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Abstract

A significant Fourier transform (SFT) algorithm, given a threshold τ and oracle access to a function
f , outputs (the frequencies and approximate values of) all the τ -significant Fourier coefficients of
f , i.e., the Fourier coefficients whose magnitude exceeds τ‖f‖22. In this paper we present the first
deterministic SFT algorithm for functions f over ZN which is: (1) Local, i.e., its running time
is polynomial in logN , 1/τ and L1(f̂) (the L1 norm of f ’s Fourier transform). (2) Robust to
random noise. This strictly extends the class of compressible/Fourier sparse functions over ZN
efficiently handled by prior deterministic algorithms. As a corollary we obtain deterministic and
robust algorithms for sparse Fourier approximation, compressed sensing and sketching.

As a central tool, we prove that there are:

1. Explicit sets A of size poly((lnN)d, 1/ε) with ε-discrepancy in all rank d Bohr sets in ZN .
This extends the Razborov-Szemeredi-Wigderson result on ε-discrepancy in arithmetic pro-
gressions to Bohr sets, which are their higher rank analogue.

2. Explicit sets AP of size poly(lnN, 1/ε) that ε-approximate the uniform distribution over a
given arithmetic progression P in ZN , in the sense that |Ex∈A χ(x)− Ex∈P χ(x)| < ε for all
linear tests χ in ZN . This extends results on small biased sets, which are sets approximating
the uniform distribution over the entire domain, to sets approximating uniform distributions
over (arbitrary size) arithmetic progressions.

These results may be of independent interest.

1 Introduction
Computing the Fourier transform is a basic building block used in numerous applications. Its complexity is
well understood: Quasi-linear running time O(N logN) for N the input size is achieved by the Fast Fourier
Transform (FFT) algorithm [CT65], and believed to be optimal. For data intensive applications, however,
achieving a sub-linear running time is desired. In general, this is infeasible, because the input and output
are already of size N . Nevertheless, in settings where the input is given via oracle access, and it suffices to
output only the few “significant” Fourier coefficients, sub-linear algorithms do exist.

We say that a Fourier coefficient is τ -significant if its magnitude is at least a τ -fraction (say, 1%) of
the sum of squared Fourier coefficients. A significant Fourier transform (SFT) algorithm is an algorithm
that, given a significance threshold τ and oracle access to a function f , outputs all the τ -significant Fourier
coefficients of f (i.e., their frequencies and approximate values). The complexity of such algorithms is
measured primarily in terms of 1/τ and the size N of (the truth table of) f .

Randomized SFT algorithms achieving complexity polynomial in logN and 1/τ for functions over any
finite abelian group were developed in a sequence of works [GL89,KM93,Man95,GGI+02,AGS03,GMS05,
Aka09].

Deterministic SFT algorithms were given for restricted functions:
• Functions over the boolean hypercube {0, 1}n in Kushilevitz-Mansour’s (KM) algorithm [KM93].
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Foundation 700/08.



• Compressible or Fourier sparse functions over ZN in Iwen’s algorithms [Iwe07, Iwe08, IS08].
(A function is compressible if its Fourier coefficients decay as fast as the series c(1/i)p for absolute
constants c > 0 and p > 1. A function is Fourier sparse if it has at most poly(logN) non-zero Fourier
coefficients.)

The KM algorithm [KM93] is given as an extra input an upper bound t on the sum of (absolute values

of) Fourier coefficients of the input function f , L1(f̂)
def
=
∑
α

∣∣∣f̂(α)
∣∣∣. Its running time is polynomial in

logN , 1/τ and t. We say that a deterministic SFT algorithm achieves the KM benchmark if its complexity is
polynomial in logN , 1/τ and t.

1.1 Main Result: Deterministic & Robust SFT Algorithm
In this paper we present a deterministic SFT algorithm achieving the KM benchmark for all functions f over
ZN . Furthermore, our SFT algorithm is robust to random noise. That is, the algorithm succeeds even if
the oracle to f is noisy in the sense that on queries x the oracle returns the value f ′(x) = f(x) + η(x) for
η : ZN → C an ε-random noise, i.e., values η(x) are drawn independently at random from distributions Dx

of expected absolute value at most Eη(x)∼Dx [|η(x)|] ≤ ε.

Theorem 1 There is a deterministic algorithm such that:

• Given N , τ , t, and oracle access to a function f : ZN → C s.t. L1(f̂) ≤ t, the algorithm outputs all the
τ -significant Fourier coefficients of f .

• Given N , τ , t, and oracle access is to a function f ′ : ZN → C, where f ′ = f + η s.t. L1(f̂) ≤ t
and η is a τ/3-random noise, the algorithm outputs all the τ -significant Fourier coefficients of f (with
probability at least 1− 1/NΘ(1) over the random noise η).

The running time and query complexity are polynomial in logN , 1/τ and t.

Remarks. (i) The KM benchmark is matched by taking t = L1(f̂). (ii) We stress that the complexity of our
algorithm depends on the bound t on L1(f̂), and not on a bound on L1(f̂ ′). This is crucial, because even if
L1(f̂) ≤ t is small, typically L1(f̂ ′) ≈

√
N is very large.

Our algorithm is better than the prior deterministic SFT algorithms for functions over ZN in:

1. Achieving the KM benchmark. In particular, our algorithm efficiently (i.e., in time polynomial in logN )
handles a much wider class of functions than handled by prior works: all functions f s.t. L1(f̂) ≤
poly(logN), instead of only the compressible/Fourier sparse functions.1

Handling this wider class of functions is motivated by functions arising in applications, e.g., threshold
functions fθ(x) = 1 iff x ≤ θ and 0 otherwise.

2. Achieving robustness to random noise. In contrast, in other deterministic algorithms, noisy functions
f ′ = f + η are out of the scope of functions handled efficiently, because typically f ′ is not compress-
ible/Fourier sparse (even if f were).2

Robustness to noise is motivated for example by measurement noise in signal processing applications.

1.2 New Tools: Fooling Bohr Sets and Arithmetic Progressions
As a central ingredient for our deterministic SFT algorithm, we prove that there exists explicit constructions
of: (1) Sets with small discrepancy on all rank d Bohr sets; and (2) Sets that ε-approximate the uniform
distribution on a given arithmetic progression (definitions follow). These results may be of independent
interest.

1In the context of SFT algorithms, compressible functions f are a strict subclass of the functions with poly-logarithmic
L1(f̂). This is because without loss of generality we may assume that f is normalized to have (approximately) unit
energy (as significance is determined by ratios of Fourier coefficient magnitude to total energy), and for normalized f ,
compressibility implies that L1(f̂) = O(1).

2A few remarks. (i) Having some restriction on the class of functions efficiently handled by deterministic algorithms
is unavoidable (because two input functions f, g may be identical on the small set of entries read by the deterministic
algorithm, while differing widely on their Fourier transform, implying the algorithm fails on at least one out of f, g). The
class of functions handled by our algorithm is wide enough to include typical noise. (ii) Our analysis extends to show
that KM’s deterministic algorithm for functions over {0, 1}n is also robust to random noise.



1.2.1 Definitions
For sets A,S in a group G, we denote by US the uniform distribution over S, and say that:

• A has ε-discrepancy on S in G if the intersection |A ∩ S| is roughly as expected if A were random:

DA,G(S)
def
=
∣∣∣∣ |A ∩ S||A|

− |S|
|G|

∣∣∣∣ < ε.

For a family S of sets, A has ε-discrepancy on S, if DA,G(S)
def
= maxS∈S DA,G(S) < ε.

• A ε-approximates US in G if for all linear tests χ : G → C in G, the expected outcome χ(x) over
uniform x in A is ε-close to its expected outcome over uniform x in S:∣∣∣∣ E

x∈A
χ(x)− E

x∈S
χ(x)

∣∣∣∣ < ε.

We focus on G = ZN , where linear tests are the functions χα(x)
def
= e2πiαx/N indexed by α ∈ ZN .

• A is explicit if there is a deterministic algorithm that, given G (by its generators and their orders) and ε,
outputs A in time polynomial in |A|. We usually focus on explicit sets A of size polynomial in log |G|
and 1/ε.

We are particularly interested in sets S that are either arithmetic progressions or Bohr sets (which are the
higher rank analogue of arithmetic progressions used in many additive combinatorics works [TV06]):

• Arithmetic progressions in ZN are sets Pα,I
def
= {x · α mod N |x ∈ I} for α ∈ ZN a multiplier and

I = [a..b] an interval (i.e., the set of integers in [a, b]) with endpoints 0 ≤ a ≤ b < N .

• Rank d Bohr sets in ZN are sets B{αi,Ii}di=1

def
= {x ∈ ZN |αi · x mod N ∈ Ii ∀i = 1, . . . , d} for

αi ∈ ZN multipliers and Ii = [ai..bi] intervals with endpoints 0 ≤ ai ≤ bi < N . Denote by BN,d the
set of all rank d Bohr sets in ZN .

1.2.2 Our Results
We show that there exists (1) explicit sets with small discrepancy on all rank d Bohr sets, and (2) explicit sets
approximating the uniform distribution on a given arithmetic progression:

Theorem 2 1. For any N , ε, d, there is an explicit set A ⊆ ZN of size polynomial in 1/ε and (lnN)d with
ε-discrepancy on BN,d.

2. For anyN , ε, and an arithmetic progression P in ZN , there is an explicit setA ⊆ ZN of size polynomial
in 1/ε and ln |P | that ε-approximates the distribution UP .

Remarks and comparison to prior works.

1. Our proof is by reduction to explicit constructions of small biased sets. The exact size of our sets A
depends on the small biased set we use. For example, using the ε′-biased set of size O((logN)2/ε′)
of [Kat89] results in sets A of sizes O((logN)2+d/ε) and O((logN)4/ε3) in Theorem 2 Parts 1 and 2
respectively.3

2. For d = 1, our proof of Theorem 2 Part 1 gives a new –and much simpler– proof for the Razborov-
Szemeredi-Wigderson [RSW93] result on ε-discrepancy on arithmetic progressions.

Our result (even when restricted to d = 1) is better than the latter in: (i) Achieving ε-discrepancy on
all arithmetic progressions Pα,I , in contrast to only Pα,I s.t. α is co-prime to N . (ii) Achieving a
better set size whenever ε < 1/(logN)1/8 (as for d = 1 our set size is Θ((logN)3/ε) compared with
Θ((logN)2/ε9) in [RSW93]).

3. Theorem 2 Part 2 can be viewed as a generalization of small biased sets in ZN : Small biased sets are
sets approximating the uniform distribution over the entire domain, that is, the arithmetic progression
Pα,I for α = 1 and I = [0..N − 1], whereas our result addresses arbitrary arithmetic progressions P .

3The size quoted here for the ε′-biased set of [Kat89] is taken from the accounts of [AIK+90] on [Kat89]. We
remark that using the (much simpler) ε′-biased set of size O((log N)2/ε′3) of [AIK+90] results in sets A of sizes
O((log N)2+d/ε3) and O((log N)4/ε9) in Theorem 2 Parts 1 and 2 respectively.



1.3 Paper Organization
In the rest of this paper we present: An overview of our proof (Sect. 2); Preliminaries (Sect. 3); Our explicit
constructions (Sect. 4); Our deterministic SFT algorithm (Sect. 5); Concluding remarks (Sect. 6).

2 Proof Overview
Our starting point is the randomized SFT algorithm of [Aka09]. Randomness there is employed solely for
constructing a set S = SN,τ,t ⊆ ZN of queries to the oracle to the input function f , such that (with high
probability) S is good according to Definition 3 below. Their analysis shows that: (i) If S is good, then for
all functions f over ZN s.t. L1(f̂) ≤ t, their algorithm finds the τ -significant Fourier coefficients of f (even
in the presence of noise) while querying f only on the entries in S. (ii) With high probability, their S is good.

Definition 3 (Good queries [Aka09]) A set S = SN,τ,t ⊆ ZN is (N, τ, t)-good (good, in short) if S =⋃b(logN)c
`=0 (A−B`) s.t. for ε = Θ(τ/(t2 logN)) sufficiently small:

• A is an ε-biased set in ZN
• For each `, B` ε-approximates the distribution U[0..2`−1] in ZN
• The sizes |A| and |B1| , . . . ,

∣∣Bb(logN)c
∣∣ are polynomial in logN , 1/τ and t

Remark. Exact setting of ε may vary depending on the desired tradeoff: We take ε = τ/(3t2 lnN) when
there is no noise, and ε = τ/(49t2 lnN) to tolerate up to τ/3-random noise.

In this work we obtain a deterministic (and robust) SFT algorithm by replacing the randomized construc-
tion of sets S in [Aka09] with an explicit (i.e., efficient and deterministic) construction.

The heart of our construction is a novel analysis, where, for any arithmetic progression P (say, [0..2`]),
we reduce the problem of finding explicit sets approximating the distribution UP in ZN to the problem of
finding explicit sets with small bias in ZM for M = |P |.4 We then obtain a good set S by utilizing known
constructions of explicit small-biased sets in ZM [Kat89, AIK+90, RSW93].

Our reduction is composed of the three parts detailed in the theorem below.

Theorem 4 (Our reduction) For any positive integers d,M < N , a positive real ε, andA ⊆ I = [0..M−1],

1. If A is ε/(4 lnM)d-biased in ZM , then A has ε-discrepancy on all rank d Bohr sets in ZM .
2. If A has ε3/(128π2)-discrepancy on all rank 2 Bohr sets in ZM , then A ε-approximates UI in ZN .
3. For every α, s ∈ ZN , if A ε-approximates UI in ZN , then α(A+ s) ε-approximates UPα,I+s in ZN .

Remark. The converse of Theorem 4 Part 1 is known (and simple to prove): If A has ε-discrepancy on all
arithmetic progressions in ZN , then A is 2πε-biased in ZN (see [RSW93], Proposition 4.1).

Proving part 3 of our reduction is straightforward, whereas Parts 1-2 require more insight (details follow).

Theorem 4, Part 1. We relate having small bias in ZM to having small discrepancy on all rank d Bohr sets
in ZM as follows. First we upper bound the discrepancy of A on any set R (say, a rank d Bohr set) in ZM by

DA,ZN (R) ≤ ε′ · L1(R̂) for ε′ the bias of A in ZM and for L1(R̂)
def
=
∑
α∈ZM

∣∣∣R̂(α)
∣∣∣ the L1-norm of the

Fourier transform of (the characteristic function of) R. Next we apply Fourier analysis and some elementary
number theory to show that for any rank d Bohr set R in ZM , L1(R̂) ≤ (4 lnM)d. We conclude that if A is
ε′ = ε/(4 lnM)d-biased in ZM , then A has ε-discrepancy on all rank d Bohr sets in ZM .

Theorem 4, Part 2. We relate approximating UI in ZN to having small discrepancy on rank 2 Bohr sets in
ZM as follows.

First, we identify each element α ∈ ZN with the pair (qα, rα) of its quotient and remainder in the
division-with-remainder by (the typically, non-integer value)N/M . We then rewrite each linear test χα(x) =
e(αx/N) in ZN as: χα(x) = e

(((
qαx
M

)
1

+
(
rαx
N

)
1

)
1

)
(where for any real number r, (r)1 denotes its non-

integer part, i.e., its remainder modulo 1; and e(r) = e2πir).
Second, we embed the sets

{(
qαx
M

)
1

}
x∈I and

{(
rαx
N

)
1

}
x∈I into ZM , and use this embedding to show that

if A has ε′-discrepancy on all rank 2 Bohr sets in ZM , then the joint distribution of pairs
((
qαx
M

)
1
,
(
rαx
N

)
1

)
4We remark that the connection between approximating UP in ZN and having small bias in Z|P | may seem surprising.

For example, achieving the former requires satisfying N linear tests modulo N , whereas achieving the latter requires
satisfying only |P | linear tests and these tests are modulo |P | (where |P | < N is arbitrary).



over uniform x in A is “close” to their distribution over uniform x in I; where closeness is in the sense that
for every two length ρ = ε/8π intervals J1, J2 ⊆ [0, 1],∣∣∣∣ Pr

x∈A

[(qαx
M

)
1
∈ J1 &

(rαx
N

)
1
∈ J2

]
− Pr
x∈I

[(qαx
M

)
1
∈ J1 &

(rαx
N

)
1
∈ J2

]∣∣∣∣ < ε′

Finally, we prove that ε′-closeness of these two joint distributions implies ((ε′/ρ2) + 4πρ)-closeness of
the expected value of χα(x) = e

(((
qαx
M

)
1

+
(
rαx
N

)
1

)
1

)
over uniform x in A and over uniform x in I .

Assigning ε′ = ε3/(128π2), we conclude that A ε-approximates UI in ZN .

3 Preliminaries
In this section we summarize some preliminary terminology, notations and facts.
Notations. Let Z and C denote the integer and complex numbers respectively. Let ZN and Z∗N denote the
additive and the multiplicative groups of integers moduloN . We identify the elements of ZN with integers in
0, . . . , N − 1, and denote abs(α) = min {α,N − α} for all α ∈ ZN . We denote by [a..b] the set of integers
in the closed interval [a, b]. For any element a ∈ ZN and sets S, S′ ⊆ ZN , denote aS = {as}s∈S and
S − S′ = {s− s′}s∈S,s′∈S′ . For any real number r, denote e(r) = e2πir, and denote by (r)1 the remainder
of r in division by 1.

3.1 Significant Fourier Transform Coefficients
We give definitions and properties for normed spaces and Fourier transform.
Inner product, norms, convolution. The inner product of complex valued functions f, g over a domain

G is 〈f, g〉 def= 1
|G|
∑
x∈G f(x)g(x). Denote the `2-norm of f by ‖f‖2

def
=
√
〈f, f〉, and its L1-norm by

L1(f)
def
=
∑
x∈G |f(x)|. The convolution of f and g is the function f ∗ g : G → C defined by f ∗ g(x)

def
=

1
|G|
∑
y∈G f(y)g(x− y).

Characters and Fourier transform. The characters of a finite abelian groups G are all the homomorphisms
χ : G → C from G into the complex unit sphere. Denote by Ĝ the set of characters of G. The Fourier

transform of a complex valued function f over G is the function f̂ : Ĝ → C defined by f̂(χ)
def
= 〈f, χ〉. A

character χ is trivial if χ(x) = 1 for all x.

In particular, the characters of ZN are the functions χα : ZN → C, α ∈ ZN , defined by χα(x)
def
=

e2πiαx/N . Abusing notation, we view f̂ as a function over G, defined by f̂(α)
def
= 〈f, χα〉.

Significant Fourier coefficients. For any α ∈ ZN and τ ∈ [0, 1], we say that α is a τ -significant Fourier

coefficient iff
∣∣∣f̂(α)

∣∣∣2 ≥ τ‖f‖22. Denote by Heavyτ (f) the set of all τ -significant Fourier coefficients of f .

Useful Fourier transform properties. For every positive integer N , functions f, g : ZN → C, and elements
s ∈ ZN and t ∈ Z∗N , the following holds (where subtraction, multiplication and inverse operations are

modulo N ): Parseval Identity: 1
N

∑
x∈ZN |f(x)|2 =

∑
α∈ZN

∣∣∣f̂(α)
∣∣∣2. Convolution Theorem: (̂f ∗ g)(α) =

f̂(α) · ĝ(α) and similarly 1
N f̂ · g(α) = (f̂ ∗ ĝ)(α). Phase Shift: If g = f · χ−s, then ĝ(α) = f̂(α − s)

for all α. Scaling: If g(x) = f(tx) ∀x, then ĝ(α) = f̂(α · t−1) for all α. Finally, for all integers α,
1
N

∑
x∈ZN e(αx/N) = 1 iff α = 0 mod N and it is 0 otherwise.

3.2 Small Biased Sets

Let G be a finite abelian group and A ⊆ G. Denote biasA(χ)
def
= 1
|A|
∑
a∈A χ(a). A is ε-biased in G if for

all non-trivial characters χ of G, |biasA(χ)| < ε.

Fact 1 (ε-biased sets in ZN [AIK+90, RSW93, Kat89]) For any integer N > 0 and real ε > 0, there exists
an explicit set A of size polynomial in logN and 1/ε which is ε-biased in ZN .

For the sake of completeness we specify the details of one of the small biased sets constructed in
[AIK+90] (chosen due to its simplicity): For each N , ε, let AIKPS(N, ε) denote the ε-biased set in ZN
of [AIK+90] defined by:

AIKPS(N, ε)
def
=
{
sp−1 mod N

∣∣ s ∈ S, p ∈ P, p 6 |s} (1)

where, for ε′ = −(log ε)/(log logN), P =
{
p | p is prime, (logN)1+ε′/2 < p ≤ (logN)1+ε′

}
and S =

[1..(logN)1+2ε′ ].



4 Our Results on Explicit Constructions
We present our results on explicit sets with small discrepancy on Bohr sets (Sect. 4.1), and explicit sets
approximating distributions uniform over arithmetic progressions (Sect. 4.2). See definitions in Sect. 1.2.1.

4.1 Small Discrepancy in Bohr Set
We show that there are explicit small sets A with small discrepancy on all rank d Bohr sets in ZN .

Theorem 2 Part 1 (Small discrepancy on Bohr sets). For any integers N, d > 0 and real ε > 0, there is
an explicit set A ⊆ ZN of size polynomial in 1/ε and (lnN)d s.t. DA,ZN (BN,d) < ε.

Proof: Fix N , d, ε. Denote ε′ = ε/(4 lnN)d. Let A be any explicit ε′-biased set A in ZN of size polynomial
in logN and 1/ε′ (such sets exists by Fact 1, Sect. 3.2). By Lemma 5, for any set B ⊆ ZN ,

DA,ZN (B) < ε′L1(B̂)

for L1(B̂)
def
=
∑
α∈ZN

∣∣∣B̂(α)
∣∣∣ the L1-norm of the Fourier transform of the characteristic function B(x) = 1

iff x ∈ B and 0 otherwise. By Lemma 6, for any rank d Bohr set B,

L1(B̂) ≤ (4 lnN)d.

We conclude that DA,ZN (B) < ε′ · (4 lnN)d = ε.

For any subsetsA,B of a finite abelian groupG, we bound the discrepancy ofA onB inG by the product
of the bias of A in G and the L1-norm of the Fourier transform of B.

Lemma 5 For any finite abelian group G, sets A,B ⊆ G and a real number ε > 0, if A is ε-biased in G,
then DA,G(B) < εL1(B̂). Furthermore, this bound is tight.

Proof: We show that DA,G(B) < εL1(B̂). Recall that DA,G(B) =
∣∣∣ |A∩B||A| −

|B|
|G|

∣∣∣. Replacing B with its

characteristic function, we get that DA,G(B) =
∣∣∣ 1
|A|
∑
a∈AB(a)− 1

|G|
∑
a∈GB(a)

∣∣∣ . Replacing the charac-

teristic function of B with its Fourier representation B(a) =
∑
χ B̂(χ)χ(a) and rearranging the summation

we get that DA,G(B) =
∣∣∣∑χ B̂(χ)

(
1
|A|
∑
a∈A χ(a)− 1

|G|
∑
a∈G χ(a)

)∣∣∣ which is in turn equal to

DA,G(B) =

∣∣∣∣∣∣
∑

non-trivial χ
B̂(χ) · biasA(χ)

∣∣∣∣∣∣ (2)

(since for the trivial χ, the difference in the parenthesis is zero, and for all non-trivial χ, 1
|G|
∑
a∈G χ(a) = 0).

Using the triangle inequality and bounding the bias of A by its upper bound ε, we conclude that

DA,G(B) ≤ max
non trivial χ

|biasA(χ)|
∑
χ

∣∣∣B̂(χ)
∣∣∣ < εL1(B̂).

We prove the bound is tight. Let G = {0, 1}n. Given any ε-biased set A ⊆ {0, 1}n and α ∈ {0, 1}n s.t.
biasA(χα) = ε, define B = {x |x · α = 0} (x · α is the dot product). Then DA,G(B) = εL1(B̂), because

DA,G(B) =
∣∣∣∑α 6=0 B̂(χα)biasA(χα)

∣∣∣ (by Eq. 2) and B̂(χβ) 6= 0 iff β = α (by Fourier analysis of B).

We bound the L1-norm of the Fourier transform of rank d Bohr sets B.

Lemma 6 For any positive integers N, d, and B the characteristic function of a rank d Bohr set in ZN ,
L1(B̂) ≤ (4lnN)d.

Proof: FixB{αi,Ii}di=1
a rank d Bohr set in ZN . Observe thatB{αi,Ii}di=1

=
⋂d
i=1B{αi,Ii} is the intersection

of the d rank 1 Bohr sets B{αi,Ii}. Denote by B and B1, . . . , Bd the characteristic functions of B{αi,Ii}di=1

and B{α1,I1}, . . . , B{αd,Id} respectively. Then B =
∏d
i=1Bi. By Proposition 2, the above implies that

L1(B̂) ≤
∏d
i=1 L1(B̂i). By Lemma 7, L1(B̂i) ≤ 4 lnN for any rank 1 Bohr set Bi. We conclude that

L1(B̂) ≤ (4 lnN)d.

We bound the L1-norm of the Fourier transform of a product of functions.



Proposition 2 Let f, g : G→ C, then L1(f̂ · g) ≤ L1(f̂) · L1(ĝ).

Proof: By the convolution theorem, f̂ · g(χ) = N(f̂ ∗ ĝ)(χ). Thus, L1(f̂ · g) =
∑
χ

∣∣∣N(f̂ ∗ ĝ)(χ)
∣∣∣ . By

definition of the convolution operator, the latter is equal to the sum
∑
χ

∣∣∣∑ψ f̂(ψ) · ĝ(χ · ψ−1)
∣∣∣ over χ, ψ

characters of the group G, which is upper bounded by
∑
ψ

∣∣∣f̂(ψ)
∣∣∣∑χ

∣∣ĝ(χ · ψ−1)
∣∣ = L1(f̂) · L1(ĝ).

We bound the L1-norm of the Fourier transform of rank 1 Bohr sets.

Lemma 7 For any positive integer N , and B the characteristic function of any rank 1 Bohr set in ZN ,
L1(B̂) ≤ 4 lnN .

Remark. The bound is tight up to constants, that is, there are Bohr sets B s.t. L1(B̂) = Ω(lnN).

Proof: Fix a rank 1 Bohr set in ZN ,B = Bα,I , for α ∈ ZN and I = [s..t] ⊆ ZN . Denote by g
def
= gcd(N,α)

the greatest common divisor of N and α, and let β
def
= α/g. We prove that L1(B̂) ≤ 4 lnN .

For g = 1 the proof is simple: Since α is co-prime toN , then ZN =
{
α−1x mod N

}
x∈ZN

, implying that
B is equal to the arithmetic progression

{
(α−1x mod N) ∈ ZN

∣∣α(α−1x) ∈ I
}

= α−1I . By the scaling

property of the Fourier transform, for α−1 co-prime to N , L1(α̂−1I) = L1(Î). Thus, by Proposition 3,
L1(B̂) ≤ 4 lnN .

For g > 1 the proof is more involved, details are given in Sect. 4.1.1.

We bound the L1-norm of the Fourier transform of an interval I .

Proposition 3 Let I be the characteristic function of an interval in ZN . Then L1(Î) < 4 lnN .

Proof: By [AGS03], the Fourier coefficients of any length at most N/2 interval I ′ are upper bounded by∣∣∣Î ′(α)
∣∣∣ ≤ 1/abs(α) for abs(α) = min {α,N − α}, and

∣∣∣Î(0)
∣∣∣ ≤ 1. For longer intervals I , we write I as the

sum of two intervals each of length at mostN/2. By linearity of the Fourier transform, the Fourier coefficients
of I are the sum of the Fourier coefficients of these intervals, and are therefore bounded by Î(α) ≤ 2/abs(α).
We conclude that L1(Î) ≤ 1 + 2

∑N/2
α=1(2/abs(α)) < 4 lnN (where for the last inequality we use the bound∑n

i=1(1/i) ≤ 1 + lnn on harmonic numbers).

4.1.1 Proof of Lemma 7
We prove Lemma 7 for the case of rank 1 Bohr sets in ZN with a multiplier α that is not co-prime to N .

Proof of Lemma 7. Fix a rank 1 Bohr set B
def
= {x ∈ ZN | (αx mod N) ∈ I} in ZN for α ∈ ZN and

I = [s..t] ⊆ ZN . Denote by g
def
= gcd(N,α) the greatest common divisor of N and α, and let β

def
= α/g.

We prove that L1(B̂) ≤ 4 lnN , focusing on the case that g > 1.

By Claim 8, for J
def
= [d( sg )e..b( tg )c] we can rewrite B as

B =
{
β−1(i

N

g
+ x0) ∈ ZN

∣∣∣∣x0 ∈ J, i ∈ [0..g − 1]
}

(3)

for β−1 the inverse of β modulo N . Denote

ĴN/g(α)
def
=

1
N/g

∑
x∈J

e(αx/(N/g)).

By Claim 9, for every index γ ∈ ZN , the γ-Fourier coefficient of B is

B̂(γ) =


0 g 6 |γ

ĴN/g(γβ−1/g) g|γ

Thus,
L1(B̂) =

∑
γ′∈ZN/g

ĴN/g((γ′g)β−1/g) =
∑

γ′∈ZN/g

∣∣∣ĴN/g(γ′β−1)
∣∣∣ =

∑
γ′∈ZN/g

∣∣∣ĴN/g(γ′)∣∣∣



where the last equality holds because β−1 is co-prime to N/g (because it is co-prime to N , and N/g is a
divisor ofN ). By the definition of ĴN/g ,

∑
γ′∈ZN/g

∣∣∣ĴN/g(γ′)∣∣∣ is equal to L1(Ĵ) where the Fourier transform
of J is computed with respect to the characters of ZN/g . By Proposition 3, the latter is upper bounded by
4 ln(N/g) ≤ 4 lnN . We conclude that L1(B̂) ≤ 4 lnN.

Claim 8 B =
{
β−1(iNg + x0) ∈ ZN

∣∣∣x0 ∈ J, i ∈ [0..g − 1]
}
.

Proof: Since
{
β−1x

}
x∈ZN

= ZN (as by the maximality of g, gcd(N, β) = 1), then B is equal to the set{
β−1x ∈ ZN

∣∣ (α(β−1x) mod N) ∈ I
}

. Since α(β−1x) = (gβ)(β−1x) = gx we get that

B =
{
β−1x ∈ ZN

∣∣ (gx mod N) ∈ I
}
.

Thus, by Proposition 4, for J = [d( sg )e..b( tg )c],

B =
{
β−1x ∈ ZN

∣∣ (x mod
N

g
) ∈ J

}
.

Expressing each x ∈ ZN according to its division with remainder by N/g, i.e., x = iNg + x0 for i =
b(x/(N/g))c ∈ [0..g − 1] and x0 = x− iNg ∈ [0..Ng − 1], we get that

B =
{
β−1(i

N

g
+ x0) ∈ ZN

∣∣∣∣x0 ∈ J, i ∈ [0..g − 1]
}
.

Claim 9 For every index γ ∈ ZN , if g 6 |γ, then B̂(γ) = 0, and B̂(γ) = ĴN/g(γβ−1/g) otherwise.

Proof: Fix γ ∈ ZN . By definition of the Fourier transform in ZN and the set B,

B̂(γ) =
1
N

∑
x∈B

e(γx/N) =
1
N

∑
x0∈J

∑
i∈[0..g−1]

e(γβ−1(i
N

g
+ x0)/N)

where the last equality holds by Eq. 3. Rearranging this sum we get that

B̂(γ) =
1
N

∑
x0∈J

e(γβ−1x0/N) ·
∑

i∈[0..g−1]

e(γβ−1i/g)

=

 0 g 6 |γβ−1

g
N

∑
x0∈J e(γβ

−1x0/N) otherwise

where the last equality holds since 1
g

∑
i∈[0..g−1] e(γβ

−1i/g) = 0 if g 6 |γβ−1, and it is 1 otherwise (see Sect.
3.1).

Note that g|γβ−1 iff g|γ: This trivially holds for g = 1, and holds for g > 1, since g 6 |β (because g|N
and gcd(N, β) = 1). We conclude that B̂(γ) = 0 if g 6 |γ.

We focus next on the case that g|γ. Denote γ′ = γ/g. Substituting γ with γ′g in the above and rearrang-
ing, we get that, B̂(γ) = g

N

∑
x0∈J e(γ

′β−1x0/(N/g)). This in turn is equal to ĴN/g(γ′β−1) (by definition
of ĴN/g). We conclude that B̂(γ) = ĴN/g(γ′β−1) = ĴN/g(γβ−1/g) if g|γ.

Proposition 4 Fix any positive integers N, g s.t. g|N , and any x ∈ ZN and I = [s..t] ⊆ ZN . Then
(gx mod N) ∈ I iff (x mod N

g ) ∈ [d( sg )e..b( tg )c].

Proof: Observe that since g|N , then (gx mod N) = (x mod N
g ) · g. (Because x = x1

N
g + x2 for x1 < g,

x2 <
N
g , implying that (x mod N

g ) = x2 and (gx mod N) = (x1N+gx2 mod N) = gx2.) Thus, (gx mod
N) ≥ s iff (x mod N

g ) ≥ s/g, which in turn happens iff (x mod N
g ) ≥ d(s/g)e (because x mod N

g is an
integer). Similarly, (gx mod N) ≤ t iff (x mod N

g ) ≤ b(t/g)c. We conclude that (gx mod N) ∈ I iff
(x mod N

g ) ∈ [d( sg )e..b( tg )c].



4.2 Approximating Distributions Uniform over Arithmetic Progressions
We show that there are explicit small sets approximating the uniform distribution over a given arithmetic
progression.

Theorem 2 Part 2 (Approximating arithmetic progressions). For any integer N > 0, real ε ∈ (0, 1), and
a length M ≤ N arithmetic progression B in ZN , there is an explicit set A ⊆ ZN of size polynomial in 1/ε
and (lnM)2 that ε-approximates UB in ZN .
Proof: Fix N , M and ε. We focus here on the case B = [0..M − 1] is an interval starting at zero; extensions
to arbitrary arithmetic progressions appear in section 4.2.1.

Let ε′ = ερ2/2 for ρ = ε/8π. We show below that if DA,ZM (BM,2) < ε′ (i.e., A has ε′-discrepancy on
all rank 2 Bohr sets in ZM ), then A ε-approximates UB . This completes our proof, as by Theorem 2 Part 1
there exists sets A of size polynomial in 1/ε′ = O(1/ε3) and (lnM)2 s.t. DA,ZM (BM,2) < ε′.

To relate approximating the distribution UB over ZN to having ε′-discrepancy on all rank 2 Bohr sets in
ZM , we do the following: For each α ∈ ZN , denote by (qα, rα) its quotient and remainder in division-with-
remainder by (the typically non-integer value) N/M . That is, qα is the largest integer s.t. qα NM ≤ α and
rα = α− qα NM is the remainder. Write α as:

α = N
( qα
M

+
rα
N

)
Rewrite each linear test χα(x) = e(αx/N) in ZN as:

χα(x) = e

(((qαx
M

)
1

+
(rαx
N

)
1

)
1

)
by replacing αx with N

(
qαx
M + rαx

N

)
1

= N
((
qαx
M

)
1

+
(
rαx
N

)
1

)
1
. By Lemma 10, if DA,ZM (BM,2) < ε′,

then the joint distribution of pairs
((
qαx
M

)
1
,
(
rαx
N

)
1

)
with x drawn uniformly at random from A is “close”

to their distribution with x drawn uniformly at random from B. Closeness is in the sense that for every two
length ρ intervals J1, J2 ⊆ [0, 1],∣∣∣∣ Pr

x∈A

[(qαx
M

)
1
∈ J1 &

(rαx
N

)
1
∈ J2

]
− Pr
x∈B

[(qαx
M

)
1
∈ J1 &

(rαx
N

)
1
∈ J2

]∣∣∣∣ < ε′

By Lemma 11, if the above equation holds, thenA ( ε
′

ρ2 +4πρ)-approximates UB . Noting that ( ε
′

ρ2 +4πρ) = ε,
we conclude that DA,ZM (BM,2) < ε′ implies that A ε-approximates UB .

Lemma 10 For any positive integers M ≤ N , positive real ε and a subset A ⊆ ZM , if DA,ZM (BM,2) < ε′,
then for all integers α ∈ [0,M), reals β ∈ [0, N/M), and intervals J1, J2 ⊆ [0, 1],∣∣∣∣ Pr

x∈A

[(αx
M

)
1
∈ J1 and

(
βx

N

)
1

∈ J2

]
− Pr
x∈B

[(αx
M

)
1
∈ J1 and

(
βx

N

)
1

∈ J2

]∣∣∣∣ < ε′ (4)

Remark. In particular, Eq. 4 holds for any α, β, J1, J2, ε
′ s.t. (α, β) = (qz, rz) are the quotient and remainder

in the division-with-remainder by N/M of some z ∈ ZN , J1, J2 ⊆ [0, 1] and length ρ intervals (because qz
is an integer in [0,M) and rz is a real in [0, N/M)).
Proof: Fix parameters α, β, J1, J2 and ε′ for Eq. 4. Fix A ⊆ ZM s.t. DA,ZM (BM,2) < ε′. In the following
we first show that Eq. 4 above holds iff Eq. 5 below holds. We then argue that Eq. 5 holds as it bounds the
discrepancy of A on a rank 2 Bohr set in ZM . We conclude that Eq. 4 holds.

We map the sets
(
αB
M

)
1

and
(
βB
N

)
1

into ZM by the one-to-one mappings:

(i)
(αx
M

)
1
7→ αx mod M

(ii)
(
βx

N

)
1

7→ x

(The latter map is a one-to-one because β < N/M and hence for x ∈ B = [0..M −1],
(
βx
N

)
1

does not wrap

around 0.) Denote by J̄1 and J̄2 the intervals in ZM that are the images of the sets J ′1 = J1 ∩
(
αB
M

)
1

and

J ′2 = J2 ∩
(
βB
N

)
1

under mappings (i) and (ii), respectively. Since mappings (i),(ii) are one-to-one, then Eq.
4 holds iff the following holds:∣∣∣∣ Pr

x∈A

[
(αx mod M) ∈ J̄1 and x ∈ J̄2

]
− Pr
x∈B

[
(αx mod M) ∈ J̄1 and x ∈ J̄2

]∣∣∣∣ < ε′ (5)



Observing that the left hand side of Eq. 5 is the discrepancy of A on the rank 2 Bohr set

R =
{
x ∈ ZM | (αx mod M) ∈ J̄1 and x ∈ J̄2

}
,

we conclude that Eq. 5 holds and hence Eq. 4 holds.

Lemma 11 If Eq. 4 holds for every integer α ∈ [0,M), real β ∈ [0, N/M), and length ρ intervals J1, J2 ⊆
[0, 1], then A ( ε

′

ρ2 + 4πρ)-approximates UB in ZN .

Proof Sketch. Intuitively, if the distribution of pairs
((
qαx
M

)
1
,
(
rαx
N

)
1

)
with x drawn from UA is “close” to the

distribution of such pairs with x drawn from UB , then the distribution of sums χα(x) =
((
qαx
M

)
1

+
(
rαx
N

)
1

)
1

over x ∈ A is “close” to the distribution of such sums over x ∈ B. Namely, the expected value of χα(x)
with x drawn from UA is “close” to its expected value with x drawn from UB .

Capturing this intuition requires some technical work, where we rewrite Ex∈S χα(x), S = A,B, as a sum
over expressions depending on pairs of intervals J1, J2, and use Eq. 4 (and other manipulations) to bound
these expressions. Details are omitted from this extended abstract.

4.2.1 From Approximating Intervals to Approximating Arithmetic Progressions
We show that given any lengthM arithmetic progressionP = Pα,[s..s+M−1] and any setA that ε-approximates
U[0..M−1] in ZN , the set A′ = α(A+ s) is a set of size |A′| ≤ |A| that ε-approximates UP .

Lemma 12 For any positive integers M ≤ N and any length M arithmetic progression P = Pα,[s..M−1+s]

in ZN , if A ⊆ ZN ε-approximates U[0..M−1], then A′
def
= α(A+ s) ε-approximates UP .

Proof: For any β ∈ ZN and subsets S, S′ ⊆ ZN , denote diffβ(S, S′)
def
= Ex∈S e(βx/N)−Ex∈S′ e(βx/N).

We prove that |diffβ(A′, P )| < ε for all β ∈ ZN . Fix β. By definition of A′ and P , |diffβ(A′, P )| =
|Ex∈A e(βα(x+s)/N)−Ex∈[0..M−1] e(βα(x+s)/N)|. The latter is equal to |e(βαs/N)||Ex∈A e(βαx/N)−
Ex∈[0..M−1] e(βαx/N)| = 1 · |diffαβ(A, [0..M − 1])| < ε where the last inequality holds, because A ε-
approximates U[0..M−1] means that |diffβ′(A, [0..M − 1])| < ε for all β′ ∈ ZN .

5 Deterministically Finding Significant Fourier Coefficients
We present our deterministic and robust SFT algorithm, and prove Theorem 1.

5.1 The SFT Algorithm
At a high level, our SFT algorithm is a binary search algorithm that repeatedly: (1) Partitions the set of
potentially significant Fourier coefficients into two subsets. (2) Tests each subset to decide if it (potentially)
contains a significant Fourier coefficient. (3) Continues recursively on any subset with a positive test result.

Elaborating on the above, at each step of this search, the set of potentially significant Fourier coefficients
is maintained as a collection J of intervals, starting with J containing the four intervals [iN4 ..(i + 1)N4 ],
i = 0, . . . , 3. To maintain efficiency, the intervals [a..b] are represented by their endpoints pairs {a, b}. The
partition step partitions every interval J = [a..b] ∈ J into its lower and upper halves: J1 = [a..c] and
J2 = [c + 1..b] for c = b((a + b)/2)c its center. For i = 1, 2, the test estimates the Fourier weight of f on

Ji, denoted f̂(Ji)2 def
=
∑
α∈Ji

∣∣∣f̂(α)
∣∣∣2, returning YES if this weight exceeds the significance threshold τ .

The set J is updated by removing J , and inserting each Ji (i = 1, 2) iff it passes the test. After O(logN)
steps this search terminates with a collection J of length one intervals containing the frequencies of the
(potentially) significant Fourier coefficients. The algorithm wraps up by executing a sieving step, where for
each frequency α of a potentially significant Fourier coefficient, aO(τ)-approximation for f̂(α) is computed:
valα = 1

|A|
∑
x∈A−y f(x)χα(x) (for an arbitrary y ∈ ∪b(logN)c

`=1 B`); and the algorithm outputs the pairs
(α, valα) for all α found to be significant, i.e., valα ≥ τ/2.

The heart of the algorithm is the test deciding which intervals potentially contain a significant Fourier
coefficient. This test, given an interval J = [a..b], answers YES if the Fourier weight on J , exceeds the
significance threshold τ , and answers NO if the Fourier weight of a slightly larger interval J ′ ⊇ J is less
than τ/2. This is achieved by estimating the `2 norm (i.e., sum of squared Fourier coefficients) of a filtered
version of the input function f , when using a filter h that passes Fourier coefficients in J and decays fast
outside of J . The filters we use are functions h = h`,c which are (normalized) periodic square functions with



support size 2` when phase shifted by −c, for c = b((a + b)/2)c the center of J and ` = b(log N
4(b−a) )c a

function of J’s length:

h`,c(y)
def
=


N
2`
· χ−c(y) y ∈ [0..2` − 1]

0 otherwise
(6)

The filter h`,c passes all frequencies that lie within the length N/2`+2 interval J centered around c, and
decays fast outside of J . The filtered version of f is f ∗ h, and we estimate its `2 norm ‖f ∗ h‖22 by the
estimator:

est`,c(f)
def
=

1
|A|

∑
x∈A

 1
|B`|

∑
y∈B`

χ−c(y)f(x− y)

2

(7)

for A a small biased set in ZN , and B` approximating the uniform distribution over [0..2` − 1] in ZN .
A pseudo-code of the algorithm follows.

Algorithm 5 SFT.
Input: N ∈ N, τ ∈ (0, 1], oracle access to f : ZN → C.

1. Initialize: L = φ; J ←
{{
iλN2 , (i+ 1)λN2

}} 2
λ−1

i=0
for λ = 1/2; γ = τ/(49t2 lnN)

2. Construct queries:
• A := AIKPS(N, γ)
• For ` = 1, ..., logN, B` := AIKPS(2`, γ`) for γ` := γ3/(128π2`2)

Remark: AIKPS(N, ε) is as specified in Sect. 3.2, Eq. 1.

3. Main Loop: While ∃{a, b} ∈ J s.t. b 6= a do:

(a) Remove {a, b} from J , denote c′ = b(a+b
2 )c

(b) For each pair {a′, b′} out of the pairs {a, c′} and {c′ + 1, b} do:

i. Let ` = b(log λN
2(b′−a′) )c and c = b(a

′+b′

2 )c

ii. Compute est`,c ← 1
|A|
∑
x∈A

(
1
|B`|

∑
y∈B` χ−c(y)f(x− y)

)2

iii. If est`,c ≥ τ/2, insert {a′, b′} to J
4. Sieving: For each {a, b} ∈ J , and each α ∈ [a..b]

(a) Compute val(α)←
∣∣∣ 1
|A|
∑
x∈A χα(x)f(x)

∣∣∣2
(b) If val(α) ≥ τ/2, insert α to L

5. Output {(α, valα)}α∈L

Remarks. (1) To keep this paper self contained, in Step 2 of the pseudo-code we use the small biased sets
of [AIK+90] which were specified in Sect. 3.2, Eq. 1. Nevertheless, any other construction of small biased
sets may be used (with set sizes |A| , |B`| varying accordingly). (2) To simplify notations, we assume without
loss of generality that 0 ∈ ∪`B` (otherwise add it), and ‖f‖2 = 1 (otherwise normalize f by dividing each
read value by an energy estimator 1

|A|
∑
x∈A f(x)

2
).

5.2 Proof of Theorem 1
The proof of Theorem 1 is simple given our new result on explicit sets approximating given arithmetic pro-
gressions in ZN (Theorems 2 and 4) together with the work of [Aka09]:

Proof:[Proof of Theorem 1.] Our algorithm builds on the algorithm of [Aka09] while replacing their ran-
domized construction of sets S =

⋃
`(A − B`) with a deterministic construction. Our deterministic con-

struction produces a set S which is (N, τ, t)-good (see Corollary 13 below). When S is (N, τ, t)-good, the
analysis of [Aka09] shows that the algorithm succeeds (see Theorem 14 below). Namely, the algorithm out-
puts L ⊇ Heavyτ (f) (with probability at least 1 − 1/NΘ(1) over the random noise η) in running time is
O( 1

τ2 logN · |S|). Finally, this running time polynomial in logN , 1/τ and t by the definition of good sets.

As a corollary of our results on explicit constructions (Theorems 2,4), the queries constructed in our SFT
algorithm are (N, τ, t)-good.



Corollary 13 The set S =
⋃
`(A−B`) for A,B` as in Algorithm 5 is an (N, τ, t)-good set.

Proof: The set S is good, because: (i) A is a γ-biased set in ZN . (ii) B` γ-approximates U[0..2`−1] (by
Theorem 4 and the fact that B` is a γ` = γ3/(128π2`2)-biased set in Z2` ). Finally, |A| , |B`| are polynomial
in logN and 1/γ = O(t2 lnN/τ).

Theorem 14 ( [Aka09]) If the queries S =
⋃
`(A−B`) for A,B` as in Algorithm 5 are (N, τ, t)-good, then

the following holds. Given N , τ , t, and {(x, f ′(x))}x∈S for f ′ = f + η a complex valued function over ZN
s.t. L1(f̂) ≤ t and η is a τ/3-random noise, Algorithm 5 outputs {(α, valα)}α∈L s.t. (with probability at
least 1 − 1/NΘ(1) over the random noise η) L ⊇ Heavyτ (f) and valα are O(τ)-approximations of f̂(α).
The running time of the algorithm is O( 1

τ2 logN · |S|).

6 Conclusions
We presented the first deterministic SFT algorithm for functions over ZN , which is: (1) Local, i.e., its running
time is polynomial in logN , 1/τ and L1(f̂); and (2) Robust to random noise. Our main technical novelty
lies in proving that there exists explicit constructions of small sets with small discrepancy in all rank d Bohr
sets, as well as small sets approximating the uniform distribution over a given arithmetic progression.

Extensions. Our deterministic SFT algorithm extends to handle functions over all finite abelian groups G
(given by their generators g1, . . . , gk and their orders N1, . . . , Nk). This extension is motivated for example
by functions over domains G = ZN1 × . . .× ZNk arising in image/video processing applications (k = 2, 3)
and machine learning applications (large k). As a central ingredient for this extension we present explicit
small sets approximating the uniform distribution over rectangles Rt,` = [0..N1]× . . .× [0..Nt−1]× [0..2`−
1]× {0}k−t for given t ∈ [k] and ` ∈ [logNt]. Details are omitted from this extended abstract.

Applications to sparse Fourier approximation, compressed sensing and sketching. Using our SFT al-
gorithm we obtain deterministic and robust algorithms for sparse Fourier approximation, compressed sensing
and sketching. Our algorithms, given N , m, ε, t and oracle access to a signal x ∈ CN s.t. L1(x̂) ≤ t (resp., a
sketch Ax for A = AN,m,ε,t ∈ Cpoly(logN,m/ε,t)×N an explicit measurement matrix), output a near optimal
m-sparse approximation R of x, i.e., ‖x−R‖22 ≤ ‖x−Ropt‖22 + ε for Ropt the best m-terms approximation
of x in the Fourier (resp., standard) basis. Our algorithms are robust to m/3ε-random noise, and their run-
ning time is polynomial in logN , m/ε and t. Given our SFT algorithm, the derivation of these algorithms is
standard; details are omitted from this extended abstract.

Open questions. Our results on explicit constructions yields sets sizes that are efficient but not optimal:
Probabilistic method arguments show that there are randomized constructions of sets of size O(d logN/ε2)
with ε-discrepancy in all rank d Bohr sets, as well as sets of size O((logN)/ε2) ε-approximating the uni-
form distribution over a given arithmetic progression. Whether these bounds can be matched by explicit
constructions is an open problem.
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