize the average flow time of our
new schedule.

We start by considering the average flow time of our new schedule with a particular A. A job
7 with Cf < AK will have its completion time and therefore flow time unchanged. For a job with
CJF > MK we let t = CJF. Since the length of the new schedule will be at most (1 + A\)K we
know that the new flow time of job 7 in our schedule created by using A as our break point can be
characterized as

A A i
F] = C] —Tj

Il
_
—+
=
=
|
—_
N————
3

Then by applying 11 we get

(1+A)K—t< 1+ MK -t
F - t— K

Therefore the flow time of job 7 in the new schedule is at most

oo ((1+)\)K—t+1>F;

= t— K
_ (1+/\)K—t+t—KF%
t—K J
AK
S
t—K 7

This upper bound on Fj)‘ looks very similar to the upper bound we arrived at for the completion
time of each job in our new schedule when we were considering simultaneously minimizing the
makespan and average completion time of a schedule. Just as in that analysis, the next step is to
move to a continuous analysis. In the average completion time case, we were able to exactly model
the average weighted completion time of a schedule by taking the sum over all time ¢ of the amount
of weight completing at ¢ multiplied by ¢. This is not true when we are dealing with flow times,

27



since jobs with the same flow time could complete at different times. However, if we are concerned
only with upper bounding the increase in flow time of our new schedule, we notice that our lower
bound

Ff > t-K

is the same for all jobs j with CJF =
Therefore for a particular time y, we know that

S wiFE> Y wily - K).

il(Cf=y) il(Cf=y)

We will now express this lower bound as a continuous function g(y) = 3, wj(CJF —K)(S(CJF —y).
Recall that §(-), Dirac’s delta function, is 0 for all z # 0. This means that g(y) will be an impulse
of “area” equal to EJ‘CF,y W (C] — K) centered at y. Given this representation of the weight
completing at a certain tlme we can now integrate over all time to arrive at a lower bound for our

schedule.

Lemma 24 The worst case schedule g(y) will have
K
/0 g(y)dy = 0.

Proof: By contradiction. Assume fOKg(y)dy = ¢ with ¢ > 0. By our above argument, all jobs
that complete before time AK will be run according to the optimal average flow time schedule.
Therefore any such jobs will maintain their optimal flow time value in our new schedule S*. Since
A > 1, we know that for all choices of A all jobs that complete before K will maintain their optimal
flow time in S*. Therefore we can create a worse schedule by moving all jobs that complete before
K to some time after K. i

We can assume wlog that the weights have been normalized so that
Z’LU]'(CJF — K) =1.
J
By Lemma 24 with our normalized weights we also get

Z wj(CJF -K)=1.

JICF>K

Then for the worst case schedule we have that [;° ¢g(y)dy =1 and g(y) > 0, and therefore g(y) is
a pdf. At this point we can write an upper bound on the average weighted flow time of S* as

AK 00
/ 9(y) dy + / (y) dy
= / dy+/ 1+/\K ST Y (y) dy
0
= 1+ —( ZA_)I;( yg(y)dy-
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Notice that we only need to consider the second half of the above expression. For a particular g(y)
we can find the best A in the range [1,1 4 p| to minimize the above integral. To arrive at an upper
bound on the average flow time of a schedule with makespan of at most (2 + p)K, we find and
upper bound on the pdf that maximizes this calculation. This corresponds to solving the problem

9(y) dy, (12)

max min

/OO 1+MNK -y
9 1<A<pJA

kK y—K
where ¢ is a probability distribution over [0,00). As in our proof of Lemma 6, this can be shown
to be equivalent to the expression

®14+A—z
. d 1
m,?xlgl;gp/A ——7 /(@) dz, (13)
where now f ranges over all distributions.
Now we let & = A — 1 be chosen in the range [0,1]. Finally, to shift our summation, we also
need to allow n = — 1. The result of this set of transformations is

®l4+a—mn
i _ 14
g, [, i @
which is exactly expression 1 which we solved in Lemma 6. a

We can gain some intuition as to why we were able to reduce this problem to the one we solved
in the average completion time case by looking at our construction again. Suppose we consider
starting our schedule at time —K. We must adjust all 7; to be r;dj = r; — K and all CJF, the

completion time of j in the optimal average weighted flow time schedule, to be C;d] = CJF - K.
Since K > maxr;, all jobs will now be released before time 0. By Lemma 24 we know that in
the worst case pdf, all jobs will have positive completion times in our shifted problem. Similarly,
because g(t) was only a lower bound on the flow time of each job, it was equivalent to the case
were all jobs were released at time K which is now time 0. In other words, previously our lower
bound on the flow time of jobs completing after time K was F > CJF — K. With our shifted

problem, our lower bound now becomes just F; > C’;dj . In the case when the lower bound actually
holds with equality we know that all jobs would now have to be released at time 0 for our shifted
problem. In other words, we allow the optimal average weighted flow time schedule to run until
a time K when we know all jobs have been released. Then we treat the remaining portion of
the optimal average weighted flow time schedule as an optimal average weighted completion time
schedule. Furthermore, we argue that our worst case optimal average flow time schedule will have
no job complete before K.

If we let S; from Lemma 23 be the optimal makespan schedule S™, then we arrive at the
following theorem.

Theorem 25 For any p € [0,1], for any scheduling problem, there ezists a (2 + p,e”/(ef — 1))
approzimation for makespan and average weighted flow time.

Proof: This follows from Lemma 23. O

While Theorem 25 proves that schedules exist which are simultaneously constant factor approx-
imations for the makespan and average weighted flow time of a set of jobs, it is not clear that it
provides the best constants possible. Since this theorem proves a weaker bound than that proven
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in Theorem 8 for the problem of simultaneously minimizing the makespan and average weighted
completion time it seems probable that a stronger statement can be made. At this time we do not
have a lower bound for this problem. We can say that a lower bound matching this existence result
will not be found by looking at the one machine case with release dates. In that case we know
that after all jobs have been released there will no longer be any unforced idle time in the optimal
average flow time schedule and therefore the length of this schedule can be at most 2C9P%, .
Maximum Flow Time and Average Weighted Completion Time Now we will look at
the problem of simultaneously minimizing the maximum flow time of a schedule and the average
weighted completion time. We will use techniques similar to those presented in the previous sections
to prove the following theorem.

Theorem 26 For any p € [0,1], for any scheduling problem, there exists a (14 p,2 + %)—schedule
for the mazimum flow time and average weighted completion time.

Proof: We will assume that we have an optimal maximum flow time schedule S¥ and an opti-

mal average weighted completion time schedule S*. We let FoP' be the optimal maximum flow

time and > w;C} be the optimal average completion time. We will consider the schedule S* =
Combine(S¥, §* AFoPY).

max
First we say that the maximum flow time of schedule S* will be at most (14 \)FS2.. We arrive

at this by the following argument. Any job that is run according to the optimal average completion

time schedule must complete before time AFSP' and therefore must have a flow time of at most

AESPt . All other jobs are run according to their order in the optimal maximum flow time schedule.

When this schedule was started at time 0, this ordering guaranteed a maximum flow time of FSRL.
Since any job j that is run in this portion of §* is delayed by at most AF%% with respect to its

max

start time in ST, its flow time can increase by at most AFSPt. Therefore, the flow time of job j
will be at most (1 4+ A\)F2% . Figure 5 shows this construction and its effect on Fj.

Now we need to analyze the average completion time of S*. To simplify notation we will let
F = F®' . We know that all jobs that complete before time AF in S* will have their completion
times unchanged in S*. Therefore we need only consider the jobs with C; > AF. By the above
argument, we know that the flow time of each job in S* is at most (1 + A)F. This leads to the
following upper bound on C;‘.

A
Cj

T + (1 + )\)F

C;‘ +(1+MNF

. (1+XN)

Cj + X

(1+2)) .,

fcj
1

= (2+7)C;

VARVAN

IA

5

Since the completion time of each job is at most (2 + %) times its completion time in the optimal
average weighted completion time schedule, then we know that

1 *
> wiCF < (24 3) D wCy.
j j
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Job 1
A F1 =Fmax
Job 1 Completes Job 1
F1 =Fmax
aFmax ﬁ aFmax
Job 1 released
Optimal Optimal Schedule
Fmax ACT With
Schedule Schedule Breakpoint = aFmax

Figure 5: In this example Job 1 is the job with the maximum flow time in the optimal Fi,,,x schedule.
The dark jobs are the jobs which complete after time aFi,,x in the optimal average completion
time schedule. The grey jobs are the jobs that complete before time aFjax in the optimal average
completion time schedule. When Job 1 is run in the schedule created by truncating the optimal
ACT schedule at time aFp,y, it has a flow time of at most aFinax + Finax = (1 + @) Fnax-

We can use Theorem 26 and set p = 1 to arrive at the next corollary.

Corollary 27 For any scheduling problem, there exists a (2,3)-schedule for mazimum flow time
and average weighted completion time.

While these results do confirm the existence of schedules that are simultaneous constant approx-
imations for the maximum flow time and average weighted completion time of a set of jobs, it
also seems possible that a stronger upper bound may exist. Finding a better upper bound for this
problem or finding a lower bound is currently an open problem.

Flow Time and Lateness The existence results for (Cmax, », w;F}) and (Fnax, >, w;C;) can
easily be extended to show the following two corollaries.

Corollary 28 For any p € [0,1], for any scheduling problem, there exists a (1 + p,2+ %)—schedule
for the mazimum flow time and average weighted lateness.

Proof: This is a direct result of Theorem 26 and Lemma 16. a

Corollary 29 For any p € [0,1], for any scheduling problem, there ezxists a (2+ p, ﬁ)—schedule
fOT (LmaXa Z ijj)'
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Proof: Suppose we are given two schedules S, the optimal maximum lateness schedule of length
CEL. ., and ST, the optimal average flow time schedule. Then we can create a schedule S* =
Combine(S”, SY, A\CL. ). Lemma 14 tells us that maximum lateness of S* will be at most (14 )
times the optimal maximum lateness. If we let p be in the range [1,2] and choose the best A such
that 1 < A < p, then we know that the maximum lateness of our new schedule will be at most
(1+ p) times the optimal maximum lateness. Lemma 23 tells us that choosing the best breakpoint
from the range [1, p] will result in a schedule with average weighted flow time at most —¢ times

(er—1)
the optimal average weighted flow time.

Maximum Flow Time and Average Flow Time Now that we have presented four existence
theorems for bicriterion scheduling problems involving an objective based on flow time, we will
look at (Fmax, »_ w;F;). While it seems that we should be able to use some of the ideas from the
previous sections to prove the existence of schedules that are simultaneously good approximations
for the maximum flow time and average weighted flow time of a set of jobs, unfortunately this is
not the case. The following counter-example shows that instances exist for which no schedule will
be a constant factor approximation for both criteria simultaneously.

Theorem 30 If FS2' is the optimal mazimum flow time and EFJ’-“ is the optimal total flow time
of a set of N jobs, then instances ezxist for which there is no («, 8)-schedule with 1 < a < @ and
1<B8< @ for (FmavaFj)'

Proof: Consider the following example on one machine with release dates. Let jo be released at
t = 0 with processing time py = v/N. Let jobs ji,ja,...,jn be jobs of length 1. Let r; = i for all
J1sJ2s -+« Jn-

To prove our theorem we will start by considering the optimal maximum flow time sched-
ule and optimal average flow time schedule. We will show that both optimal schedules are @—
approximations for the other criteria. Then we will show that no other schedule is simultaneously
within a factor of @ of optimal for both criteria.

Since jy has the earliest release date and the longest processing time, the schedule ST that
achieves FOP' runs jy at time ¢ = 0 when it is released. All N small jobs are delayed by VN time

units. Fyax of this schedule is FOP! = V/N. The total flow time of this schedule, which we will
denote } F;"™ is

N
S =S VN =N +VN.
7=0

On the other hand, the optimal average flow time schedule will run all small jobs j1, j2,- .-, jn
as they are released and run jy starting at time N. Since all jobs of size 1 complete 1 time unit
after they are started, F; = 1, Vi > 0. The larger job will now have to wait until all the small
jobs complete and therefore will have Fy = N 4+ +/N. The total flow time of this schedule will be
> F]?k = 2N + +/N. The maximum flow time of this schedule will be denoted Fy..=N+ V/N.

For the optimal average flow time schedule we have the following relationship for its maximum
flow time compared to the optimal maximum flow time.

Frax _ N+VN
o VN
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= VN+1
>

Now if we consider the total flow time of the optimal maximum flow time schedule we arrive at the
following lower bound.

S NEeVE
Y F; 2N + VN
N +1
2N +1
N
>

55

¥

Having shown that both optimal schedules are at least a TN—approximation for the other criteria,
we now need to consider all schedules that are not optimal for either criteria. First consider that
any schedule in which jo starts before t = N/4 will have at least 3N/4 small jobs with F; = VN
and therefore a total flow time of

;FjZTN

Which means

. 3N2
ZjFJ > 42
EjF; B 2N—|-\/N

3N
4

2(v/N) + 1
3N
4
3VN
VN
i
> N/4. Which gives us

However, if jy starts after £ = N/4 in S then F

max

S

F max
opt =
max

R

This means that the average flow time of a schedule starting j; before % is greater than ‘/Tﬁ times

the optimal average flow time and the maximum flow time of any schedule starting jo after time %
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is ‘/TN times the optimal maximum flow time. Therefore no («, 3)-schedule exists with 1 < o < @
and 1 <8< ‘/TN 0

4.3 The Number of On-Time Jobs

Finally, we consider one last objective function. For this objective we again associate with each job
J a deadline d;. Instead of examining the lateness of jobs we will look at only whether or not a job
is late. We do this by defining U; to be 0 if job j meets its deadline, i.e. C; < d;, and 1 otherwise.
To maximize the number of jobs finishing on time in schedule S we maximize 3 ;(1 — Ujs )-

Makespan and the Number of On-Time Jobs

Theorem 31 For any scheduling problem there exists schedules that are simultaneously 2-approzimations

for 32,(1 = Uj) and Crax.

Proof: Assume that S and SY are optimal schedules for Cpay and >;(1 —Uj) respectively. Let
C7 be the completion time of job j in the schedule with the optimal number of jobs completing on
time. Then U7 is 0 if C7 < d; and 1 otherwise. Finally, to simplify notation, let M = COPt .

If 32,(1 = Uy) = 0 then we know that in the optimal schedule no job meets its deadline and
therefore all schedules achieve the optimal value. As a result we know that the optimal makespan
schedule is also optimal for 3°;(1 — Uj;). If 3°(1 — Ur) > 1, then let K = {j|U; = 0} be the set of
jobs that complete by their deadlines in schedule SU.

If in schedule SY more than half the jobs in K have met their deadline by M, then we create
schedule S’ = Combine(S™, SU, M). S’ will be of length at most 2M and at least half the jobs in
K will meet their deadlines. Since the total number of optimal jobs meeting their deadlines is K
this schedule is a (2,2)-approximation for Cax and 3_;(1 — Uj). If, however, less than half of the
jobs in K complete by M, then we know that at least half of the jobs that meet their deadlines in
the optimal schedule do so after time M. Therefore, at least half of the jobs in K have d; > M. In
this case just run the optimal makespan schedule. This schedule will be at most a 2-approximation
for Zj(l — Uj) because all jobs will complete before time M and therefore at least half of the jobs
in K will still meet their deadlines in the optimal makespan schedule. a

We will now show that there exists at least one instance for which we cannot simultaneously do
better than a 2-approximation for Cpax and >°(1 — Uj).

Theorem 32 There exist two-job instances for which no schedule is simultaneously within o of
optimal for a <2 for 37;(1 — Uj) and Cpax.

Proof: Consider the following example on one machine with release dates. Given two jobs, j;
and jo withpy =M —1,po=1,r1=0,r0o =M —2,dy = 3M and do = M — 1. The optimal
makespan schedule runs j; followed by j, and has length M and 3°;(1-U;) = (1-U1) +(1-Us) =
(1-0)+ (1 —1) =1. The optimal },(1 — Uj) schedule runs js followed by ji. In this schedule
both jobs meet their deadline and so }°;(1 —Uj) = 2 and the makespan is M + M —1 =2(M) — 1.
For all M the optimal makespan schedule is a 2-approximation for Zj(l —Uj). As M gets large,
the length of the optimal 3°,(1 — Uj;) schedule approaches 2M. Our theorem follows from the fact
that these are the only two schedules. O

Theorem 33 There exist job instances of size 2n for which no schedule on n identical parallel
machines is simultaneously within a of optimal for a < 2 for Zj(l —Uj) and Crax.
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Proof: We simply extend the 1 machine example to n machines. We do this by having n large
jobs of size M — 1 released at time 0. Each of these jobs has a deadline 3M. We also have n jobs
of size 1 released at time M — 2. Each of these small jobs has a deadline of M — 1. The optimal
> j(l — Uj;) schedule will have all 2n jobs meet their deadline by delaying all large jobs until all the
small jobs complete. The optimal makespan schedule will run all large jobs immediately and delay
all small jobs 1 time unit. In the optimal makespan schedule all small jobs will miss their deadline
and therefore only half of the optimal number of jobs will meet their deadline. The makespan of
any schedule that delays even 1 large job to allow a small job to complete on time will be 2M — 1.
Therefore any schedule that delays even 1 large job will be a 2-approximation for the optimal
makespan.

Suppose that we consider a schedule which uses K machines to run large jobs when they are
released and ¢ = n — K machines to run small jobs when they are released. Notice that any
such schedule will still have a makespan of 2(M — 1) because at least ¢ large jobs must wait until
time M — 1 to begin processing. As stated earlier, this means that any such schedule is already
a 2-approximation for the makespan. Notice also that only g small jobs will meet their deadlines
because once we run g small jobs on the machines reserved to run small jobs, we are already at time
M — 1 and therefore all remaining small jobs will miss their deadlines. Therefore if we consider all
schedules with a makespan of size twice optimal we find that the one with the maximum number of
jobs completing on time is the optimal Ej(l — Uj). The only schedule with a makespan of smaller
than twice optimal only has half of the optimal number of jobs complete on time. Therefore no
schedule exists which is an (e, 5)-approximation for (Cmax, ».(1 —U;)) with @ < 2 and f < 2. O

Maximum Lateness and the Number of On-Time Jobs We can extend our result for

(Cmaxa E(l - Uj)) to (Lmaxa 2(1 - Uj))'

Corollary 34 For any scheduling problem there exists schedules that are simultaneously 2-approrimations
for 3°,(1 = Uj) and Limax.

Proof: Again let K be the set of jobs that complete on time in the optimal ) (1 — U;) schedule.
If half of the jobs in K complete before time CZ, , in the optimal } (1 — U;) schedule, then we
run the optimal }>(1 — U;) schedule until time CL. . and finish the remaining jobs according to the
optimal maximum lateness schedule. We find that the maximum lateness of all jobs in our new
schedule S’ is

S
I

C]’- +q;
L L
2L%

max-*

<
<

Since at least half of the jobs complete on time before we begin running jobs according to S* we
know that S’ completes at least half of the optimal number of on-time jobs before their deadlines.
If fewer than half of the jobs in K complete before CL_  then running schedule S” in which all

max
jobs complete before C'L__ will have at least half of the jobs in K complete on-time. O

Maximum Flow Time and the Number of On-Time Jobs In this section we will present
our second negative result.
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Theorem 35 If FO% is the optimal mazimum flow time and 3 (1 — U;-‘) is the optimal number

of on-time jobs of a set of N jobs, then instances exist for which there is no («, 3)-schedule with
1<a<Niandl<B<Ni for (Fmax, >_(1 — Uj)).

Proof: Consider the following example on one machine with release dates. Suppose that every
V/N time units from time 0 until time N —+/N, a job of size v/N is released. Let p = v/N and label
these jobs jo, j1,...,Jp where r; = iv/N. Let d; = NV for all jg, ji,... ,Jp- The other N — VN jobs
are released as follows. Let € << v/N. Every v/N time units from time v/N — € to time N —v/N —¢,
VN jobs of size \/—Eﬁ are released. We can organize these jobs into groups g1, g2, ... gp—1 each with

V/N jobs where all jobs in group g; are released at time r; = iv/N — € and have a deadline of iv/N.

First we will show that the optimal F,, schedule has a maximum flow time of at most v/ N (1+¢).
Consider schedule, S¥', which has no idle time and runs all jobs in the order that they arrive. All
groups g; of small jobs start at time iv/N + (i — 1)e and finish almost immediately and therefore
have a flow time of e. The maximum flow time of this schedule is achieved by the last job of
size v/N. Since ST runs all the small jobs between the large jobs, the it large job is delayed an
additional ie time units. Therefore the last job is delayed v/Ne time units and has a maximum
flow time of v/N(1 + ¢€). Since the small jobs don’t start until after their deadline, none of them
complete on-time. All the jobs of size v/N do complete on-time and therefore (1 — UJF ) = VN.

Since we know at least one schedule exists with a maximum flow time of v/N(1 + €), we know that
the optimal schedule will have a maximum flow time of no more than v/N(1 + ¢).

The optimal }°(1—U;) schedule, S, runs all small jobs when they arrive and runs all large jobs
after all small jobs have been released. Since all jobs complete on time > (1 — U]U ) = N. Since the

first job of size v/N must wait until time N —+v/N to start, the maximum flow time of this schedule
is at least N. Both optimal schedules are clearly v/ N- approximations for the other criteria.

To show that all other schedules are at least a Ni-approximation for one of the criteria we
will show that all schedules that delay at least N7 i large jobs are at least a Ni- -approximation
for the maximum flow time and any schedule that delays fewer than Ni large jobs is at least a
Ni- -approximation for the number of on-time jobs.

Consider any schedule ST Wthh allows fewer than N1 groups g; to complete on-time. In this
case we know that fewer than N1 — 1 groups of small jobs complete on-time and all the large jobs
complete on-time. Since there are v/N jobs in each group of small jobs and v/N large jobs, we

know that > (1 — UT) < Niy/N. Since the optimal number of on-time jobs is N this schedule is a

—11— -approximation for the optimal number of on-time jobs.
N1

Now we will show that any schedule, SD that completes more than N small jobs on time must
have a maximum flow time of at least N4 and therefore will be a N1 -approximation for the optimal
Fax. Notice that for every v/N small jobs that complete on-time at least 1 job of size v/N must
be delayed v/ N time. Consider the first time ¢ a job of size /N is delayed v N time. When the
next job of size v/N is released SP will still not have processed the job that was delayed. Therefore
SD will delay at least one of these two jobs another v/N time units. In this way there will always
be at least 1 _]Ob of size v/N ready to be processed when a new job of size v/N is released. Since we
must delay Ni jobs of size \/N in order to complete N % small jobs on time, we know that SP will
delay at least one large job N# time units. Therefore any such schedule is a N 7-approximation for
the maximum flow time.

O
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5 Specific environments

Previously we looked at bicriterion scheduling in a very general setting. In the following section we
will look at one specific machine environment and improve upon our general results.

5.1 P|Tj|(0maxa2}?j)

We will now consider the problem of minimizing the makespan and average flow time of a set of
jobs J on M parallel machines. We let r; be the release time of job j. We denote this problem
Plri[(Cmax, 3 Fj).

Theorem 36 Any optimal schedule for P|r;| Y- F; will be at most a 3-approzimation for P|rj|Cmax.

Proof: We know from Graham [7] that for identical parallel machines without release dates, any
list-scheduling algorithm produces a schedule with makespan at most twice optimal. Scheduling
jobs according to Shortest Processing Time (SPT) creates an optimal average completion time
schedule if there are no release dates and SPT is a list scheduling algorithm[5]. We now show
that after time max;(r;) the problem P|r;|> F; is equivalent to P|r;| > C; for the remaining
unscheduled jobs.

Let rmax = max;(r;). Any job scheduled after time rmax will have the following flow time

Fj = Cj —rj = Cj — Tmax 1 Tmax — Tj-

Let s; be the time that job j starts processing and define K = {j[s; > Tmax} to be the set of
jobs scheduled to start processing after the last release date. Therefore the total flow time for this
set of jobs will be

DF = Y (Cj—rj)

JEK JEK
= Z (C] — Tmax + "max — Tj)
jEK
= Z (C] - Tmax) + Z (Tmax - 'rj)-
JEK jEK

Notice that after time ryay, all jobs j in K add a cost of (rmax — ;) to the total flow time regardless
of the order they are scheduled. Therefore, for the remaining jobs, the problem of minimizing the
average flow time after time rpy,x is equivalent to the following statement:

min Z (Cj — Tmax)-
JEK
Since Tmax is a constant for all jobs, this is equivalent to minimizing the average completion time
relative to some fixed point in time. As a result, minimizing the total flow time after ¢t = 7y, for
these jobs corresponds to minimizing 3 x(Cj). Therefore, since SPT is an exact list-scheduling
algorithm for P||}" C; we know that the length of this portion of the schedule must be at most
209 . Using the fact that all jobs must be released before the end of the optimal makespan
schedule, we know that the length of the optimal average flow time schedule must be at most
Cibi + 20355 = 3C3R

a
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6 Conclusion and Open Problems

This thesis has presented existence results for a variety of bicriterion scheduling problems. The
following table gives a summary of those results.

B
Makespan (Cpax) (14p,:25) | @4p,255) | U+p,255) (2,2)
a | Maximum Flow Time(Finay) | (1+p,2 + 2) NO (1+p2+7) NO
Maximum Lateness (Lmax) | (1+p,225) | @+p,229) | (1+p 225) (2,2)

In some cases we have also looked at lower bounds for these bicriterion scheduling problems. Those
results are summarized below. We also include some results that follow directly from the lower
bounds presented.

p
(@, B) ACT 3 w;C;j AFT Y w;Fy | AL Y w;l; | (1 - Uj)
Makespan Torng & Uthaisombut[26]
B 1 1
(Cmax) (1+ﬁaeﬂe—_1) (1+:Bae§—_1) (1+ﬂ’e§——1) (2’2)
Max Flow Time
(0% (Fmax) ? (@7 @) ? ?
Max Lateness
B 1 B
(Lmax) (1+:8ae§—_1) (1+/8785—_1) (1+6aeﬁe—_1) (27 2)

As this table shows, while some of the general existence results have been matched by lower
bounds, for many of them either no lower bound is known or there remains a gap between the
known lower bound and the existence result.

For most of the problems presented, no algorithm has been shown to produce good bicriterion
schedules. Finding better existence results, tighter lower bounds or good bicriterion approximation
algorithms for many of these problems are all still open questions.
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