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Abstract

This thesis develops a mathematical framework for specifying the consistency guarantees
of high performance distributed shared memory multiprocessors. This framework is based
on computations, which specify the operations requested and constraints on how these op-
erations may be applied; we call the framework computation-centric. This framework is
expressive enough to specify high level synchronization mechanisms such as locks.

We use the computation-centric framework to specify and compare several memory
models, to characterize programming disciplines, and to prove that weakly consistent sys-
tems provide strong consistency guarantees when certain programming disciplines are
obeyed. Specifically, we define computation-centric versions of several memory models
from the literature, including sequential consistency, weak ordering and release consistency,
and we give a computation-centric characterization of data-race-free programs. We prove
that when running data-race-free programs, weakly ordered systems appear sequentially
consistent. We also define memory models that have higher level guarantees such as locks
and transactions. The strongly consistent versions of these models make guarantees that
are stronger than sequential consistency, and thus are easier for programmers to use. We
introduce a new model called weak sequential locking, which has very weak guarantees,
and prove that it guarantees sequential consistency and mutually exclusive locking for
programs that protect memory accesses using locks. We also show that by using two-
phase locking, programmers can implement serializable transactions on any memory sys-
tem with weak sequential locking.

The framework is intended primarily to help programmers of such systems reason
about their programs. It supports a high level of abstraction, insulating programmers
from system details and enhancing the portability of their programs. The framework is
also useful for implementors of such systems, in determining what guarantees their im-
plementations provide and in assessing the advantages of providing one memory model
rather than another.
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Chapter 1

Introduction

To improve performance, many shared memory systems expose programmers to inconsis-
tent views of the memory. To be useful, a system must guarantee some properties about the
values returned by the memory; these guarantees are specified by its memory consistency
model. Reasoning about programs running on systems with weak consistency guarantees
is difficult, both because the nondeterminism and inconsistencies may lead to surprising
behaviors, and because the models are often complicated and imprecise. In this thesis,
we show how to model shared memory systems clearly and precisely, and how to reason
about the behavior of programs running on these systems.

From bus-based symmetric multiprocessors (e.g., [76]) to distributed nonuniform mem-
ory access systems (e.g., [71]) to shared virtual memory systems implemented in software
over a network of workstations (e.g., [64]), shared memory multiprocessor systems are
the dominant architecture for high performance computing [72, 26]. Even more than for
uniprocessors, memory latency is the critical performance factor for multiprocessor sys-
tems [72]. Unfortunately, many techniques for reducing or hiding memory latency on a
uniprocessor—caching, write buffering and instruction reordering—can compromise the
consistency of the memory. Many multiprocessors trade consistency for high performance.
Similarly, shared memory is an attractive paradigm for multithreaded languages such as
Cilk [105] and Java [49], but many compiler transformations that are transparent to sequen-
tial programs change the semantics of concurrent programs. Our framework provides a
unified setting in which to specify, reason about and compare these models, and to study
what guarantees are actually useful for programming concurrent systems.

Concurrent programs are difficult to write correctly [28, 70]. Techniques for structur-
ing and reasoning about concurrent programs have been developed [28, 21, 91, 67], but
they assume strong consistency guarantees [68]. The loss of these guarantees has resulted
in systems with complex and subtle semantics, increasing the complexity of program-
ming these systems, which “already stretch[es] the intellectual limits of programmers” [56,
p. 33]. We show how to carry the techniques developed for strongly consistent systems
over to weakly consistent systems, and to identify the properties needed for this to work.

High level multithreaded languages allow structured concurrency that cannot be ex-
pressed easily in other frameworks proposed in the literature [44, 11, 1, 38, 41, 55, 62].
These frameworks adopt a processor-centric view of memory, in which there is a fixed set of
sequential processors issuing operations and there are no control dependencies between
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10 CHAPTER 1. INTRODUCTION

operations at different processors, whereas these languages allow threads to be created and
assigned to processors dynamically.1 We believe that models should capture the program-
mer’s intent, as expressed in the program, as closely as possible. Thus, our framework
allows great flexibility in the kinds of properties it can specify.

1.1 Background

In this section, we present some of the relevant background to this thesis. Our research
draws primarily from the work on modeling shared memory multiprocessors, which could
fill several books. Because the way we think about concurrent systems is shaped by the
pioneering work on concurrent programming, which arose in the study of operating sys-
tems in the 1960s, we begin with a discussion of that early work and the assumptions that
were implicit in it.

1.1.1 Concurrent Programming from the 70s and 80s

Programmers of early concurrent systems developed structures and disciplines to organize
and reason about their programs. In this subsection, we introduce some of the basic no-
tions and the assumptions they made to reason about concurrent systems. We present the
“traditional” view of concurrent systems adopted by most programmers of these systems.
This view serves as the basis of much of the informal discussion of concurrent systems
later in this thesis.

The basic unit of control in a concurrent system is a thread, which is the sequence of
operations resulting from executing a section of sequential code. A thread may create new
threads, which execute concurrently. It may also synchronize with concurrent threads. To-
gether with the sequential order of each thread, the pattern of thread creation and synchro-
nization specifies the control dependencies between operations in an execution of a program.
The control dependencies define a partial order, called the program order, on the operations.

Threads communicate using shared data or by passing messages; shared memory sys-
tems are generally deemed easier to program [72]. Synchronization between threads is
usually implemented by communication rather than using special synchronization hard-
ware.2 Thus, the control dependency appears as a data dependency in the program.

Concurrent programming is hard [28, 22, 70]. Unexpected behavior arises most com-
monly when a piece of data is accessed by two unsynchronized concurrent threads. If ei-
ther thread changes the data, the result depends on the timing or scheduling of the threads,
which the programmer cannot predict. This situation is called a data race; the threads com-
pete for access to the data. Because of the unpredictability they introduce, data races are
usually considered bugs. There has been a lot of research on algorithms to detect data
races [31, 96, 25].

1Processor-centric memory models have been given for Java [82, 94], but these do not model control de-
pendencies arising from thread creation and joins.

2This is not true, for example, for SIMD or synchronous multiprocessors, which are beyond the scope of
this thesis. (Bräunl [20] gives an overview of such machines.)
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Early programmers developed disciplines to avoid data races in the first place [30, 21].
The most common discipline is to designate regions of code that access shared data as
critical [13, 103], and to use a lock to restrict entry into critical sections, so that at most one
thread executes critical code at any time. This is still the recommended way to program
concurrent systems [16, 70].

If shared data is accessed only within critical sections, then the system guarantees that
the code within each critical section appears atomic. That is, a programmer may assume
that operations within a critical section execute consecutively, without any intervening
operations of other threads. This assumption makes reasoning about the program much
simpler.

Lamport noted that early methods [28, 91, 67] for designing and reasoning about con-
current programs assumed that

the result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor
appear in this sequence in the order specified by the program [68, p. 690].

This property, called sequential consistency, is not guaranteed by “the sequentiality of each
individual processor.”

Without sequential consistency, dependencies due to synchronization may not be re-
spected because threads use the memory to synchronize; synchronization relies on data
dependencies rather than control dependencies, and is thus contingent on the consistency
guarantees of the memory. In this case, Lamport warned,

Protocols for synchronizing the processors must be designed at the lowest level of
the machine instruction code, and verifying their correctness becomes a monumental
task [68, p. 691].

A related approach to concurrent programming was developed in the area of transac-
tion processing for large database systems. To maintain the consistency of the database
even in the face of failures, researchers developed the notion of an atomic transaction [75].
An atomic transaction is a sequence of operations of which either all or none are effective.
Partial transactions, which make the database inconsistent, are never seen. In the concur-
rent setting, this guarantee is extended to prevent transactions from interfering with each
other; that is, transactions cannot see partial effects of other transactions. Transactions
have been proposed as a basis for structuring distributed applications, which are neces-
sarily concurrent. Gray and Reuter claim that “without transactions, distributed systems
cannot be made to work for typical real-life applications.” [51, p. xxiii]

1.1.2 Weak Consistency

Despite Lamport’s admonition, weakly consistent memories exist because guaranteeing
sequential consistency entails a significant performance cost [74, 42, 108, 63]. In this sub-
section, we discuss some of these systems, why they do not guarantee sequential consis-
tency, and what they guarantee instead. This discussion touches on only a small fraction
of the vast amount of work done in this area.

Almost all the work on consistency models for shared memory multiprocessors, as
presented in books and survey papers [87, 2, 72, 52, 26], takes a processor-centric view of
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a system: Each processor issues a sequence of operations, and there are no control de-
pendencies between operations of different processors. Thus, the program order defines
a sequence for each processor rather than an arbitrary partial order. This restriction is
reasonable when viewed from the architectural level. Also, in the processor-centric view,
memory operations are usually reads or writes to single locations.

Guaranteeing sequential consistency is expensive because it inhibits many techniques
that reduce or hide memory latency, which are critical for performance [72]. These tech-
niques can be grouped roughly into two categories: reordering instructions and main-
taining inconsistent copies of memory. For example, the IBM System/370 allows a write
to complete before a read issued before it, provided they access different locations [58].
On the other hand, a SPARC processor forwards the value of a buffered write to later
reads [104, 107], even though this value is not visible to other processors because it has not
yet been written to memory. Thus, the write buffer acts as an incoherent cache.

More recent multiprocessors, such as the PowerPC [84], the SPARC V9 [107] and the
Alpha [101], allow almost all operations to be reordered. They provide fence instructions
to inhibit reordering. Except for the problem with write buffers mentioned above, these
machines maintain cache coherence, which means that at any time, each memory location
has at most one valid value in the caches of all the processors.3 Fences can be used to
synchronize processors in a cache coherent system.

Unlike sequential consistency, the guarantees of these multiprocessors are not given
as abstract consistency conditions. Rather, they are derived from informal descriptions
of the operation of the hardware. Although the guarantees of each system are different,
researchers identified and gave more abstract characterizations of a few general classes of
systems. For example, some multiprocessors maintain the program order and require the
processors to agree on the order of writes to the same location but allow them to disagree
about the order of writes to different locations. Goodman called this condition processor
consistency4 [47] and noted that many programs execute correctly on processor consistent
memory. Other systems are weakly ordered [33], which means they distinguish between
synchronization operations and data operations. Data operations may be reordered among
themselves, but not with synchronization operations, which must be strongly ordered.5

Other researchers have attempted to characterize the consistency guarantees implied
cache coherence alone, as a kind of minimal consistency requirement. Goodman defined
cache consistency as the guarantee that accesses to each location are strongly ordered [47].
Today this property is simply called coherence [43, 87, 8, 52, 26]. Other researchers define
coherence as the property that all processors see all the writes to each location in the same
order [43, 41, 52]. These definitions are equivalent if no operations are reordered [55], but
not necessarily otherwise, as we shall see in Chapter 6. Unfortunately, there are other, often
informal, definitions for coherence (e.g., [33]), together with many vague statements about

3We give a different definition of coherence below. These two notions are related but distinct. Cache
coherence is a property of an implementation while memory coherence is an abstract consistency guarantee.
We study coherence formally in Section 5.4.

4Goodman’s defined processor consistency informally, and at least three different interpretations ap-
peared [43, 12, 8]. We adopt the definition by Ahamad, et al. [8], who compare the various definitions.

5The original definition of strong ordering did not guarantee sequential consistency for systems with
nonatomic memory access [3, 34]. Dubois and Scheurich gave new conditions in a later paper [32].
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coherence. (See Section 5.4 for a few examples of such statements.)
One of the most influential relaxed models is release consistency, which captures the

guarantees made by the Stanford DASH machine [43]. Release consistency extends weak
ordering by classifying synchronization operations as acquire, release, and nsync operations,
each with weaker restrictions than the synchronization operations of weak ordering. For
a special class of programs, called properly labeled programs, a release consistent memory
system appears sequentially consistent. That is, properly labeled programs cannot distin-
guish release consistency and sequential consistency.

Release consistency has been extended or modified to describe the consistency guar-
antees of other systems, particularly for software implementations of distributed shared
memory (DSM),6 sometimes called shared virtual machines (SVMs). Examples of these in-
clude entry consistency in Midway [15], eager release consistency in Munin [23], lazy re-
lease consistency in TreadMarks [64], and scope consistency [59].

Weakly consistent systems also arise for replicated data services [17, 95, 66, 106, 83], for
which the primary system criterion, availability, is incompatible with strong consistency.
Our initial work on weak consistency arose from attempts to state precisely the guarantees
of a lazy replication algorithm by Ladin, et al. [66], which led to our definition of eventually-
serializable data services [36]. At the 1996 joint panel discussion of the International Sympo-
sium on Computer Architecture and the Symposium on Principles of Distributed Computing [60],
we realized that the techniques we used to specify and reason about weakly consistent data
services are applicable to weakly consistent shared memory multiprocessors.

Several researchers have adopted different approaches to defining memory models.
The Commit-Reconcile & Fences (CRF) model is a “mechanism-oriented” model designed
to give architects and compiler writers both control and flexibility [100]. It can be imple-
mented efficiently and can also serve as a target for compilers of high-level languages. CRF
is both upward and downward compatible with many memory models in the following
sense: Programs written assuming a different memory model typically have a straightfor-
ward translation into a program for CRF. Conversely, since other memory models can often
be viewed as implementations of CRF, programs written assuming CRF execute correctly
on systems implementing those models [99].

The designers of the shared memory for Cilk [105] focused on guaranteeing proper-
ties that “would be sufficient for the types of problems that are naturally expressed in a
multithreaded programming environment [61, p. 127].” Because Cilk is a high level lan-
guage that does not have explicit processors, their shared memory model is not processor-
centric.7 Rather, it is defined on a directed acyclic graph (dag) of operations that represents
the structure of an execution of a Cilk program. Instead of defining a memory model by
how the system might execute, they define dag consistency by ruling out behaviors that pro-
duce what they deem unacceptably anomalous behavior [18]. Together with Frigo, defined
a family of dag-consistent models [40]. Every member of this family is strictly weaker than
coherent memory. We showed that any implementation of the strongest of these models
guarantees coherence,8 leading Frigo to conclude that coherence is the “weakest reason-

6Hardware implementations of DSM are often called nonuniform memory access (NUMA) machines [72].
7Our use of the term “processor-centric” originates in its use in the Cilk project [61, 18]. In Chapter 6, we

give their informal term a precise technical meaning.
8Coherence is called location consistency in that paper.
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able memory model” [39].
Adve and Hill redefined weak ordering as a set of formal constraints on programs,

such that a system with weak ordering appears to be sequentially consistent to programs
satisfying the constraints [4]. This method for defining memory models is called a sequen-
tial consistency normal form for the memory model [1]. Informally, the program must have
“enough synchronization.” For example, a program is data-race-free-0 (DRF0) if in every
execution on a sequentially consistent system, competing nonsynchronization operations
are separated by a synchronization operation. Data-race-free-0 is a sequential consistency
normal form for weak ordering.9 There are no guarantees for programs that do not satisfy
the constraints. Adve and Gharachorloo call this the programmer-centric approach to spec-
ifying memory consistency models [2]. Using this approach, the conditions for properly
labeled programs [43] define a sequential consistency normal form for release consistency.

1.1.3 Methods for Modeling Memory Consistency

Broadly speaking, there are three approaches to defining memory models in the literature,
as state machines, as sets of legal histories, and as conditions that a program must satisfy
to guarantee sequentially consistent semantics for the program. In this subsection, we
discuss the merits and shortcomings of these various approaches.

The state machine approach is attractive because state machines are well understood
throughout computer science and they are widely used to model computer systems. A
state machine that closely corresponds to the actual system is relatively straightforward,
albeit tedious, to construct. Abstract state machines can also be used to specify system
requirements. Different formalisms have been employed to describe abstract state ma-
chines, including I/O automata [45, 44], specification languages [70] and term rewriting
systems [100, 99].

State machine models have not been so successful at specifying memory consistency
models because the state machine representation of a system does not make clear what
consistency properties the system guarantees. As a result, the most common approach to
specifying the memory consistency is to characterize the “legal” behaviors of a system [8,
41, 11, 54, 46]. That is, a behavior that is exhibited by the execution of a program on a
correct implementation of a memory model is a legal history of the system. The set of legal
histories defines the memory model. This approach derives from early work by Misra [86]
and Herlihy and Wing [53], and there are many variations of it.

Characterizing the legal histories of a system is a static approach to specifying memory
consistency in that it considers a fixed set of operations and their responses. In contrast,
the state machine approach captures the dynamic interaction between a memory system
and the clients accessing it. Although legal histories seem to be easier to use than state
machines in reasoning about the possible executions of a system and especially in un-
derstanding the properties guaranteed by the system, they do not capture the dynamic
interaction between the memory and its clients. This drawback is significant because the
memory operations that are requested later may depend on the values returned for earlier

9A memory model may have several sequential consistency normal forms. For example, data-race-free-1 is
also a sequential consistency normal form for weak ordering (and release consistency) [5].
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operations. Modeling this interaction properly requires a model for the processor as well
as the memory system.

The third approach, of describing the consistency model of a system by conditions
that programs must satisfy to ensure sequentially consistent behavior when running on
that system, is the programmer-centric approach discussed at the end of the previous sub-
section. A programmer-centric model makes no guarantees for programs that do not
satisfy its conditions, but allows the programmer to reason assuming sequential consis-
tency for programs that do satisfy the conditions. The conditions on programs specified
by programmer-centric models are typically easier to understand and reason about than
the weak consistency properties specified by the legal histories approach.

There are at least two weaknesses with the programmer-centric approach. First, it fixes
sequential consistency as the strongest consistency guarantee for any system. Systems that
guarantee only sequential consistency are difficult to program [70], and there is no consen-
sus yet on a stronger guarantee to use as a base model. Second, a programmer-centric
model does not restrict the behavior of programs that do not meet the required conditions.
Although most programs on the system may satisfy the conditions, programs that do not
satisfy the conditions should not be allowed to have completely arbitrary behavior.

Regardless of the approach taken to model memory consistency, almost all the memory
models in the literature are processor-centric; they assume a fixed set of processors, each
executing a sequential program. Other than our own work [77, 40, 36], the only work that
we know of that is not processor-centric is earlier work on modeling the guarantees of the
Cilk system [18, 61], and that of Gibbons and Merritt [44]. The latter work retains most of
the characteristics of processor-centric models, except that the operations at each processor
are not assumed to be totally ordered.

1.2 Research Goals

We want a framework for specifying the consistency guarantees of a memory system and
for reasoning about the behavior of programs executed on such a system. The framework
should be precise, so that we can construct rigorous proofs using the models defined, and
it should be easy to use, so that these proofs are tractable. The framework should not
be processor-centric; we should be able to express the constraints implied by structured
multithreaded programs.

Within this framework, we want to specify memory models that have been proposed,
including those of real multiprocessors. We also want to characterize precisely the pro-
gramming disciplines that programmers use to get stronger guarantees from the memory,
particularly the discipline of writing programs without data races to achieve sequential
consistency, and of two phase locking to achieve serializable transactions. We can then
prove rigorously that a program obeying a discipline does indeed get the stronger guar-
antees. By examining these proofs, we can identify which properties a memory system
should guarantee and which are superfluous.

Specifically, the goals of this research are:� To define an interface between programs and memory that expresses the logical
structure of a program’s execution on a memory system, including the operations
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specified by the program and the values returned by the memory.� To show how to specify the requirements and guarantees of memory systems with
this interface precisely, along with a theory of how to reason about these systems;
that is, to develop a framework based on this interface in which memory consistency
models can be precisely defined and reasoned about.� To specify, within the framework developed, several important memory models that
have been proposed in the literature, including sequential consistency, weak order-
ing, and memories with locks.� To investigate and clarify the various meanings of coherence, how they compare, and
what they imply for consistency.� To formally characterize data races and data-race-free programs.� To characterize, within the framework, disciplines used to structure programs and
avoid unexpected behaviors, particularly the discipline of writing programs without
data races.� To prove rigorously that by obeying the disciplines characterized, programmers of
some systems may assume stronger consistency properties than the system guaran-
tees for arbitrary programs.� To identify the properties of the memory system that are necessary to ensure that
these disciplines are valid.

The last goal is important not only for programmers, but especially for system designers,
to determine what properties a memory system should guarantee.

A framework based on the structure of a program’s execution rather than the program
itself, or at least a model that captures the dynamic interaction between an executing pro-
gram and the memory, is not completely adequate for reasoning about programs. Hence
we also want to show how the framework can be used as the basis for a richer framework
that does capture this dynamic interaction.

1.3 Computations

The cornerstone of our framework is a precise and unambiguous interface between the
memory and the clients that access it. The clients specify a computation, which consists
of the operations to be applied to the memory and constraints on how these operations
may be applied. The memory specifies return values for the operations of a computa-
tion. Computations form the basis for specifying and reasoning about memory consis-
tency guarantees; we call our framework computation-centric. In this section, we informally
describe computations and the computation-centric framework, and discuss the strengths
and weaknesses of our approach.

A computation is an abstract representation of the way a memory is accessed when
a program is executed on a system. It is a mathematical object not tied to any particular
language or system. Computations provide a general form for expressing how a memory
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system is accessed by its clients. Computations can model the interface of shared mem-
ory multiprocessors, as well as high level parallel programming languages. Almost any
constraint understood by a memory system can be expressed using a computation. These
constraints are expressed explicitly in the computation, rather than being derived from the
time that operations are requested. Thus, using computations allows us to separate the
memory semantics from linguistic and scheduling issues.

We characterize a memory system by the values it may return for the operations of the
computation specified by its clients. This characterization provides an unambiguous spec-
ification for a memory system, which can be used both by programmers, to reason about
their programs, and by implementors, to verify the correctness of their implementations.

There are several ways in which our approach differs from most of the work in this
area. First, we are completely formal, down to the specification of the data type and up
to the level of proving that a system implements its specification. Second, the framework
is not processor-centric. We can model processor-centric memories within the framework,
but we can also express a richer set of constraints, such as those implied by high level
multithreaded languages like Cilk [105] and Java [49], in which threads can be created and
assigned to processors dynamically. Third, our framework is not tied to any language or
architecture. Instead, it provides a client-memory interface that can be extended easily to
model almost any language or architecture. Fourth, we require the precedence and other
contraints to be given explicitly for each operation. In particular, these constraints are
not determined by the time or order in which the operations are requested. With good
language design, stating the constraints explicitly need not be too cumbersome. Fifth, the
ordering that determines the effects of each operation may be completely different from the
ordering for any other operation. This point is related to the previous point, in which the
programmer or the memory model must explicitly specify what constraints each operation
must respect. Sixth, we do not assume that sequential consistency embodies the strongest
guarantees that programmers wish to have. Rather, we can model systems with stronger
guarantees, such as transactional semantics, that support higher levels of abstraction.

Like the work based on legal histories, the computation-centric approach takes a static
approach to modeling the memory consistency guarantees. Computation-centric models
do not capture the dynamic dependence that the computations may have on the values
returned by the memory. In a sense, a computation is a generalized history without the
return values. This last difference is significant: Because computations do not include
the return values, they model only the clients’ side of the client-memory interface. Thus,
computation-centric models maintain a clean split between the clients and the memory.

To bridge the gap between computations and computation-centric models on one hand
and programs and shared memory systems on the other, we define a state machine model
that preserves much of the flavor of the computation-centric approach but captures the
dynamic interaction between clients and memory. Defining such a model is possible be-
cause of the clean split between the clients and the memory supported by computations.
We show how to construct computation-centric versions of the state machine models of
the memory and its clients, and we prove that any safety property of the system deduced
from the computation-centric models is a property of the original state machine models.
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1.4 Contributions and Thesis Organization

The contributions of this thesis can be classified into two types, the development of a the-
ory of memory consistency and the application of that theory. In this section, we briefly
discuss some of the main results.

The main theoretical contribution is, of course, the development of the computation-
centric framework for modeling the consistency guarantees of a memory system. Innovative
features of this framework include� the clean split between the memory and its clients afforded by using computations

to model the clients’ requests;� the introduction of computation transformations as a device for defining memory
models;� the definition of enclosures of computations and the use of this definition in formal-
izing the well-formedness conditions for memories with locks or transactions; and� a generic “translation” between computation-centric and state machine models of a
shared memory system that preserves the implementation relation.

Important applications of this theory include� computation-centric versions of memory models in the literature, including sequen-
tial consistency, coherence, weak ordering, release consistency and processor consis-
tency, and also of data-race-free clients;� a restatement and rigorous proof of results in the literature, particularly that data-
race-free programs are guaranteed to have sequentially consistent behavior even on
systems with weak consistency guarantees;� the modeling of high level guarantees such as locking and transactions directly in
the memory model;� a new memory model called weak sequential locking, which provides very weak guar-
antees, and a proof that programs that protect memory accesses with locks have se-
quentially consistent semantics when running on a memory that provides only weak
sequential locking;� a formal characterization of integrity constraints for transactional memory and new
weak transactional memory models that preserve any integrity constraints preserved
by serializable transactions; and� an investigation of the notion of coherence, particularly of the relationship between
two definitions of coherence in the literature.

Parts of this work has been published previously [77, 40, 78]. The original computation-
centric models were developed with Matteo Frigo. The seeds of many of these ideas were
developed in the Theory of Distributed Systems group, and particularly from a paper on
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eventually-serializable data services with Alan Fekete, David Gupta, Nancy Lynch and
Alex Shvartsman [36].

The rest of the thesis is organized into three parts. The first part, consisting of Chap-
ters 2 to 4, develops the basic computation-centric framework. The second part, consisting
of Chapters 5 to 8, builds up the repertoire of computation-centric models and techniques
by modeling particular types of systems. Most of the application results are found in this
part. The last part, Chapter 9, shows how to define state machine models that leverage
the computation-centric framework and can capture the dynamic interaction between the
memory and its clients.
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Chapter 2

Serial Semantics of Memory

In this chapter, we develop the formal tools to specify the behavior of memory in the
absence of concurrency. A memory is a (data) object whose state is accessed and modified
by operators. An operator applied to a state of the object yields a new state and a return
value. We consider only deterministic data objects; that is, objects for which the new state
and the return value are uniquely determined by the old state and the operator. In the
serial setting, an object is completely characterized by its current state and its data type,
which specifies its operators and possible states. The data type also specifies an object’s
initial state.

The interface between the clients and the memory is defined by the operators and re-
turn values. In the serial setting, the clients specify a sequence of operators to the memory,
and the memory yields return values for each operator in the sequence. Because the data
type is deterministic, the return values are determined by the operator sequence specified
by the clients.

Clients do not observe the state of the memory directly; they can only infer it from the
values returned for the operators they invoke. If two operator sequences with the same
operators yield the same return values for every operator, the sequences are equivalent
from the clients’ point of view. This notion of equivalence is fundamental to our study of
concurrent

Our definition of data types is simple and general. The simplicity makes it easy to
reason about the behavior of memory. The generality allows programmers to define ar-
bitrary operators for the memory, which is particularly important for programmers using
high level languages with powerful abstraction mechanisms. We develop the theory in
this thesis almost entirely in the context of these general definitions.

At the instruction set level of multiprocessor architectures, an access to memory is usu-
ally a load from or a store to a single location in memory, not an arbitrary operator that
may read and write several locations. This restriction greatly reduces the possible inter-
actions between operators and allows several efficient implementations. We show how to
specialize our definitions to these kinds of memories, and we identify the properties of
these operators that are used to establish various consistency guarantees in the concurrent
setting.

21
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Outline: Section 2.1 defines notation and terminology for common concepts used in this
thesis. Section 2.2 formally introduces the notion of a data type. Section 2.3 shows how to
apply sequences of operators to data objects. Section 2.4 identifies some properties useful
in characterizing operators, and Section 2.5 introduces validity, a property we assume for
all operator sequences used in this thesis. Section 2.6 defines equivalence for operator
sequences, and Section 2.7 gives several results used to prove equivalence, including the
main theorem of this chapter, used throughout the thesis. Section 2.8 defines equivalence
for data types. Section 2.9 discusses data types that can be partitioned into independent
locations, and Section 2.10 shows how these data types can be viewed as compositions of
simpler data types. Section 2.11 discusses alternative approaches for specifying memories.

Reading Guide: The formal definitions and proofs in this chapter serve as the foundation
for the results in later chapters. The concepts introduced here, though many, are simple.
A large part of this chapter consists of examples and explanation to relate these concepts
to commonly understood informal notions. The main technical result in this chapter is
Theorem 2.16 in Section 2.7, which, together with its corollaries, establishes sufficient con-
ditions for the equivalence of two operator sequences. The material in Sections 2.8 and 2.10
while useful for understanding data types, is not needed for the rest of the thesis and can
be skipped without loss of continuity.

2.1 Preliminary Mathematics

In this section, we define notation and terminology that is used throughout this thesis.
Although the concepts are familiar, the literature contains a diversity of notation, and some
concepts have a few common variations. This section is intended primarily as a reference
for the particular choices made in this thesis. In a few cases, we introduce nonstandard
terminology and notation for commonly used concepts. In particular, a permutation of a
set is referred to as a serialization in this thesis.

We denote the natural numbers by �����
	����������������� , the integers by � , and the real numbers
by � . The power set of a set � is the set of all subsets of � , denoted by ��� .

We denote the cartesian product of two sets � and � by ����� . For a family ����� � �
!#" of sets,
we denote the cartesian product by $ � !#" �%� . An element of this set is called a tuple, and is
denoted by &(')�+*,� !-" , where '%�/.0�%� .

The composition of two functions 1)2)�435� and 672)�83:9 is the function 6<;71%2%�43:9 ,
where &�6=;>1?*+&A@B*C�D6B&,1E&A@B*F* for all @G.G� . For 1)2��:3 � , the range of 1 is range &,1H*I��
1E&A@B*J2%@C.I�K� , and the inverse image of �MLONP� under 1 is 1RQTSH&U�<L,*��V�+@C.I�W2E1X&A@B*/.Y�<LZ� .
The restriction of 1 to � L N[� is the function 1H\ ]_^�2`� L 3 � such that 1H\ ]_^a&A@B*b�c1X&A@B* for
all @d.��eL . We say that 1 extends 6 , or is an extension of 6 , if 6 is a restriction of 1 . We
denote that 1 is a partial function from � to � by 1)2��f3 �hg , where �7gi�j�lkm�AnO� and1X&A@B*K�cn denotes that 1 is not defined at @d.o� . The element n is special and does not
belong to any basic set under discussion, so this notation is unambiguous. The domain of1 is domain &,1H*p���q@I.I�W2E1X&A@B*sr�dnM�p�t1 QTS &U�_* .

For any binary relation u on a set � , the restriction of u to �/LvNo� is uJ\ � ^v�du>w0&x�pL`�=�pL,* .
A partial order y on a set � is any antisymmetric and transitive binary relation on � . A
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partial order is strict if it is also irreflexive. A total order is a partial order y in which, for
any two distinct elements 'B�xz�.Y� , either 'Iy{z or z|y|' . Two partial orders are consistent
if there is a partial order that contains both of them; that is, y S and y~} are consistent if there
exists a partial order y such that y S koy�}>N�y . For any relation u , we denote its transitive
closure by TC &UuJ* . Thus, y S and y~} are consistent if TC &Ay S k|y�}�* is a partial order.

For a sequence � , we use \ ��\ to denote the length of � and �~� ��� for the � th element of� , which is well-defined if I������\ ��\ . If the sequence is nonempty, then we denote the
last element by � last. We denote the empty sequence by � . We use �v� to denote the set of
finite sequences whose elements are taken from the set � ; we use �v� to denote the set of
nonempty finite sequences, so that � � �����/���F�X� . The concatenation of two sequences � and�

is denoted by ��� � . We use the same notation for adding a single element to the front
or end of a sequence. The projection of a sequence � onto a set � , denoted by ��\ � , is the
subsequence of � consisting of exactly those elements in � . When a sequence is given
explicitly by listing its values, we sometimes delimit it using angle brackets to eliminate
ambiguity (e.g., 1E&a�a@ S ��@%}-���������R* , �a@ S ��@%}%�������Z�R\ � , �a@ S ��@%}%���������q���,� S �A��}-��������� ).

The set of elements in a sequence � is denoted by elems &���* . A sequence � that contains
each element of a set � exactly once is called a serialization of � . We denote the prefix of
a serialization � ending in '�. elems &���* by pref &��/��'B* ; the prefix of � ending in ' is well-
defined because ' appears only once in � . A serialization � of � defines a strict total order��� on � ; its reflexive closure is denoted � � . Also, � is consistent with a partial order y if� � is consistent with y . With a serialization, it is not necessary to look at long chains for
cycles; a serialization is consistent with a partial order as long as the partial order does not
order any two elements in the sequence differently.

Lemma 2.1 Suppose y is a partial order on � and � is a serialization of �hLJN�� . Then � is
consistent with y if and only if there do not exist 'B�xz|.Y�/L such that ' � � z and z�y|' .

Proof: If � is consistent with � then let �K �¡ TC ¢U�|£¥¤<¦¨§ . If ©«ªs¦K¬ and ¬8�l© then ©e� #¬8� %©
and ©¯®¡C¬ so �   is not a partial order, and � and � are not consistent.

If � is not consistent with � then, because ¤M¦ and � are transitive, there exists a sequence©`°�±x©#²X±+³q³+³q±x©#²µ´¶±U©�²+´%·v° such that ©#²µ´)·v°K¡|©`° and ©#²µ¸x¹v°��|©#²F¸ and ©#²µ¸M¤<¦º©�²µ¸x·v° for »�¡�¼½± ¾-±+³q³+³+± ¿ .
Because ¤ ¦ is a partial order, © ²F¸x¹B° ®¤ ¦ © ²F¸ for some »«¡À¼½±U¾%±+³+³q³+± ¿ . But © ²F¸U¹)² ¤ ¦ © ²F¸x¹B° and© ²F¸x¹B° ¤ ¦ © ²F¸ , so © ²F¸x¹v° ±x© ²F¸7Á«Â   , which ¤ ¦ totally orders. Thus © ²µ¸ ª ¦ © ²F¸x¹B° , as required.

Throughout this thesis, when variables appear unbound, they are assumed to be uni-
versally quantified over an appropriate domain, which should be obvious from context.

2.2 Serial Data Types

The data type of an object specifies its serial semantics. It specifies the operators and the
possible states of the object, and also the effect of each operator on every possible state. In
particular, the data type of a memory consists of a set of states, a set of operators, a set of
return values, and a function that specifies, for each state and operator, the new state and
return value resulting from applying the operator to the state. The data type also specifies
the initial state of the object, before any operators are applied.

Formally, a (serial) data type Ã is a quintuple &xÄ��+ÅÆT�qÇ«�µu7��È�* consisting of:
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� a set Ä of (object) states,� a distinguished initial state Å ÆC.YÄ ,� a set Ç of operators,� a set u of return values, and� a transition function È72)Ä��mÇW35Ä��0u .

We use � s and � v selectors to extract the state and return value components from the result
of the transition function; that is, È¶&�ÆT� o *K�j&(ÈB&�ÆT� o *µ� s �pÈB&�ÆT� o *+� v * . Because we use a (total)
function to specify the semantics of operators, the effect of every operator is defined for
every state; that is, every operator can be applied to every state, yielding a new state and
a return value. Also, the result of applying an operator to any state is unique, which
constrains data objects to be deterministic.

Example 2.1 (Read/Write Register) An integer read/write register stores an integer, initially É , and
has one read operator and a write ¢�Ê`§ operator for each Ê Á«Ë . The read operator returns the stored
value and leaves it unchanged. The write ¢�Ê`§ operator changes the stored value to Ê and returns an
acknowledgment, which we denote by the constant ACK. Thus, the set of possible return values isË £�Ì ACK Í .

Formally, the data type of the register is ÎÏ¡Ð¢ Ë ±�É�±FÑ± Ë £=Ì ACK Í�± Ò)§ , where Ñj¡�Ì read ÍT£Ì write ¢�Ê`§`Ó�Ê Á�Ë Í , and for all ¿/±
Ê ÁmË , Ò�¢�¿/± read §/¡�¢�¿/±�¿/§ and Ò�¢�¿/± write ¢�Ê�§
§h¡Ô¢�Ê`± ACK § . Notice
that the return value of every write operator is always ACK.

Example 2.2 (Read/Write Memory) A read/write memory has several addresses, each of which
can be read or written separately. That is, for each address Õ , there is an operator, read ¢xÕ`§ , that
returns the value at that address, and one operator, write ¢UÕ`± Ê�§ , for each Ê ÁlË , that changes the
value stored at Õ to Ê and returns an acknowledgment, denoted ACK.

Formally, the data type of a read/write memory with address set Ö is× ¡ ØÚÙÛÝÜÝÞ Ë ±T¢�É#§ Û?ÜÝÞ ±�ÑO± Ë £�Ì ACK Í
±)ÒJßm±
where Ñ�¡YÌ read ¢UÕ`§`ÓEÕ Á Ö_Í#£KÌ write ¢UÕ`± Ê�§`ÓEÕ Á Ö and Ê Á�Ë Í
and for each ¢Z¿ Û § Û?ÜÝÞ Á¯à ÛÝÜÝÞ Ë , ÕB  Á Ö , and Ê Á�Ë :Ò�¢�¢Z¿ Û § Û?ÜÝÞ ± read ¢xÕ   §
§�¡�¢�¢Z¿ Û § Û?ÜÝÞ ±%¿ Û�á §Ò`¢
¢Z¿ Û § Û?ÜÝÞ ± write ¢UÕ   ±
Ê`§
§�¡�¢�¢Z¿  Û § Û?ÜÝÞ ± ACK § , with ¿  Û á ¡mÊ and ¿  Û ¡â¿ Û for all Õe®¡�Õ   .

Each operator accesses a single address, and it is said to be performed on that address; that
is, read ¢UÕ`§ and write ¢xÕ`±
Ê`§ are performed on address Õ . It is natural to think of each address as a
read/write register, and the memory as the composition of these registers. We show how to express
this intuition formally in Section 2.10.

Example 2.3 (Special Registers) Some registers have special read-modify-write operators, such as
test-and-set, fetch-and-increment, and compare-and-swap, which both read and write the register. Each
of these operators returns the value in the register, and then may change it to some other value. The
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test-and-set operator sets it to 1; the fetch-and-increment operator increments it by ¼ ; the compare-
and-swap operator is parameterized by the new value to be stored in the register.

A register with such an operator can be defined as an extension of the standard read/write
register Î . The data type of the test-and-set register isã�ä ¡o¢ Ë ±EÉ�±vÑ0£�Ì t å s Í
± Ë £KÌ ACK Í�±)Ò_§ , where Ò`¢Z¿/± t å s §`¡o¢U¼½±)¿/§ for all ¿ Á�Ë .

The data type of the fetch-and-increment register isæ_ç ¡�¢ Ë ±EÉ�±vÑ0£�Ì f å i Í�± Ë £�Ì ACK Í
±)Ò_§ , where Ò`¢Z¿/± f å i §`¡�¢�¿Úè8¼½±)¿/§ for all ¿ Á�Ë .

The data type of the compare-and-swap register isé ä ¡�¢ Ë ±EÉ�±vÑ0£�Ì c å s ¢�Ê�§�Ó�Ê Á>Ë ÍA± Ë £KÌ ACK Í�±)Ò_§ , where Ò`¢Z¿/± c å s ¢�Ê`§
§�¡o¢�Ê`±)¿/§ for all ¿/±
Ê ÁºË .

Even if it does not make sense to apply an operator to a particular state, the data type
must still specify the result of such an application. It may return an error message and
the new state may reflect that an error has occurred. In this case, the error message must
be included in the set of return values, and any error states must be in the set of states.
Also, every operator must have a return value, though it may be constant, as for the write
operators in the examples above.

Example 2.4 (Bank Account) This example illustrates how errors can be modeled. We give the
data type of a simple bank account that maintains the balance in the account, and allows a client
to check the balance, and to deposit or withdraw money. A withdrawal succeeds, however, only if
there is enough money in the account. Otherwise no change is made to the account, and an error
message is returned.

Formally, the data type of a simple bank account isê ¡o¢ Ë ±EÉ�±vÑ±¨ëe£�Ì ACK ± ERR Í�±%Ò�§�±
where Ñ¥¡YÌ balance Í#£KÌ deposit ¢�Ê`§�Ó�Ê Á ë7Í#£�Ì withdraw ¢�Ê`§�Ó�Ê Á ë7Í ,
and for all ¿/± Ê Á ë : Ò�¢�¿/± balance §`¡�¢�¿/±)¿/§Ò`¢Z¿/± deposit ¢�Ê`§�§�¡�¢�¿«èIÊ`± ACK §Ò�¢�¿/± withdraw ¢�Ê`§�§�¡�ì ¢Z¿«íIÊ`±)Ê�§ if Ê�¤0¿¢Z¿/± ERR § if Ê>îC¿ .

A deposit is simply acknowledged. A withdrawal returns either the amount withdrawn or an
error message, depending whether there is enough money in the account. Because the amount
withdrawn is specified by the operator, we could have modeled the return value of a successful
withdrawal by a constant acknowledgment as well. The choice is merely a matter of taste.

No-op operator. In later chapters, it is sometimes useful to have an operator that conveys
information to the memory but does not access the data; that is, the operator does not
change, nor return any information about, the state of the data object. We model these
cases by extending the data type with a noop operator, where È¶&�ÆT� noop *<�c&�ÆT� ACK * for
all ÆC.YÄ .
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2.3 Operator Sequences

A data object begins in its initial state and then evolves as operators are applied to it.
Because the effects of the operators are deterministic, the current state of an object is de-
termined by the sequence of operators that have been applied to it, and the value returned
for each operator is determined by the state of the object at the time it is applied. In this
section, we look at examples of an object evolving through a sequence of operators applied
to it, and we define notation for reasoning about operator sequences.

We begin by looking at some examples of operator sequences for the data types defined
in the previous section. The operators are applied in order to the state resulting from the
application of the previous operator.

Example 2.5 Consider the read/write register data type Î from Example 2.1. Suppose the follow-
ing sequence of operators is applied to an object of type Î in its initial state:

read ± write ¢ ¼½§
± read ± write ¢Z¾-§�± write ¢�ï#§
± read ± read ± write ¢�ð)§
Initially the state of the register is É . After the first read, the state is still É , and the value É is
returned. After the write ¢ ¼½§ , the state is ¼ , and the ACK is returned. The second read leaves the state
as ¼ and returns ¼ . The write ¢�¾-§ and write ¢�ï#§ change the state to ¾ and then ï , and each of them
return ACK. The next two read operators leave the state at ï , and they both return ï . Finally, the
write ¢�ð)§ changes the state to ð and returns ACK. We denote this more compactly as follows:É readñXñ?òó É write ô °µõñ-ñ#ñ�ñ#ò

ACK
¼ readñ�ñÝò° ¼ write ô ²�õñ)ñ�ñ�ñ�ò

ACK
¾ write ô�ö õñ)ñ�ñ�ñ�ò

ACK
ï readñXñ?òö ï readñXñ?òö ï write ô�÷ õñ)ñ�ñ�ñ�ò

ACK
ð

Arrows represent the application of the operator above the arrow, to the state preceding the arrow,
yielding the state following the arrow and the return value indicated below the arrow.

Example 2.6 An operator sequence of the fetch-and-increment register
æ_ç

applied to its initial
state: É f ø iñ�òó ¼ readñXñ?ò° ¼ write ô�ù õñ)ñ�ñ�ñ�ò

ACK ú readñXñ?òù ú f ø iñ�òùüû write ô�ö õñ)ñ�ñ�ñ#ò
ACK

ï f ø iñ¨òö ð f ø iñ�ò÷ ú
Example 2.7 An operator sequence of the bank account data type

ê
applied to its initial state:É deposit ô ° ù õñUñ�ñ�ñ#ñ�ñ�ñ(ò

ACK
¼ ú withdraw ô�ý õñ�ñ�ñ�ñ�ñ�ñ-ñ,òý þ balanceñHñ�ñ�ñ�òÿ þ withdraw ô ° ó õñ¨ñ�ñ�ñ�ñ�ñ#ñ-ò

ERR þ deposit ô�ù õñFñ�ñ�ñ�ñ�ñ
ò
ACK

¼µï balanceñ?ñ�ñ#ñ�ò° ö ¼µï
We now define notation useful for reasoning about operator sequences. The set of finite

operator sequences is Çb� , and the set of nonempty finite sequences is Ç � ��Ç����l�µ�X� . The
function È � 2¨Äâ�=Ç � 3 Äâ�¯u yields the final state and the return value of the last operator
resulting from applying a finite operator sequence in order. Formally, È � &�ÆT��� o �R*���È¶&�ÆT� o *
and È � &�ÆT��� o S � o }%�������Z�R*p��È � &(È¶&�ÆT� o S *F� s ��� o })���������R* . We also define functions that yield the state
or the return value directly. The state function is extended to handle the empty sequence
as well.� È¨�� 2¨Ä��âÇK�<35Ä such that È¨�� &�ÆT�R��*J��Æ and È¨�� &�ÆT�R��*p��È � &�ÆT�R��*+� s for �{.mÇ � .� È �� 2¨Ä��mÇK�â35u such that and È �� &�ÆT�R��*J��È%�h&�ÆT�R��*+� v for �{.âÇK� .
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Using this notation, the current state of an object is È��� & Å ÆT�R��* , where � is the operator se-
quence that have been applied to the object.

Example 2.8 For the read/write register Î from Example 2.5, if�º¡ read ± write ¢ ¼½§
± read ± write ¢Z¾-§�± write ¢�ï#§ ,
then Ò · ¢ É�±µ�¶§�¡�¢�ï#± ACK § , so Ò � � ¢ É�±µ�¶§�¡mï and Ò · � ¢�É�±+�¶§�¡ ACK.

Because an operator sequence is applied by applying each operator in the sequence
consecutively, applying the concatenation of two operator sequences yields the same final
result as applying the second sequence to the final state resulting from applying the first.
Formally, we have the following lemma:

Lemma 2.2 For all ÆC.0Ä , �{.8Ç � , and � L .8Ç� , we have È¨�h&�ÆT�R��� � L *T��È%�_&(È �� &�ÆT�R��*µ�R� L * .
Proof: This lemma follows by induction on the length of � : If

� � � ¡8É then �º¡�� and Ò · ¢
	�±���Z�7 �§�¡Ò · ¢�	�±µ�7 ,§J¡�Ò · ¢�Ò � � ¢
	�±��#§�±µ�7 (§ . Otherwise, assume the lemma is true for sequences of length Ê Á ë
and that

� � � ¡âÊsè8¼ . Let �º¡|�     � o. Then we have:Ò · ¢�	�±µ���Z�7 �§`¡0Ò · ¢�	�±+�J   �� o ���7 (§ by the definition of �7    and o¡0Ò · ¢ZÒ � � ¢�	�±+�J   ,§
± o �Z�J �§ by the inductive hypothesis¡0Ò · ¢ZÒ`¢ZÒ � � ¢�	�±+�J   x§
± o §
³ s ±+�J ,§ by the definition of Ò ·¡0Ò · ¢ZÒ · ¢ZÒ � � ¢�	�±+�J   ,§
±�� o �+§�³ s ±+�J �§ by the definition of Ò ·¡0Ò · ¢ZÒ · ¢�	�±+�J   �� o §
³ s ±µ�7 ,§ by the inductive hypothesis¡0Ò · ¢ZÒ � � ¢�	�±+�     � o §
±+�   § by the definition of Ò � �¡0Ò · ¢ZÒ � � ¢�	�±+�¶§
±+�J ,§ by the definition of �7    and o

The following corollary expresses a few ways that this lemma is commonly used.

Corollary 2.3 For all ÆC.YÄ , o .mÇ , �{.mÇ � , and � L .mÇ� :� È � &�ÆT�R��� o *p��ÈB&(È¨�� &�ÆT�R��*µ� o *� È¨�� &�ÆT�R�����_L,*p��È¨�� &(È)�� &�ÆT�R��*µ�R�_LU*� È �� &�ÆT�R��� �_L,*J��È �� &(È)�� &�ÆT�R��*µ�R�_L *
2.4 Reachable States and Properties of Data Type Operators

In this section, we identify some properties of operators that are useful in reasoning about
system behavior. In particular, we identify when two operations can be reordered with-
out affecting the effect on the state or the return values. Such operations are said to be
independent. Operations that are not independent conflict.

Because an object begins in the initial state and can be modified only by the operators
specified by its data type, it may not be possible to achieve some states of the object. We
are not interested in such states. A state of the data type is reachable if it can be the current
state of an object, that is, if it is the state resulting from applying some operator sequence
to the initial state. Formally, a state ÆY.YÄ is reachable if Æ¯��Èv�� & Å ÆT�R��* for some �{.mÇb� .
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Example 2.9 For the bank account data type
ê

from Example 2.4, the reachable states are the natu-
ral numbers. The negative integers are unreachable because the state is initially 0, and the operators
that reduce this value, withdraw ¢�Ê`§ for Ê Á ë , only do so if it will not become negative.

We now identify properties that are useful in determining when operators may be re-
ordered without affecting the return values or the final state. An operator o is oblivious to
operator o L if the return value of o is unaffected by whether o L is applied before it, that is,
if È �� &�ÆT��� o L � o �R*O� È �� &�ÆT��� o �R* for all reachable states Æo.�Ä . Two operators commute if the
final state resulting from applying them in sequence is the same regardless of the order
in which they are applied; that is, o and o L commute if È �� &�ÆT��� o � o L �R*~�4È �� &�ÆT��� o L � o �R* for all
reachable states Æ8.mÄ . Two operators are independent if they commute and are oblivious
to each other. Two operators conflict if they are not independent.

Example 2.10 For the register data type Î from Example 2.1, every write ¢�Ê`§ operator is oblivious
to all operators and commutes with itself. The read operator commutes with all operators and is
oblivious to itself. Thus, every operator conflicts with every other operator, but not with itself.

Example 2.11 For the read/write memory data type
×

from Example 2.2, every operator is in-
dependent of all operators performed on different addresses. In addition, every write operator is
oblivious to all operators and commutes with itself, and every read operator commutes with all
operators and is oblivious to itself. Thus, an operator conflicts with every operator performed on
the same address except itself.

In the literature, two operations of a read/write memory are often defined to conflict if they
access the same location and at least one of them writes the location [97]. This is identical to our
definition, except that we do not say the operations conflict if they write the same value.

Example 2.12 For
ã�ä

,
æ�ç

and
é ä

from Example 2.3, every write ¢�Ê`§ operator is oblivious to all op-
erators and commutes with itself, and read operator commutes with all operators and is oblivious
to itself.

For
ã�ä

, the t å s operator is oblivious to read and commutes with itself, read and write ¢ ¼½§ .
For

æ�ç
, the f å i operator is oblivious to read and commutes with itself and read.

For
é ä

, the c å s ¢�Ê�§ operator is oblivious to read and commutes with itself, read and write ¢�Ê�§ .
Example 2.13 For the bank account data type

ê
, the balance operator commutes with all operators

and is oblivious to itself. The deposit ¢�Ê`§ operator is oblivious to all operators and commutes with
balance and all deposit ¢�ÊB ,§ operators. The withdraw ¢�Ê`§ operator commutes with balance and itself,
and is only oblivious to balance.

Notice that an operator always commutes with itself, but it may not be oblivious to
itself. This is demonstrated by the following lemma and example:

Lemma 2.4 Given a data type Ã���&xÄ��qÅÆp�qÇ«�µu7��È�* , any operator o .mÇ commutes with itself.

Proof: Immediate from the definition.

Example 2.14 The test-and-set operator t å s of
ã<ä

from Example 2.3 is not oblivious to itself:Ò · � ¢Z¿/±�� t å s ± t å s �+§�¡�¼ , but Ò · � ¢�¿/±�� t å s �µ§�¡0¿ .
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If an operator o is oblivious to every operator in a sequence � of operators, then its
return value is unaffected by whether � is applied before it. Similarly, if o commutes with
every operator in � , the same final state results from applying o then � as from applying �
then o. Formally, we have the following lemmas:

Lemma 2.5 If o .mÇ is oblivious to every operator in �{.mÇ�� then È �� &�ÆT�R��� o *p��È �� &�ÆT��� o �R* .
Proof: Straightforward by induction on the length of � .

Lemma 2.6 If o .8Ç commutes with every operator in �{.mÇ�� then È)�� &�ÆT�R��� o *T��È¨�� &�ÆT� o � ��* .
Proof: Straightforward by induction on the length of � .

There are other properties of data type operators that may be useful in reasoning about
operator sequences, but which we do not define formally here. For example, a read-only
or transparent operator does not change the state of the object, and the state after applying
an obliterating operator is independent of the state before applying the operator.1 Thus, for�

, the read operator is read-only, and every write &��T* operator is obliterating. We do not
discuss these or other properties further, as they are not used in this thesis.

2.5 Return Value Functions and Validity

Operators and return values define the interface between the clients and the memory. In
the serial setting, we model this interface using an operator sequence, specified by the
clients, and a return value function, which specifies the values returned by the memory
for each operator in the sequence. In this section, we define return value functions and a
restriction on operator sequences, called validity, that is needed for return value functions
to be well-defined.

A partial return value function for a set � of operators is a partial function 1)2��|3Du�g .
If 1 is defined for all '8.�� , then it is a (total) return value function for � . The clients see
only the return value function specified by the memory; they do not see the order in which
the operators are applied nor the state of the data object. Partial return value functions
model, among other things, the view of the clients before a value has been returned for
every operator, and the view of a single client, which may only see the values returned for
some of the operators.

Example 2.15 For the set Ì deposit ¢ ú §
± deposit ¢ ¼ ú §
± withdraw ¢��X§�± withdraw ¢U¼+É�§
± balance Í of operators
of the bank account data type

ê
from Example 2.4, the following function � is a return value func-

tion: �Ý¢ deposit ¢ ú §�§�¡ ACK �Ý¢ withdraw ¢��X§�§�¡�� �Ý¢ balance §`¡|¼Fï�Ý¢ deposit ¢ ¼ ú §�§�¡ ACK �Ý¢ withdraw ¢U¼µÉ�§�§�¡|¼µÉ
1“Transparent” and “obliterating” operations are identified by Lynch, et al. [80], though their definitions

differ from ours because their operations include return values.



30 CHAPTER 2. SERIAL SEMANTICS OF MEMORY

Given an operator sequence, we can determine the return value of each operator in the
sequence by applying the operators in the sequence specified. If no operator appears more
than once in an operator sequence, we can use a return value function to capture these
values. We say that a sequence is valid if no element appears more than once. That is, an
operator sequence � is valid if it is a serialization of elems &���* . Henceforth, we restrict our
attention to valid operator sequences. Requiring validity does not significantly restrict the
expressiveness of data types, as we discuss at the end of this section.

For any valid sequence ��.�Çb� , Æ{.8Ä , and 'â. elems &���* , we define the value returned
for ' by � from Æ to be retval �¨&('¶�R��*«�cÈ �� &�ÆT�R� L * , where � L � pref &��/��'B* , the prefix of �
ending in ' . That is, retval ��&('¶�R��* is the value returned for ' when the operator sequence �
is applied to Æ . When Æ is not specified, it is assumed to be the initial state Å Æ .

Example 2.16 As seen in Example 2.7, for the bank account data type
ê

, if�º¡ deposit ¢U¼ ú §�± withdraw ¢ �X§
± balance ± withdraw ¢U¼µÉ#§
± deposit ¢ ú §
then retval ¢ deposit ¢U¼ ú §
±µ�¶§�¡ ACK

retval ¢ withdraw ¢���§
±µ�¶§�¡��
retval ¢ balance ±+�¶§`¡ þ

retval ¢ withdraw ¢U¼µÉ#§
±µ�¶§�¡ ERR

retval ¢ deposit ¢ ú §
±+�¶§�¡ ACK
If this sequence of operators is applied to a bank account with 20 dollars, we get different

results; in particular, retval ² ó ¢ balance ±µ�¶§`¡Y¾ þ , and retval ² ó ¢ withdraw ¢U¼+É�§
±+�¶§�¡|¼µÉ .

Because applying the concatenation of two operator sequences is equivalent to apply-
ing the two sequences in order, the value returned for '8. elems & � * by ��� � from any stateÆ is the value returned for ' by

�
from the final state resulting from applying � to Æ .

Lemma 2.7 If ��� � is a valid operator sequence of Ã and 'I. elems & � * then for all ÆC.YÄ , we
have retval �`&('B�R��� � *p� retval !#"$&% �(' ��) &('B� � * .
Proof: Immediate from Corollary 2.3 and the definition of retval.

Given a set of operators and a return value function for that set, we can determine
whether an operator sequence that includes these operators yields the values specified by
the return value function. Formally, a serialization � of a set � of operators explains a
partial return value function 1%2*� 3 uTg from a state Æd. Ä if 1X&('v*�� retval � &('B�R��* for all'I. domain &,1?* . We sometimes simply say that � explains 1 if it explains 1 from Å Æ .

It is possible for several sequences to explain the same return value function. Clients,
which see only the return values, cannot distinguish such sequences. This observation is
the basis for allowing implementations of a memory to reorder operators. We explore this
idea further in the next few sections, and throughout this thesis.

Example 2.17 Consider the return value function � from Example 2.15. The sequence

deposit ¢ ¼ ú §
± deposit ¢ ú §
± withdraw ¢��X§�± balance ± withdraw ¢ ¼µÉ�§
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explains � from É , while the sequence

deposit ¢ ¼ ú §
± deposit ¢ ú §
± withdraw ¢��X§�± withdraw ¢U¼+É�§
± balance

explains � from ¼µÉ .

Example 2.18 For the set +C¡0Ì deposit ¢ ú §
± deposit ¢U¼ ú §
± withdraw ¢��X§�± withdraw ¢U¼+É�§
± balance Í of oper-
ators of

ê
, consider the following two partial return value functions:�Ý¢ deposit ¢ ú §
§�¡ ACK ,)¢ withdraw ¢ �X§
§v¡ ERR�Ý¢ deposit ¢U¼ ú §
§�¡ ACK ,¨¢ withdraw ¢ ¼µÉ�§
§v¡|¼µÉ�Ý¢ balance §`¡ þ

The sequence

deposit ¢ ¼ ú §
± withdraw ¢���§
± balance ± withdraw ¢ ¼µÉ�§�± deposit ¢ ú §
explains � (from É ), while the sequence

withdraw ¢U¼µÉ#§
± deposit ¢U¼ ú §
± withdraw ¢ �X§
± balance ± deposit ¢ ú §
explains , . Note that no sequence explains both � and , (from É ).

Although validity may seem to be a strong requirement on operator sequences, it does
not significantly restrict the expressiveness of data types. Of course, for some data types,
we want to be able to invoke an operator several times. For example, in the read/write
register

�
of Example 2.1, the only way to access the state of the register is by the read

operator. A data object in which this operator could only be invoked once would not be
very useful. However, we can extend any such data type to allow multiple invocations
of each operator by adding unique identifiers to the operators. Formally, given a data
type ÃÏ�D&xÄ��qÅÆp�qÇ«�µu7��È�* and a set - of operation identifiers, we define a new data typeÃ �j&xÄ��+ÅÆT�.-s��Çº�µu7��È L * , where È L &�ÆT�½& id � o *F*��GÈ¶&�ÆT� o * for all Æ�.dÄ , id ./- and o .WÇ . To
keep the data type descriptions in our examples simple, we will continue to define them
without the identifiers. When we give example operator sequences of these data types, we
distinguish multiple invocations of an operator by indexing them.

Example 2.19 Indexing the operators in the operator sequence from Example 2.5 yields�º¡ read °�± write ¢ ¼½§
°Ý± read ²�± write ¢Z¾-§�°Ý± write ¢�ï#§�°Ý± read ö ± read ÷ ± write ¢Zð%§
°?³
Thus, we can distinguish the various invocations of read in � , so retval ¢ read ° ±µ�¶§I¡jÉ , while
retval ¢ read ÷ ±µ�¶§`¡mï .

From now on, we assume that all data types defined are extended with identifiers as described
above. In the examples, however, we show the indices only for operators that are invoked multiple
times. Thus, we write the sequence above as�º¡ read ° ± write ¢ ¼½§
± read ² ± write ¢Z¾%§
± write ¢�ï#§�± read ö ± read ÷ ± write ¢Zð%§
³
The indices need not appear in order as long as they are unique. Thus,

read ý ± write ¢ ¼½§
± read ² ± write ¢Z¾%§
± write ¢�ï#§�± read ° ± read ÷ ± write ¢�ð)§
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is a valid operator sequence, but distinct from � .

2.6 Equivalences for Operator Sequences

Often operators can be applied in different orders and still yield the same results. Relat-
ing operator sequences that yield the same results defines a kind of equivalence between
different serializations of a set of operators. If clients cannot distinguish equivalent serial-
izations, then an implementation can reorder operators as long as it preserves equivalence.
In this section, we formally define equivalence for operator sequences.

Informally, two sequences are equivalent if the clients cannot distinguish them. Equiv-
alent sequences must have the same operators and they must yield the same return value
for each operator. More precisely, this property is called observational equivalence.

However, if sequences are only observationally equivalent, the final state of the ob-
ject after applying these sequences may not be the same. In this case, the return value
for a later operator may reveal which of the two sequences had been applied. Operator
sequences which result in the same final state are internally equivalent. Sequences that are
both observationally and internally equivalent are strongly equivalent.

Formally, two serializations � and
�

of a set � of operators are observationally equiva-
lent if retval �`&('B�R��*J� retval �¨&('¶� � * for all reachable states ÆC.YÄ and '=.0� , and they are in-
ternally equivalent if È �� &�ÆT�R��*7�oÈ �� &�ÆT� � * for all reachable states Æ0.mÄ . Two serializations
of � are strongly equivalent if they are both observationally and internally equivalent. We
write �21 obs

�
if � and

�
are observationally equivalent, �/1 int

�
if they are internally

equivalent, and �31 str
�

if they are strongly equivalent.

Example 2.20 For
×

, let �«¡ read ¢Z©`§
± write ¢�©`±+¼½§�± write ¢Z©`±U¾-§�± read ¢�¬p§4 ¡ write ¢Z©`±+¼½§�± read ¢Z©�§�± write ¢Z©`±U¾-§�± read ¢�¬p§5 ¡ write ¢Z©`±U¾-§�± write ¢Z©�±q¼½§
± read ¢�©`§�± read ¢�¬p§5   ¡ write ¢Z©`±U¾-§�± write ¢Z©�±q¼½§
± read ¢ ¬J§�± read ¢Z©`§
Then �76 int

4
,
4 6 obs

5 ,
4 6 obs

5   and 5 6 str
5   .

Example 2.21 For
ê

, let �º¡ deposit ¢U¼µÉ#§
± withdraw ¢ �X§
± withdraw ¢�ï#§�± balance4 ¡ balance ± deposit ¢U¼+É�§
± withdraw ¢��X§�± withdraw ¢�ï-§5 ¡ deposit ¢U¼µÉ#§
± balance ± withdraw ¢��X§�± withdraw ¢�ï-§
Then �76 str

4
, �86 int

5 , and
4 6 int

5 .
Note that the sequence

withdraw ¢���§
± deposit ¢U¼µÉ#§
± balance ± withdraw ¢�ï#§
is neither internally nor observationally equivalent with any of � ,

4
or 5 ; if the state is originally ûor less, then ERR will be returned for withdraw ¢���§ , and the state will remain unchanged.

As their names suggest, all these notions of equivalence define equivalence relations
on the set of serializations of a set of operators.

Lemma 2.8 The relations 1 int, 1 obs and 1 str are equivalence relations.
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Proof: It is straightforward to check the reflexivity, symmetry and transitivity of 6 int and 6 obs from
the definitions. Since 6 str is 6 int 9 6 obs, it too is an equivalence relation.

Observational equivalence guarantees that the clients cannot distinguish two operator
sequences based on the values returned for the operators in that sequence. Internal equiv-
alence is more of a guarantee for the future: Because the final state of an object is the same
after applying either of two internally equivalent operator sequences, a client cannot deter-
mine from the return values for subsequent operators which sequence was applied. That
is, if two observationally equivalent sequences are each preceded by internally equivalent
sequences, the values returned for the operators by each of the observationally equivalent
sequences are the same.

Lemma 2.9 If ��� � is a valid operator sequence, �:1 int � L and
� 1 obs

� L then for any
reachable state ÆC.0Ä and 'I. elems & � * , we have retval �¨&('¶�R��� � *p� retval �`&('B�R�_L,� � Lx* .
Proof: We have

retval ;)¢Z©`±µ��� 4 §`¡ retval <>= ? ô ;A@ ¦#õ ¢�©`± 4 § by Lemma 2.7¡ retval <>= ? ô ;A@ ¦#õ ¢�©`± 4  �§ since
4 6 obs

4  ¡ retval <>= ? ô ;A@ ¦ á õ ¢�©`± 4  ,§ since �76 int �7 ¡ retval ;�¢�©`±µ�7 �� 4  �§ by Lemma 2.7.

It follows immediately that two strongly equivalent operator sequences followed by
two observationally equivalent sequences are observationally equivalent.

Corollary 2.10 If ��� � is a valid operator sequence, �B1 str � L and
� 1 obs

� L then ��� � 1 obs�_L�� � L .
Proof: For © Á elems ¢ 4 § , we have retval ; ¢�©`±µ��� 4 §`¡ retval ; ¢�©`±+�J �� 4  (§ by the previous lemma. For © Á
elems ¢x�¶§ and any reachable state 	 Á3C , we have retval ;�¢�©`±µ��� 4 §�¡ retval ;)¢Z©�±+�¶§7¡ retval ;¨¢Z©�±+�J �§7¡
retval ;�¢�©`±+�J  � 4  �§ because �D6 obs �J  .

Internal equivalence also has the nice property that it is preserved by concatenation.

Lemma 2.11 If ��� � is a valid operator sequence, �E1 int �_L and
� 1 int

� L then ��� � 1 int�_L�� � L .
Proof: For any reachable state 	 Á7C , we haveÒ � � ¢
	�±µ��� 4 §`¡0Ò � � ¢ZÒ � � ¢�	�±µ�¶§�± 4 § by Corollary 2.3¡0Ò � � ¢ZÒ � � ¢�	�±µ�7 ,§
± 4 § since �76 int �J ¡0Ò � � ¢ZÒ � � ¢�	�±µ�7 ,§
± 4  ,§ since

4 6 int
4   and Ò � � ¢�	�±+�J ,§ is reachable¡0Ò � � ¢�	�±µ�7 �� 4  �§ by Corollary 2.3.

From the two previous results, we immediately get that equivalence is preserved by
concatenation. This implies that one equivalent sequence can be substituted for another
without changing the values returned to the clients. These results are captured in the
following two corollaries:

Corollary 2.12 If ��� � is a valid operator sequence, �F1 str �_L and
� 1 str

� L , then ��� � 1 str�_L�� � L .
Corollary 2.13 If G~����� G L is a valid operator sequence and �31 str

�
, then G~� ��� G L 1 str G~� � � G L .
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2.7 Proving Operator Sequences Equivalent

This section includes the main results of this chapter, which state conditions under which
operators can be reordered while preserving equivalence. Informally, the idea is that if
two operators are independent, they can be reordered without changing the effects of the
operator sequences. Thus, two operator sequences are equivalent as long as they order
conflicting operators in the same way.

We first prove that internal equivalence is preserved if only commutative operators are
reordered.

Lemma 2.14 Suppose � and
�

are serializations of a set � of operators such that for all'¶�xz�.H� , if ' ��� z and z �JI ' then ' and z commute. Then we have �31 int
�

.

Proof: By induction on the size of + (also the lengths of � and
4

): The base case, when +�¡LK , is
trivial because �º¡ 4 ¡M� .

For the inductive step, let ©�¡o� last, and let �¯¡o�   � © and
4 ¡ 5 � ©*� 5   . By the inductive hypoth-

esis, �7 N6 int
5 � 5   , since �7  and 5 � 5   are just � and

4
without © . For ¬ Á elems ¢ 5  ,§ , we have ¬Cª ¦ ©

and ©KªPO�¬ , so © and ¬ commute. Thus, by Lemma 2.6, we have 5   � ©Q6 int ©*� 5   . and by Lemma 2.11,
we have �«¡��7 �� ©R6 int

5 � 5  �� ©R6 int
5 � ©*� 5  #¡ 4

.

To prove the corresponding result when only independent operators are reordered,
we need the following lemma, which says that moving an operator before a sequence of
independent operators preserves equivalence.

Lemma 2.15 If ��� ' is a valid operator sequence and ' is independent of every operation in� then 'v���S1 str ��� ' .

Proof: By induction on the length of � : The base case, when �â¡/� , is trivial. Otherwise, let �m¡�7  � ¬ . By the inductive hypothesis, ��  � ©86 str ©T�Z�7  . Since © and ¬ are independent, ��©`±�¬U�V6 str ��¬J±U©W� .
Thus, by Corollary 2.12, ��� ©K¡���  �X��¬J±U©W�Y6 str �7 ��X��©`±�¬U�Z6 str ©*���7 �� ¬=¡Y©*��� .

We now show that equivalence is preserved if the order between conflicting operators
is preserved; that is, if only independent operators are reordered. This key theorem is used
to prove the main results about computations and memory models in the rest of this thesis.

Theorem 2.16 Suppose that � and
�

are serializations of a set � of operators such that for
all 'B�xz�.[� , if ' ��� z and z �JI ' then ' and z are independent. Then we have �31 str

�
.

Proof: By induction on the size of + (also the lengths of � and
4

): This proof follows exactly the
proof of Lemma 2.14. The base case, when +Y¡\K , is trivially true.

For the inductive step, let ©Y¡�� last, and let �l¡��7 �� © and
4 ¡ 5 � ©*� 5   . For ¬ Á elems ¢ 5  ,§ , we

have ¬8ªM¦>© and ©¯ª O ¬ , so © and ¬ are independent, and by Lemma 2.15, 5   � ©]6 str ©*� 5   . By the
inductive hypothesis, �� W6 str

5 � 5   . Thus, by Corollary 2.12, �º¡|�7  � ©Q6 str
5 � 5  �� ©R6 str

5 � ©T� 5  #¡ 4
.

The property required for Theorem 2.16, that two sequences order conflicting operators
in the same way, is called conflict equivalence [14]. It is the primary notion of equivalence
used in the database literature [35, 14, 51]. Theorem 2.16 says that conflict equivalence
implies strong equivalence, which is also called view equivalence [14].

Theorem 2.16 has another, perhaps more intuitive proof, which we sketch here. It is
based on “transforming” one serialization into another by “swapping” adjacent elements.
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Specifically, note that any serialization of a set can be transformed into any other serializa-
tion of the same set by a sequence of swaps of adjacent elements. That is, for any two serial-
izations � and

�
, there exists a finite sequence of intermediate serializations G_^#��G S �������Ý��Ga`

such that GV^M�W� , Ga`�� �
, and for each �/�W��������H�b� , G�� QTS and G�� are the same except for two

adjacent elements, whose order has been swapped. Furthermore, this transformation can
be done without swapping elements that are in the same order in both � and

�
. Because

the order of conflicting operators is the same in � and
�

, each intermediate serialization is
equivalent to the next in the sequence. By transitivity, this proves that ��1 str

�
. A similar

proof can be made for Lemma 2.14.
Often we are given a partial order that orders all the conflicting operators. We can

restate Theorem 2.16 so that this partial order is explicit.

Corollary 2.17 Suppose that y is a partial order on a set � of operators such that for all'¶�xz�.2� , either '�yGz , zVyV' , or ' and z are independent. Then all serializations of �
consistent with y are equivalent.

2.8 Data Type Equivalence

Because clients can access data objects only by their operators and can infer information
about their state only from the return values for these operators, clients may not be able
to distinguish different data types. We consider such data types equivalent. In this section,
we introduce two formal notions of data type equivalence: a general and natural notion
of equivalence, and a stronger notion that preserves data type properties that the general
notion does not. The material in this section is used only in Section 2.10; these sections can
be skipped without loss of continuity.

We begin with the general notion of equivalence: Two data types are (weakly) equiva-
lent if any operator sequence applied to their initial states return the same values for each
operator. Formally, Ã ��&xÄ_�RÅÆJ�qÇº�µu7��Èv* and Ã L ��&xÄ L �+Å Æ L �qÇ L �µu L ��È L * are equivalent if ÇW�WÇ L
and for all �{.mÇ � , È �� & Å ÆT�R��*p��È¶L �� & Å ÆpL �R��* .
Example 2.22 (Statistical Accumulator) The data type of an object that accumulates real numbers
and can give the sum and mean of the numbers accumulated isc ¡�¢>d � ±��#±�ÑO±Td=£�Ì ACK ± ERR ÍA±%Ò_§�±
where Ñ�¡YÌ new ¢�©`§�Óq© Á d7Í#£�Ì sum ± mean Í , and for all © Á d and � Á d �

,Ò`¢x�¶± new ¢�©`§
§`¡�¢U��� ©`± ACK §Ò`¢x�¶± sum §`¡�¢U�¶± ´e¸gf�° �Zh ¸ i § where ¿C¡ � � �
Ò`¢x�¶± mean §`¡ ì ¢x�¶±Nj ´¸kf�° �Zh ¸�i�l ¿/§ where ¿C¡ � � � î0É¢x�¶± ERR § if �«¡M�

Because the operators only give access to the sum and mean of the statistics accumulated, we
can summarize the state using the sum and the number of statistics that have been accumulated.



36 CHAPTER 2. SERIAL SEMANTICS OF MEMORY

The mean can be derived from these two values. Thus, although it maintains much less state, the
following data type is equivalent to

c
:c � ¡�¢#dnm�ë~±T¢�É#±
É�§a±�ÑO±Td=£�Ì ACK ± ERR ÍA±%Ò_§�±

where for all ©`±po Á d and ¿ Á ë ,Ò`¢
¢�o?±U¿/§�± new ¢Z©`§
§`¡�¢�¢�oTèe©�±X¿ºè8¼Ý§�± ACK §Ò`¢
¢ oÝ± ¿/§
± sum §`¡�¢
¢ oÝ± ¿/§�±*o?§Ò`¢
¢ oÝ± ¿/§
± mean §`¡�ì ¢
¢�o?±U¿/§A±*o l ¿/§ if ¿âî0É¢
¢�o?±U¿/§A± ERR § if ¿C¡8É
There is a natural correspondence between the states of two equivalent data types such

that if two objects are in corresponding states and the same operator is applied to both,
then they will return the same value and end up in corresponding states. The existence of
this correspondence is an alternative characterization of data type equivalence.

Lemma 2.18 Two data types, ÃG��&xÄ��+ÅÆT�qÇ«�µu7��È�* and Ã L ��&xÄ L �+Å Æ L �qÇº�µu L ��È L * , are equivalent
if and only if there exists a relation qFr�Ä��mÄML between states of Ã and states of Ã0L such
that & Å ÆT�+ÅÆ L *O.�q and for all reachable states Æ�.�Ä and Æ L .�Ä L and all operators o .oÇ , if&�ÆT�RÆJLx*�.3q then &(È¶&�ÆT� o *+� s ��È¶L
&�ÆJLU� o *µ� s */.sq and È¶&�ÆT� o *µ� v ��È¶L &�ÆJLU� o *µ� v.

Proof: If t and t   are equivalent then let u¯¡wv�¢ZÒ � � ¢ x 	�±+�¶§
±UÒ   � � ¢ x 	   ±µ�¶§�§�ÓE� Á Ñ �zy
. We get ¢ x 	�±{x	   § Á u

using �m¡|� . If ¢
	�±�	v ,§ Á u then there exists � Á Ñ �
such that 	C¡tÒ � � ¢ x 	�±+�¶§ and 	� J¡oÒ�  � � ¢�x 	� ,±µ�¶§ .

Thus ¢ZÒ`¢�	�± o §�³ s ± Ò� U¢�	v �± o §�³ s §K¡ ¢�Ò � � ¢ x 	`±+��� o §
±UÒ�  � � ¢ x 	v x±µ��� o §
§ Á u and, by the definition of equivalence,Ò`¢�	�± o §
³ v ¡0Ò · � ¢�x 	`±µ��� o §`¡âÒ�  · � ¢ x 	� x±µ��� o §`¡0Ò� x¢
	� ,± o §
³ v.
If such a relation u exists, then we prove as a sublemma the following statement: For all � Á Ñ �

,¢ZÒ � � ¢ x 	�±µ�¶§
± Ò�  � � ¢�x 	� ,±µ�¶§�§ Á u . This sublemma follows by induction on the length of � . If
� � � ¡|É then�l¡E� and ¢�Ò � � ¢�x 	`±µ�¶§�±UÒ�  � � ¢ x 	v �±+�¶§
§�¡G¢ x 	�±bx	v �§ Á u . If

� � � ¡dÊbè�¼�î�É then assume the sublemma is
true for sequences of length Ê . Let �m¡��� �� o, 	I¡oÒ � � ¢ x 	`±µ�7 (§ , and 	v T¡tÒ�  � � ¢ x 	v x±µ�7 (§ . Then we have¢�	�±�	   § Á u , so ¢�Ò � � ¢�x 	`±µ�¶§�±UÒ   � � ¢ x 	   ±µ�¶§
§`¡o¢ZÒ`¢�	�± o §
³ s ±UÒ   ¢
	   ± o §
³ s § Á u .

If � Á Ñ · then let �º¡|�J  � o. By the sublemma just proved, we have ¢�Ò � � ¢ x 	`±+�J �§
± Ò�  � � ¢�x 	� x±+�J �§
§ Á u ,
so by the definition of u , Ò · � ¢�x 	`±µ�¶§�¡0Ò`¢ZÒ � � ¢ x 	�±µ�7 (§
± o §�³ v ¡0Ò� ,¢ZÒ�  � � ¢ x 	� x±µ�7 (§�± o §
³ v ¡âÒ�  · � ¢�x 	� x±+�¶§ .
Example 2.23 The correspondence between reachable states of

c
and reachable states of

c �
that

relates a state � Á d �
of

c
to a state ¢ oÝ± ¿/§ Á d�meë of

c �
if ¿�¡ � � �

and oK¡ j ´¸kf�° �Zh ¸�i meets the
conditions specified in Lemma 2.18.

Because commutativity depends on the states that result from applying operators, and
not merely the return values, weak equivalence need not preserve commutativity. That is,
two operators may be commutative in one data type but not in an equivalent one, as we
can see in the following example:

Example 2.24 For any ©`±�¬ Á d , new ¢�©`§ and new ¢ ¬J§ commute in
c �

but not in
c

(unless ©�¡I¬ ).
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We can give a stronger definition of equivalence that does preserve commutativity.2

This definition uses a correspondence between the states of the two data types, as in the
alternative definition of equivalence given in Lemma 2.18, strengthened to preserve com-
mutativity. Two data types, Ã �f&xÄ��+ÅÆT�qÇº�µu7��Èv* and Ã L �f&xÄ L �+Å Æ L �qÇ«�µu L ��È L * , are strongly
equivalent if there is a bijection 1 from the reachable states of Ã to the reachable states of ÃlL
such that 1E& Å Æ¶*��WÅÆ7L and for all reachable states Æm.âÄ and o .lÇ , 1E&(È¶&�ÆT� o *+� s *7�dÈJL &,1E&�Æ¶*µ� o *q� s
and È¶&�ÆT� o *+� v ��È L &,1X&�Æ¶*µ� o *+� v. It follows immediately from Lemma 2.18 that strong equiva-
lence implies (weak) equivalence.

Corollary 2.19 If Ã and Ã L are strongly equivalent then they are equivalent.

Proof: Use the bijection as the relation needed in Lemma 2.18.

Example 2.25 We give a strongly equivalent data type for the bank account data type from Exam-
ple 2.4. Assuming

ê
maintained the balance in dollars as the state, this data type maintains the

balance in cents. ê   ¡�¢�ë7±pÉ�±�ÑO±¨ëI£�Ì ACK ± ERR ÍA±%Ò_§�±
where Ñ�¡YÌ balance Í#£�Ì deposit ¢�Ê`§`Ó�Ê Á ë7Í#£�Ì withdraw ¢�Ê`§`Ó�Ê Á ë7Í ,
and for all ¿/±
Ê Á ë : Ò�¢�¿/± balance §`¡�¢�¿/±)¿ l ¼µÉÝÉ#§Ò`¢Z¿/± deposit ¢�Ê`§�§�¡�¢�¿«è{¼µÉ½É�Êv± ACK §Ò�¢�¿/± withdraw ¢�Ê`§�§�¡ ì ¢Z¿Úí8¼µÉÝÉ�Ê�±)Ê�§ if ¼µÉÝÉ�Ê«¤C¿¢Z¿/± ERR § if ¼µÉ½É½ÊºîC¿ .

Note that the reachable states of
ê   are the multiples of ¼µÉ½É . The bijection from reachable states

of
ê

to reachable states of
ê   maps ¿ to ¼+É½É�¿ .

Strong equivalence does preserve operator commutativity.

Lemma 2.20 If Ã and ÃCL are strongly equivalent then operators that commute in Ã also
commute in ÃCL .
Proof: Let o ± o   Á Ñ be two operators that commute in t , and � be a bijection from reachable states
of t to the reachable states of t   that establishes the strong equivalence of t and t   . For any
reachable state 	B  Á7C   of tº  , 	�¡\� ¹v° ¢
	� ,§ is a reachable state of t , so

2Alternatively, we can redefine commutativity so that changing the order of two operators results in
“equieffective” states—states that cannot be distinguished by the return values for any operator sequence
applied to them [80]. This preserves all the essential properties of commutativity and is preserved by weak
equivalence. However, we do not need this additional complexity for this thesis.
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Ò�  � � ¢�	v �±�� o ± o  }�+§`¡0Ò� U¢ZÒ� x¢~�Ý¢
	�§
± o §�³ s ± o  �§�³ s by the definitions of Ò�  � � and 	¡0Ò� U¢~�Ý¢�Ò�¢
	�± o §�³ s §
± o  �§A³ s by strong equivalence¡\�Ý¢ZÒ`¢ZÒ`¢�	�± o §�³ s ± o  ,§�³ s § by strong equivalence¡\�Ý¢ZÒ � � ¢�	�±�� o ± o  X�µ§
§ by the definition of Ò � �¡\�Ý¢ZÒ � � ¢�	�±�� o  ,± o �µ§
§ because o and o   commute in t¡\�Ý¢ZÒ`¢ZÒ`¢�	�± o  �§�³ s ± o §A³ s § by the definition of Ò � �¡0Ò   ¢~�Ý¢�Ò�¢
	�± o   §
³ s §
± o §A³ s by strong equivalence¡0Ò� U¢ZÒ� x¢~�Ý¢
	�§
± o  x§�³ s ± o §�³ s by strong equivalence¡0Ò�  � � ¢�	v �±�� o  ,± o �µ§ by the definitions of Ò�  � � and 	
2.9 Locations

Some data types have a natural notion of locations such that each operator acts on a single
location. In this section, we formalize this notion and explore properties of these data types
that make them easier to reason about.

We first formalize the intuition that a data type can be partitioned into independent
locations. A location partition �FÇJ� � �
!(� of ÃP�P&xÄ��+ÅÆp�qÇº�µu7��Èv* is a partition of Ç such that
elements from different classes are independent; that is, for all o .�Ç8� and o L�.�Ç�� ^ with� r� � L , o and o L are independent. The set � is called the set of locations, and o � loc denotes
the location

�
such that o .iÇR� . We say that o is performed on o � loc. The notation o � loc

is well-defined only for a given location partition; a data type may have several location
partitions. We also use ��\ � and �B\ � as shorthand for ��\ ��� and �bw0Ç�� respectively.

Example 2.26 For the read/write memory
×

, each address is a location. Formally, Ì
Ñ Û Í Û?ÜÝÞ is a
location partition of

×
, where Ñ Û ¡¥Ì read ¢xÕ`§(Í)£�Ì write ¢xÕ�± Ê`§�Ó�Ê Á�Ë Í . With this location partition,

read ¢UÕ`§ and write ¢xÕ�± Ê`§ are performed on Õ , which justifies the original use of this terminology in
Example 2.2.

For a data type with a location partition, we usually imagine that the state is divided
into independent locations, each of which is affected only by operators performed on that
location. To determine the effect of an operator, it is sufficient to know the operators that
were applied before it on the same location. That is, for any operator sequence, the values
returned for the operators of one location by that sequence are the same as the values
returned for those operators by the subsequence in which only those operators appear;
they are not affected by the application of any operators to other locations. Formally, we
have the following lemma and corollary:

Lemma 2.21 If �aÇR�
� �
!(� is a location partition of Ã then È �� &�ÆT�R��� o *º�üÈ �� &�ÆT�R��\ �+� o * , where� � o � loc.

Proof: By induction on the length of � . For �Ú¡F� , this is trivially true. Otherwise, assume that the
lemma is true for all sequences shorter than � , and let ��  be such that �«¡ o  ����7  . We have:Ò · � ¢�	�±µ��� o §`¡0Ò · � ¢�Ò�¢
	�± o  ,§�³ s ±+�J  � o § by the definitions of Ò · and Ò · � since �º¡ o   �Z�J ¡0Ò · � ¢�Ò�¢
	�± o  ,§�³ s ±+�J  � � � o § by the inductive hypothesis¡0Ò · � ¢
	�± o  ��Z�7  � � � o § by the definitions of Ò · and Ò · �
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If o  ,³ loc ¡M� then � � � ¡ o  ��Z�J  � � , which completes the proof. Otherwise, � � � ¡t�7  � � , o   commutes
with every operator in �7  � � , and o   and o are independent. In this case, we have:Ò � ¢ZÒ � � ¢�	�± o   �Z�   � � §�± o §�¡YÒ � ¢ZÒ � � ¢�	�±+� � � � o   §
± o § by Lemma 2.6 and since � � � ¡¥�   � �¡YÒ · � ¢�Ò � � ¢
	�±µ� � � §�±�� o  ,± o �µ§ by Lemma 2.2¡YÒ · � ¢�Ò � � ¢
	�±µ� � � §�±�� o �µ§ because o is oblivious to o  ¡YÒ · � ¢
	�±µ� � � � o § by Lemma 2.2

Corollary 2.22 If �FÇR�
� �
!(� is a location partition of Ã , � is a valid operator sequence of Ã ,
and 'I. elems &���* then retval &('¶�R��*p� retval &('¶�R��\ �R* , where

� ��'B� loc.

Because operators on different locations are independent, we can reorder any operator
sequence to obtain an equivalent sequence in which all operators performed on the same
location are applied consecutively.

Lemma 2.23 If �aÇR�
� �
!(� is a location partition of Ã and �d.�Ç�� with operators performed
on locations

� S � � })�������?� �p� then �31 str ��\ �p�Ý����\ �����������?����\ ��� .

Proof: Immediate from Corollary 2.17 using � � Üz� ¤ ¦W� � as the partial order.

It follows immediately from this lemma and Corollary 2.12 that operators sequences
that are equivalent for each location are equivalent.

Corollary 2.24 If ��\ ��1 str
� \ � for all

� .H� then �31 str
�

.

2.10 Data Type Composition

An object with a data type that can be partitioned into locations may also be viewed as the
composition of several independent objects. Thus, the data type of the composite object
may be characterized as the composition of several data types. In this section, we define
data type composition, and show how this is related to location partitions. The material
in this section is not used in the rest of this thesis and may be skipped without loss of
continuity.

A family �UÃK� � � !-" of data types, with Ã��_�[&xÄ¶�q�+ÅÆ)�q�qÇO�R�µu`�q��È-�+* , is compatible if the sets of
operators of the data types are pairwise disjoint, that is, Ç���w�ÇP�>��� when �¥r��� . The
composition of a compatible family of data types is� � !#" Ã�7� � � � !#" Ä¶�q�h& ÅÆ)�+*,� !#"µ�Y�� !#" ÇO�q�Z�� !#" u`�R��È��
where, for o .�Ç�� , ÈB&F&�Æ)�+*,�
!#"µ� o *_�G&F&�ÆJL� *,� !#"µ�vÈ��F&�ÆT�F� o *µ� v * , with Æ7L� � È��µ&�ÆT�F� o *q� s and ÆJL� � Æ)� for�Yr��� . The state of the composite data type is a tuple with one component for each data
type being composed, where the � th component is a state of Ã>� , and the initial state is tuple
with the initial states of the component data types. Each operator of the composite data
type belongs to exactly of the component data types by the compatibility requirement. Its
effect is to be applied to the appropriate component of the composite state, modifying it
and determining a return value, and leaving all other components unchanged.
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Example 2.27 (Read/Write Memory revisited) A read/write memory
×

with addresses Ö is the
composition of a family of read/write registers indexed by Ö . Formally,

× ¡�à Û?ÜÝÞ Î Û , whereÎ Û ¡ ¢ Ë ±HÉ#±vÑ Û ± Ë £�Ì ACK Í
±¨Ò Û § , and Ñ Û ¡8Ì read ¢UÕ`§ Í)£bÌ write ¢UÕ`± Ê`§�Ó�Ê Á>Ë Í , and Ò Û ¢�¿/± read ¢xÕ`§�§B¡¢Z¿/±¨¿/§ and Ò Û ¢Z¿/± write ¢UÕ`± Ê�§
§�¡�¢�Ê`± ACK § .
Because each operator affects only its own component, each component of the state is

determined by the subsequence of operators that have been applied from that component.

Lemma 2.25 For any �{.¥&k� � !#" ÇM�+* � and Æ)�h.YÄT� , È �� &F&�Æ)�q*,� !#"F�R��*p��&(È#� �� &�Æ)�q�R��\ �Z �*F*,� !#" .
Proof: Straightforward induction on the length of � .

Location partitions and composite data types are two ways of expressing the same
notion. Specifically, the component data types give a location partition of a composite data
type. Similarly, any location partition defines a corresponding compatible family of data
types whose composition is equivalent to the original data type. These are established by
the following lemmas:

Lemma 2.26 �FÇO� � �
!#" is a location partition of $ � !-" Ã� .
Proof: Suppose o Á Ñ�¡ and o   Á Ñ¢¡ á for some £�®¡3£R  . We need to show that o and o   are independent;
that is, that o and o   commute and are oblivious to each other.

Suppose ¢�	X¸R§ ¸ Ü¤ Á{à ¸ Ü¤ C ¸ is a reachable state of à ¸ Ü¤ t~¸ . Let 	v ¡ ¡�Ò ¡ ¢
	 ¡ ± o § and 	v ¸ ¡2	X¸ for»~®¡�£ , and 	v   ¡ ¡8Ò ¡ ¢
	 ¡ ± o § , 	v   ¡ á ¡8Ò ¡ á ¢
	 ¡ á ± o  (§ , and 	v   ¸ ¡F	X¸ for »~®¡�£a±k£q  . Note that Ò � � ¢
¢�	X¸R§ ¸ Ü¤ ±�� o ± o  ¥�+§v¡Ò`¢ZÒ`¢
¢�	X¸R§ ¸ Ü¤ ± o §�³ s ± o  (§A³ s ¡{Ò`¢
¢�	v ¸ § ¸ Ü¤ ± o  �§�³ s ¡d¢�	v   ¸ § ¸ Ü¤ . Similarly, we can show that Ò � � ¢�¢�	X¸R§ ¸ Ü¤ ±�� o  ,± o �+§v¡¢�	v   ¸ § ¸ Ü¤ , which proves o and o   commute.
To see that o   is oblivious to o, note that Ò · � ¢
¢�	X¸R§ ¸ Ü¤ ±�� o ± o  }�+§J¡�Ò�¢�¢�	v ¸ §(¸ Ü¤ ± o  ,§
³ v ¡�Ò ¡ á ¢�	v ¡ á ± o  �§�³ v ¡Ò ¡ á ¢
	 ¡ á ± o  (§A³ v ¡âÒ�¢�¢�	X¸q§(¸ Ü¤ ± o  �§
³ v ¡0Ò · � ¢
¢�	X¸R§ ¸ Ü¤ ±�� o  }�µ§ , Similarly, we can show that o is oblivious to o   .

Lemma 2.27 Suppose �µÇR�
� � !A� is a location partition of Ã���&xÄ��+ÅÆp�qÇ«�µu7��È�* . Then Ã is equiv-
alent to $ � !A� ÃR� , where ÃR�7��&xÄ_�RÅÆJ�qÇ��R�µu7��È�\ �N¦ ���½* .
Proof: Consider the relation u�¡YÌ+¢ZÒ � � ¢ x 	�±µ�¶§�±R¢�Ò � � ¢ x 	�±µ� � � §�§ � Üz� §`ÓE� Á Ñ � Í . We get ¢�x 	�±R¢ x 	`§ � Üz� § Á u using�«¡M� . If ¢
	�±R¢�	 � § � Üz� § Á u then there exists � Á Ñ �

such that 	K¡âÒ � � ¢ x 	�±µ�¶§ and 	 � ¡âÒ � � ¢ x 	�±µ� � � § for all� ÁD§ . Let Ò�  be the transition function of à � Üz� t �
. Then, for all o Á Ñ , ¢ZÒ`¢�	�± o §�³ s ± Ò� ,¢�¢�	 � § � Üz� ± o §
³ s §`¡¢ZÒ � � ¢ x 	�±µ��� o §
±�¢ZÒ � � ¢ x 	`±�¢x��� o § � � §
§ � Üz� § Á u . By Lemma 2.21 and the definition of data type composition,Ò`¢�	�± o §
³ v ¡�Ò · � ¢ x 	�±µ��� o §�¡oÒ · � ¢ x 	�±µ� �

o ¨ loc � o §�¡�Ò�¢
	 o ¨ loc ± o §
³ v ¡oÒ� x¢�¢�	 � § � Üz� ± o §
³ v. Thus, by Lemma 2.18, t
and à � Üz� t �

are equivalent.

The transformation of locations into separate data types may not preserve strong equiv-
alence, as demonstrated by the following example:

Example 2.28 Consider the data type ¢ Ë ±EÉ�±%Ì inc ± dec Í�±-Ì ACK ÍA±%Ò_§ , where Ò`¢Z¿/± inc §T¡�¢Z¿«è{¼Ý± ACK §
and Ò�¢�¿/± dec §M¡c¢Z¿Úí8¼Ý± ACK § . The inc and dec operators are independent, so Ì(Ì inc Í#±xÌ dec Í�Í is a
location partition of this data type. However, there is no bijection between the reachable states of
these data types, because ¢ É�±
É�§ and ¢U¼Ý±�íM¼½§ , both reachable states in the composite data type, must
correspond to the single state É in the original data type.
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2.11 Discussion

The rigor of our treatment of data types is unusual in the development of memory models.
Most memory models assume a particular data type, usually read/write memory, without
formally defining the properties of this data type [33, 2]. Instead, they rely on intuitive
properties of read/write memory. This approach is attractive since most memories are
some variant of read/write memory, and the serial semantics of these memories is simple.
However, there are several advantages to the formal approach taken in this thesis.

First, defining the serial semantics formally allows us to reason with complete rigor.
There is no ambiguity, for example, caused by primitives such as test-and-set, which both
read and write the memory. In release consistency [43, 41], for example, such primitives
must be treated as combinations of reads and writes. This rigor is helpful for exposing
assumptions about the system, as it was in our analysis of a lazy replication algorithm for
a highly available data service [36, 66].

Second, this abstract approach to data types provides greater modularity, and affords
the possibility of memories with high-level data types. This is especially important when
the memory being modeled is not a shared memory multiprocessor but a virtual shared
memory for a high level programming language with data abstraction facilities. Our the-
ory of data types allows a clear separation of the serial and the concurrent aspects of the
memory semantics.

Third, we are able to identify the exact properties that the results we derive depend
on. For example, Shasha and Snir define conflict in terms of reads and writes [97], and
establish results for operators that do not conflict. In this thesis, we redefine the conflicts
relation for general operators, and show that these results hold using the new definition.
In addition, we show that two writes to the same location do not conflict if they write the
same value. Although this distinction is insignificant in practice, it demonstrates that this
abstract approach can improve our understanding of data type properties; in some cases,
there may be significant practical consequences.

In formalizing data types, we have kept the definitions simple and straightforward.
We maintain a clean split between what the clients specify—the operator sequence—and
what the memory specifies in response—the return value function. This split allows us to
focus on equivalence, which will be crucial when we study concurrent memory.

Two other approaches to formally defining the serial semantics of data types have been
explored in the literature. The first is to describe the memory as a state machine including
both the serial and concurrent aspects. This approach allows more general data types than
our serial data types, because the state machine may be nondeterministic and can block.
However, it can be difficult to isolate the properties inherent in the data type from those
that arise because of concurrent access of the data; both types of properties are expressed
by a state machine. This approach has been used to describe strongly consistent memories
with arbitrary data types [69, 79, 70] and weakly consistent memories with read/write
memory [45, 44, 70]; we do not know of any cases where it has been used to study weakly
consistent memories with arbitrary data types.

The second approach, introduced by Herlihy and Wing [53], defines the sequential spec-
ification for a data object to be a prefix-closed set of legal sequential histories for that object
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where a sequential history is a sequence of invocation-response event pairs.3 In a legal
sequential history, each invocation specifies the operator to be applied to the object, and it
is immediately followed by a matching response, which specifies the return value result-
ing from applying the operator to the current state of the object. Other researchers have
adapted their general framework for modeling weakly consistent memories, but then spec-
ify guarantees in terms of reads and writes [11, 55].

Characterizing data types by the legal sequential histories is also more general than our
approach because it allows data objects that may block or respond nondeterministically
to an invocation. On the other hand, it is harder to identify operator properties such as
independence from the legal histories.

In their work on nested transactions, Lynch, et al. combine some of the advantages of
all these methods by defining a data type using object automata [80]. Object automata have
a lot of structure that we do not need in this thesis, and the semantics of the data object
is defined by the behaviors of its object automaton, which is less clean a split than the
operator sequences and return value functions in this chapter.

The theory of data types presented here is only a beginning, sufficient for the purposes
of this thesis. There are several directions that seem worth pursuing. We could charac-
terize data types and their operators in other ways, such as the read-only and transparent
operators mentioned in Section 2.4, and see what results we can derive from them. Simi-
larly, we might define alternative notions of operator sequence equivalence. For example,
it may be useful, especially in the study of transactional memories introduced in Chapter 8, to
designate some operators as externally visible and consider two operator sequences equiv-
alent when they yield the same return values for the externally visible operators. Finally, a
more ambitious task would be to extend this theory to nondeterministic and blocking data
types, in which there may be multiple (in the case of nondeterministic data types) or no (in
the case of blocking data types) return values and final states for an operator applied to a
specific state.

3Herlihy and Wing call these pairs operations. As we see in Chapter 3, we use that term to denote only the
invocation of a data type operator, without the response.



Chapter 3

Computations

In this chapter, we define the interface between the clients and the memory system when
the clients may access the memory concurrently. In the serial setting, the clients specify
a sequence of data type operators, and the memory specifies a return value function for
the operators in the sequence. In the concurrent setting, the memory still specifies a re-
turn value function, but the clients specify the operators using a computation. We define
computations, illustrate their use with several examples, describe how they are generated
by programs, and prove a few results that are useful in developing the theory of memory
models described in this thesis. Because a memory model depends on the interface with
the clients, computations are the foundation of our framework.

A computation represents the clients’ requests to the memory. It specifies the operators
to be applied to the data object and restrictions on the order in which these operators
may be applied. The memory system has no access to the state of the clients except as
specified by the computation. To determine return values for the operators, the system
applies the operators according to a schedule that respects the constraints specified by the
computation. Because the clients may access the memory concurrently, a computation
requires a structure richer than a sequence; there may be several allowable schedules.

Computations have two mechanisms to constrain the possible schedules: precedence
dependencies and annotations. We show how to use these mechanisms to model the clients’
requests to the memory as computations. A precedence dependency specifies that one
operator should be applied before another. Together, the precedence dependencies define
a partial order on the operators, which corresponds to a logical notion of time. Operations
are concurrent if the computation does not specify the order in which they must be applied.

Annotations provide a general mechanism for specifying other constraints provided
by systems. Because the constraints allowed by systems vary, the possible annotations
depend on the system being modeled. The set of computations for a memory system is
parameterized by the data type and the annotations for that system.

As in Chapter 2, clients can access the state of the memory only through the operators;
they see only the values returned by the memory. The state of the memory and the order
in which the operators are applied can only be inferred from the return values. Equivalent
schedules, therefore, can never be distinguished by the clients.

Our use of computations is derived its use in the Cilk project [105].

43
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We also identify races in computations, and show that computations without any races
are determinate; that is, all their schedules are equivalent. As we see in later chapters,
determinate computations are easy to reason about.

Outline: Section 3.1 defines graph theoretic notation used in this chapter and throughout
the thesis. Section 3.2 formally defines computations. Section 3.3 contrasts computations
with programs and parallel instruction streams. Section 3.4 discusses annotations in more
detail, and gives several examples of possible annotations. In Section 3.5, we give sev-
eral simple programs and the computations they generate. Section 3.6 defines schedules
of computations, which describe the case when the computation is executed on a sequen-
tial machine. In Section 3.7, we formally define races in computations, and show how
the behavior of computations is easier to reason about in the absence of races. Finally,
in Section 3.8, we contrast computations with alternative approaches to modeling client
requests, and examine various issues that motivate the definition of computations.

Reading Guide: Despite its length, this chapter defines only a few simple concepts: com-
putations, schedules, races and determinacy. It is possible to follow the rest of the thesis
after reading only Sections 3.2, 3.6, and 3.7. The rest of the chapter motivates and explains,
with lots of examples, our use of computations as the basis for a framework for memory
consistency models. In particular, Section 3.5 illustrates the relationship between com-
putations and programs, whose behavior is ultimately the object of programmers’ interest.
Also, many examples in Sections 3.4 and 3.5 prefigure some of the memory models defined
in Chapters 5, 6, 7, and 8.

3.1 Preliminary Graph Theory

This section presents terminology and notation for familiar graph theoretic concepts used
in this thesis. It is intended primarily as a reference for later sections.

All graphs in this thesis are directed. For a graph © , we use Vª to denote the set of
vertices and E ª to denote the set of edges, which is a binary relation on Vª . The subgraph (of© ) induced by �IN Vª is denoted by ©K\ � ��&x�T� E ª�\ � * .

A path in a graph © from a vertex « to ¬ is a finite nonempty sequence «�^-�g« S �������p�g«a`
of vertices such that «t�L«^ , ¬Y�L«a` and &�«7� Q¶S �g«7�q*~. E ª for all �~�G������������J�b� . A vertex «
is reachable from another vertex ¬ if there is a path from ¬ to « . A vertex is a root if every
vertex is reachable from it. It is an inverse root if it is reachable from every vertex.

A dag is an acyclic graph; that is, © is a dag if TC & E ª�* , the transitive closure of the edge
relation, is a strict partial order, called the precedence order. We denote the precedence
order by y�ª and its reflexive closure by ®Qª . We may omit the subscript if the dag is clear
from context. We have «F®�¬ if and only if there is a path in © from « to ¬ ; we say that « is
ordered by © before ¬ . If «Wr®�¬ and ¬8r®L« , we say « and ¬ are not ordered by © .

A topological sort of a dag © is any serialization of Vª consistent with y�ª . A prefix of
a dag © is any induced subgraph © L closed under adding predecessors; that is, if «/®Jªs¬
and ¬m. Vª ^ then «�. Vª ^ . The dag © extends ©�L , or is an extension of ©�L , if ©�L is a prefix
of © .
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3.2 Definition

A computation describes the clients’ requests to the memory. It specifies the operators in-
voked, along with constraints on how these operators may be applied. The operators that
may be invoked are specified by the data type of the memory. A client may specify a prece-
dence dependency between two operators, that is, that one operator must be applied before
the other may be applied. Other constraints are specified using annotations. The possible
annotations vary from system to system, and must be specified by the memory.

Formally, given a data type Ã and a set � of annotations, a computation 9 on Ã with� is an annotated dag whose vertices V̄ are operators of Ã . The edges E ¯ of the dag
encode the precedence dependencies, and the annotation function ann ¯_2 V̄â3D� encodes
the annotations. We use °�±] to denote the set of computations on Ã with � .

Though they are just data type operators, we often refer to the vertices of computations
as operations. That is, we use operation to refer to an operator in the context of a partic-
ular computation, which associates precedence dependencies and an annotation with the
operator. We think of an operation as being an invocation of an operator.

Example 3.1 A graphical representation of a computation on Î with Ì�²B¼½±p²%¾-±g²)ï-±g²�ð%±g² ú Í , where the
annotation indicates the process requesting the operation:

³(´
³¶µ

read · ³(¸

³&¹
read � write º ´(»

³A¼ ³A¼
³A´

read ½
³A¼

read �
³(´

³(¸

read ¾

write º µ¿»
write º ¸(»

write º ¼¶»
write º ¹.»

Each circle represents a vertex of the computation, with the operation indicated above the circle,
and the annotation indicated below it. The arrows represent the edges of the computation.

Note that the data type of this computation is actually Î extended with subscripts to distin-
guish multiple invocations of the read operator, as described in Section 2.5.

Given the order in which the operations are applied, the data type specifies the effect
on the data object and the return value for each operation. The precedence dependencies
and the annotations specify restrictions on how the operations may be applied. Prece-
dence constraints—that one operation should be applied before another—are expressed
using precedence dependencies. Other constraints are expressed using the annotations.
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Because the constraints that clients may express vary among systems, the annotation set
appropriate for each system also varies.

The clients may specify arbitrary precedence dependencies, including totally ordering
all operations, or not specifying any dependencies at all. The only requirement is that there
may not be any cyclic dependencies; that is, the computation must be a dag.

Example 3.2 Some systems provide locks that can be acquired and released. Informally, a lock that
has been acquired must be released before it can be acquired again. We discuss how to model
this formally in later chapters, particularly Chapter 7. For now, we model such systems using the
annotation set Ì ACQ ± REL ± NIL Í , where NIL is the annotation for operations that neither acquire nor
release the lock.

Here is a computation on
×

with Ì ACQ ± REL ± NIL Í whose operations are totally ordered:

read º¥À »
ACQ

read ºÂÁ »
NIL

write º¥À�Ã ´(»
NIL

write ºÂÁYÃ ¹.»
REL

Example 3.3 The computation from the previous example with no precedence dependencies:

read º¥À »
ACQ

read ºÂÁ »
NIL

write º¥À�Ã ´(»
NIL

write ºÂÁ�Ã ¹.»
REL

Example 3.4 (Cyclic Dependencies) The following is not a computation because it has cyclic de-
pendencies.

ACQ

NIL NIL

REL

read ºÂÁ »
write ºÂÁYÃ ´A»

write ºÂÁYÃ ¹.»read º¥À »

Because the constraints that clients may express vary among memory systems, the an-
notation set appropriate for each system also varies. In previous examples, we saw com-
putations annotated by processors and computations with a lock. Some systems provide
mechanisms, such as synchronization variables, which require different annotation sets. We
introduce a few types of annotations informally in Section 3.4, and we develop them for-
mally in later chapters.
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Some systems place additional restrictions on the ways that computations may be
annotated. These restrictions, called well-formedness conditions, vary from system to sys-
tem, even among systems that have the same annotation set. In some cases, the well-
formedness condition merely reflects a limitation in the interface between the clients and
the memory. In other cases, the constraints corresponding to the computations that are not
well-formed are not meaningful. We discuss these conditions more carefully in the context
of the memory models that use them.

Example 3.5 Consider a system in which processors are blocking; that is, a processor has at most
one outstanding operation requested. In such systems, the memory is often required to preserve the
order in which operations are requested by each processor. We model this behavior by annotating
each operation with the processor that requests it, and requiring operations annotated by the same
processor to be totally ordered. In this case, the computation from Example 3.1 is well-formed.

Example 3.6 Consider a system in which processors request operations independently; that is, an
operation cannot depend on an operation requested by a different processor. The well-formedness
condition for such a system is that only operations requested by the same processor may be or-
dered. This condition arises from the inability for processors to explicitly express dependencies on
operations requested by other processors. In this case, the computation from Example 3.1 is not
well-formed.

Example 3.7 Consider the system described in Example 3.2, in which a lock may be acquired and
released. Such a system typically requires a lock to be acquired before it can be released. We model
this behavior by a well-formedness condition requiring every operation annotated by REL to be
preceded by an operation annotated by ACQ. In this case, the computation from Example 3.2 is
well-formed, but the computation from Example 3.3 is not.

Often, we want to annotate only some of the operations. Formally, we use a default
annotation NIL for the operations that do not need to be annotated. Henceforth, we assume
that every annotation set includes NIL. We say that an operation annotated by NIL has no
annotation, and we often omit writing the NIL, either in a diagram or in the annotation set.

Some systems allow clients to specify only precedence dependencies. That is, the only
constraints on the way operations may be applied can be expressed by precedence depen-
dencies. Formally, the annotation set is the singleton set � NIL � . In this case, we often leave
out the annotations altogether, writing ° ± instead of ° ±Ä NIL Å or ° ± Æ , for example.

Example 3.8 The computation from Example 3.1 without annotations:
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read ·
write º ¹.»

read �
write º ¼¶»

write º ¸(»

write º µ¿»

read ½read ¾write º ´(»
read �

The precedence dependencies define a partial order on the operations of a computation,
which corresponds to a logical notion of time. An operation is logically prior to operations
that depend on it and logically after operations it depends on. No other timing information
is preserved by the computation.

Formally, we denote the partial order induced by the precedence dependencies of a
computation 9 by yR¯t� TC & E ¯T* , the transitive closure of the edge relation; its reflexive
closure is ®�¯ . We drop the subscript when the computation is clear from context. An
operation ' (logically) precedes another operation z in a computation 9 if 'oy8¯8z . Two
distinct operations are (logically) concurrent in 9 if neither precedes the other; that is, if'8r®�¯bz and zdr®�¯º' . An operation is not concurrent with itself.

Precedence in logical time neither implies nor is implied by precedence in real time.
Two logically concurrent operations might not actually overlap in time. Conversely, a
nonblocking client may specify that a new operation depends on a previously requested
but still outstanding operation. Thus, two operations that are not logically concurrent may
be outstanding at the same time.

Precedence dependencies are intended to capture “control” dependencies, which de-
pend on the structure of the program generating the computation, rather than “data” de-
pendencies, which depend on the values returned by the memory. The distinction between
control dependencies and data dependencies is not always so clear, however. Section 3.5
gives several examples of computations corresponding to programs that are helpful in un-
derstanding this distinction.

Because precedence dependencies represent the control dependencies derived from the
program, the partial order defined by the precedence dependencies is sometimes called the
program order. However, as we discuss in Section 3.5, the relationship between a computa-
tion and the program that generated it can be difficult to characterize formally. Thus, we
use this term only informally.

Annotations provide a general mechanism for expressing constraints that cannot be
expressed using precedence dependencies. With an appropriate choice of the annotation
set, almost any kind of constraint on the way operations may be applied can be expressed
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using annotations. For example, precedence dependencies can be specified by annotating
each operation with the operations that must precede it. We treat precedence dependencies
specially because they are common to all memory systems, and it is convenient to take
advantage of the greater structure provided by a dag to express them.

A computation is a static representation of the clients’ requests. It can be thought of
as a snapshot of an execution, with everything other than the requested operations and
the constraints on how they may be applied, abstracted away. A computation makes no
guarantees about the values that the memory returns for the operations; these guarantees
are specified by the memory model. Although the clients select a computation assuming
a particular memory model, this model may not characterize the actual guarantees of the
memory being accessed. For example, we show in various results throughout this the-
sis that clients that obey certain restrictions in how they access the memory may assume
strong consistency guarantees even when the guarantees of the actual system are weak.
Providing a framework for specifying and reasoning about memory models is the goal of
this thesis, and these results are its main results.

3.3 What Computations Are Not

Because computations are abstract representations of the requests that the clients make
of the memory, they may be confused with programs and instruction streams. However,
although computations bear similarities to both programs and instruction streams, they
differ in important ways.

Computations are not programs. A program generates a computation every time it ex-
ecutes, but it may not generate the same computation each time. Rather, the computation
it generates may depend on nondeterministic choices made in the inputs to the program,
or by the memory in returning values for the operations, or by the processor running the
program, possibly due to unpredictable timing conditions, or races.

Furthermore, a computation has no control structures such as loops or branches. Each
operation in the computation is invoked exactly once. If a statement in a program is ex-
ecuted several times, perhaps because it appears in the body of a loop, it generates sev-
eral vertices in the computation, one for every time it is executed. If it is never executed,
perhaps because it appears in a branch not taken, it does not generate any vertex in the
computation. In Section 3.5, we consider several programs and the computations they
generate.

Computations are not instruction streams, though they resemble instruction streams more
than they resemble programs. An instruction stream is a sequence of instructions sent to a
processor. Computations model the clients’ requests to memory. In a shared memory mul-
tiprocessor, for example, the clients of the memory are the processors, and computations
model the requests of the processors to access memory.

Computations also differ from instruction streams in that they explicitly note the de-
pendencies between operations. Many high performance processors reorder the instruc-
tions they receive to achieve better performance. High performance memories may also
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apply operations in different orders, but a computation specifies a partial order to be re-
spected, rather than a total order that may be relaxed.

3.4 Some Types of Annotations

As mentioned earlier, the annotation set depends on the kinds of constraints the memory
system understands, and must be specified by the memory system along with the data
type. A few types of annotations can express the constraints understood by most systems.
In this section, we introduce some of these types of annotations briefly and informally. In
later chapters, we give formal definitions and discuss in greater depth the interpretation
of specific annotations in the context of particular memory models.

Precedence-based systems. Some systems allow only precedence dependencies to be ex-
pressed. We call such systems precedence-based. In this case, the computation has no anno-
tations. Example 3.8 gives such a computation. We discuss precedence-based systems in
Chapter 5.

Memory barriers and synchronization. A system may provide special synchronization
operations, such as memory barriers. We use annotations to indicate whether an operation
synchronizes with other operations; the annotation set is � SYNC � . Typically, systems guar-
antee greater consistency for synchronization operations than for other operations; the
exact guarantees vary among systems and are specified by the memory model.

Although some systems allow clients to specify synchronization independently of the
operation, many systems provide explicit mechanisms to specify which operations syn-
chronize. These mechanisms may introduce well-formedness conditions. For example,
some systems provide synchronization variables; access to those variables is always syn-
chronized, while access to other variables is never synchronized. Other systems provide
explicit instructions to synchronize, and these instructions often do not affect the memory
directly. We discuss a few systems of this type in Section 5.5.

Example 3.9 A computation on
×

with Ì SYNC Í for a system with a special instruction to synchro-
nize. This instruction does not affect the data object, so we use noop for the data type operator.
Recall that when no annotation is given, it is assumed to be NIL, which is implicitly included in
every annotation set.

read ºÂÁ »
write º¥À�Ã ¹.»

SYNC

noop write º¥À�Ã ´A»

Example 3.10 A computation on
×

with Ì SYNC Í for a system with synchronization variables. In
this example, ¬ is a synchronization variable and © is not. Recall that the subscripts differentiate
multiple invocations of a data type operator.
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write º¥À�Ã ¹�»
write ºÂÁYÃ ¹.»

SYNC

SYNC

read ºÂÁ » �
read º¥À »

SYNC

read ºÂÁ » �
write º¥À�Ã ´(»

Processor-centric systems. Many systems distinguish instructions by the the process or
processor that issue them. Typically, instructions issued by the same processor are totally
ordered, and instructions issued by different processors are not ordered. We call such
systems, and the models that describe them, processor-centric. In our parlance, “issuing
an instruction” is requesting an operation, which we model by annotating each operation
with the processor that invoked it, as illustrated in Example 3.1. The annotation set is
the set of processors. The requirement that the operations of each processor are totally
ordered, and that operations of different processors are not ordered, is a well-formedness
condition.

Example 3.11 A computation on Î for a processor-centric system that requires operations to be
ordered if and only if they are requested by the same processor:

³(´
write º ¹.»
read �

write º ´A»
³A¼
³¶µ

read ·

³(¸
write º ¼(»

³(¸

read¾
read �

³(´
read ½

³A¼

write º ¸(»
³(´

³A¼

³&¹

write º µ¿»
Many processor-centric memories allow some instructions to complete out of order

unless they are separated by a special fence instruction. We augment the annotation set to
specify these fences. The exact semantics of fences is specified by the memory model. We
discuss processor-centric systems in Chapter 6.
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Locks. Many systems provide locks, which may be acquired and released. For a system
with a single system-wide lock, we can use � ACQ � REL � for the annotation set, as in Exam-
ple 3.2. For systems with multiple locks, we indicate for each lock, whether it is being
acquired or released.

Example 3.12 A computation for a system with two locks Ö and Ç . If a lock is not mentioned in
the annotation, it is neither acquired nor released.

write ºÂÁ�Ã ¹.»
REL ºXÈ » É

ACQ º�Ê »
ACQ ºXÈ »
read ºÂÁ » �ACQ ºXÈËÃkÊ »
read º¥À » �

read º¥À » �
read ºÂÁ » �

REL º�Ê »
read ºÂÁ » ·
write º¥À�Ã ´A»

REL ºXÈ »
write ºÂÁ�Ã µ¿» �

REL º�Ê »
write ºÂÁ�Ã µ¿» �

write º¥À�Ã ¹.»

Locks may be implemented using synchronization, but have a more restricted use than
general synchronization operations. For example, a lock may not be released before it is
acquired. This added structure often makes it easier to reason about computations with
locks than those with more general synchronization. We discuss locks in Chapter 7.

Transactional systems. A system may allow some operations to be grouped together into
a transaction, which should be applied as a single larger operation. A transaction may be
specified by marking the first operation as the beginning of the transaction and the last
operation as its end; operations between the beginning and end are part of the transaction.
Typically, the transactions are also given unique identifiers. We use the annotation set� BT & ÌX*T2¶ÌK. TI ��k_� ET & ÌE*¶2¶ÌK. TI � , where TI is the set of transaction identifiers. The beginning
of a transaction with identifier Ì is annotated BT & ÌE* , and the end is annotated ET & ÌE* . We
discuss how to specify and reason about transactional systems in Chapter 8.

Example 3.13 A computation for a system with transactions.

read º¥À » �
write º¥À�Ã ¼(»

read ºÂÁ » � write ºÂÁ�Ã ´A»
ET º}Í � » BT º}Í ¾ »

read ºÂÁ » �
ET º}Í � »

read ºÂÁ » ·BT º}Í � »
BT º}ÍÎ· »

ET º}ÍÎ· »
BT º}Í � » ET º}Í ¾ »

read º¥À » � write ºÂÁ�Ã µ¿»
write ºÂÁ�Ã ¹�»

write º¥À�Ã ´(»
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Combinations. A system may understand more than one kind of constraint. We can
model multiple kinds of constraints by combining the annotations used to specify each
kind. However, in this thesis, we concentrate on examining each kind of constraint inde-
pendently.

3.5 Getting Computations From Programs

A programmer is ultimately interested in the behavior of a program running on a par-
ticular system. For this reason, it is important to understand the relationship between
a program and the computations it generates. Although this relationship is difficult to
characterize formally, it is a natural one in many cases. In this section, we illustrate this
relationship by examining several small programs and the computations they generate.
All the examples in this section assume a read/write memory data type.

Intuitively, a computation is an abstraction of a snapshot of an execution1 of a pro-
gram, as seen by the memory. That is, as a program executes, it issues instructions, some of
which access the memory. At any given point in the execution, we can look at the memory
accesses that have been made. Each memory access corresponds to a vertex in the compu-
tation. The edges in the computation correspond to “control” dependencies between these
accesses, and the annotations usually correspond to synchronization information required
by the memory. The dependencies and synchronization are usually determined by looking
at the program, rather than the stream of instructions issued.

We first consider simple multiprocessor systems, in which each processor executes a
sequential program. For “straight line code,” where there are no unresolved control deci-
sions, branching or looping, there is a unique computation that corresponds “naturally” to
the program: the operations at each processor are totally ordered, and there are no depen-
dencies between operations at different processors.

Example 3.14 Consider a system with two concurrent processes, two shared variables, and no
mechanism for explicitly expressing synchronization. Here is a simple program and a computa-
tion that corresponds to it.

int x, y = 0

P1: write(x,1)
read(y)
write(x,2)

P2: write(y,1)
read(x)
read(y)

read ºÂÁ » � write º¥À�Ã ´A»
read ºÂÁ » �read º¥À »

write ºÂÁ�Ã ¹�»
write º¥À�Ã ¹.»

Example 3.15 A system may distinguish some variables as being synchronization variables. Opera-
tions on these variables are marked as synchronization operations. We only show the annotations
for synchronization operations. Operations without annotations are implicitly annotated by NIL.

1We use this term informally here. It has a different, but related, formal meaning, when used in relation to
automata, which we discuss in Chapter 9.
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int x = 0
sync int y = 0

P1: write(x,1)
read(y)
write(x,2)

P2: write(y,1)
read(x)
read(y)

write º¥À�Ã ¹.»
write ºÂÁ�Ã ¹�»

SYNC

SYNC

read ºÂÁ » �
read º¥À »

SYNC

read ºÂÁ » �
write º¥À�Ã ´A»

The memory may use the SYNC annotations to constrain how the operations may be applied.
Such constraints are expressed by the memory model; the computation merely indicates which
operations are synchronization operations.

Some systems provide explicit synchronization instructions that have no direct effect
on the memory. To model these instructions, we assume the data type has a “no-op”
operator, which always returns an acknowledgment and leaves the state unchanged (see
page 25).

Example 3.16 Systems that provide locks can be modeled using explicit operations to acquire and
release the locks.

lock L
int x,y = 0

P1: acquire(L)
write(x,1)
read(y)
release(L)
write(x,2)

P2: acquire(L)
write(y,1)
read(x)
release(L)
read(y) ACQ º�Ï »

noop write ºÂÁ�Ã ¹.» read º¥À »
REL º�Ï »
noop

REL º�Ï »
noopread ºÂÁ » � write º¥À�Ã ´(»

read ºÂÁ » �
write º¥À�Ã ¹�»

ACQ º�Ï »
noop

However, the “natural” computation for a straight line program is not always the ap-
propriate one. For example, to improve performance, some systems explicitly allow pro-
cessors to hide memory latency by reordering operations, prefetching memory reads and
buffering memory writes. Such systems often provide fence instructions that allow the
programmer to specify that the order of certain operations must be preserved. The relax-
ation in ordering requirements for the operations may be viewed as a weakening of the
consistency guarantees of the system, but they may also be modeled as relaxations in the
restrictions that the programmer expresses to the system. We discuss operation reordering
in more detail in Section 6.6. Other systems allow their processors to maintain inconsistent
caches. These systems cannot guarantee that the order of operations done on different lo-
cations is maintained, because a processor may have an old version of one of the locations.
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Example 3.17 The computation of the program from Example 3.14 running on a system that pre-
serves the order only between operations on the same location.

int x, y = 0

P1: write(x,1)
read(y)
write(x,2)

P2: write(y,1)
read(x)
read(y)

write º¥À�Ã ¹.»
read ºÂÁ » �

read ºÂÁ » �
write º¥À�Ã ´(»

write ºÂÁ�Ã ¹�»
read º¥À »

Example 3.18 There are many variations of the fence instruction. In this example, the system guar-
antees the order of all operations relative to the fence. No annotation is needed in the computation;
the effect of the fence is expressed by the precedence dependencies.

int x,y = 0

P1: write(x,1)
read(y)
fence
write(x,2)

P2: write(y,1)
read(x)
read(y)

write ºÂÁ�Ã ¹�»
read º¥À »

noop write º¥À�Ã ´A»
write º¥À�Ã ¹.»

read ºÂÁ » �
read ºÂÁ » �

Because of nondeterministic choices that affect the way it executes, a program may not
always generate the same computation, even if the system does not allow operations to be
reordered. This nondeterminism may arise because of different inputs, or because different
values were returned for operations invoked earlier, usually because of a race between two
concurrent operations.2

Example 3.19 The computation generated by the following program depends on the value re-
turned for the read ¢Z©�§ operation of ²B¼ .

2It is also possible for the program to have an explicit nondeterministic choice. As far as we know, only
logical programming languages and specification languages have such a construct.
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int x,y = 0

P1: write(x,1)
if read(y) = 0

write(x,2)
else

write(x,0)

P2: write(y,1)
read(x)
read(y)

If the value returned for the read ¢ ¬J§ of P1 is É , then the computa-
tion generated is just as in Example 3.14:

read ºÂÁ » � write º¥À�Ã ´A»
read ºÂÁ » �read º¥À »

write ºÂÁ�Ã ¹�»
write º¥À�Ã ¹.»

If the value returned for the read ¢ ¬J§ of P1 is not É , because the
write ¢�¬J±+¼½§ of P2 is applied before it, then the following computa-
tion is generated:

write ºÂÁ�Ã ¹�» read ºÂÁ » �read º¥À »
write º¥À�Ã
Ð »

read ºÂÁ » �write º¥À�Ã ¹.»

Example 3.20 This simple producer-consumer program uses a synchronized variable ¬ , which ²%¾
reads repeatedly until it equals ¼ . This one statement may generate several vertices in the compu-
tation. Also, although there is a data dependency from the write ¢ ¬J±q¼½§ of ²B¼ and the final read ¢ ¬J§ of²%¾ , there is no edge in the computation, because data dependencies are not modeled in computa-
tions.

int x = 0
sync int y = 0

P1: write(x,1)
write(y,1)

P2: repeat
t1 <- read(y)

until t1 = 1
read(x)

SYNC

read ºÂÁ » �
SYNC

read ºÂÁ » �
write º¥À�Ã ¹�» write ºÂÁ�Ã ¹�»

SYNC

SYNC

read ºÂÁ » Ñ
read º¥À »

A programming language may not have the expressive power to specify the permis-
sible concurrency of some computations. Thus, a program may require one operation to
precede another even though no logical dependence exists. In this case, we may not want
the computation to include a precedence dependency between the two operations. This
problem is common when programming in a sequential language for a multiprocessor.
Determining whether two operations are logically or merely incidentally ordered is a ma-
jor challenge in compiling sequential programs for multiprocessors, and we do not tackle
it in this thesis.

Example 3.21 Consider the following sequential program, with local variables » , £ , Ê , Ò , Ó+É , ÓÝ¼ andÓF¾ , and a single shared array Ö , initialized to some random values.
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int A[*] = <random initial values>

count(int i,j,k):
% count occurences of k in A[i..j]
int m

if j < i
return 0

m <- (i+j)/2 % integer division
t0 <- read(A[m])
t1 <- count(i,m-1,k)
t2 <- count(m+1,j,k)
if t0 = k
return t1+t2+1

else
return t1+t2

Although this program specifies that read ¢�ÖQÔ ÒDÕ § precedes the recursive call on the first half of the
array, which precedes the recursive call on the second half of the array, these precedences are not
logical dependencies. Thus, we might say that the computation corresponding to this program
would not have edges between these operations.

Rather than require a compiler to determine the logical dependencies in a program, or
relying on the processor to reorder operations to improve performance, some program-
ming systems provide explicit control structures to indicate the logical dependence be-
tween operations.

Example 3.22 In this example, spawn indicates that the function called can be done concurrently
with the operations that follow the spawn, until the next sync operation.

f: x <- 1

g: x <- 2

main: x <- 0
spawn f
spawn g
sync
read x

write º¥À�Ã ´A»
write º¥À�Ã ¹.»

write º¥À�Ã
Ð »
read º¥À »

Example 3.23 This example uses the cobegin and coend construct to indicate which operations
may be executed concurrently.

cobegin
write(x,1)
write(y,2)

coend;
cobegin

read(y)
read(x)

coend

write ºÂÁ�Ã ´(»
write º¥À�Ã ¹.»

noop

read ºÂÁ »
noop

read º¥À »
noop
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Again, no general method for determining the computation generated by a program is
known. Finding one is a difficult task that deserves further investigation, which we do not
undertake in this thesis.

3.6 Schedules

We want to know the result of executing a given computation—the values returned for its
operations and the final state of the memory after the computation executes. This result
depends on the memory model, which we discuss in later chapters. There is one possi-
bility, however, that is easy to consider: when the operations are applied serially, that is,
as if the computation were executed on a sequential machine. In this case, we only need
to know the order in which the operations are applied. This order of operations is called
a schedule. Operations should be scheduled after any operations that precede them in the
computation; that is, the schedule should respect the precedence dependencies. The anno-
tations may specify other constraints that schedules should respect.

Formally, a schedule � of 9 is any topological sort of 9 , that is, a serialization of the op-
erations consistent with the precedence dependencies. We maintain the annotations with
the schedule, writing ann � &('B*J� ann ¯�&('v* for the annotation of ' . Because an annotation of
an operation in a schedule is the same as its annotation in the computation, we often omit
the subscript. We denote the set of schedules of 9 by Sch &A9~* .
Example 3.24 Here are some schedules of the following computation from Example 3.14:

read ºÂÁ » � write º¥À�Ã ´(»
read ºÂÁ » �read º¥À »

write ºÂÁYÃ ¹.»
write º¥À�Ã ¹�»

write ¢�©`±+¼½§�± read ¢ ¬J§
°Ý± write ¢Z©�± ¾-§
± write ¢ ¬J±q¼½§
± read ¢�©`§�± read ¢�¬p§�²
write ¢ ¬J±+¼½§�± read ¢�©`§
± read ¢ ¬J§�²�± write ¢Z©`±+¼½§�± read ¢�¬J§
°½± write ¢�©`± ¾-§
write ¢�©`±+¼½§�± write ¢�¬J±+¼½§�± read ¢�¬J§
°?± write ¢Z©�± ¾-§
± read ¢Z©�§�± read ¢�¬J§(²

Example 3.25 The following are not schedules of the computation from Example 3.24:

write ¢ ¬J±+¼½§�± read ¢�©`§
± read ¢ ¬J§ ° ± write ¢Z©`±+¼½§�± read ¢�¬J§ ² ± write ¢�©`± ¾-§
write ¢�©`±+¼½§�± write ¢�¬J±+¼½§�± read ¢�¬J§ ° ± write ¢Z©�± ¾-§
± read ¢�¬p§ ² ± read ¢�©`§

write ¢�©`±+¼½§�± read ¢ ¬J§ ° ± write ¢Z©�± ¾-§
± write ¢�©`±
ï#§
± write ¢ ¬J±+¼½§�± read ¢�©`§
± read ¢ ¬J§ ²
write ¢Z©`±+¼½§�± write ¢�¬p±q¼½§
± read ¢�¬p§ ° ± write ¢�©`± ¾-§
± read ¢�©`§

write ¢�©`±+¼½§�± write ¢�¬J±+¼½§�± read ¢�¬J§ ° ± write ¢Z©�± ¾-§
± read ¢Z©�§�± read ¢�¬J§ ² ± write ¢�©`± ¾-§
The first two sequences are not consistent with the precedence order. The third has an additional
write ¢�©`±
ï#§ operation, while the fourth is missing the read ¢�¬p§,² operation. The final sequence is not
even a serialization, because the write ¢�©`±U¾-§ operation appears twice.
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Because computations are dags, every computation has at least one schedule.

Lemma 3.1 Every computation has at least one schedule.

Proof: This lemma follows immediately from the basic graph theory result that every dag has a
topological sort.

Given a schedule, the behavior of the memory is determined by its data type, which
specifies its serial semantics. Using the theory developed in Chapter 2, we can reason
about and determine the return values for the operations and the final state of the memory
if the computation is executed according to that schedule.

The annotations may specify scheduling constraints, which restrict the schedules that
the system allows. We say that the schedules must respect the scheduling constraints. Like
the well-formedness conditions discussed in Section 3.2, these restrictions vary with the
system. For example, in a system with locks, a schedule should not release a lock before it
is acquired, nor should it acquire a lock that was previously acquired but not yet released.
We formally define scheduling constraints and what it means to respect them in the context
of the particular memory models that we develop in later chapters.

3.7 Races and Determinacy

When the memory is implemented by a distributed system, the order in which operations
are scheduled depends on unpredictable factors, such as communication latency, network
congestion, and processor speed and load. Two operations comprise a race, and are said to
compete, if they can occur in different orders, and the order in which they occur affects the
result of the computation. Because the values returned for competing operations depend
on these unpredictable factors, races make it harder to reason about the possible behaviors
of the program running on the system. Thus, it is considered good practice to eliminate
races from programs to the extent possible.

Formally, two operations compete in a computation if they conflict and are concurrent.
A pair of competing operations is a race, and a computation is (completely) race-free if it
has no races, that is, if no operations compete.

Example 3.26 A completely race-free computation on
ê

:

deposit º ¸(»balance � withdraw º ¼(»deposit º ¹ Ð »
balance �

Example 3.27 A computation on
ê

that is not race-free:
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balance �
deposit º ¸A»
deposit º ¹ Ð »

withdraw º ¼(»
balance �

The balance ° operation competes with the deposit ¢ ú § operation.

Race-free computations are easy to reason about because the values returned for op-
erations are determined by the computation; they do not depend on the schedule. We
say that computations with this property—that the return values are independent of the
schedule—are observationally determinate.

As we show below, race-freedom also guarantees that the final state of the memory af-
ter executing the computation is independent of the schedule. This property, which we call
internal determinacy, is useful when the computation being considered is a part of a larger
computation. Computations that are both internally and observationally determinate are
strongly determinate.

Formally, a computation is (observationally) determinate if all its schedules are obser-
vationally equivalent; it is internally determinate if all its schedules are internally equiva-
lent; and it is strongly determinate if all its schedules are strongly equivalent.

Example 3.28 A determinate computation on Î that is not strongly determinate.

write º ¸A»
write º µ¿»

read

Example 3.29 The computation from Example 3.26 is strongly determinate.

Example 3.30 The computation from Example 3.27 is internally, but not strongly, determinate.

A determinate computation is easy for a memory to execute, because it does not need
to check the consistency of the values returned for different operations. The values may
be computed using different schedules because every schedule yields the same value for
every operation.

In general, it is difficult to prove that a computation is determinate because we need
to check that all its schedules are observationally equivalent. However, as noted above,
race-freedom is a sufficient condition for strong determinacy, which implies determinacy.

Lemma 3.2 If 9 is a completely race-free computation then 9 is strongly determinate.
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Proof: Immediate from Theorem 2.16, with +I¡ VÖ and the partial order ×ØÖ .

The converse of this theorem is not true in general; a computation with races may be
determinate.

Example 3.31 The following computation is strongly determinate, but not completely race-free. In
particular, the deposit ¢ ú § and the withdraw ¢�ï#§ operations compete.

deposit º ¸(»
deposit º ¹ Ð »

withdraw º ¼¶»
balance � balance �

Race-freedom is easier to check directly than determinacy, because we only need to
examine the pairs of concurrent operations in the computation, rather than every schedule.
Much research has been done to efficiently detect races in programs [6, 85, 89, 90, 37, 96,
24, 25].

Most systems have special synchronization operations that “protect” against races, so
that competing operations that are separated by appropriate synchronization are not con-
sidered races. “Race-free” programs for these systems may not generate determinate com-
putations. The system typically guarantees greater consistency for synchronization op-
erations, so that the degree of nondeterminacy is reduced. The exact definition of what
constitutes a race depends on the particular system.

3.8 Discussion

In this section, we discuss some of the reasons we use computations as the basis for the
framework developed in this thesis. We also discuss the drawbacks of this approach.

We note again that computations are not programs. Ultimately, we want to reason
about the behavior of programs. However, there are at least three reasons why programs
are not suitable as the interface between the clients and the memory. First, a program is
written in a particular programming language; we want this framework to be independent
of the choice of programming language. Second, compilation creates a large gap between
the program and what actually executes on the system; we wish to avoid many of the is-
sues that arise because of compilation. Third, programs have control structures—such as
loops and branches—which allow some statements to be executed multiple times while
others are never executed. To reason about how a program executes, we must distinguish
between the program’s instructions and the instantiations of these instructions in an execu-
tion of the program, which the memory sees. Every instantiation corresponds to a different
operation in the computation.

One significant point of confusion in much of the previous work on memory models
is a result of failing to treat the last point—that instructions are different from their instan-
tiations in a particular execution—with sufficient care. Following Lamport’s definition of
sequential consistency [68], many memory models used the notion of a program order, which
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is “the order specified by the program” [1], or “the partial order on all memory operations
that is consistent with the per-processor total order” [41, 97]. This order depends not only
on the program but also on the particular execution of the program. The problem arises
when this order is used to define a memory model, as the execution that results depends
on the memory model, making the definition circular [100]. We sidestep this problem by
having explicit precedence dependencies; that is, the program order is the precedence or-
der of the computation.

A computation expresses the logical structure of a program’s execution. In this thesis,
we develop a computation-centric framework for modeling memory consistency guarantees,
in which clients are characterized by the computations they generate. The values that
may be returned by the memory are determined based only on the computation specified
by the clients. This framework provides a foundation for reasoning rigorously about the
semantics of concurrent access to a shared memory.

We believe the computation-centric framework is an adequate basis upon which to
build a full theory of concurrent programming with shared memory. Although the val-
ues returned by a shared memory system may depend on factors not expressed in the
computation—especially factors such as processor load and communication delays that
affect the timing of operations—these factors are not available to the programmer, who
thus cannot use them in reasoning about the behavior of a program.

To bridge the gap between computations and programs, there are three sets of issues
that must be addressed: Language design, compilation, and the generation of computa-
tions from programs.

Most issues in the design of a programming language are orthogonal to the memory
consistency guarantees. However, we want to ensure that the way we model consistency
does not restrict the language design possibilities; it should not exclude desirable con-
structs for expressing and structuring concurrency. Maintaining this flexibility is important
because there is no consensus yet on the “right” constructs for concurrent programming.
Computations can express any logical constraint on how the memory may be accessed.

Compilation is also an orthogonal issue. Because computations can model a high level
program executing on an abstract machine, the effects of compilation and the guarantees
of the underlying system can—and usually should—be hidden from the programmer.

We discussed the generation of computations from programs in Section 3.5. The most
difficult issue arises because the computation generated by a program may depend on the
values returned by the memory for earlier operations, as we saw in Examples 3.19 and 3.20.
Thus, what appears as a data dependency, which is not expressed in the computation,
affects the control flow of the program, which is expressed in the computation. We discuss
this problem, and how we can deal with it, in Chapter 9.

Instead of using computations, we could model a program as a state machine, which
models the dynamic behavior of the system. Although this approach is general—it can
capture the dynamic dependence on return values, for example—without additional struc-
ture, it is difficult to characterize programs by looking at their associated state machines.
For example, it is hard to tell whether a state machine is race-free, a property that is critical
to many of the results in this thesis. Nonetheless, in Chapter 9, we develop a simple theory
using state machines that builds on the computation-centric framework.

Unlike much of the previous work [47, 8, 2, 100, and others], computations are not
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based on processors or processes. Processor-centric memory models, which assume that
the clients specify a total per-processor order on the operations with no cross-processor de-
pendencies, restrict the forms of concurrency that can be expressed. These models are nat-
ural for low level descriptions of shared memory multiprocessors, but they cannot model
higher level programming systems, such as Cilk [19], that do not have an explicit notion
of a process. We discuss these models in Chapter 6.

In the literature, memory models are often formalized by identifying legal histories3 of
a system [68, 33, 53, 4, 43, 11, 8, 54]. In addition to synchronization information and the
per-processor order, this approach uses the return values or a total order on system events
(such as requests and responses from the memory) to derive a partial order analogous to
the logical precedence order of a computation. Because the return values and the timing of
some system events depend on the system rather than the clients, there is no independent
description of the clients in this approach. In contrast, computations provide a clean split
between the clients and the memory because they contain only the information that the
clients specify to the memory, and neither the return values nor timing information.

Because annotations are defined for each operator, and operators are unique, we could
incorporate them into the data type operator. However, the data type operator specifies
how the data object changes when the operator is applied, whereas the annotation does
not affect the data object at all. In particular, given a serialization of the operators to be
applied, the result of applying that serialization does not depend on the annotations; it is
completely specified by the operators. Thus, we separate the annotations from the data
type. Annotations are used to constrain how the operators may be applied. That is, the
annotations, and the precedence dependencies, restrict the possible serializations that may
be used to determine the return value for each operator.

Because the well-formedness conditions and scheduling constraints depend on the an-
notations, which vary from system to system, it may be better to parameterize computa-
tions by a data type and an annotation type. In addition to the annotation set, an annotation
type would specify the well-formedness conditions and the scheduling constraints implied
by the annotations. Annotation types may allow a more general and uniform treatment
of annotations. Also, well-formedness would be treated differently from other client re-
strictions, which correspond to programming disciplines rather limitations inherent to the
system.

3We use this term broadly; there are many variants of this approach. Histories are often called executions,
and correspond to the automaton executions we formally define in Chapter 9.
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Chapter 4

The Computation-Centric Framework

A memory model specifies what values the memory may return for the operations that
the clients request. When the interface between the clients and the memory consists of
computations and return value functions, it is natural to describe a memory model as an
association of computations and return value functions. We call such memory models
computation-centric. In this chapter, we define computation-centric models and show how
to reason about them.

In any execution of a memory system, the computation describes the clients’ requests
and the return value function describes the memory’s response. Together, a computation
and return value function comprise an observation of the system. A computation-centric
memory model specifies the possible observations of a memory system.

A memory model may be either a description of the guarantees made by a memory or a
specification of the guarantees assumed by the clients. A system implements a specification
if the observations of the system are possible observations of the specification. Sometimes
a memory system implements its specification only if the clients access the memory in a
restricted fashion, for example, by avoiding races. With restricted clients, it is possible for a
weakly consistent memory to implement a memory with stronger consistency guarantees.
The main results in this thesis are of this form.

Some systems preprocess their computations and then execute them on an underlying
memory. We introduce computation transformations to model this preprocessing. The result-
ing system may provide stronger consistency guarantees than the underlying memory by
adding constraints on the way operations may be scheduled. For example, the system may
force operations to be applied in a particular order by adding precedence dependencies to
the computation. Conversely, the memory may weaken the consistency guarantees of the
underlying memory by eliminating some of the dependencies specified by the clients, so
that operations may be reordered. We use computation transformations to define several
memory models in this thesis, particularly in Chapters 6 and 7.

Outline: In Section 4.1, we formally define observations and computation-centric mem-
ory models. Section 4.2 defines some properties computation-centric models may have.

The material in this chapter is based in part on earlier work done with Matteo Frigo and presented at the
Symposium for Parallel Algorithms and Architectures in 1998 [40].

65
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In Section 4.3, we define an implementation relation between computation-centric mod-
els. We show how to model restricted clients in Section 4.4, and we define computation
transformations in Section 4.5. Finally, in Section 4.6, we discuss some of the strengths and
weaknesses of computation-centric models.

Reading Guide: This chapter develops a computation-centric framework for defining
and reasoning about memory consistency. It is dense with formal definitions and has
fewer examples than previous chapters. The key definitions are those of observations,
computation-centric memory models, client restrictions and computation transformations;
many examples of these concepts appear in later chapters. It is possible to first read Sec-
tion 4.1, skim Sections 4.3 and 4.4, and then skip to Chapter 5, referring back to this chapter
as necessary. Computation transformations are not used until Section 5.5.

4.1 Computation-Centric Memory Models

We characterize a memory system by the behavior that may be observed by the clients
when a program is executed on the system. Given a computation, which specifies the op-
erations requested by the clients and the logical constraints on how these operations may
be applied, a computation-centric memory model specifies the values that may be returned
for the operations. In this section, we formally define computation-centric memory mod-
els and discuss how they should be interpreted.

A computation-centric memory model is a postmortem characterization of a memory
system. That is, in the computation-centric approach to modeling memory consistency, we
look at an execution of a program after it has terminated rather than reason about how
it unfolded over time. We can derive the computation from the execution, as described
in Section 3.5. Because the execution has terminated, every operation has a return value.
Together the computation and the return values comprise an observation of the system.

Because the system may not be a sequential machine, the return values of an observa-
tion need not be explained by any schedule of the computation. However, every memory
should respect the precedence dependencies, so the return value for each operation should
reflect the effects of the operations that precede it in the computation.

Formally, given a memory with data type Ã �V&xÄ_�RÅÆJ�qÇº�µu7��Èv* and annotation set � , an
observer function for a computation 9V.Ù° ±] is a total return value function ÚB2 V̄ 3 u
on the operations of 9 such that for each operation '�. V̄ , there is a schedule � of 9
that explains Ú)\ Ä}Û Å , that is, Ú�&('v*s� retval &('¶�R��* . There may be a different schedule for each
operation. An observation of the memory is a pair &A9<�#Ú)* , where 9 is a computation and Ú
is an observer function for 9 . We use Ü]±] to denote the set of possible observations of any
memory with Ã and � .

Example 4.1 Consider the following computation and return value function (combining the two
partial return value functions from Example 2.18):
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withdraw º�Ý »
deposit º ¹p¸(»

deposit º ¸A»
withdraw º ¹ Ð »

balance �Ý¢ deposit ¢U¼ ú §�§�¡ ACK�Ý¢ withdraw ¢��X§�§�¡ ERR�Ý¢ balance §�¡ þ�Ý¢ withdraw ¢U¼µÉ�§�§�¡|¼+É�Ý¢ deposit ¢ ú §�§�¡ ACK

Although no schedule of the computation explains � , it is an observer function for the computation
because each return value is explained by one of the schedules from Example 2.18.

Example 4.2 The following return value function is not an observer function for the computation
in the previous example because there is no schedule of that computation that returns ¼a¾ for the
balance operation. ,¨¢ deposit ¢ ¼ ú §�§�¡ ACK,)¢ withdraw ¢��X§�§�¡ ERR,¨¢ balance §`¡|¼a¾,)¢ withdraw ¢ ¼µÉ�§�§�¡|¼µÉ,)¢ deposit ¢ ú §�§�¡ ACK

An observation includes only the control structure of the clients’ requests, specified by
the computation, and the values returned by the memory. It does not specify data depen-
dencies, as they are not observed directly by the clients; they must be inferred from the
computation and return values. Neither does an observation indicate the order in which
the values are returned to the clients. Clients that rely on one operation being applied be-
fore other must explicitly specify this requirement by a precedence dependency unless it
is implied by the value returned for the earlier operation.

Restricting observations to observer functions, rather than allowing arbitrary return
value functions, ensures that the value returned for each operation is “reasonable” and not
made up arbitrarily by the memory. That is, each return value can be explained by some
schedule. However, because each operation may be explained by a different schedule,
the return values for different operations in an observation need not be consistent; there
might not be any schedule that simultaneously explains the return values for two different
operations. Consistency guarantees must be specified by the memory model.

A computation-centric memory model for a memory system is a set of observations
of the system, including the empty computation with the null function as its observer
function. If M is the model for a memory system, then &A9<�#Ú)*/. M is a possible observation
of that system. That is, if the clients specify the computation 9 , the memory may returnÚ�&('B* for each operation 'I. V̄ . The empty computation with the null function is included
in every computation-centric model because it is the observation of any memory in which
the clients do not request any operations.

Given a memory system, we can derive its computation-centric memory model as fol-
lows: For each possible execution of the system, determine the computation and the return
values, which together comprise an observation of the system. The set of all these obser-
vations is the memory model. Because we do not have a formal model of the system,
other than the computation-centric model, we cannot describe this process formally yet.
In Chapter 9, we develop state machine models for memory systems, and in Section 9.6,
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we show how to formally derive computation-centric models from the state machine de-
scriptions.

The set of all computation-centric models for a memory with Ã and � is ÞE±] ���¿ß�àá ,
the power set of Ü ±] ; that is, M .0Þ ±] if and only if M N�Ü ±] . When &A9<�#Ú)*�. M, we say that
M admits Ú for 9 , and that &A9<�#Ú)* is admissible1 according to M. Because clients specify
the computation, a computation-centric memory model is often given by a rule relating
computations and observer functions. We use M â�9�ãJ����ÚK2�&A9<�#Ú)*�. M � to denote the set of
observer functions that M admits for 9 .

Example 4.3 (Generic Memory) The generic memory model GM ¡SäQå Þ is the most general possible
computation-centric memory model. It can also be written as follows:

GM ¡0Ìµ¢�æ�±�ç�§`ÓAç is an observer function for æ�Í¡Bv)¢
æ�±�ç�§�Ó for each © Á VÖ , there is a schedule of æ that explains ç � è~é.ê y¡YÌµ¢
æ7±�ç�§`Ó�ë-© Á VÖ ±pì¨� Á Sch ¢�æ�§�±�ç-¢�©`§�¡ retval ¢�©`±µ�¶§ Í
Example 4.4 (Sequential Consistency) A memory that preserves the appearance of a sequential
machine is called sequentially consistent. Its computation-centric model is:

SC ¡YÌF¢�æ�±�ç�§�Ó there is a schedule � of æ such that for all © Á VÖ , ç-¢�©`§`¡ retval ¢�©`±+�¶§�Í¡YÌF¢�æ�±�ç�§�Ó there is a schedule of æ that explains ç�Í
Sequential consistency is an important model, and we consider it in greater depth in Chapter 5.

Because observations record only the return values for the operations of a computation,
computation-centric models are defined by these values, not how they were determined.
Although we often define computation-centric models by constraining the schedules that
explain the return values, the schedules actually used by a system described by a model
need not satisfy the constraints specified by the model. For example, sequential consis-
tency requires that a single schedule explain all the return values. However, a distributed
system implementing sequential consistency may use different schedules to determine the
return values of different operations—these schedules may not even be equivalent—as
long as there is some schedule that explains all the return values.

A computation-centric model need not admit an observer function for every compu-
tation. In particular, a memory model typically does not admit any observer function for
computations that are not well-formed; there is no appropriate observation of the system
because the computation may not be specified.

On the other hand, computation-centric models do not imply any liveness properties.
A system may deadlock or fail in some other way to completely execute a computation,
even if the memory model admits an observer function for that computation. An observa-
tion is admissible if it may be observed in any completed execution of the system. Although
liveness is an important issue—our model allows trivial implementations that never com-
plete an execution—it is largely orthogonal to the consistency guarantees, which are safety
properties. We do not study liveness in this thesis.

1This terminology is natural when we consider a memory model as a specification, as we discuss in Sec-
tion 4.3, rather than a description of a memory system.
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If every observation of one memory is a possible observation of another memory, then
the first memory is at least as restrictive as the second; it will only return values that the
second memory may also return.

Formally, a memory model M is stronger than another model M L if M N M L . We also
say that M L is weaker than M. The “stronger” and “weaker” relations are partial orders.
Note that the subset, not the superset, is said to be stronger, because the subset admits
fewer observations of the memory.

Example 4.5 SC is stronger than GM. In fact, any computation-centric memory model is stronger
than GM.

To compare our framework with memory models proposed in the literature, it is some-
times convenient to relax the requirement that the return value function of an observation
be an observer function. A generalized computation-centric memory model is one in which
an “observation” may pair a computation with an arbitrary (total) return value function
for its operations; that is, it is a subset of �R&A9<�#Ú)*T2TÚ is a return value function for V̄�� .

We may also observe the system in an intermediate state while a program is still exe-
cuting. In this case, the computation consists of the operations requested so far. Because
the system may not yet have returned a value for every operation requested, we allow the
observer function to be partial. Formally, a partial observer function for a computation
is a partial return value function on the operations in which each operation with a return
value—the operations in its domain—is explained by some schedule of the computation.
An intermediate observation is a computation paired with a partial observer function. In-
termediate observations are useful for reasoning about the dynamic interaction between
the clients and memory, which we discuss in Chapter 9.

4.2 Properties of Computation-Centric Models

Although the use of observer functions ensures that any observation is reasonable, the
definition of computation-centric models allows many models that do not describe any
real system. In this section, we define several properties that most real systems satisfy.

If two computations are identical except that one has fewer precedence dependencies
than the other, then we expect that an observer function admissible for the computation
with more dependencies is also admissible for the one with fewer dependencies. This
property is called monotonicity. Formally, 9 is stricter than 9bL if V̄m� V̄ ^ , ann ¯m� ann ¯ ^ ,
and E ¯�^�N E ¯ . A memory model M .\Þ/±] is monotonic if whenever 9 is stricter than 9 L ,
we have M â�9�ãJN M â�9MLíã .

Because the clients specify the computation and the memory model characterizes the
memory, we expect that a memory model admits at least one observer function for each
computation. This property is called completeness. Formally, a memory model M .îÞ ±]
is complete if for all 94.�°�±] , there exists an observer function ÚB2 V̄l3 u for 9 such that&A9<�#Ú)*=. M, or equivalently, M â�9�ãYr��� . This property implies that it is possible for the
memory system to respond to to any computation requested by the clients.

Although an observation considers the entire computation and all the return values
statically, a real memory system receives and responds to some operation requests before
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others. Once it returns a value for an operation, it cannot take it back. Most memories guar-
antee not only completeness, which says that they can respond if the entire computation is
known ahead of time, but also that they can respond as new operations are requested. A
system could “get stuck” if the observer function for some initial computation cannot be
extended as the computation is extended. A memory that cannot get stuck in this fashion
is said to be constructible. Formally, a model M is constructible if whenever 9>L extends 9
and Ú�. M â�9�ã , there is an extension Ú L of Ú such that Ú L . M â�9 L ã .
Example 4.6 GM and SC from Examples 4.3 and 4.4 are monotonic, complete and constructible.

It is easy to see that constructibility implies completeness.

Lemma 4.1 Any constructible memory model is complete.

Proof: Immediate from the definition of constructibility, since every computation extends the empty
computation, and every memory admits the null function for the empty computation.

As mentioned in Chapter 3, some systems may have well-formedness conditions that
restrict the computations they can handle. For such systems, it is appropriate to consider
only well-formed computations in the definition of the properties above. Formally, if WF
is the set of well-formed computations for a memory, a model M is monotonic under WF
if for all 9<��9 L . WF such that 9 is stricter than 9 L , we have M â�9�ã�N M â�9 L ã . Similarly, M is
complete under WF if M â�9�ãKr��� for all 9�. WF, and it is constructible under WF if for all9<��9 L . WF such that 9 L extends 9 , every Ú�. M â�9�ã has an extension Ú L . M â�9 L ã .

We do not develop these concepts in greater depth, as it is not necessary for this thesis.
See [40] and [39] for a more extensive treatment, particularly of constructibility.

4.3 Implementing Memory Models

In addition to describing a memory formally, a memory model can be used to specify the
requirements for a memory system. Informally, a system implements a specification if the
clients of the system cannot tell that they are not interacting with a system described by the
specification. A system that implements a memory model can be viewed by the clients as a
memory that provides the guarantees specified by the model, without regard to the actual
structure of the underlying system. If the clients choose the computation assuming it will
be executed on a memory modeled by a memory model, then it can be “safely executed”
on any system that implements the memory model.

We do not have a general method for proving that a distributed system implements a
computation-centric memory model: Any such method would depend on the formalism
used to describe the system. However, when the proposed implementation is a memory
described by a computation-centric model, there are some general techniques to prove that
the system implements the specification memory model.

One memory system implements another system with the same interface if the clients,
observing the first system execute a computation, cannot tell that it is not the second; that
is, if every observation admissible according to the memory model of the first system is
also admissible according to the memory model of the second. Formally, M .SÞ ±] imple-
ments M L .0Þï±] if M N M L . This definition is identical to the definition of M being stronger
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than M L , which makes sense because any computation can be “safely executed” on a mem-
ory that provides stronger guarantees than the one it was intended to be executed on. Two
memory models are equivalent if they implement each other.2

Example 4.7 SC implements GM, but GM does not implement SC.

We want to be able to prove that under certain conditions, a memory can be imple-
mented using a weaker memory, or a memory with a different interface. These conditions
may be restrictions on the clients, extra processing by the system, or both. We consider
these possiblities in the next two sections.

4.4 Client Restrictions

Often, we are concerned about the behavior of the memory only when it is accessed in a
restricted way, that is, by clients obeying a discipline of memory access. Under such condi-
tions, some memories provide additional consistency guarantees; that is, they are indistin-
guishable from stronger memories to clients that obey the memory access discipline. The
main results of this thesis, Theorems 5.4, 5.7, 6.13, 7.25, 7.31 and 8.16, consist of showing
a result of this kind for specific memory models and access disciplines. In this section, we
define client restrictions, which model memory access disciplines, and make precise what it
means in the computation-centric framework for one memory to implement another under
a client restriction.

In the computation-centric framework, clients are characterized by the computations
they may specify. Thus, we model a restriction on the way memory may be accessed
as a restriction on the computations; that is, the clients guarantee that the computation
specified satisfies certain properties. We are interested only in the observations for those
computations. The memory model under a client restriction includes only the observations
with computations allowed by the restriction. This terminology is the same as the ter-
minology used in Section 4.2 for the well-formedness conditions, reflecting that we treat
well-formedness conditions exactly like other client restrictions.

Formally, a client restriction is a set CR Nî° ±] of computations that includes the empty
computation, where 9�. CR means that 9 may be specified by the clients. If M .HÞ ±] then
M under CR is M \ CR ���R&A9<�#Ú)*�. M 2)9�. CR � .
Example 4.8 For a read/write memory with memory barriers that do not read or write the memory,
the annotation set is Ö|¡YÌ SYNC Í , and the client restriction, a well-formedness condition, is specified
by v æ Á8ðTñÞ Ó�ë-© Á VÖ ± ann Ö ¢Z©�§`¡ SYNC ò*ó ©K¡ noop

y ³
Recall that every annotation set implicitly includes NIL, so ann ÖT¢Z©�§`¡ NIL if ann ÖT¢Z©�§J®¡ SYNC.

2Two models are equivalent exactly when they are equal. We use the term equivalent to be consistent with
later usage.
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Example 4.9 (Serial Clients) The clients may access the memory serially; that is, they may coor-
dinate so that there are no concurrent accesses to memory. In this case, the operations are totally
ordered by the computation corresponding to their requests. Such clients satisfy the following
client restriction:

Serial ¡ v æ Á8ð å Ó E Ö is a total order
y

Example 4.10 (Race-Free Clients) It is often considered good practice to eliminate races from pro-
grams. A program is race-free if all the computations it generates are race-free. In the computation-
centric framework, a client is race-free if it satisfies the following client restriction:

RF ¡ v æ Á8ð å Þ ÓAæ is completely race-free
y ³

This restriction specifies complete race-freedom. Memories often provide special operations
that “protect” against races. We discuss such operations in the context of particular memory mod-
els.

We say that M implements M L under CR if M \ CR implements M L,\CR, that is, if M \ CR N
M L \CR. Two memory models are equivalent under CR if they implement each other under
CR. As mentioned earlier, the main results in this thesis have the form M implements M L
under CR, where M L is stronger than M.

Example 4.11 Any memory implements sequential consistency under serial clients; that is, any
memory model implements SC under Serial, where SC and Serial are defined in Examples 4.4
and 4.9. This statement is true because every computation in Serial has a unique schedule defined
by its precedence dependencies.

The following lemma gives a simple alternate definition for the “implements under a
client restriction” relation.

Lemma 4.2 M implements M L under CR if and only if M â�9�ãJN M Lpâ�9�ã for all 9�. CR.

Proof: Suppose M implements M   under CR, or equivalently, M
�
CR ô M   � CR. If æ Á CR and ç Á M ÔÂæõÕ

then ¢�æ�±�ç�§ Á M
�
CR ô M   � CR, and thus, ç Á M  
ÔÂæNÕ .

Suppose M ÔöæõÕ ô M  
ÔÂæNÕ for all æ Á CR. If ¢�æ�±�ç�§ Á M
�
CR then æ Á CR and ç Á M ÔöæõÕ ô M  �ÔÂæõÕ , so¢�æ�±�ç�§ Á M   � CR.

The implementation relation is preserved under any client restriction.

Lemma 4.3 For any client restriction CR, if M implements M L then M \ CR implements M Lx\CR.

Proof: Since M ô M   , we have M
�
CR ¡YÌ+¢�æ�±�ç�§ Á M Ó¿æ Á CR Í ô ÌF¢
æ�±�ç�§ Á M  -ÓAæ Á CR Í`¡ M   � CR.

If a memory implements a stronger memory under some client restriction, then they
are equivalent under that client restriction.

Lemma 4.4 If M is weaker than M L and implements M L under CR then M and M L are
equivalent under CR.
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Proof: Because M is weaker, M   implements M, and by the previous lemma, M   implements M
under CR. Thus, M and M   are equivalent under CR.

Many client restrictions are monotonic; that is, they simply require that the clients in-
clude “enough” precedence dependencies. Formally, CR is monotonic if for all 9V. CR
and 9 L stricter than 9 , we have 9 L . CR.

Example 4.12 Both Serial and RF from Examples 4.9 and 4.10 are monotonic.

We can also compare two client restrictions. A client restriction CR is more restric-
tive than CR L if CR N CR L . A memory interacting with more restrictive clients provides
stronger guarantees.

Lemma 4.5 If CR is more restrictive than CR L then M \ CR implements M \ CR ^ .
Proof: Immediate from the definitions.

4.5 Computation Transformations

We can implement a memory model over a memory system with different guarantees by
preprocessing the requests from the clients. In the computation-centric framework, pre-
processing corresponds to changing the computation. For example, to get stronger con-
sistency guarantees, the system may delay the application of some operations by adding
precedence dependencies. Other systems allow operations to be reordered, by removing
precedence dependencies, or change the annotations. In this section, we define computation
transformations, which model the preprocessing done by the system. We use computation
transformations to define many of the memory models in this thesis.

Informally, we want to implement an abstract memory model using a system with
some underlying memory. The clients specify a computation for the abstract memory,
which the system transforms into a computation for the underlying memory. This trans-
formation may add or remove precedence dependencies or change the annotations; it need
not be deterministic.

For example, a system with a weakly consistent memory can implement sequential
consistency by serializing all the operations requested by the clients, adding precedence
dependencies so that the operations of the computation submitted to the underlying mem-
ory are totally ordered. The serialization order chosen by the system may depend on un-
predictable factors, such as network delay and processor load.

We allow the abstract memory and the underlying memory to have different annota-
tion sets, giving them slightly different interfaces. For simplicity, we focus on the case
where the memories have the same data type, and the system does not change the opera-
tions being requested; that is, the transformation may change the constraints on how the
operations are applied but not the operations themselves. The system returns to the clients
the values returned by the underlying memory.

Formally, an (operation-preserving) computation transformation from Ã and � to Ã
and � L is a relation ÷ from °U±] to °ø±] ^ such that &A9<��9 L */.S÷ implies V̄v^¶� V̄ . We say that÷ transforms 9 into 9OL when &A9<��9ML,*O.�÷ , and we denote the set of computations that ÷
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transforms 9 into by ÷Hâ�9�ãp���q9OL¨2�&A9<��9sLU*�.H÷�� . When ÷sâ�9�ã has only one element, we may
write ÷I&A9~* for that element.

Example 4.13 (Serializer) For any t and Ö , the following computation transformation serializes
the operations:

ã
ser ¡ v ¢�æ�±�æ_ x§ ÁDð å Þ m ð åYÓ VÖ ¡ VÖ áYù E Ö ô E Ö á�ù E Ö á is a total order

y
.

A memory model M .�Þ ±]h^ using a computation transformation ÷ from Ã and � toÃ and � L defines a new memory model ÷I& M *��o�R&A9<�#Ú)*T2�&A9 L �#Ú)*�. M for some 9 L .0÷3â�9�ã(� .
Note that the direction of the transformation is reversed for computations and memory:
A transformation that takes abstract computations to real ones, takes a real memory to
an abstract one. The abstract memory model admits an observer function for an abstract
computation if the underlying memory model admits the observer function for the trans-
formed computation.

Because a memory model defined by another memory model using a transformation
is just a computation-centric model like any other, we can reason about it using the the-
ory developed earlier in this chapter. For example, M using ÷ implements M L using ÷IL
if ÷I& M *ÚN�÷IL & M L,* . Similarly, we can combine computation transformations with client
restrictions to say that M using ÷ implements M L under CR if ÷C& M *F\ CR N M L,\CR.

Example 4.14 Any memory model using
ã

ser from Example 4.13 implements sequential consis-
tency; that is,

ã
ser ¢ M § ô SC for any memory model M. We can see this statement is true because, ifæh  Á ã

ser ÔÂæõÕ for any æ , then E Ö á is a total order, so æ_  has only one schedule.

The implementation relation is preserved by transformations.

Lemma 4.6 For M � M L .HÞï±] and ÷82*°U±] 3ú°ø±] , if M N M L then ÷C& M *�NF÷I& M L * .
Proof: If ¢�æ�±�ç�§ Á ã ¢ M § then ¢
æ_ ,±�ç�§ Á M ô M   for some æ_  Á ã ÔöæõÕ , so ¢�æ�±�ç�§ Á ã ¢ M  x§ .

We can compare computation transformations in much the same way that we compare
client restrictions. We say that a transformation ÷ is more restrictive than ÷8L if ÷ Nû÷=L .
Also, we may be interested in the behavior of the transformations assuming the clients
obey a restriction. We say that a transformation ÷ is more restrictive than ÷ L under a
client restriction CR if ÷sâ�9�ãJNF÷CLpâ�9�ã for all 9�. CR.

A memory using a transformation implements the memory resulting when a less re-
strictive transformation is used.

Lemma 4.7 If ÷ is more restrictive than ÷0L under CR then for any memory model M, ÷C& M *
implements ÷IL
& M * under CR.

Proof: If ¢
æ�±�ç�§ Á ã ¢ M § � CR then æ Á CR and ç Á M Ôöæ_ íÕ for some æ_  Á ã ÔöæõÕ ô ã  
ÔöæõÕ . Thus,¢�æ�±�ç�§ Á ã  U¢ M § .
A common way to strengthen the guarantees of a memory is to delay the application

of some operations until other operations are known to be done throughout the system.
We model this delay by adding precedence dependencies to the requested computation.
The resulting set of possible computations typically meets a stricter client restriction under
which the memory model guarantees a stronger consistency model. We use this technique
to define synchronization for memory models in Section 5.5 and Chapters 6 and 7.
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For a client restriction CR Nü° ±] , the computation transformation that enforces CR is÷ c
CR �|�R&A9<��9 L *p2 V̄e� V̄v^ý E ¯âN E ¯v^aý 9 L . CR ý ann ¯=� ann ¯v^ � .

Example 4.15
ã c

Serial ¡ ã
ser, where Serial is defined in Example 4.9 and

ã
ser in Example 4.13.

Because a transformation that enforces a client restriction makes computations stricter,
a monotonic memory using such a transformation implements the memory without the
transformation.

Lemma 4.8 If M .[Þ ±] is monotonic and CR Nî° ±] then ÷ c
CR & M * implements M.

Proof: If ¢�æ�±�ç�§ Á ã c
CR ¢ M § then ¢
æh x±�ç�§ Á M for some æh  Á ã c

CR ÔÂæõÕ . Since æh  is stricter than æ and M
is monotonic, ç Á M Ôöæ_ ÂÕ ô M ÔÂæõÕ , so ¢�æ�±�ç�§ Á M.

The transformation that enforces a client restriction does not eliminate possible obser-
vations of a computation that meets the restriction.

Lemma 4.9 If 9�. CR then M â�9�ã7NF÷ c
CR & M *.â�9�ã .

Proof: If æ Á CR then æ Á ã c
CR ÔÂæNÕ , so ¢
æ�±�ç�§ Á M implies ¢�æ�±�ç�§ Á ã c

CR ¢ M § .
To show that one memory implements another when both are using a transformation

that enforces a client restriction, it suffices to show that the first memory using the trans-
formation implements the second without the transformation.

Lemma 4.10 If ÷ c
CR & M *�N M L then ÷ c

CR & M *�NF÷ c
CR & M Lx* .

Proof: If ¢�æ�±�ç�§ Á ã c
CR ¢ M § then ¢
æh x±�ç�§ Á M for some æ_  Á ã c

CR ÔÂæNÕ ô CR. By Lemma 4.9, M ÔÂæ_ íÕ ôã c
CR ¢ M §ÎÔöæ_ íÕ . So ç Á M ÔÂæh íÕ ô ã c

CR ¢ M §ÎÔöæ_ ¥Õ ô M  kÔÂæh ÂÕ . Since æ_  Á ã c
CR ÔÂæNÕ , we have ç Á ã c

CR ¢ M  x§bÔÂæõÕ .
Two transformations that enforce different client restrictions can be combined into a

single transformation enforcing both client restrictions, provided that the restrictions are
monotonic.

Lemma 4.11 If CR is monotonic then ÷ c
CR ^ ;�÷ c

CR �w÷ c
CR þ CR ^ .

Proof: If æ_  Á ¢ ã c
CR áWÿ ã c

CR §ÎÔöæõÕ then there exists æ_    Á ã c
CR ÔöæõÕ such that æh  Á ã c

CR á Ôöæ_   ÂÕ , so VÖ ¡ VÖ á á ¡
VÖ á , ann Ö ¡ ann Ö á á ¡ ann Ö á and E Ö ô E Ö á á ô E Ö á . Since CR is monotonic and æ_  is stricter thanæh    Á CR, and since æ_  Á range ¢ ã c

CR á § ô CR   , we have æ_  Á CR 9 CR   , so æ_  Á ã c
CR � CR á ÔÂæõÕ .

If æh  Á ã c
CR � CR á ÔöæõÕ , then æh  Á ã c

CR ÔÂæõÕ , and æ_  Á ã c
CR á Ôöæ_ ÂÕ , so æ_  Á ¢ ã c

CR á ÿ ã c
CR §bÔÂæNÕ .

We can also use computation transformations to define weaker memory models by re-
moving edges rather than adding them. Such a transformation is called a reordering trans-
formation. Weakening the consistency guarantees of a memory model is useful when the
model is used as a specification rather than an implementation: A relaxed memory model
is defined using a reordering transformation with an underlying memory that has strong
consistency guarantees. By removing edges from a computation, the reordering trans-
formation relaxes some of the constraints specified by the clients in the computation by
allowing the memory to ignore some of the precedence dependencies in the original com-
putation. We use reordering transformations to define several relaxed processor-centric
models in Chapter 6, including weak ordering [33] and release consistency [43].
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A computation transformation may provide a conceptual model that suggests a par-
ticular implementation. However, as with memory models in general, the transformation
may not reflect what the system being modeled actually does.

It is possible to define computation transformations that are not operation-preserving.
Such a transformation must specify how to derive return values for operations in the orig-
inal computation from an observation of the transformed computation running on the
underlying memory. In the simplest case, the transformation only adds operations, and
the return value for each operation is its return value in the underlying observation. In
general, the return value for an operation may be determined by an arbitrary function of
the return values for multiple operations of the transformed computation. In this thesis,
we use only operation-preserving transformations; we defer the study of these more com-
plicated cases.

4.6 Discussion

Using admissible observations to characterize memory consistency guarantees resembles
the legal histories approach to specifying memory models [68, 33, 53, 4, 43, 11, 8, 54] in that it
is based on a static postmortem description of system behavior. Thus, the two approaches
share many strengths and weaknesses. However, by using computations and observer
functions to make a clean split between the clients and the memory, we are able to define
client restrictions and computation transformations, which we use heavily in later chapters
to develop a theory of computation-centric memory models.

Because a computation is a static representation of the clients’ requests, a computation-
centric model is a static characterization of the memory’s guarantees; there is no need
to reason about how an execution unfolds. Because admissible observations have well-
formed computations with total observer functions, there is no need to consider intermedi-
ate observations, in which some operations may not have return values. Thus, computation-
centric models are simple to describe and reason about. We can use the tools developed in
the previous chapter for computations to reason about computation-centric models.

This simplicity comes at a price: Because clients may use the values returned for earlier
operations to determine what operations to request, the computation may depend on the
memory model. We saw this kind of dynamic dependence in Examples 3.19 and 3.20.
Computation-centric models do not capture the dynamic interaction between the clients
and the memory.

Another shortcoming of computation-centric models is that they do not fit into a gen-
eral theory of distributed systems. To show that a system implements a computation-
centric memory model, we must rely on ad hoc methods.

In the literature, the alternative to the legal histories approach is to characterize shared
memory systems directly as state machines [45, 69, 70, 36, 100].3 The chief advantages of
the state machine approach over the legal histories and computation-centric approaches
are that a state machine captures the dynamic interaction between a system and its clients,
and that formalizing programs and systems as state machines is typically a straightforward

3Although Shen, et al. [100] actually use a term rewriting system to describe their memory model, there is
a trivial correspondence between state machines and term rewriting systems.
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process, widely practiced throughout computer science. A state machine model is more
likely to accurately represent a system than a static model. However, it has proven hard to
determine the what properties a memory system guarantees by looking at its state machine
representation.

Despite their shortcomings, computation-centric models do capture key characteristics
needed to reason about the behavior of memory from the point of view of the clients. In the
next four chapters, we use the computation-centric framework to formally specify several
memory models from the literature and prove results about the guarantees they provide
under various client restrictions. We also compare various models and investigate what
properties are actually necessary for the results we prove.

In Chapter 9, we develop another framework based on state machine models for mem-
ories that preserve much of the flavor of computation-centric models by using precedence
dependencies and annotations to specify client constraints. We use these models to prove
that any safety property of the system deduced using the computation-centric framework
is also a property of the state machine models of the system (Corollary 9.21). To formalize
the state machine models, we use I/O automata [81], which support a rich general the-
ory of distributed systems. Thus, this new framework for modeling memory consistency
addresses our concerns about the computation-centric framework and has many of the
advantages of both the state machine and computation-centric approaches.

The computation-centric models described here are generalized from those we intro-
duced for read/write memory [40] to allow an arbitrary data type for the memory. One
disadvantage of this generalization is that, when modeling a read/write memory, a write
operation must specify the value written, and the observer function must specify the value
read by each read operation. In our earlier work [40], the observer function specified the
operation that wrote the value, which made the data flow of an execution explicit. With
general data types, the data flow cannot be represented so simply because several opera-
tions may contribute to the data read by an operation.

There are several ways in which we could extend the computation-centric framework.
It is already flexible enough to handle nondeterministic data types, if we extend our theory
of data types in that way. But to handle operations that may block, we need to allow
observations with partial return value functions. Permitting partial return value functions
would also allow us to reason about computations corresponding to partial executions,
in which some operations may not yet have return values. It would also be useful to
have a notion of observational equivalence that ignored “internal” operations and return
values. Finally, computation transformations could be generalized as described at the end
of Section 4.5.
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Chapter 5

Simple Memories

In the next four chapters, we look at specific memory models that capture the key features
of many memories described in the literature. We show how to define these models for-
mally, along with the client restrictions and computation transformations that we use to
prove that one memory model implements another under certain conditions. These mod-
els and the results we prove about them are more than illustrations of how to specify and
reason about memories in the computation-centric framework; they are important in their
own right because they model memories and programming disciplines for real systems.

In this chapter, we consider a few simple but important memory models and client re-
strictions, showing how to model them in the computation-centric framework. We define
sequential consistency [68] and coherence [47, 52], two of the most common consistency mod-
els. They belong to the class of precedence-based memory models [77], which can be expressed
without annotations. We also show how to use annotations to capture the synchronization
facilities provided by many memory systems [33, 104, 101, and many others].

We identify the class of race-free clients and prove that any memory appears sequen-
tially consistent when accessed by race-free clients. Thus, programmers can safely assume
sequential consistency when using weaker memories if their programs are race-free. This
result is the main theorem of this chapter, and is the basis for the main theorems in Chap-
ters 6 and 7, which prove that certain weakly consistent memories appear sequentially
consistent to a restricted set of clients. We specialize this result to show that a coherent
memory is sequentially consistent when no location is accessed concurrently.

The computation-centric memory models defined in this chapter are generalizations of
the corresponding memory models usually defined in the literature. Most models in the
literature are processor-centric; that is, the program order defined by the precedence de-
pendencies is a total order for each processor. In the computation-centric versions, the pro-
gram order may be an arbitrary partial order. Thus, the computation-centric framework
makes fewer assumptions about the structure of the system, and is suitable for modeling
parallel programming systems in which the mapping from computation to processor is not
fixed [105].

In addition to specific definitions and results, this chapter illustrates a general approach

The notion of precedence-based memories and a version of Theorem 5.7 appeared in a paper presented at
the International Workshop on Distributed Algorithms in 1997 [77].

79
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to defining and reasoning about memory models in the computation-centric framework,
which we develop further in later chapters.

Outline: In Section 5.1, we define the class of precedence-based memory models and
discuss why it is an interesting class of models. Section 5.2 defines sequential consistency
in the computation-centric framework, and Section 5.3 shows how avoiding races allows
programmers to assume sequential consistency even when using a much weaker memory.
In Section 5.4, we give a computation-centric definition for coherent memory and point
out some confusion that has resulted from ambiguous informal definitions of coherence
and incompatible formalizations of these definitions that have appeared in the literature.
In Section 5.5, we discuss various kinds of synchronization mechanisms and show how to
model some of them in the computation-centric framework.

Reading Guide: The main contributions of this chapter are the simple computation-
centric definitions of sequential consistency, coherent memory, and race-free clients, and
Theorem 5.4, which establishes that race-free clients cannot distinguish weaker memories
from sequential consistency. Because of this theorem, programmers following a discipline
that guarantees race-freedom can assume sequential consistency, regardless of the actual
guarantees of the memory. The development of synchronization in this chapter illustrates
how to specify non-precedence-based guarantees of a memory system; we derive specific
results about systems with synchronization in later chapters.

5.1 Precedence-Based Memory Models

We begin our study of computation-centric models by focusing on a restricted class of
memories, the precedence-based memories. A precedence-based memory restricts clients to
specify constraints that can be expressed using only precedence dependencies; that is, the
computation specified by the clients must not require annotations. In this section, we for-
mally define precedence-based memory models and discuss their benefits and limitations.

A memory model M is precedence-based if, for all computations 9 and 9 L such that
V̄¥� V̄ ^ and E ¯¥� E ¯ ^ , we have M â�9�ã_� M â�9MLíã ; that is, M does not distinguish compu-
tations that differ only in their annotations. Precedence-based models are easier to reason
about because there is no need to consider the annotations. Our analysis of precedence-
based models serves both as a guide for how to reason within the computation-centric
framework, and as a tool in the analysis of non-precedence-based memories. For example,
Theorems 6.13 and 7.25 are corollaries of Theorem 5.4 from this chapter.

Many of the memory models proposed in the literature are precedence-based, includ-
ing sequential consistency [68], coherence [47, 52], pipelined RAM [74], processor consis-
tency [47, 8], and causal memory [9]. These models are defined in the context of a fixed set
of sequential processes accessing the shared memory; that is, they are processor-centric. In
Sections 5.2 and 5.4, we define versions of sequential consistency and coherence, the two
most important of these models, in the more general setting of computations. In Chapter 6,
we examine the processor-centric setting in detail, and we define some of the other models
in that context.
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The generic memory from Example 4.3 is also precedence-based. It is the least restrictive
memory model, admitting every observation. Its formal definition is:

GM �|�R&A9<�#Ú)*T2 � '=. V̄p���v�{. Sch &A9~*µ�#Ú�&('B*p� retval &('¶�R��*U�
Because generic memory is the weakest memory model, systems that can be built using
it can be built using any memory, and properties it guarantees are guaranteed by every
memory. Although it is simple, a generic memory is difficult to program because its guar-
antees are so weak. However, in Section 5.3, we show that programs that generate only
completely race-free computations can use generic memory—and thus any memory—as
though it were sequentially consistent.

Not all memories, however, are precedence-based. Sometimes we want the system to
guarantee different degrees of consistency to different operations because it is sufficent
for the correctness of a program for a few operations to be treated specially. Annotations
are used to model the degree of consistency an operation requires. The resulting models
are called hybrid models; non-hybrid models are uniform [87]. This hybrid approach was
originated by Dubois, et al. in their definition of weak ordering [33]. It has also been used to
define hybrid consistency [12], release consistency [43], eventually-serializable data services [36],
and the lazy replication system of Ladin, et al. [66], among others, including most shared
memory multiprocessors [104, 101, 84, 58].

A higher level reason to extend precedence-based memory models is that some con-
straints cannot easily be expressed by dependencies alone. Two important examples of
these constraints are “exclusion” constraints and “atomicity” constraints. An exclusion
constraint specifies that two sets of operations should not be overlapped; that is, all the
operations of one set of operations should precede all the operations of the other, but the
two sets may occur in either order. An atomicity constraint specifies that the effects of a set
of operations is seen atomically, with no intervening operations. We show how to model
these constraints in Chapters 7 and 8 respectively.

5.2 Sequential Consistency

Sequential consistency requires that the memory appear as though it were accessed sequen-
tially [68], that is, as though the operations were handled by a single process. It is a natural
and intuitive extension of the semantics of a sequential memory; it was adopted early,
and is the only universally accepted memory model for concurrent programming [56]. In
this section, we define sequential consistency in the computation-centric framework and
discuss the advantages and disadvantages of this model.

The original definition of sequential consistency assumes that several independent pro-
cesses are accessing the memory, and it requires the apparent serialization of the operations
to be consistent with the order—called the program order—of the operations at each process.
We model sequential consistency by requiring that a single schedule explain all the return
values of a computation. Formally,

SC �|�R&A9<�#Ú)*T2��v�{. Sch &A9~*µ�R� explains Ú?�
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Our definition of sequential consistency does not use the notion of a process. Instead,
it relies on the precedence dependencies specified by the computation. We generalize the
usual notion of sequential consistency by allowing the program order to be an arbitrary
partial order on the operations, rather than a total order for each process. This general-
ization is especially useful for systems in which processes may be created and destroyed
dynamically.

As with all memory models, this definition requires only that the behavior appear as
though the operations are executed sequentially and consistently with the program order.
A system may actually execute operations concurrently, or it may reorder them, as long
as it preserves for the clients the appearance of a sequential system. In the computation-
centric framework, clients see only the computation they specify and the values returned
for the operations, so the appearance of a memory is represented by an observation. An
observation is allowed by the sequential consistency model when it is allowed by a se-
quential system, that is, when all the return values are explained by a single schedule.

When designing and reasoning about their programs, programmers of early concurrent
systems assumed their systems were sequentially consistent [28, 91, 22, 13]. Sequential con-
sistency captures the intuition that the memory is a single shared resource being accessed
by concurrent processes. It is a natural extension to the memory model of a uniprocessor,
and is the memory model naturally guaranteed by a multiprogrammed uniprocessor.1 For
these reasons, sequential consistency is the basic memory consistency model assumed by
multiprocessor programmers.

Unfortunately, it is expensive to guarantee sequential consistency in the distributed
setting [74]. To ensure sequentially consistent behavior on systems with weaker memory
models, programmers often adopt programming disciplines that restrict the computations
generated to those for which the guarantees of the weaker memory imply sequential con-
sistency. One such discipline, which we examine in the next section, is to avoid races.

Although it is a natural, widely used and readily understood extension of the seman-
tics of sequential memory to systems that allow concurrent memory access, sequential
consistency does not make concurrent programming easy. Much of the early work on
multiprogramming, which assumed sequential consistency, was devoted to finding ways
to structure concurrent programs [28, 21]; even mutual exclusion for two processes was
elusive at first [30]. As Lampson says,

Even [a sequentially consistent memory] is tricky to use when there are concurrent
clients. Experience has shown that it’s necessary to have wizards to package it so
that ordinary programmers can use it safely. This packaging takes the form of rules
for writing concurrent programs and procedures that encapsulate references to shared
memory [70, Handout 30, p. 5].

Thus, it makes sense to provide “ordinary programmers” with models that are stronger
than sequential consistency and easier to use safely. Such models often augment sequential
consistency with high level features such as locks and transactions, which we discuss in
Chapters 7 and 8 respectively.

1A multiprogrammed uniprocessor guarantees linearizability [53], which is a stronger property, but equiv-
alent to sequential consistency when all communication between clients occurs through the shared memory.
We discuss linearizability in Section 9.6.
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5.3 Eliminating Races

When the clients request two conflicting operations concurrently, the result depends on
the order in which the operations are applied to the memory. These operations comprise a
race, and are said to compete. These terms are defined formally in Section 3.7. Races make
the result of a program dependent on the schedule, which is determined by uncertain and
unpredictable variables, such as communication latency and processor speed and load.
This dependence makes programs with races difficult to reason about. Thus, races are
often considered bad programming practice, and much research is devoted to detecting
races [85, 6, 89, 90, 88, 96, 37, 25, 24, and many others].

Races are often considered bad programming practice because they make the result of a
program dependent on the schedule, which is determined by uncertain and unpredictable
variables, such as communication latency and processor speed and load. In this section,
we show how a discipline of avoiding races allows a programmer to assume sequentially
consistent semantics when using weaker memories.

The crucial property of race-free clients is that the computations they specify are deter-
minate. We say that clients are safe if they specify only determinate computations,2 and
they are (completely) race-free if they specify only completely race-free computations. We
characterize the clients formally with client restrictions:

Safe ���`9�.3° ±] 2%9 is determinate �
RF ���`9�.3° ±] 2%9 is completely race-free �

Because race-free computations are determinate, race-free clients are safe.

Lemma 5.1 RF is more restrictive than Safe.

Proof: Immediate from Lemma 3.2.

We show in Lemma 5.3 below that, for safe clients, all complete memory models for a
given data type and annotation set are equivalent. The key to proving Lemma 5.3 is the
following lemma, which says that every schedule of a determinate computation yields the
same return values.

Lemma 5.2 If 9 is determinate then there is a unique observer function Ú for 9 .

Proof: Suppose ç�±�ç)  are observer functions for æ . For any © Á VÖ , there are schedules � and �7 
of æ such that ç-¢�©`§h¡ retval ¢Z©`±µ�¶§ and ç) U¢�©`§/¡ retval ¢Z©`±µ�7 (§ . Since æ is determinate, retval ¢�©`±µ�¶§/¡
retval ¢�©`±+�J ,§ , so ç-¢�©`§�¡nç)  ¢�©`§ . Thus, çs¡Mç)  .

For any client restriction that implies client safety, all complete memory models under
the restriction are equivalent under the restriction.

Lemma 5.3 If CR N Safe and M � M L�.EÞ ±] are complete under CR then M and M L are
equivalent under CR.

2We do not say the clients are determinate because they may nondeterministically choose which computa-
tion to request. This choice would be specified by a model for the clients.
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Proof: Let æ Á CR. If ç Á M ÔöæõÕ , then ç is an observer function for æ . Because M   is complete under
CR, there is an observer function ç¨  Á M  
ÔÂæõÕ . Since æ is determinate, çI¡ûç¨  by Lemma 5.2, soç Á M  �ÔÂæõÕ , and thus M ÔöæõÕ ô M  �ÔÂæõÕ . Similarly, M  
ÔöæõÕ ô M ÔÂæõÕ . Thus, M ÔÂæõÕ�¡ M Ôöæ_ íÕ for all æ Á CR, so
M and M   are equivalent under CR.

It follows immediately from these results that any memory model implements sequen-
tial consistency under complete race-freedom.

Theorem 5.4 Any memory model implements SC under RF.

Proof: Every memory model implements GM, so by Lemma 4.3, every memory model implements
GM under RF. By Lemma 5.1 and Lemma 5.3, GM and SC are equivalent under RF, so every
memory model implements SC under RF.

Theorem 5.4 is the first of several results in this thesis that support concrete disciplines
that enable programmers to assume strong consistency guarantees when using weakly
consistent memories. Based on this theorem, a programmer can confidently program any
memory assuming sequentially consistent semantics, as long as the program is completely
race-free.

Complete race-freedom is a very strict discipline; completely race-free programs are
difficult to write without eliminating much of the possible concurrency, which would de-
feat the purpose of using multiple processors. Sometimes, the programmer may not care
which way two competing operations are ordered, as long as they are ordered consistently.

Rather than requiring clients to be completely race-free, a system with a weakly con-
sistent memory may provide a front end that resolves races. This shifts the responsibility
of ensuring race-freedom from the clients onto the system, which orders competing oper-
ations. An advantage of this approach is that the system can order competing operations
based on the current execution in a way that improves performance.

We model such a system using a computation transformation that enforces race-freedom:÷ c
RF ����&A9<��9 L *�.S° ±] 2 V̄e� V̄ ^ ý E ¯YN E ¯ ^ ý 9 L . RF ý ann ¯=� ann ¯ ^	�<�

Any system that eliminates races implements sequential consistency regardless of the
underlying memory model.

Theorem 5.5 For any memory M .HÞ ±] , we have ÷ c
RF & M *�N SC.

Proof: If ¢�æ�±�ç�§ Á ã c
RF ¢ M § then ¢�æ_ x±�ç�§ Á M for some æ_  Á ã c

RF ÔÂæNÕ . By the definition of
ã c

RF, æh  Á RF,
so by Theorem 5.4, ¢�æ_ ,±�ç�§ Á SC. Because SC is monotonic and æ_  is stricter than æ , we have¢�æ�±�ç�§ Á SC, as required.

One problem with this approach is that the system, not knowing the entire computation
ahead of time, cannot tell which operations will compete. Thus, it needs to keep track of
all the operations that are executed by distributed processes, which is exactly the difficulty
that systems implementing sequential consistency face.

Many memory systems [104, 66, 15, 84, 101, and others] provide special operations that
“protect” against races, so that competing operations separated by these operations are
not considered races. The memory guarantees greater consistency and synchronization
for these special operations. Programming with such memories can be difficult, because
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the programmer must reason about various types of consistency, and must specify for each
operation, what kind of consistency it has. In Section 5.5 and Chapters 6 and 7, we discuss
how to model memories with these operations.

Adve and Gharachorloo advocate a programmer-centric approach to specifying memory
consistency [2, 1, 41]. A programmer-centric memory model guarantees sequential con-
sistency as long as the programmer properly identifies which operations may compete.
Thus, to guarantee sequential consistency, the system does not need to keep track of all the
operations—only those that the programmer identifies. The programmer-centric approach
provides an intermediate level of programming complexity; the programmer only needs
to reason about one type of consistency guarantee—sequential consistency—but needs to
identify which operations compete. We discuss these models in more depth in Section 6.7.

5.4 Coherent Memory

Because sequentially consistent memory is expensive to implement, most modern mul-
tiprocessors provide weaker consistency guarantees. Although there is no consensus on
the “right” consistency, almost all models proposed in the literature guarantee coherence,
a very weak consistency guarantee. In this section, we give a formal model for coherent
memory, and we define a discipline for accessing coherent memory so that one can assume
sequential consistency. The notion of coherence arose informally and has been interpreted
in different ways. At the end of this section, we discuss some of the confusion caused by
this ambiguity.

The notion of coherence comes from caching protocols, where relatively small chunks
of the memory are stored locally at a processor for faster access. Each operation accesses
only one chunk, so this partitioning of memory defines locations. Coherence guarantees
sequential consistency for each location separately; that is, looking only at the operations
on any single location, a coherent memory appears sequentially consistent. This model
has also been called per-location sequential consistency, location consistency, and cache consis-
tency [77, 40, 39, 47].

Formally, suppose that �FÇQ� � �
!(� is a location partition of Ã . Coherence is modeled as
follows:

Coh �|�R&A9<�#Ú)*T2 � � .H�O���v�m. Sch &A9~*µ� � 'C. V̄p�½&('v� loc � ��
� Ú�&('B*T� retval &('B�R��*F* ����R&A9<�#Ú)*T2 � � .H������8. Sch &A9~*µ�R� explains Ú)\ � �
For a memory with locations of fine granularity, such as those of most shared memory

multiprocessors, coherence is a very weak guarantee. Most systems have special synchro-
nization operations, for which they guarantee additional properties. We discuss how to
handle such operations in Section 5.5 and later chapters.

For a memory system without synchronization operations, we can get stronger guar-
antees by restricting the clients. In particular, if clients never request concurrent accesses to
the same location, then a coherent memory guarantees sequential consistency. We say that
a computation separates locations � if it has no concurrent accesses to the same location� .0� . Clients separate locations if they specify only computations that separate locations.
Let SepLocs ���+9l2)9 separates locations � .
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Because operations performed on different locations are independent, clients that sep-
arate locations are completely race-free. Thus, such clients can assume sequentially con-
sistent semantics when using coherent memory.

Lemma 5.6 SepLocs N RF.

Proof: For æ Á SepLocs, if ©`±,¬ Á VÖ are concurrent in æ then they do not access the same location,
so they are independent. Thus, æ Á RF.

Theorem 5.7 Coh implements SC under SepLocs.

Proof: Immediate from Theorem 5.4 and Lemma 5.6.

It seems strange to specify coherence in Theorem 5.7 when any memory implements
sequential consistency under SepLocs. However, the literature often states the result in this
way (e.g., [26]). Why require coherence? We conjecture that this stems from a confusion
about reordering: Many processor-centric models, which we discuss in Chapter 6, are de-
fined by allowing some operations to be reordered. To maintain coherence, a system can-
not reorder operations on the same location. Reordering operations on the same location
is generally proscribed because, as we discuss in Section 6.5, a system that reorders opera-
tions on the same location may admit “observations” with return value functions that are
not observer functions. Because this condition is the same condition required for coher-
ence, it seems to be generally accepted that a system should be coherent. But, as we show
in Section 6.3, at least one common memory model, release consistency, is not coherent.

Theorem 5.7 is the basis for a simple discipline for programming coherent memories.
A programmer who ensures that accesses to each location are explicitly ordered by prece-
dence dependencies can assume any coherent memory is sequentially consistent. Since
most multiprocessors guarantee coherence, ensuring race-freedom is a portable, though
restrictive, programming style.

There is some ambiguity in the literature about the exact definition of coherence, which
usually appears in the context of read/write memory. We use the definitions of Ahamad,
et al., and Culler and Singh [8, 26], generalized to accommodate arbitrary data types with
locations. Other researchers define coherence on a shared read/write memory multipro-
cessor by requiring that the writes to each location appear to occur in the same order at
every processor [41, 52]. This property, called write serialization, is not identical to coher-
ence, although it is often treated as such [26, 41]. We discuss the relationship between write
serialization and coherence in more depth in Section 6.3.

Some researchers distinguish coherence from “consistency”. For example, Hennessy
and Patterson say that coherence “defines what values can be returned by a read,” while
consistency “determines when a written value will be returned by a read” [52, p. 656]. This
definition of consistency ties memory semantics to timing issues; the possible observations
depend on the time that operations are issued or completed, which cannot be determined
from the program. They also say that “coherence defines the behavior of reads and writes
to the same memory location, while consistency defines the behavior of reads and writes
with respect to accesses to other memory locations” [52, p. 657]. This distinction, how-
ever, is not entirely well-defined: Since the operations requested depend on the values
returned for other operations, the behavior of reads and writes at one location can affect
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the behavior at another location. For these reasons, we consider any restriction on the pos-
sible observations of a system to be a consistency guarantee. Coherence is simply a weak
consistency guarantee.

5.5 Synchronization

Concurrent systems are often described in terms of threads, where a thread is a sequential
“flow of control”.3 Several threads may execute concurrently, communicating and interfer-
ing with each other. A system typically provides special synchronization primitives to limit
the concurrency and prevent interference. In this section, we discuss some synchroniza-
tion mechanisms and how to model them in the computation-centric framework. These
ideas arise again in later chapters.

Barrier synchronization refers to bringing two or more threads to a single control point.
This kind of synchronization is provided by the join operation in fork/join parallelism [27]
and the coend statement in the cobegin/coend construct [29]. Barrier synchronization can
be modeled by precedence dependencies, as illustrated in Examples 3.22 and 3.23. Fence
and memory barrier operations of shared memory multiprocessors, which we discuss in
Chapter 6, also provide barrier synchronization.

Synchronization also refers to a variety of mechanisms that support, or are supported
by, barrier synchronization. These mechanisms include semaphores, locks, critical sections,
and synchronized variables. Operations that provide synchronization in any of these forms
are called synchronization operations. Rather than discuss each mechanism, we introduce
some general principles for how to reason about synchronization in this section, and in
Chapter 7, we consider locks and critical sections in detail.

Informally, synchronization fixes the order of the synchronization operations at run
time. For barrier synchronization, the order is given explicitly by the clients. For other
kinds of synchronization, this order is not specified, and the system can apply the oper-
ations in any order, but it must apply them consistently in that order. Synchronization
usually also imposes constraints on the other operations. What these constraints are ex-
actly define the different variants of synchronization.

We model synchronization using a computation transformation that is defined by a
synchronization predicate. The synchronization predicate, which depends on the operations
and the computation, indicates which operations must be synchronized relative to each
other. The transformation adds precedence dependencies to the computation so that all
such operations are ordered by the computation.

Formally, suppose �Ú&('B�xz~��9~* indicates that ' and z should be synchronized, where'¶�xzo. V̄ . A computation that is synchronized according to this predicate is one in which
operations that satisfy the predicate are ordered by the computation. Such computations
satisfy the following client restriction:

CRs� ���+9{2 � '¶�xz�. V̄p���Ú&('¶�xz~��9~* 
� 'H®�¯bz��GzB®�¯Ú'%�¨�
3Because we only use this term informally, this description suffices for our discussion.
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The synchronizing transformation enforces this client restriction. Formally,÷ s� �î÷ c
CRs�

� � &A9<��9 L *T2 V̄e� V̄ ^ ý E ¯0N E ¯ ^ ý ann ¯e� ann ¯ ^ý � '¶�xz|. V̄p�½&��Ú&('B�xz~��9~* 
� 'H® ¯ ^ z��GzB® ¯ ^ 'v*��
We often indicate synchronization operations by the annotation SYNC.

Example 5.1 A memory with weak synchronization guarantees only that synchronization operations
are seen in the same order by all operations; that is, two operations synchronize when both are
annotated by SYNC. Formally, let � W ¢Z©�±,¬J±�æ�§76 ann Ö ¢Z©`§`¡ SYNC ù ann Ö ¢ ¬J§�¡ SYNC, so

CRs�
W

¡YÌpæIÓ�ë#©`±�¬ Á VÖv±�� W ¢Z©`±�¬J±�æ�§7ò*ó ©J×_Ö¬��d¬H×_Ö©�Í¡YÌpæIÓ�ë#©`±�¬ Á VÖv± ann ÖT¢�©`§`¡ ann ÖT¢�¬p§�¡ SYNC ±Zò*ó © ×ØÖM¬�� ¬0×_ÖK©XÍ�±
and WSync ¡ ã s�

W
¢ GM § .

Example 5.2 Strong synchronization guarantees that all operations are ordered consistently with re-
spect to the synchronization operations; that is, two operations synchronize when either is anno-
tated by SYNC. Formally, � S ¢Z©`±�¬J±�æ�§]6 ann ÖT¢�©`§B¡ SYNC � ann ÖT¢ ¬J§B¡ SYNC, which defines CRs�

S

and
ã s�

S
, and SSync ¡ ã s�

S
¢ GM § .

Example 5.3 Sequential consistency requires all operations to be ordered consistently; that is, every
pair of operations must be synchronized. Thus, SC ¡ ã s

True ¢ GM § .
A stronger synchronization predicate means that fewer operations must be synchro-

nized, which results in a weaker memory model.

Lemma 5.8 If � 
� �¯L then ÷ s� ^ & M *�NF÷ s� & M * for any memory model M.

Proof: The definitions of
ã s� and

ã s� á immediately imply that
ã s� á is more restrictive than

ã s� . So by
Lemma 4.7,

ã s� á ¢ M § ô ã s� ¢ M § .
Client restrictions corresponding to synchronization are always monotonic.

Lemma 5.9 For any synchronization predicate � , CRs� is monotonic.

Proof: Immediate from the definition of CRs� .

Two synchronizing transformations can be combined into one transformation that syn-
chronizes the operations of both the original transformations.

Lemma 5.10 ÷ s� ;�÷ s� ^ �î÷ s� �!� ^ .
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Proof: By definition,

CRs�#"!� á ¡YÌbæ=Ó�ë-©`±�¬ Á VÖ ±R¢$�%�&�   §a¢�©`±�¬J±�æ�§7ò*ó © × Ö ¬��d¬H× Ö ©�Í¡�ì æeÓ ë-©�±,¬ Á VÖ ±�¢$�K¢�©`±,¬p±�æ�§8òNó ©D× Ö ¬'��¬H× Ö ©`§ù ¢$�   ¢�©`±,¬p±�æ�§8òNó ©D× Ö ¬�� ¬0× Ö ©`§�(¡üÌpæIÓ�ë#©`±,¬ Á VÖ ±��K¢�©`±,¬p±�æ�§8òNó ©D× Ö ¬'��¬H× Ö ©�Í9 ÌÎæeÓ�ë-©�±,¬ Á VÖ ±)�   ¢�©`±�¬J±�æ�§7ò*ó © × Ö ¬��d¬H× Ö ©�Í¡ CRs� 9 CRs� á
By Lemma 5.9, CRs� á is monotonic, so

ã s� ÿ ã s� á ¡ ã c
CRs* ÿ ã c

CRs* á ¡ ã c
CRs* � CRs* á ¡ ã c

CRs*�+,* á ¡ ã s�#"!� á by
the definitions and Lemma 4.11.

Synchronization can be viewed as precedence dependencies that are determined dy-
namically at run time. Why then do we use annotations to model synchronization, instead
of precedence dependencies? There are three sets of issues that make explicit precedence
dependencies difficult or inappropriate: language, semantics and modeling.

The simplest reason to prefer synchronization over explicit dependencies is that the
language in which programs are written may not have the facilities to indicate the de-
pendencies between operations. For example, concurrent programs are often collections
of sequential threads that are run concurrently on separate processors and communicate
only through the shared memory. To order operations at different processors, one thread
must write a variable that another thread reads, and the latter thread must be able to deter-
mine that the value it receives was written by the appropriate operation of the first thread.
For simple programs such as the one from Example 3.20, making such a determination
may be easy, but in general, it may be quite subtle. In addition, because the threads use
the shared memory to coordinate, the ordering guarantees on these operations depend on
the guarantees of the memory.

Even if we have a rich language in which to write concurrent programs, we may not
care what order some operations are executed, as long as they are ordered consistently. Or-
dering such operations explicitly in the program does not capture the semantics intended
by the programmer and may result in inefficiencies in the program by unnecessarily de-
laying the execution of some operations.

In the literature, a common way to get a fixed order for synchronization operations
without requiring the order to be fixed by the program is to use the execution order of
the operations [33, 1, 41, 55, and many others]. The problem with this approach is that
the order in which the operations are executed is determined at run time and depends on
factors that the programmer cannot predict. Using the execution order to determine prece-
dence dependencies widens the gap between computations and programs and muddies
the clean split between the memory system and its clients that computations provide. One
of the chief motivations for developing the computation-centric framework was to provide
this clean split, and the lack of it, we believe, is a major cause of confusion and difficulty in
reasoning about memory models in the literature. Choosing precedence dependencies to
model only the dependencies explicit in the program, not the incidental ordering of opera-
tions in an execution, is one of the central modeling decisions we made for computations.
Although computations are derived from executions and programs may generate many
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different computations depending on the values returned by the memory, the computation
generated in any execution should depend only on the control decisions that are explicit in
the program. Given the values returned for each operation, a programmer should be able
to determine the computation generated.

A more abstract way to model synchronization in computations is encode into the an-
notations the values returned for previous synchronization operations. Instead of main-
taining a consistent order for the synchronization operations, the system guarantees that
the return value of a synchronization operation is explained by some schedule that also
explains all the return values specified in the annotation. This approach, which we call
value synchronization, is attractive because it closely models the information available to
the programmer. We have not developed any theory about this approach, but we believe
it would be a fruitful direction for future study.



Chapter 6

Processor-Centric Memories

Much of the prior work on modeling shared memory focuses on processor-centric memories,
which are accessed by a fixed set of processors, each requesting operations sequentially.
These memories are usually coherent read/write memories with some synchronization.
All inter-processor communication is mediated by the memory, so there are no explicit
control dependencies across processors. Processor-centric memories form a natural class
of memories to consider when studying shared memory multiprocessors; their memory
is typically of this kind. In this chapter, we discuss processor-centric memory models
that have been proposed in the literature and how they fit into the computation-centric
framework.

Many processor-centric models were developed to model specific architectures that use
a variety of techniques, both in hardware and in the compiler, to improve the performance
of the memory. These architectures may reorder operations issued by the clients, and they
may keep multiple, possibly inconsistent, copies of some memory locations. The models
give an abstract description of the machine implementing the memory, and indicate which
operations may be reordered. These models expose hardware features, such as write buffers
and caches, to the programmer. These features do not necessarily represent real hardware,
but provide a conceptual model to reason about the behavior of the memory. We show
how to model reordering, write buffers and caches in the computation-centric framework,
and present computation-centric versions of several processor-centric models that have
been proposed in the literature.

Most multiprocessors implement coherence by synchronizing write operations to the
same location. We show that this technique, called write serialization, is not always suffi-
cient to guarantee coherence, and we give conditions under which it is sufficient.

The system-centric approach to specifying memory models described above is most use-
ful for system implementors, as it makes explicit what techniques may be used to reduce
or hide memory latency. However, system-centric models are complicated; even experts
find it difficult to reason about them [56].

There is an alternative programmer-centric approach to specifying memory consistency
guarantees [1, 41]: A memory model is defined by the class of programs guaranteed to
execute on the memory as on sequentially consistent memory. When using a system that
implements a programmer-centric model, a programmer can assume sequential consis-
tency as long as the program is in the class defined by the programmer-centric model.

91
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We adapt this approach to the computation-centric framework, defining the class of data-
race-free programs. We show that the system-centric weak ordering memory model [33, 4]
implements the programmer-centric model defined by data-race-free programs.

Outline: Section 6.1 describes several characteristics common to many processor-centric
models, and Section 6.2 shows how to express these models in the computation-centric
framework, giving computation-centric versions of many memory models proposed in the
literature. Section 6.3 discusses write serialization. In Section 6.4, we compare the guar-
antees of various processor-centric models for “ordinary” reads and writes—those with
the minimal synchronization allowed by the model. Section 6.5 points out a danger in the
way we model the reordering of operations and shows how we avoid it. In Section 6.6, we
consider two ways in which reordering can be interpreted by a programmer. Section 6.7
shows how to incorporate programmer-centric models into the our framework and proves
that weak ordering implements that data-race-free model. Finally, in Section 6.8, we dis-
cuss the strengths and weaknesses of processor-centric models and why we advocate the
more flexible model of concurrency afforded by the computation-centric framework.

Reading Guide: This chapter is a digression from the main work in this thesis; it may be
skipped with little loss in continuity. We believe that the processor-centric view is a flawed
way to specify memories for programmers, except at the lowest level, when programmers
are exposed to the underlying hardware. However, because much of the work on model-
ing memory consistency adopts the processor-centric view, it is important to understand
how this view relates to the computation-centric framework we propose. In particular, Sec-
tion 6.2 gives computation-centric versions of many system-centric models for processor-
centric memories. Section 6.7 shows how to specify a programmer-centric model, the data-
race-free memory model, and proves that a broad class of system-centric models implement
the data-race-free model.

6.1 Characteristics of Processor-Centric Models

By definition, a processor-centric memory is accessed by a fixed set of processors. Al-
though the processors may be nonblocking, they issue instructions sequentially; that is,
each processor specifies a sequence of operations to the memory. The most important im-
plication of this requirement is that thare are are no control dependencies between opera-
tions requested by different processors. Most models of processor-centric memories share
several other assumptions or characteristics. In this section, we informally discuss these
characteristics. This discussion applies only to system-centric models of processor-centric
systems, not to programmer-centric models, which we discuss in Section 6.7.

Processor-centric models are typically described as weakenings, or relaxations, of se-
quential consistency [2, 52]. The guarantees of sequential consistency are weakened by
allowing some operations to be reordered, and by presenting processors with a view of
memory in which operations are not atomic. Reordering relaxes the ordering constraints
expressed by the sequence of operations requested by each processor. The nonatomic view
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relaxes the consistency constraint that requires that the values returned by operations from
all the processors be explained by a single schedule.

The data type of a processor-centric memory is usually a read/write memory with
many locations, so that each operation accesses only a small piece of the data. The ordering
constraints are based on the types of the operations. For example, a memory may allow
reads to overtake writes, but not vice versa, or it may allow writes to different locations to
be reordered.

Sometimes the memory has simple read-modify-write operations, such as test-and-set,
that access a single location. In these cases, the models are typically described in terms of
reads and writes, where read-modify-write operations must satisfy the constraints of both
reads and writes.

The operations of a processor-centric memory may fail to be atomic because the mem-
ory maintains multiple copies of some locations. This lack of atomicity may be exposed to
the processors when the copies are allowed to be inconsistent. A processor-centric memory
model gives a conceptual mechanism to describe this view. Two common mechanisms are
write buffers with read forwarding1 and caches, or local copies of the memory. A write buffer
with read forwarding allows a read to complete before prior writes to the same location
by forwarding the value of the last such write in the buffer. A cache allows both reads and
writes to complete by accessing a local copy of the memory location, which may not reflect
all the writes completed by other processors. This description is intended for reasoning
about the memory, and may not describe the actual implementation of the memory.

A memory without caches has a single schedule that “explains” the values returned by
the operations of all the processors. With read forwarding, a read may complete—that is,
appear in the schedule—before the write whose value it reads.

A memory with caches has a separate schedule for each processor, corresponding to the
order in which the operations are reflected in the cache of the processor. In the literature,
being reflected in the cache of a processor is called being performed at that processor [33, 2].
In addition to the ordering constraints, the schedules typically must satisfy a consistency
requirement. For example, most processor-centric memories are coherent.

Many processor-centric memories provide special operations to enforce ordering be-
tween other operations and to limit the inconsistency between the schedules of differ-
ent processors. These operations may be explicit fence or memory barrier instructions, or
they may be ordinary instructions that inhibit reordering in the processor, as conditional
branches do in many processors.

6.2 Processor-Centrism in the Computation-Centric Framework

In this section, we show how to model processor-centric memories in our computation-
centric framework. Specifically, we show how to express a processor-centric model as a
computation-centric model that has the same semantics and captures much of the same
flavor. We give examples of processor-centric models from the literature.

1Write buffers without read forwarding do not present a nonatomic view of the memory; they simply allow
operations to be reordered before buffered writes.
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Let - be the fixed set of processors accessing memory. Because the memory knows
which processor requested each operation, we assume there is a function .2�Ç�3/- , such
that .<&('v* is the processor that requested ' .2 For a processor .�.0- and a set � of operations,
we denote the set of operations requested by . by �s\ 1 �Ð�U'=.0��22.~&('B*T�3.J� . Similarly,��\ 1¯�W��\ elems % ��)54 6 is the projection of � onto processor . , and Ú)\ 1e�|Ú)\ domain %57 )�4 6 .

The data type of the memory is 8 with address, or location, set � (see Example 2.2),
extended with the noop operator defined on page 25. The operations are implicitly tagged
with identifiers that distinguish different invocations of the same operator, as discussed
in Section 2.5. Because noop is independent of all operations, including itself, each noop
operation is considered to be performed on a different location from every other operation,
including other noop operations. As mentioned in Section 2.9, for a location

� ./� , we
write �s\ �Ú�c�U'C.[�¥2?'B� loc � � � and ��\ �e�Ð��\ 9 4 � . We denote the set of write operations by
Wr �i� write & � �b�T*T2 � .H��b�Y.C�7� , and the set of read operations by Rd �G� read & � *T2 � .0�/� .
For 'I. Wr, we denote by 'B� ¬ the value written by ' , that is, if '¯� write & � �b�T* , then 'v� ¬Ú�w� .

Because each processor requests operations sequentially and there are no dependen-
cies across processors, two operations are ordered by the precedence dependencies if and
only if they are requested by the same processor. We model this requirement as a well-
formedness condition on the computations. Formally, the set of well-formed computations
for a processor-centric model with annotation set � is

WFP � � 9�.s°!:] 2;.<&('v*p�3.<&Zz�*�< � &('¶�xz�*�. E ¯'� &Zz���'B*�. E ¯'��'«�¥z � �
For the rest of this section, we assume that all computations are well-formed; all the mem-
ory models defined in this section are implicitly restricted to well-formed computations.

Reordering. A processor-centric model specifies which types of operations may be re-
ordered, and describes an underlying memory on which the operations are executed. We
express reordering in the computation-centric framework by giving a model for the under-
lying memory and a transformation that takes a processor-centric computation to a com-
putation of this memory model. The transformation eliminates precedence dependencies
between operations that may be reordered and changes the annotations to be appropriate
for the underlying memory model.

Formally, a processor-centric memory model M . Þ :] is described by an underly-
ing memory model M L .îÞ :] ^ and a reordering transformation3 ÷ r

M 2U° :] 3 ° :] ^ such that
M �2÷ r

M & M LU*7� � &A9<�#Ú)*T2�&�÷ r
M &A9~*µ�#Ú)*�. M L � . We define a reordering transformation using a

predicate PreserveM &('¶�xz~��@ Û ��@�=p* , which indicates whether M preserves the program order
between ' and z when ' precedes z and they are annotated by @ Û and @ = respectively.
The transformed computation retains only those edges that satisfy this predicate; that is,
E > r

M
% ¯ ) ���R&('B�xz�*�. E ¯¯2 PreserveM &('¶�xz~� ann ¯J&('B*µ� ann ¯J&Zz�*F*U� .
Some memories present an atomic view of the memory to the processors, and do not

allow read forwarding. The underlying model of these memories is sequential consistency,
and reordering is sufficient to describe the relaxations they allow. For such a memory

2Alternatively, this information could be given in the annotations, as in Examples 3.1 and 3.11.
3A reordering transformation is a special kind of computation transformation, as defined in Section 4.5.
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model M with annotations � , we have ÷ r
M 2N° :] 3 ° : , so ann > r

M
% ¯ ) &('B*7� NIL for all ' , and

M �î÷ r
M & SC * .

Example 6.1 (IBM/370) The IBM/370 model [58] allows reads to be reordered before writes to dif-
ferent locations. Other than this relaxation, the IBM/370 guarantees sequential consistency. It also
has instructions that act as fences; they are never reordered. We specify fences with the annotation
FNC; other operations have no annotation. The reordering transformation

ã r
IBM Ó ð ñè FNC

ê ò ð ñ is
defined using

PreserveIBM ¢�©`±�¬J±µÕ é ±µÕ�?�§76�© Á Rd �d¬ Á Wr ��©`³ loc ¡I¬J³ loc � Õ é ¡ FNC � Õ@?>¡ FNC ³
We can also represent the PreserveIBM predicate as a table that indicates, for any two operations,
whether the order between them must be preserved.

PreserveIBM ¬ read ¢~�   § write ¢X�   ±���§ noop©`±+Õ é Õ ? NIL NIL FNC

read ¢X�R§
± NIL A A A
write ¢X�R±���§
± NIL B A A

noop ± FNC A A A
The mark “ A ” indicates that the order between operations must always be preserved; “ B ” indicates
the order needs to be preserved only if they access the same location.

The memory model is IBM ¡ ã r
IBM ¢ SC §`¡YÌ+¢�æ�±�ç�§`Ó-¢ ã r

IBM ¢�æ�§
±�ç�§ Á SC Í .
Example 6.2 (Alpha) The underlying memory model of an Alpha processor [101] is also sequential
consistency, but the Alpha allows almost all operations to be reordered. In particular, any read and
write operations may be reordered unless they are performed on the same location. The Alpha
provides two fence operations to enforce ordering constraints. The memory barrier, indicated by the
annotation MB, is never reordered; the write memory barrier indicated by the annotation WMB, only
enforces the ordering between writes.

Formally, Alpha ¡ ã r
Alpha ¢ SC § , where we define

ã r
Alpha Ó ð ñè MB @ WMB

ê ò ð ñ using

PreserveAlpha ¢Z©�±,¬J±µÕ é ±µÕ@?�§76�©`³ loc ¡I¬J³ loc �GÕ é ¡ MB �iÕ@?�¡ MB�[¢xÕ é ¡ WMB ù ¬ Á Wr §C�[¢xÕ ? ¡ WMB ù © Á Wr §
±
or in table form,

PreserveAlpha ¬ read ¢X�½ x§ write ¢~�½ x±���§ noop noop©`±µÕ é Õ ? NIL NIL MB WMB

read ¢~�q§�± NIL B B A -
write ¢~�q±��Z§�± NIL B B A A

noop ± MB A A A A
noop ± WMB - A A -

As in Example 6.1, the order is preserved when indicated by “ A ”, or by “ B ” and the operations
access the same location. The mark “-” indicates that the operations may always be reordered.

There is a danger, when using reordering transformations to define memory models,
that some return value functions associated with computations in the result will not be ob-
server functions for their associated computation. That is, the result of using a reordering
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transformation may not be a memory model. In Section 6.5, we discuss this danger, and
why it is not a problem for the memory models defined here.

We can view the difference between sequential consistency and the IBM/370 and Alpha
models less as a difference in the consistency models, and more as a difference in the
way computations are derived from executions. Specifically, instead of saying that the
computation defines a total order for each processor, we could say that it only includes
dependencies between operations that may not be reordered, as we saw in Example 3.17.
We discuss this view further in Section 6.6.

Read Forwarding. To model a write buffer with read forwarding, we eliminate the prece-
dence dependency of a read on prior writes to the same location, and we annotate the read
with the write immediately preceding it in the program order. If the read is scheduled
before the write that annotates it, then it returns the value written by that write; that is, the
value is forwarded to the read.

To specify memory models with this optimization, we define two functions. First, for
a well-formed computation 9 . WFP and a read operation 'm. Rd w V̄ , we use lw ¯J&('B* to
denote the last write by the same processor to the same location. If no write to the same
location precedes ' in 9 , then lw ¯J&('B*Y� NIL. The function lw ¯ is well-defined on the
write operations of computations in WFP. For convenience, we extend lw ¯ to V̄ , where
lw ¯J&('B*p� NIL for 'I. V̄>� Rd.

Second, for a valid operator sequence � of 8 , and '¶�xz�. elems &���* such that 'I. Rd andz|. Wr, we define

bufretval &('¶�R�/�xz_*J� �
retval &('¶�R��* if z|� � 'z�� ¬ otherwise.

The intuition behind this definition is that z precedes ' in the original computation, but
not in the transformed computation because z may be buffered. However, if ' is ordered
before z , then the value that z would write is forwarded to ' from the write buffer. For
convenience, we define bufretval &('¶�R�/� NIL *b� retval &('¶�R��* ; that is, an operation without a
write whose value may be forwarded to it always returns the value determined by the
schedule. Given a partial return value function Ú , we say that a schedule � explains Ú with
read forwarding if Ú�&('v*p� bufretval &('B�R�/� ann � &('B*F* 4 for all 'C. domain &ÎÚ)* .

For a memory with read forwarding but no caches, the underlying memory model is
similar to sequential consistency, except that it uses bufretval instead of retval to determine
the return values. A read operation in a computation of this memory is annotated by the
write operation whose value may be forwarded to it, which is the last write operation to
the same location by the same processor.

Formally, for a memory M .wÞ :] with read forwarding but no caches, the model of

4Recall that schedules of a computation are annotated, with each operation having the same annotation in
the schedule as in the computation.
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the underlying read forwarding memory, which has annotation set Wr, is

RdFd � � &A9<�#Ú)*�.0Ü :Wr 2����8. Sch &A9~*µ� � 'I. V̄p�#Ú�&('v*J� bufretval &('¶�R�/� ann ¯J&('B*F* ����q&A9<�#Ú)*p2����{. Sch &A9~* that explains Ú with read forwarding �¨�
The reordering transformation ÷ r

M 2õ° :] 3 ° :Wr determines the edges of the transformed
computation as before, so E > r

M
% ¯ ) ���R&('¶�xz_*/. E ¯¯2 PreserveM &('B�xz~� ann ¯7&('v*µ� ann ¯J&Zz�*F*U� , where

PreserveM indicates whether the program order between two operations is preserved. The
order between reads and prior writes on the same location should no longer be preserved.
The annotation function of the transformed computation is ann > r

M
% ¯ ) � lw ¯ .

The SPARC family of processors uses this type of model.

Example 6.3 (Total Store Ordering) The total store ordering (TSO) model of the SPARC Version 8 [104]
is similar to the IBM/370 model from Example 6.1, except that TSO has read forwarding and no
fence operation.

Formally, we define
ã r

TSO Ó ð ñ ò ð ñWr using PreserveTSO ¢Z©�±,¬J±µÕ é ±µÕ@?�§]6À© Á Rd � ¬ Á Wr, and
ann D r

TSO ô Ö)õ ¡ lw Ö . The table for PreserveTSO is

PreserveTSO ¬ read ¢X�½ x§ write ¢~�½ �±��Z§©`±µÕ é Õ�? NIL NIL

read ¢~�q§�± NIL A A
write ¢~�q±���§
± NIL ÿ A

The “ ÿ ” symbol indicates that the operations may be reordered, but if the read overtakes a write to
the same location, it is forwarded the value written by the last write by the same processor to that
location, as captured by its annotation.

The memory model is TSO ¡ ã r
TSO ¢ RdFd §`¡ v ¢
æ7±�ç�§`Ó#¢ ã r

TSO ¢
æ7§�±�ç Á RdFd
y
.

Example 6.4 (SPARC V8 Partial Store Ordering) The partial store ordering (PSO) model relaxes to-
tal store ordering by allowing writes to overtake writes to different locations. It provides a store
barrier, analogous to the write memory barrier of the Alpha from Example 6.2, to enforce ordering
between writes to different locations. The store barrier is a noop annotated with WMB.

This memory model is PSO ¡ ã r
PSO ¢ RdFd § , where

ã r
PSO Ó ð ñè WMB

ê ò ð ñWr is defined using

PreservePSO ¢�©`±,¬p±+Õ é ±+Õ@?�§76�© Á Rd �[¢�© Á Wr ù ¬ Á Wr ù ©�³ loc ¡C¬p³ loc §�[¢Z© Á Wr ù Õ ? ¡ WMB §C�[¢xÕ é ¡ WMB ù ¬ Á Wr §
±
or in table form, using the symbology defined in the previous examples,

PreservePSO ¬ read ¢~�½ ,§ write ¢X�½ ,±���§ noop©`±+Õ é Õ ? NIL NIL WMB

read ¢X�R§
± NIL A A A
write ¢X�R±���§
± NIL ÿ B A

noop ± WMB - A -

As defined here, the store barriers may be reordered; prohibiting the reordering of store barriers
does not change the memory model. If a store barrier is placed between every pair of writes, PSO
is exactly like TSO.
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Example 6.5 (SPARC V9 Relaxed Memory Ordering) SPARC Version 9 [107] has an even more re-
laxed memory model, similar to the Alpha but with read forwarding. The relaxed memory ordering
(RMO) model allows all read and write operations to be reordered except that writes cannot over-
take reads or writes to the same location. To enforce desired ordering, it provides four different
memory barriers, read-read, read-write, write-read, and write-write, where, for example, a read-
write barrier cannot overtake reads or be overtaken by writes. We represent these barriers by noop
operations annotated with FNCrr, FNCrw, FNCwr and FNCww respectively.

Whether the barriers may be reordered with respect to each other is ambiguous. According
the manual, they must be applied in program order, but other formal definitions allow them to be
reordered [41, 100]. If the barriers may not be reordered, a read-read barrier followed by a write-
write one also acts as a read-write barrier. Because of this implicit barrier, it seems more natural to
allow barriers to be reordered.

Formally, we present the PreserveRMO predicate in a table, using the symbology defined in pre-
vious examples, and “?” to indicate the uncertainty of whether barriers may be reordered. FNCr �
indicates an annotation of either FNCrr or FNCrw; FNCw � , FNC � r and FNC � w are defined similarly.

PreserveRMO ¬ read ¢~�½ �§ write ¢X�½ ,±���§ noop noop©`±µÕ é Õ ? NIL NIL FNCr � FNCw �
read ¢~�q§�± NIL - B A -

write ¢~�q±���§
± NIL ÿ B - A
noop ± FNC � r A - ? ?
noop ± FNC � w - A ? ?

Once PreserveRMO is defined appropriately, this model is defined exactly as TSO and PSO above.

Example 6.6 (Commit-Reconcile) The Commit-Reconcile (CR) model [100] uses caches with explicit
commit and reconcile operations, and background communication between each cache and the
main memory. All reads and writes of a processor are done on the local cache. A commit operation
ensures that a write has been propagated to main memory. A reconcile operation ensures that the
cached value is not stale. Each location may be committed or reconciled independently. The commit
and reconcile operations for a location � are represented by noop operations annotated by COM ¢X�q§
and REC ¢X�R§ respectively. Thus, the annotation set is Ö CR ¡YÌ COM ¢~�q§`Ó>� ÁD§ Í#£KÌ REC ¢X�q§�Ó#� ÁJ§ Í .

Although the Commit-Reconcile model is described in terms of caches, it can also be specified
as a system with read forwarding. Informally, a write operation is “buffered” until its value, or the
value written by a later operation to the same location, is sent back to main memory. A read opera-
tion moves earlier, to the last time the local cache and the main memory were made consistent. If a
read operation is ordered before a previous write operation to the same location, it is “forwarded”
the value last written to that location, which is in the cache.

Formally, CR ¡ ã r
CR ¢ RdFd § , where

ã r
CR Ó ð ñÞ

CR
ò ð ñWr is defined using the PreserveCR predicate

described by the following table:

PreserveCR ¬ read ¢~�½ �§ write ¢X�½ x±��Z§ noop noop©`±+Õ é Õ ? NIL NIL COM ¢~�½ �§ REC ¢X�½ ,§
read ¢X�R§
± NIL B A A A

write ¢X�R±���§
± NIL ÿ B B -
noop ± COM ¢X�q§ - A A A
noop ± REC ¢X�q§ B A A A

Example 6.7 (Commit-Reconcile & Fences) The Commit-Reconcile & Fences (CRF) model [100] takes
the Commit-Reconcile model and, like the relaxed memory ordering model, allows almost all oper-
ations to be reordered. Like RMO, it uses fences to enforce the ordering when desired; unlike RMO,
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the fences in CRF are fine-grained: A fence specifies two locations, the “pre-location” and “post-
location”, and maintains the order only between reads and writes to those locations. We extend
the annotation sets of RMO and CR to accommodate these operations. For example, we represent
a read-write fence with pre-location � and post-location �?  by a noop operation with annotation
FNCrw ¢~�q±g�½ ,§ . The resulting annotation set is denoted by Ö CRF.

Because a read operation effectively occurs as early as the previous reconcile operation, the
write-read and read-read fences maintain their order relative to subsequent reconcile operations,
rather than read operations. Similarly, a write effectively occurs as late as the next commit opera-
tion, so the write-read and write-write fences maintain their order relative to prior commit opera-
tions.

Formally, CRF ¡ ã r
CRF ¢ RdFd § , where

ã r
CRF Ó ð ñÞ

CRF
ò ð ñWr is defined using the PreserveCRF predi-

cate described by the following table:5

PreserveCRF ¬ read ¢~�½ �§ write ¢X�Ý �±��Z§ noop noop noop noop©`±µÕ é Õ@? NIL NIL COM ¢~�½ x§ REC ¢X�½ ,§ FNCr � ¢X�½ ,±���§ FNCw � ¢X�½ x±���§
read ¢~�q§�± NIL - B - - B -

write ¢~�q±��Z§�± NIL ÿ B B - - -
noop ± COM ¢X�R§ - - - - - B
noop ± REC ¢X�R§ B - - - - -

noop ± FNC � r ¢���±k�R§ - - - B - -
noop ± FNC � w ¢���±k�q§ - B - - - -

Caching. The final models we discuss in this section expose the programmer to caching,
where each processor maintains a local copy of the memory. Every operation is applied
to each local copy, but the processors may schedule the operations differently. Often there
is a global consistency requirement on the schedules, that some operations are ordered
consistently by all processors. As usual, the local copies of the memory and the schedules
at each processor are abstract: The system must appear as though each processor maintains
a local copy on which it applies the operations according to the schedule, but there need
not be any direct representation of this value in the implementation.

Formally, we model a basic caching memory by:

Cache ���R&A9<�#Ú)*T2 � .�.E-Ú�����l. Sch &A9~*µ�R� explains Ú)\ 1)�
The global consistency requirement is modeled using synchronizing transformations. A
synchronizing transformation adds edges to a computation between operations that syn-
chronize, as specified by a synchronization predicate. The formal definitions of synchro-
nizing transformations and synchronization predicates are given in Section 5.5.

5The model defined here is slightly weaker than the original model in a way analogous to the way RMO
has been relaxed from its original definition (see Example 6.5): A sequence of operations can inhibit reordering
in the original model in a way that none of the operations in the sequence inhibit by themselves. To get the
original model, first use F r

CRF, except that read operations do not overtake write operations to the same location.
Then take the transitive closure of the resulting computation, and execute it on CR. In the model defined here,
the transitive closure is not taken between the explicit reordering in CRF (which is inhibited by the fences) and
the reordering in CR due to caching.
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Example 6.8 (Pipelined RAM) The pipelined RAM (pRAM) model [74] does not reorder any oper-
ations and has no global consistency requirement. Thus, pRAM ¡ Cache.

Most multiprocessors guarantee coherence by requiring all processors to schedule the
writes to a single location consistently; the writes to that location appear in the same or-
der in the schedules of each of the processors. This property is called write serialization
in the literature [26, 52]. We investigate the relationship between write serialization and
coherence in Section 6.3.

Formally, we use a synchronizing transformation defined in Section 5.5 to model write
serialization. The synchronization predicate is� ws &('¶�xz~��9~*31 '¶�xz�. Wr ý 'v� loc �¥z�� loc1G� � .0���'¶�xz�. Wr \ �R�
Example 6.9 (Processor Consistency) Processor consistency is an intermediate model between co-
herence and sequential consistency [47]. Like the pipelined RAM model, it allows each processor to
schedule the operations differently and does not allow any reordering. However, unlike pipelined
RAM, processor consistency requires write serializaton. Thus, PC ¡ ã s�

ws
¢ Cache § .

The original definition was informal, and different formal interpretations were developed [12,
8]. We follow the interpretation of Ahamad, et al. A rather different definition was used in the
DASH system developed at Stanford [43, 41].

Memories with caches can also reorder operations, which we model as we did for mem-
ories without caches, using reordering transformations.

Example 6.10 (Weak Ordering) In weak ordering [33, 32], memory operations may be reordered un-
less they access the same variable or are designated as synchronization operations, indicated by the
annotation SYNC. The schedules at each processor must have the same order for all synchroniza-
tion operations and for other operations with respect to synchronization operations.6 Finally, the
memory is implicitly assumed to maintain write serialization.

Formally, let WO ¡ ã r
WO ¢ ã s�

S
¢ ã s�

ws
¢ Cache §
§�§h¡ ã r

WO ¢ ã s�
S
¢ PC §�§ , where � S is the strong synchro-

nization predicate defined in Example 5.2, and
ã r

WO Ó ð ñè SYNC

ê ò ð ñè SYNC

ê is defined using

PreserveWO ¢Z©`±�¬J±µÕ é ±µÕ ? §D6 Õ é ¡ SYNC � Õ ? ¡ SYNC � ©`³ loc ¡I¬J³ loc ±
or in table form, using the symbology defined in Example 6.1,

PreserveWO ¬ read ¢X�½ ,§ write ¢~�½ x±���§ read ¢~�½ �§ write ¢X�½ x±���§©`±µÕ é Õ ? NIL NIL SYNC SYNC

read ¢X�q§�± NIL B B A A
write ¢~�q±��Z§�± NIL B B A A
read ¢X�R§
± SYNC A A A A

write ¢X�R±���§
± SYNC A A A A
For a memory with caching and read forwarding, the underlying memory model com-

bines Cache and RdFd. Its annotation set is Wr, and each processor has a schedule that

6Adve notes that it is sufficient to maintain the order between conflicting operations [1].
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explains, with read forwarding, the values returned for its operations.

RdFdCache ����&A9<�#Ú)*T2 � .|.E-Ú�����{. Sch &A9~*µ�R� explains Ú)\ 1 with read forwarding �
Global consistency requirements and reordering are modeled as before.

Example 6.11 (Release Consistency) Release consistency was developed to model the guarantees
of the Stanford DASH machine [71, 43]. As with weak ordering, computations of this memory
distinguish synchronization operations with the annotation SYNC. Any operation may be labeled
as a synchronization operation; other operations are ordinary. A synchronization read operation is
called an acquire, and a synchronization write operation is called a release.

A release consistent memory guarantees sequential consistency for synchronization operations;
it does not reorder them. Ordinary operations may be reordered, except that writes may not over-
take operations to the same location. In addition, ordinary operations may not overtake acquires,
nor may they be overtaken by releases.

Formally, RC ¡ ã r
RC ¢ ã s�

W

"!�
ws

¢ RdFdCache §
§ , where
ã r

RC Ó ð ñÞ ò ð ñWr defines the edges using

PreserveRC ¢�©`±�¬J±µÕ é ±µÕ ? §86ÐÕ é ¡�Õ ? ¡ SYNC �[¢Z© Á Rd ù Õ é ¡ SYNC §C�[¢ ¬ Á Wr ù Õ ? ¡ SYNC §�V¢�¬ Á Wr ù ©`³ loc ¡I¬J³ loc §
±
and the annotations using lw Ö , and � W is the weak synchronization predicate from Example 5.1.
The table describing PreserveRC is

PreserveRC ¬ read ¢X�½ ,§ write ¢~�½ x±���§ read ¢~�½ �§ write ¢X�½ x±���§©`±µÕ é Õ ? NIL NIL SYNC SYNC

read ¢X�q§�± NIL - B - A
write ¢~�q±��Z§�± NIL ÿ B ÿ A
read ¢X�R§
± SYNC A A A A

write ¢X�R±���§
± SYNC ÿ B A A
The original definition guarantees only processor consistency for the synchronization opera-

tions, using a different notion of processor consistency than the one defined in Example 6.9. It also
provides another label NSYNC for operations that compete with other operations but are not used
for synchronization. For simplicity, we omit this extra label in our definition.7

Although release consistency serializes writes—Gharachorloo calls this requirement the coher-
ence requirement [41]—it is not coherent. We demonstrate and discuss this distinction in Section 6.3.

6.3 Write Serialization and Coherence

In the literature, write serialization is frequently used synonymously with coherence, or
is assumed to guarantee coherence [41, 52, 26]. As long as a processor-centric memory
preserves the order between operations to the same location, this assumption is justified.
However, if operations to the same location may be reordered, a write serializing memory

7This omission does eliminate some optimization opportunities, which motivate the data-race-free-1 and
properly-labeled-2 programmer-centric models [1, 41]. We can extend our definition to handle this additional
distinction: NSYNC operations are treated as SYNC operations except that they may be reordered with respect
to the ordinary operations annotated by NIL.
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might not be coherent. In particular, release consistency does not imply coherence. In this
section, we examine the relationship between write serialization and coherence.

Write serialization without reordering—that is, processor consistency—implies coher-
ence.

Lemma 6.1 PC implements Coh under WFP.

Proof: If ¢�æ�±�ç�§ Á PC ¡ ã s�
ws

¢ Cache § , then there exists æ_  Á ã s�
ws

ÔöæõÕ such that ¢�æ_ x±�ç�§ Á Cache. Let4IH @ � be the serialization at processor J of all write and local read operations to � ; that is,
4KH @ � ¡� H � ô Wr � �ML Rd � �Î� N�õ . By Lemma 2.21, retval ¢�©`±+� H §�¡ retval ¢Z©`± 4IH @ � § for © Á elems ¢ 4OH @ � § .

Let � � ¡ TC ¢ � H ÜQP ª O NSR �R§ . We know that � �
is a partial order on VÖ � �

because ©{ªUT � Wr V � ¬
implies ©oª O NSR �>¬ for all J Á�W , and read operations are only ordered by the sequence of the
processor that requested them. We show that � �

and �_Ö are consistent. Assume for contradiction
that they are not consistent. Then there is a cycle ©�°_� � ©�²O�_Ö �����#� � ©#²YXK�_ÖK©�²ZX½·v°�¡Y©`° of � � £s�_Ö .
Because ©#²µ¸x¹v°_� � ©#²F¸ for all »¶¡�¼½±+³q³+³¨± Ê , we have ©�¸ Á VÖ � �

for all »T¡|¼½±q³+³+³`±U¾ÝÊ . Since æ Á WFP and©#²F¸7�_ÖK©#²F¸U·v° for all »T¡�¼½±q³+³+³`± Ê , we have J�¢Z©#²F¸R§`¡EJ�¢�©#²F¸x·B°½§ . Thus, ©#²µ¸�� � ©#²F¸x·v° for all »B¡|¼Ý±+³+³q³�± Ê ,
so � �

has a cycle, which contradicts the fact that � �
is a partial order.

Let æ � ¡�¢ VÖ ± E Ö £�� � § and � � Á Sch ¢�æ � § ô Sch ¢�æ�§ . By Lemma 2.21, for © Á VÖ � �
, retval ¢�©`±µ� � §`¡

retval ¢�©`±+� � � � §�¡ retval ¢�©`± 4 H ô é õ @ � §�¡ retval ¢Z©�±+� H ô é õ §~¡Eç-¢Z©�§ . Because this is true for all � Á § , we
have ¢
æ7±�ç�§ Á Coh.

The previous lemma does not hold for computations in which there are dependencies
between operations at different processors.

Example 6.12 Consider the following observation, in which the return value for each operation is
given in the center of the circle. It is not coherent because any coherent memory must return ¾ for
read ¢Z©�§�² whenever the value returned for read ¢Z©`§�° is ¾ . However, PC admits this observation.

write º¥À�Ã ¹.»²B¼
²%¾
²)ï

read º¥À » �
read º¥À » �

write º¥À�Ã ´A»
ACK

ACK
´

¹

Even if the underlying memory is sequentially consistent, a system that may arbitrarily
reorder operations on different locations is at best coherent. Formally, let ÷ r

Coh 2*°ø±] 3 °ø±]_^
be the reordering transformation defined using PreserveCoh &('¶�xz~��@ Û ��@ = */1 'v� loc �Ôz_� loc,
which allows operations on different locations to be reordered. A coherent memory im-
plements sequential consistency when this transformation is used.

Lemma 6.2 Coh implements ÷ r
Coh & SC * .

Proof: Let Ì��q°�±g��²�±q³+³q³µ±k�A´�Ís¡�Ì(©`³ loc Óq© Á VÖ)Í . If ¢�æ�±�ç�§ Á Coh then for all »�¡i¼Ý±+³+³q³�±U¿ , there exists�¨¸ Á Sch ¢�æ�§ that explains ç � ��[
. Let

4 ¡��¶° � �]\ ����² � �_^ ���������Z��´ � ��`
. By Corollary 2.22,

4 � � ¡�� �{� �
explains
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ç � �
for all � ÁH§ , so

4
explains ç . Also,

4 Á Sch ¢ ã r
Coh ¢�æ�§�§ since if ¢�©`±�¬J§ Á E D r

Coh ô Ö)õ then ¢�©`±�¬J§ Á E Ö
and ©`³ loc ¡I¬J³ loc, so ©Kª ¦Sa2b loc � a2b loc ¬ , and thus, ©�ªPO�¬ . So ¢ ã r

Coh ¢�æ�§
±�ç�§ Á SC, and ¢
æ�±�ç�§ Á ã r
Coh ¢ SC § .

Consider a write serializing memory that may arbitrarily reorder operations on differ-
ent locations. Formally, let WS � ÷ r

Coh &�÷ s�
ws

& Cache *F*O� ÷ r
Coh & PC * . In the processor-centric

view, this memory is exactly coherent memory.

Theorem 6.3 WS is equivalent to Coh under WFP.

Proof: If ¢�æ�±�ç�§ Á WS ¡ ã r
Coh ¢ ã s�

ws
¢ Cache §�§ for æ Á WFP then ¢ ã r

Coh ¢
æ�§
±�ç�§ Á ã s�
ws

¢ Cache § ô Coh, by
Lemma 6.1. So for each � ÁB§ , there exists � Á Sch ¢ ã r

Coh ¢�æ�§A§ that explains ç � �
. Suppose ©`³ loc ¡¬J³ loc ¡\� . Since æ Á WFP, ©º�_ÖO¬ implies ¢�©`±�¬J§ Á E Ö , so ¢Z©`±�¬J§ Á E D r

Coh ô Ö)õ , and ©�ª ¦W� � ¬ . Thus, � � �
is

consistent with � Ö , and so there exists
4 Á Sch ¢�æ�§ with

4 � � ¡�� � �
, which by Corollary 2.22, explainsç � �

. So ¢
æ�±�ç�§ Á Coh.
By Lemma 6.2, Coh implements

ã r
Coh ¢ SC § . By Lemma 4.6,

ã r
Coh ¢ SC § implements

ã r
Coh ¢ ã s�

ws
¢ Cache §
§

since SC implements
ã s�

ws
¢ Cache § . Thus, Coh implements

ã r
Coh ¢ ã s�

ws
¢ Cache §�§`¡ WS.

Using a different formalism, Higham, Kawash and Verwaal prove similar results [55],
including the following corollary, which says that coherence is the same as sequential con-
sistency if operations on different locations can be reordered.

Corollary 6.4 ÷ r
Coh & SC * is equivalent to Coh under WFP.

Proof: By Lemma 4.3 and 6.2, Coh implements
ã r

Coh ¢ SC § under WFP. By Lemma 4.6,
ã r

Coh ¢ SC § imple-
ments

ã r
Coh ¢ PC §`¡ WS, which, by Theorem 6.3, is equivalent to Coh under WFP.

We can also derive immediately that weak ordering is coherent.

Corollary 6.5 WO implements Coh under WFP.8

Proof: Immediate from Theorem 6.3 because WO ¡ ã r
WO ¢ ã s�

S
¢ PC §�§ ô ã r

WO ¢ PC § ô ã r
Coh ¢ PC §`¡ WS.

Theorem 6.3 establishes the close relationship between write serialization and coher-
ence. However, requiring a caching memory to serialize writes is not the same as insisting
that the memory be coherent. Serializing writes may inhibit observations of the original
system that were admissible according to coherence.

Example 6.13 Ahamad, et al. [8] point out that although processor consistency is pipelined RAM
with write serialization, pRAM 9 Coh is not equivalent to PC. The following observation, for exam-
ple, is admissible according to both pRAM and Coh, but not according to PC:

²B¼
²%¾ write ºÂÁ�Ã ´(»

write º¥À�Ã ¹.» write ºÂÁYÃ ¹.»
write º¥À�Ã ´A»

read ºÂÁ »
read º¥À »

ACK ACK

ACK ACK

´
¹

8In fact, WO c0F r
WO º SC

»
, but proving this fact would be a further digression on what is already a digression.
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Of course, PC implements both pRAM ¡ Cache and
ã r

Coh ¢ ã s�
ws

¢ Cache §�§ , which is equivalent to
Coh under WFP, so PC is strictly stronger than pRAM 9 Coh under WFP.

Conversely, a system that reorders operations on the same location may not guaran-
tee coherence even if it serializes writes. In particular, although release consistency has a
“coherence requirement” [41], it is not coherent. To our knowledge, this fact has not been
noted in the literature.

Example 6.14 The following observation is release consistent but not coherent.

²B¼ write º¥À�Ã ´A»
write º¥À�Ã ¹.»

²%¾ read º¥À » � read º¥À » �
ACK ACK

´ ¹
This observation is also admitted by RMO and CRF, so they too are not coherent.

Although release consistency admits incoherent observations, the systems it was de-
signed to model probably never exhibited them, as there is no reason for a read operation
to return a value already known to be stale. Thus, these systems may indeed have been
coherent.

The extra flexibility provided by allowing incoherent observations is helpful primarily
for the compiler: Requiring operations on the same location to occur in order inhibits the
reordering of any operations to variables that may be aliased to the same location.9 Proving
that variables are never aliased is difficult—often it is not even true—so this requirement
significantly restricts the possible compiler transformations.

6.4 Comparisons Between Processor-Centric Models

Strictly speaking, most of the memory models defined in Section 6.2 are incomparable
because they have different mechanisms for synchronization. However, the bulk of the
instructions issued by the clients to the memory are typically “ordinary” reads and writes,
with the minimal synchronization allowed by the model. We compare stripped-down ver-
sions of these models, which only handle ordinary operations. We also compare them
with processor-centric versions of sequential consistency and coherence. The relationships
between the stripped-down, or baseline, versions of all these models are summarized in
Figure 6-1. This section formally defines the baseline models and sketches proofs for
these relationships. It can be skipped without loss of continuity.

9I am indebted to Xiaowei Shen for this observation [98]. It was also made by Pugh in his analysis of the
Java memory model [93].
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SCB

PCB

AlphaB 1 CohB 1 WOB

CRFB 1 RMOB 1 RCB

pRAMB

IBMB

TSOB

CRB

PSOB

Figure 6-1: Haase diagram of the relative strength of the baseline processor-centric models
discussed in this chapter. Stronger models are on top.

The baseline processor-centric version of a memory model M, denoted MB, restricts the
well-formed computations to operations without annotations. Formally,

MB �|�R&A9<�#Ú)*�. M 2)9�. WFP ý � '=. V̄J� ann ¯J&('v*p� NIL �
A sequentially consistent memory synchronizes even the ordinary operations; a generic

memory provides no synchronization at all. The models defined in Section 6.2 lie between
these two extremes, ranging from the IBM/370, which is almost sequentially consistent, to
the relaxed memory ordering and release consistency models, which are very weak. The
memory models compared in this section are characterized in Figure 6-2 by the reordering
each model allows and the guarantees of its underlying memory. These characterizations
are derived directly from the definitions of these models, and from the characterization of
coherence in Corollary 6.4. The relative strength of many of these models follows directly
from these characterizations, and results we proved earlier.

Lemma 6.6 The following relationships hold:� SCB N IBMB N AlphaB 1 CohB 1 WOB N RCB.� SCB N PCB N pRAMB.� IBMB N TSOB N PSOB N CRB N RMOB 1 CRFB N RCB.� PCB N CohB N RMOB.

Proof Sketch: PCB ô CohB follows from Lemma 6.1 and WOB ô CohB follows from Corollary 6.5.
All the other relationships follow straightforwardly from the tables in Figure 6-2, and the facts that
SC ô ã s�

ws
¢ Cache § ô ã s�

ws
¢ RdFdCache § , SC ô ã s�

ws
¢ Cache § ô Cache, and SC ô RdFd ô RdFdCache.
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PreserveM read ¢~�½ �§ write ¢X�Ý �±��Z§ read ¢~�½ x§ write ¢X�Ý ,±��Z§ read ¢X�½ ,§ write ¢X�½ ,±���§
M (M   ) SCB (SC) TSOB (RdFd) pRAMB (Cache)
read ¢~�q§ A A A A A A

write ¢X�R±���§ A A ÿ A A A
M (M   ) IBMB (SC) PSOB (RdFd) PCB (

ã s�
ws

¢ Cache § )
read ¢~�q§ A A A A A A

write ¢X�R±���§ B A ÿ B A A
M (M   ) AlphaB (SC) RMOB (RdFd) WOB (

ã s�
ws

¢ Cache § )
read ¢~�q§ B B - B B B

write ¢X�R±���§ B B ÿ B B B
M (M   ) CohB (SC) CRB (RdFd) RCB (

ã s�
ws

¢ RdFdCache § )
read ¢~�q§ B B B A - B

write ¢X�R±���§ B B ÿ B ÿ B
M (M   ) CRFB (RdFd)
read ¢~�q§ - B

write ¢X�R±���§ ÿ B
Symbology:A = order between operations is always preservedB = order is preserved when the operations access the same locationÿ = order is not preserved, but if the read overtakes a write to the same location, it is

forwarded the value written
- = order is not preserved

Figure 6-2: Tables defining the baseline processor-centric models. The underlying memory
for each model is in parentheses. Each box contains the relevant part of the reordering
tables used to define the full versions of the memory models in Section 6.2.

Except for CRFB N RCB, the relationships in Lemma 6.6 are strict. ¿From Example 6.13,
we know that PCB is strictly stronger than CohB and pRAMB. ¿From Example 6.14, we
know that CohB is strictly stronger than RCB, RMOB and CRFB, and also that CRB is strictly
stronger than CRFB since that observation is not admissible according to CR. The following
examples show that SCB is strictly stronger than both IBMB and PCB, and that IBMB, TSOB,
PSOB and CRB are all different.

Example 6.15 The following observation is admissible according to PCB and IBMB but not SCB.

²B¼ read ºÂÁ »
write º¥À�Ã ¹�»

²%¾ write ºÂÁ�Ã ¹.» read º¥À »ACK

ACK

Ð
Ð

In any sequentially consistent observation, at least one of the read operations must return ¼ . PCB
admits this observation because each processor can execute its local operations first. IBMB admits
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it because the read operations may be reordered before the write operations. Thus, SCB is strictly
stronger than both PCB and IBMB.

Example 6.16 The following observation is admissible according to TSOB and PCB but not IBMB.

²B¼
²%¾

write º¥À�Ã ¹.» read º¥À » � read ºÂÁ » �
read º¥À » �read ºÂÁ » �write ºÂÁ�Ã ¹�»

ACK
¹ Ð

ACK
¹ Ð

This observation is exactly the same as the observation from Example 6.15 except that © and ¬
are read immediately after they are written. It is not admitted by SCB and admitted by PCB for
the same reasons. It is not admitted by IBMB, because the intervening read operations inhibit
reordering. However, TSOB allows the reordering, but forwards the values written to the read
operations, so it does admit this observation. Thus, IBMB is strictly stronger than TSOB (and CohB,
because PCB ô CohB), and PCB is not stronger than IBMB.

Example 6.17 The following observation is admissible according to PSOB but not TSOB.

²B¼ write ºÂÁ�Ã ¹.»write º¥À�Ã ¹�»

²%¾ read ºÂÁ »
read º¥À »ACK ACK

Ð¹
TSOB does not admit this observation because it does not allow any of the operations to be re-
ordered. PSOB however, may reorder the two write operations because they are on different loca-
tions, so it does admit this observation. Thus, TSOB is strictly stronger than PSOB.

Example 6.18 The following observation is admissible according to CRB but not PSOB.

²B¼ write ºÂÁ�Ã ¹.»write º¥À�Ã ¹�»

²)ï read º¥À » � read ºÂÁ » �
²%¾ read ºÂÁ » � read º¥À » �

ACK ACK

¹ Ð
¹ Ð



108 CHAPTER 6. PROCESSOR-CENTRIC MEMORIES

This observation, which is the same as the observation from Example 6.17 except for additional
operations for ²)ï , is not admitted by PSOB because the return values for the operations of ²%¾ imply
that write ¢�¬J±+¼½§ is scheduled before write ¢�©`±+¼½§ while those of ²)ï imply that write ¢�©`±q¼½§ is scheduled
before write ¢ ¬J±+¼Ý§ . CRB may reorder the read operations, as they are on different locations, so it
admits this observation. Thus, PSOB is strictly stronger than CRB.

Without synchronization, release consistency and CRF are equivalent.

Lemma 6.7 RCB N CRFB (which implies RCB 1 CRFB).

Proof Sketch: For any observation of RCB, there is a local schedule for each processor that explains
the values returned for the read operations of that processor with read forwarding. The order
of the write operations on each location is the same in all the local schedules. Construct a global
schedule with the same order for the write operations on each location, and each read operation
inserted according to the local schedule of its processor. This construction yields a schedule be-
cause in the reordered transformation, there are no precedence dependencies between operations
on different locations or from different processors. This schedule explains all the return values
with read forwarding because each read operation gets the same value as in its local schedule.
Thus, RCB ô CRFB.

We can also show that TSO, PSO and CR are coherent. It is sufficient to show that CR
is coherent, since TSO and PSO are stronger than CR.

Lemma 6.8 CRB N CohB.

Proof Sketch: For any observation ¢
æ�±�ç�§ Á CR, there is some schedule � Á Sch ¢ ã r
CR ¢
æ�§
§ such that �

explains ç with read forwarding. Except for those read operations that are forwarded values from
write operations they overtake, � explains ç (without read forwarding). Move those read operations
backwards until after the write whose value they are forwarded. This construction yields a schedule
of

ã r
Coh ¢�æ�§ because the write operation preceded the read operation in æ . So ¢ ã r

Coh ¢�æ�§
±�ç�§ Á SC, and¢�æ�±�ç�§ Á Coh.

The preceding lemmas and examples establish all the implementation and equivalence
relationships in Figure 6-1. To complete our analysis, we verify that models for which we
give no relationship are incomparable. Specifically, we use the following examples to show
that PCB and pRAMB are incomparable with IBMB, d���Ç B, PSOB and CRB, and that pRAMB
is incomparable with RCB.

Example 6.19 The following observation is admissible according to PCB (and CohB) but not CRB.

²B¼ write ºÂÁ�Ã ¹.»read º¥À »

²%¾ read ºÂÁ »
write º¥À�Ã ¹�»

¹
ACK

ACK
¹

This observation is the reverse of the one from Example 6.15. PCB admits it because ²B¼ may sched-
ule the operations of ²%¾ before its own while ²%¾ schedules the operations of ²B¼ before its own; that
is, they execute the remote operations first. It is not admissible according to CRB because none of
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its operations may be reordered by CRB, and there is no single schedule that explains the return
values. Thus, PCB is not stronger than CRB, nor is it stronger than PSOB, TSOB or IBMB, which are
all stronger than CRB. This also shows that CRB is strictly stronger than CohB.

Example 6.20 The following observation is admissible according to pRAMB but not RCB.

²B¼
²%¾

write º¥À�Ã ¹.»
write º¥À�Ã ´A»

read º¥À » �
read º¥À » �

ACK
´
¹

ACK

pRAMB admits this observation because each processor may schedule the remote operations before
its local ones. RCB does not admit it because it requires both processors to schedule the write
operations consistently; the read operations may not overtake the write operations because they
return values written by remote operations. Thus, pRAMB is not stronger than RCB.

Example 6.21 The following observation, adapted from an example due to Kawash [62], is admis-
sible according to IBMB but not pRAMB.

²B¼
²%¾

read ºÂÁ » � read ºÂÁ » �
write ºÂÁ�Ã ´A»

write º¥À�Ã ´A»
read º¥À »

write º¥À�Ã ¹.»
write ºÂÁ�Ã ¹�»

ACK Ð ´ ¹
ACKACKACK

This is not admissible according to pRAMB because no schedule explains the return values of ²B¼ .
It is admissible according to IBMB because the read ¢�¬J§ ° can be reordered before write ¢�©`±+¼½§ , and all
the operations of ²%¾ can be executed after read ¢�¬J§ ° and before any of the other operations of ²B¼ .
Thus, IBMB is not stronger than pRAMB, nor is it stronger than PCB. This also implies than none of
TSOB, PSOB, CRB, CohB and RCB are stronger than either pRAMB or PCB.

6.5 A Possible Pitfall with Reordering

Often we define a memory model by giving a schedule that explains the return value of
each operation. Such a definition guarantees that the return value function the memory
model associates with any computation is an observer function, as required by the defi-
nition of memory models. However, a reordering transformation eliminates some of the
precedence dependencies, allowing schedules of the transformed computation that are
not schedules of the original computation. In this section, we show why the return value
functions associated by the memory models defined in this chapter are observer functions,
even though the serializations used in their definitions to explain their return values may
not be schedules.
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As a concrete example of the potential problem, consider a memory that may reorder
reads before writes to the same location. Suppose a processor issues two writes and then
a read to the same location. If the system reorders the read before the second write, then
the read returns the value written by the first write, which is not possible in any schedule
of the original computation. We get a similar result if we reorder the two write operations.

This problem does not arise in systems that do not reorder operations to the same loca-
tion. The return value for each operation in the schedule of the transformed computation
is explained by some schedule of the original computation.

Lemma 6.9 Suppose �aÇQ� � � !A� is a location partition for Ã ,
� .s� , 9�.3° ±] and 9MLB.3° ±] ^ such

that V̄e� V̄ ^ and '=y�¯bz implies 'Iy�¯ ^ z whenever 'B� loc �¥z_� loc � �
. For any � L . Sch &A9 L *

and 'I. V̄T\ � , there exists �{. Sch &A9~* such that retval &('¶�R��*p� retval &('¶�R�<LU* .
Proof: Since �7  Á Sch ¢�æ_ x§ , �J  � � is consistent with �ØÖ á . By Lemma 2.1, �7  � � is consistent with �_Ö
since �_Ö � � ô �_Ö á � � . Thus, there is some topological sort � of ª ¦ á � � £��_Ö , so by Corollary 2.22,
retval ¢�©`±+�¶§`¡ retval ¢�©`±µ� � � §`¡ retval ¢Z©�±+�7  � � §`¡ retval ¢�©`±µ�7 (§ .

Of the memories defined in the previous section, those without read forwarding pre-
serve the order between operations on the same location. It follows from the previous
lemma, that they admit only observer functions for well-formed computations.

Lemma 6.10 Suppose �FÇR��� �
!(� is a location partition for Ã and M L .SÞï±]h^ . If M �/÷ r & M L * ,
where ÷ r 2ø°ø±] 3 °ø±] ^ is defined by Preserve and 'v� loc �4z_� loc


�
Preserve &('¶�xz���@ Û ��@ = * ,

then M \ WFP .0Þ ±] .

Proof: If ¢
æ7±�ç�§ Á M
�
WFP then ¢ ã r ¢
æ�§
±�ç�§ Á M   . Because æ Á WFP, for all ©`±�¬ Á VÖ , if ©I�_Öº¬ then¢�©`±,¬p§ Á E Ö , and if ©`³ loc ¡4¬p³ loc, then Preserve ¢�©`±,¬p± ann ¢�©`§
± ann ¢�¬p§�§ , so ¢�©`±,¬p§ Á E D r ô Ö)õ . Because¢ ã r ¢
æ7§�±�ç�§ Á M   Áfe å Þ/á , for all © Á VÖ , there is some schedule ��  Á Sch ¢ ã r ¢
æ7§A§ such that ç-¢�©`§�¡

retval ¢�©`±+�J ,§ . By Lemma 6.9, there exists � Á Sch ¢
æ7§ such that retval ¢Z©�±+�¶§v¡ retval ¢Z©�±+�� (§ . Thus, for
all © Á VÖ , ç-¢�©`§�¡ retval ¢Z©`±µ�¶§ for some � Á Sch ¢�æ�§ , as required.

For the models with read forwarding, reads may overtake writes to the same location,
so the argument above does not hold. However, if a read overtakes a write to the same
location, the memory forwards the value written by the last write requested by the same
processor. This value is explained by any schedule that does not interleave the operations
of different processors.

The lemmas above hold for a memory with any location-partitioned data type, not just
read/write memory. For read/write memory, we could also allow two reads to the same
location to be reordered. We might guess that the results can be generalized to data types
without location partitions. However, at least the simplest generalization, reordering only
independent operations, does not work.

Example 6.22 Consider the following program for a read/write memory with an additional swap
operation, which swaps the values of two locations:

int x,y = 0

P1: write(x,1) P2: swap(x,y)
write(y,2)
a <- read(y)
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If the operations may not be reordered, then no schedule allows an observation with a = 0: If
the swap occurs between the write ¢�¬J±U¾-§ and the read ¢ ¬J§ , then we get a = 1; otherwise, a = 2.
However, if we can reorder the write ¢Z©�±q¼½§ and write ¢ ¬J±U¾%§ operations, then the schedule

write ¢�¬J±U¾-§�± swap ¢�©`±,¬p§�± write ¢Z©`±+¼½§�± read ¢�¬J§
yields a = 0.

6.6 Interpreting Reordering in Processor-Centric Models

Thus far, we have followed most of the literature in viewing reordering as a way to describe
the weak guarantees of a memory system. In this section, we introduce an alternative
view, which considers reordering as a relaxation of the program order. That is, reordering
is a way to express concurrency using a sequential language. By moving reordering from
memory to the clients, this view simplifies the memory semantics.

In the conventional view, reordering operations is a formal mechanism to describe the
semantics of weak consistency guarantees. The program order is a total order at each pro-
cessor and the system must respect that order. To achieve better performance, the values
returned for different operations, especially operations of different processors, may not
be consistent. The relaxation in the guarantees may be due to explicit reordering in the
system, by the compiler or the hardware, or it may be due to other mechanisms such as
caching. For example, the Commit-Reconcile model from Example 6.6 does not explicitly
reorder operations, and it has caches. Nonetheless, we model it with reordering (and read
forwarding) and without caching. Similarly, Corollary 6.4 characterizes coherence in terms
of reordering.

The alternative view of reordering exposes the programmer directly to the additional
concurrency by relaxing the program order. Operations that may be reordered are viewed
by the programmer as logically concurrent. The computation we associate with a pro-
gram reflects this view by eliminating the precedence dependencies between operations
that may be reordered, as we saw in Example 3.17. Programs that generate the same com-
putations are logically equivalent.

Example 6.23 On a system that preserves the order of operations only if they are on the same
location, the following programs are logically equivalent; they generate the same computation.

int x, y = 0

P1: write(x,1)
read(y)
write(x,2)

P2: write(y,1)
read(x)
read(y)

int x, y = 0

P1: read(y)
write(x,1)
write(x,2)

P2: write(y,1)
read(y)
read(x)

int x, y = 0

P1: write(x,1)
write(x,2)
read(y)

P2: read(x)
write(y,1)
read(y)

These all generate the computation from Example 3.17.
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These two views trade complexity in program structure for complexity in the con-
sistency guarantees. The conventional view keeps the program structure simple: There
are a fixed number of concurrent threads—one per processor—throughout an execution,
with no explicit control dependencies between threads. Synchronization is implemented
through the memory, which complicates the memory semantics. The relaxed-program-
order view, on the other hand, allows concurrency at a single processor but provides a
simpler memory model. In this view, the interface between the clients and the memory
lies after the reordering transformation has been applied, so the memory model for a sys-
tem is the model of the underlying memory.

One advantage of the relaxed-program-order view is that several memory models have
the same underlying memory model. For example, the IBM/370 and Alpha processors
both have a sequentially consistent underlying memory. A programmer who views re-
ordering as a relaxation of the program order would therefore consider those systems se-
quentially consistent. Similarly, TSO, PSO, RMO, CR and CRF would all be viewed as
providing the same memory consistency guarantees, that of the RdFd model, with differ-
ent program semantics.

Because reordering is done on the clients side of the clients-memory interface, we no
longer have the danger discussed in Section 6.5, where the system may not implement
the generic memory model. However, we may wish to require that programs running
on only one processor behave like sequential programs, despite the reordering allowed
by the system. Informally, this requirement allows a system to run programs written for
sequential machines without modification. This property is guaranteed by any system
that preserves the order between operations on the same location; that is, any observation
admitted by such a system for a serial computation is also sequentially consistent.

Lemma 6.11 Suppose �FÇQ� � �
!(� is a location partition for Ã , M .0ÞÙ±] , and ÷ r is a reordering
transformation defined by Preserve such that 'v� loc �Ôz�� loc


�
Preserve &('¶�xz���@ Û ��@ = * . If9�.3°ø±] is serial10 and &�÷ r &A9~*µ�#Ú)*�. M then &A9<�#Ú)*/. SC.

Proof: By Lemma 6.10,
ã r ¢ M § is a memory model. Since æ is completely race-free and ¢
æ7±�ç�§ Áã r ¢ M § , by Theorem 5.4, ¢
æ7±�ç�§ Á SC.

The conditions of Lemma 6.10 and Lemma 6.11 are the same, but the motivation is dif-
ferent: Lemma 6.10 says that every value returned by the system for a processor-centric
computation can be explained by some schedule of the computation; that is, that the sys-
tem is a “real” memory system. Lemma 6.11 says that it executes sequential programs
correctly.

The two views of reordering are not mutually exclusive. We may view some of the
reordering allowed by a model as relaxing the program order while other reordering may
be hidden from the programmer, and viewed merely as a formal mechanism to describe
the consistency guarantees. For example, the original Commit-Reconcile & Fences model
definition [100] gives explicit reordering rules for operations executed on an underlying
Commit-Reconcile memory. It is natural for a programmer to take the relaxed-program-
order view for the explicit reordering and the conventional view for the reordering that

10This lemma extends trivially to any determinate computation. We state it for serial computations because
they model the sequential programs that motivate the lemma.
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defines the Commit-Reconcile model. The programmer may even prefer to reason about
the Commit-Reconcile guarantees using an operational model with explicit caches rather
than the reordering with read forwarding model from Example 6.6.

When few operations may be reordered, the conventional view may be more appro-
priate. However, when most operations may be reordered and the programmer must
use explicit fences to force operations to be executed in a particular order, the relaxed-
program-order view seems more natural. Because the programmer must already consider
out-of-order execution, it is natural to expose the reordering explicitly. In this view, the
sequentiality of the operations of a program is an artifact of the language; like class defini-
tions in a C++ program, the operations must be written in some order, but the programmer
does not attach significance to this order.

The relaxed-program-order view of reordering also emphasizes the difference between
fences and synchronization operations: A fence inhibits reordering; it affects the program
order of a computation. It is not necessary to indicate a fence with an annotation because
its effect is already reflected in the precedence dependencies. Synchronization operations,
on the other hand, must be indicated by the annotations11 because the order in which
synchronized operations are executed is not fixed by the program order, but determined
by the system. The system may appear to execute the operations in any order, as long as
this order is consistent for all operations.

This distinction is often blurred in processor-centric models with explicit synchroniza-
tion operations. For example, in weak ordering and release consistency, ordering is en-
forced between operations on different locations only by synchronization operations. To
be useful, synchronization operations must preserve some precedence dependencies—that
is, they must also be fences—but fences need not synchronize. The Commit-Reconcile &
Fence model, for example, has “pure” fences; synchronization is done, in the operational
model with explicit caches,12 by the commit and reconcile operations.

6.7 Programmer-Centric Models

The system-centric models defined in Section 6.2 present a programmer with compli-
cated memory semantics that can be difficult to use in reasoning about the behavior of
programs [56]. To reduce the complexity of such reasoning, some researchers advocate
a programmer-centric approach to specifying memory models [1, 41], in which a memory
model is characterized by the set of programs that execute using the model as they do
using sequential consistency. In this section, we show how to adapt this approach to the
computation-centric framework. We define a class of data-race-free programs and prove that
such programs cannot distinguish weak ordering from sequential consistency.

A programmer-centric model is

specified as a contract between the system and the programmer where the programmer
provides some information about the program to the system, and the system uses the

11For write serialization, the need for synchronization is indicated by the type of operation rather than
explicitly in the annotation.

12There are no real synchronization operations in the reordering with read forwarding definition because
only one schedule is used to explain all the return values; all the operations are synchronized.
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information to provide both sequential consistency and high performance [1, p. 5].

The information provided by the programmer indicates the synchronization necessary to
guarantee sequentially consistent behavior. The programmer must specify “sufficient syn-
chronization” so that there are no “data races” in any sequentially consistent execution of
the program, that is, in any execution of the program on a sequentially consistent system.
Informally, a sequentially consistent execution corresponds to a schedule,13 and a data race
consists of two unsynchronized competing operations that are adjacent in the schedule.

We use annotations to provide the synchronization information and a client restriction
to characterize the computations with sufficient synchronization. A programmer-centric
memory model is defined by the client restriction that characterizes “sufficient synchro-
nization” for that model. A memory system modeled by M implements a programmer-
centric model characterized by CR if M \ CR implements sequential consistency.

One difficulty with this approach is determining which schedules are sequentially con-
sistent executions of a program. Although a computation may be generated by a program,
some of its schedules may not be sequentially consistent executions of the program be-
cause the program may specify different computations depending on the values returned
for earlier operations. Thus, there is a data dependency that affects the control structure
of the program. The system enforces this dependency by synchronization. In particular,
when a synchronization read returns the value written by a synchronization write, the
write must be “performed at” every processor. Thus, the write precedes the read in the
local schedule of every processor.14

To model the control dependencies between synchronization operations at different
processors, we relax the well-formedness condition for processor-centric memories. In ad-
dition to a total order at each processor, the clients may specify precedence dependencies
between conflicting synchronization operations. In particular, we allow a synchronization
read to have a precedence dependency on a conflicting synchronization write at a different
processor. For the read/write memories we consider, these are the only possible depen-
dencies across processors. Formally,

WFP � �hgi$j 9�.3° :] 2 &k.~&('B*p�3.<&Zz�* 
� &('¶�xz_*h. E ¯l�Ð&Zz~��'B*�. E ¯'� '«�¥z�*ý &F&('¶�xz_*/. E ¯ ý .<&('B*~r�m.<&Zz�*
n�
ann ¯J&('B*p� ann ¯J&Zz�*p� SYNC ý 'I. Wr ý z�. Rd \ Û,o loc *qp$rs

Edges between operations issued by the same processor are program order dependencies,
and edges between operations from different processors are cross-processor dependencies.

We now define the data-race-free programmer-centric model; that is, we define the set
of data-race-free computations. A system implements the data-race-free model if it guar-
antees sequential consistency for data-race-free computations. Our definition is a slight
variation of the data-race-free-0 (DRF0) model of Adve [1], and the properly-labeled-1 (PL1)
model of Gharachorloo [41].

13In the literature and for the dynamic memory models of Chapter 9, an execution also specifies the values
returned for the operations. We omit the values for simplicity, since they can be derived from the schedule.

14This condition is weaker than the condition that every processor applies the write before any processor
reads it, but it suffices for our purposes.
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A computation is data-race-free if it is well-formed for a programmer-centric memory
and it is (completely) race-free. Formally, DRF � RF w WFP � .

Weak ordering preserves the per-location order of data-race-free computations.

Lemma 6.12 For 9�. WFP � , if 'Iy�¯bz and 'v� loc �¥z_� loc then 'Iyt> r
WO

% ¯ ) z .

Proof: If J7¢Z©`§�¡uJ7¢�¬J§ then ¢Z©`±�¬J§ Á E Ö and PreserveWO ¢Z©`±�¬J± ann Ö ¢�©`§�± ann Ö ¢ ¬J§
§ , so ¢�©`±�¬J§ Á E D r
WO ô Ö)õ .

Thus, ©¥�vD r
WO ô Ö)õ ¬ . If J�¢�©`§>®¡wJ�¢ ¬J§ let Epo ¡�Ìµ¢yxE±zx- ,§ Á E Ö Ó�J�¢yxE§�¡EJ�¢{x- ,§ Í , and Ecp ¡ E Ö í Epo ¡Ìµ¢yxX±|x- ,§ Á E Ö>ÓYJ7¢yxX§7®¡0J�¢{x- x§(Í . Because æ Á WFP · , both Epo and Ecp are partial orders. Thus, there

exist xX°½±q³+³+³¨±zx�²µ´ Á VÖ such that either ©0¡}xX° or ¢�©`±|xX°½§ Á Epo, either ¬�¡}x�²µ´ or ¢{x�²µ´p±�¬J§ Á Epo,¢{x�²F¸U¹v°½±zx�²µ¸q§ Á Ecp for »_¡ ¼½±q³+³+³`±U¿ , and ¢{x½²F¸q±zx�²µ¸x·v°½§ Á Epo for »_¡W¼½±+³q³+³�± ¿eí�¼ . Because æ Á WFP ·
and ¢yx�²F¸x¹v°?±|x�²F¸+§ Á Ecp, we have ann ÖB¢yx�¸q§_¡ SYNC for »M¡�¼Ý±+³+³q³�±U¾Ý¿ , so none of these precedence
dependenices are eliminated by

ã r
WO ¢�æ�§ . Thus, ©��vD r

WO ô Ö)õ ¬ , as required.

We now prove the main result of this section: The data-race-free programmer-centric
model is implemented by weak ordering; that is, weak ordering implements sequential
consistency under data-race-free clients.

Theorem 6.13 WO implements SC under DRF.

Proof: We only need to prove that WO is a memory model under DRF, since DRF is more restrictive
than RF, and every memory model implements SC under RF, by Theorem 5.4.

Suppose ç Á WO ÔÂæNÕ for æ Á DRF. Then ¢ ã r
WO ¢
æ�§
±�ç�§ Á ã s�

S

"#�
ws

¢ Cache § . ã s�
S

"#�
ws

¢ Cache § is obvi-
ously a memory model, so for each © Á VÖ , there exists � Á Sch ¢ ã r

WO ¢�æ�§�§ with ç-¢�©`§p¡ retval ¢Z©`±µ�¶§ .
By Lemmas 6.9 and 6.12, there exists ��  Á Sch ¢�æ�§ with retval ¢�©`±µ�7 �§`¡ retval ¢Z©�±+�¶§�¡Mç-¢�©`§ .

Lemma 6.12 is the key to the proof that weak ordering implements sequential consis-
tency under data-race-free clients. However, weak ordering provides stronger guarantees
than necessary to prove Lemma 6.12. As long as a memory system does not allow syn-
chronization reads to overtake any operations nor synchronization writes to be overtaken,
does not reorder operations to the same location, and guarantees that all processors order
synchronization reads after the synchronization writes whose values they read, the system
will appear sequentially consistent to data-race-free clients.

Formally, let ÷ r
DRF be defined by

PreserveDRF &('B�xz~��@ Û ��@ = *31~.~&('B*p�3.<&Zz�* ý &¨&�'I. Rd ý @ Û � SYNC *�Ð&Zz�. Wr ý @ = � SYNC *��'B� loc �¥z�� loc *�Ð&('I. Wr ý z�. Rd ý @ Û �4@�=e� SYNC ý 'B� loc �¥z�� loc *
This transformation preserves the per-location order.

Lemma 6.14 For 9�. WFP � , if 'Iy�¯bz and 'v� loc �¥z_� loc then 'Iyt> r
DRF

% ¯ ) z
Proof: This proof is analogous to the proof of Lemma 6.12. The only difference is that whenJ�¢�©`§_®¡�J�¢ ¬J§ , we require xX°�±+³q³+³�±zx�´ Á VÖ such that either ©º¡�x�° or ¢�©`±|xX°�§ Á Epo, either ¬Y¡�x�²µ´ or¢{x�²µ´p±�¬J§ Á Epo, ¢{x�²F¸U¹v°½±zx�²µ¸q§ Á Ecp for »�¡4¼½±+³q³+³�± ¿ , ¢{x�²µ¸q±|x�²F¸U·v°½§ Á Epo for »~¡4¼½±q³+³+³`±U¿=í|¼ , and also,x�²F¸x¹B° Á Wr, x�²F¸ Á Rd, and ¢{x½²F¸x¹v°?§
³ loc ¡lx�²F¸R³ loc for »7¡�¼Ý±+³+³q³�±U¿ . These properties all hold since æ is
well-formed, so

ã r
DRF does not eliminate the precedence dependencies.

Any memory using this transformation implements the data-race-free model.
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Theorem 6.15 ÷ r
DRF & GM * implements SC under DRF.

Proof: This proof is identical to the proof of Theorem 6.13, except that it uses Lemma 6.14 instead
of Lemma 6.12.

Theorem 6.15 is a significant generalization of Theorem 6.13. It states very weak con-
ditions that a system must satisfy to implement the data-race-free model. In particular,
the system does not need to be coherent.15 The system may not even implement generic
memory for computations that are not data-race-free, as long as it respects the precedence
dependencies preserved by ÷ r

DRF.
One apparent anomaly with Theorem 6.15 is that it allows the underlying memory

model to be any memory model. In particular, it does not require the memory to or-
der synchronization reads consistently at each processor after the synchronization write
whose value they read. However, this requirement is captured by the computation: A
data-race-free computation explicitly encodes data dependencies involving synchroniza-
tion operations as precedence dependencies, and ÷ r

DRF preserves these dependencies.

6.8 Discussion

The processor-centric approach to modeling memory systems has two factors in its favor.
First, it extends the familiar sequential model of computing is a simple way, and thus, it
is easy for programmers to understand. Second, shared memory multiprocessors gener-
ally satisfy the processor-centric assumption—that there is a fixed set of sequential proces-
sors accessing a shared read/write memory—and thus, the processor-centric models can
closely match the guarantees of the actual system. These factors make processor-centric
models appropriate for analyzing the guarantees of shared memory multiprocessors when
programmers are exposed to the hardware. However, processor-centric models cannot
capture the richer concurrent structure provided by high level concurrent programming
languages, in which threads can be created and destroyed dynamically and concurrent
threads may have a variety of mechanisms for synchronizing.

One approach to adapting processor-centric models for high level multithreaded lan-
guages is to introduce a virtual processor for each thread. The Java memory model, for
example, is specified in this way [49]. Because a processor-centric model has a fixed set
of processors and does not allow precedence dependencies across processors, we model
the threads as all existing from the beginning of the program, and the first operation of a
thread has an implicit data dependency on the operation that creates it. Thus, what ap-
pears as a control dependency in the program—the creation of a thread by its parent—is
modeled as a data dependency. We consider the reinterpretation of control dependencies
as data dependencies to be a significant drawback to this approach. The virtual proces-
sor approach also increases the gap between the model and the actual system, which was

15Many researchers seem to have assumed that coherence was necessary, treating it as a minimal condition
that should be guaranteed by all multiprocessor systems [72, 52]. The original works on weak ordering and
processor consistency implicitly assume coherence, or some similar condition [33, 47, 8], and release consis-
tency specifically includes a “coherence requirement” [41]. However, as we saw in Example 6.14, the formal
definition of release consistency does not guarantee coherence.
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one of the main advantages of processor-centric models. Finally, virtual processors are
still not general enough to express, in a natural fashion, the concurrent structure of some
programming systems, including Cilk [105].

The restricted concurrency model of processor-centric models is one of the main rea-
sons we advocate abandoning them, except for low-level descriptions of shared memory
multiprocessors. Because there is no consensus yet on the “right way” to structure concur-
rent programs, it is especially important that we do not restrict the possible ways to do this
by our choice of modeling techniques. There is, however, consensus that more structure
is needed, because concurrent programs are difficult to reason about correctly [70]. For-
tunately, as we have shown, we can cast processor-centric models into the computation-
centric framework, so that we can leverage the processor-centric results in the literature.

Another disadvantage of processor-centric models is that they encourage programmers
to view as privileged, the order in which operations are listed in the program, even if the
system may reorder the operations. Similarly, system designers view the order in which
operations are issued as special,16 even though compilation may make this order com-
pletely different from the order of the corresponding program instructions.

16For example, many processors that reorder operations require that the operations are “retired” in the order
they were issued [98].
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Chapter 7

Locks

Locks eliminate data races, or unsynchronized access to the memory, by enforcing exclu-
sion constraints; that is, by preventing some operations from executing concurrently. Locks
are among the most common devices for structuring concurrent programs; most systems
provide support for implementing them. Many other structuring devices, including criti-
cal sections and monitors, are implemented using locks. In this chapter, we show how to
model locks in the computation-centric framework. We introduce very weak consistency
conditions for a memory system with locks, and we show that the discipline of using locks
to eliminate all data races guarantees sequential consistency on systems that meet these
conditions.

Because threads accessing shared data concurrently may interfere with each other, pro-
gramming concurrent systems, even sequentially consistent ones, is challenging [70, 56].
Typically, a lock is used to protect shared data. Before the data can be accessed, the lock
must be acquired and held. When the data is no longer needed, the lock is released. We focus
on the simplest and most common kind of lock, the mutual exclusion (mutex) lock. Infor-
mally, only one thread can hold a mutex lock at any time. If a thread tries to acquire a lock
that is held by another thread, the first thread blocks until the lock is released. A system
that ensures that at most one thread holds a lock at any time is said to respect locking.

The operations of a thread beginning with the acquire and ending with the release form
a critical section or a locked section. However, in our framework, there is no explicit notion
of threads. Instead, because control flow is represented by the edges of a computation, we
say that operations between an acquire and its matching release in the computation order
hold the lock and form a locked section.

Accessing data without using locks leads to data races, which result in behaviors that
depend on timing conditions that the programmer cannot predict. Thus, data races are
usually considered bugs [16, 70, 96, 25]. Protecting the data with locks leads to well-
structured programs that are easier to reason about. Furthermore, when data races are
eliminated using locks, even memories with weak consistency guarantees appear to be
strongly consistent [70]. We formally define a new memory model called weak sequential
locking that is weaker than many similar models in the literature but still has this property.

A greatly abbreviated version of the material in this chapter was presented at the Symposium for Parallel
Algorithms and Architectures in 2001 [78].

119
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Some systems provide locks with weaker exclusion constraints than mutex locks. For
example, the shared/exclusive lock is a common variant that provides a shared and an ex-
clusive mode. Several threads can hold a lock in shared mode concurrently as long as no
thread holds the lock in exclusive mode. Although we focus on mutex locks in this thesis,
the results in this chapter can be extended to other kinds of locks.

Outline: Section 7.1 defines several graph-theoretic notions used in this and later chap-
ters. Section 7.2 formally defines computations with locks and what it means to acquire,
release and hold locks. In Section 7.3, we characterize well-formed computations with
locks, and in Section 7.4, we define schedules that respect locking. Section 7.5 defines sev-
eral memory models with locking, including sequential consistency with locking and weak
sequential locking. In Section 7.6, we define data races in the presence of locks and prove
that weak sequential locking implements sequential consistency with locking for data-
race-free computations, and in Section 7.7, we contrast these results with the results about
programmer-centric models in Section 6.7. In Section 7.8, we specialize our discussion and
results to the important case in which the memory has locations, each with an associated
lock. Section 7.9 shows how to extend the results of this chapter to shared/exclusive locks.
Section 7.10 discusses the advantages of modeling locks directly in the computation and
points out directions for further study.

Reading Guide: In a sense, this chapter, and particularly Theorem 7.25, which says that
weak sequential locking implements sequential consistency with locking for data-race-free
programs, is the center of this thesis. The earlier definitions and results, except those in
Chapter 6, build up to this theorem. It is also the key to using weakly consistent memory
to implement sequentially consistent transactions in the next chapter.

It may be best to skip Section 7.1 initially, because the definitions and lemmas there are
motivated by their use in later sections and are chiefly important for understanding the
proofs of Sections 7.3 and 7.4. Sections 7.2 to 7.6 form the core of this chapter and should
be read in sequence. Like the rest of the thesis, these sections may be read informally first,
as later parts depend only on the results mentioned, and not the proofs of those results.
The later sections are independent from each other and may be read in any order.

7.1 Preliminary Graph Theory: Regions, Guards and Sections

In this section, we introduce several graph-theoretic concepts that are useful for defining
locks on computations. In particular, we define an enclosure of a dag and prove several
properties about enclosures that are used throughout this chapter and the next. The defi-
nition of an enclosure of a dag is the hidden workhorse of this chapter. Though it seems
straightforward, a considerable fraction of the intellectual effort of this thesis involved
fine-tuning this definition so that it simply and accurately captured the conditions that
make the statements and proofs in this chapter understandable. The motivation for the
definitions and lemmas in this section appears in Section 7.3, where they are first used.
They are collected here because they rely only on graph theory, and not on any properties
of computations. This section may be skipped initially and used as a reference as needed.
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A region of a dag © is any subset of Vª . We associate regions with the subgraphs
induced on them, and apply terminology for these subgraphs to the regions. For example,� is a prefix of © if ©K\ � is a prefix of © . We use interval notation to denote regions between
two vertices. For example, the region from « to ¬ in © is â «<��¬�ã{ª����5�P. VªY2z«w®�� ®�¬)� .
Similarly, â «<��¬B*Îªm�����P. VªY2z«F®��Py�¬)� . We may omit the subscript when the dag is clear
from context. A region � is convex if â «s��¬�ã�NG� for all «s��¬o.o� . A serial region of © is a
convex region that is totally ordered by ®Jª .

A guard of a region is a root of the region that is included in every convex path into the
region. Similarly, a rear guard is an inverse root included in every convex path out of the
region. Formally, a (front) guard of a region � in a dag © is a vertex «�.0� such that for all¬{.�� and ���.¥� , «Ù®2¬ and � y2¬ 
� � y|« ; a rear guard of � is a vertex «4.¥� such
that for all ¬I.Y� and ���.Y� , ¬H®î« and ¬Cy�� 
� «�y�� .

Example 7.1 In the following dag, vertex ð is a guard for the region Ì ð)± ú ± û ±p�ÝÍ and vertex ú is a rear
guard for the region Ì�ï-±xð%± ú Í .

ï
¼

¾
ð û

ú �

þ
Lemma 7.1 A region has at most one guard and at most one rear guard.

Proof: If � and ��  are guards for Â then ��±M�_  Á«Â , so �\×'��  and �_ *×l� . Thus, �C¡��_  . Similarly, if� and �_  are rear guards for Â then ��±M��  ÁºÂ , so �� *×�� and �S×'�_  . Thus, �I¡u�_  .
If a region � has a guard, we denote it by gd ª &x�B* ; if it has a rear guard, we denote it

by rgd ª &x�B* . As usual, we may omit the subscript when the dag is clear from context. An
enclosure is a region with both a front guard and a rear guard.

Example 7.2 The enclosures of the graph from Example 7.1 are Ìa¼½±
ïÝÍ , Ì ð%± ú ± û Í , Ì(ð%± ú Í , Ì ú ± û Í , and all
the regions with a single vertex.

Lemma 7.2 Every singleton subset of Vª is an enclosure of © .

Proof: Immediate from the definitions of enclosure, guard, and rear guard.

An enclosure is the region from its guard to its rear guard.

Lemma 7.3 If � is an enclosure then �Ú� â gd &x�B*+� rgd &x�B*�ã .
Proof: If � ÁºÂ then by the definition of guard and rear guard, gd ¢ Â §�×'�3× rgd ¢ Â § .

Suppose � lÁ=Â . If ��®× rgd ¢ Â § then � lÁ Ô gd ¢ Â §A± rgd ¢ Â §�Õ . If ��× rgd ¢ Â § then, since rgd ¢ Â § Á=Â , by
the definition of guard, �S× gd ¢ Â § , and � lÁ Ô gd ¢ Â §A± rgd ¢ Â §�Õ .
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If any element of one enclosure precedes any element of another enclosure that is dis-
joint from it, then every element of the first enclosure precedes every element of the second
enclosure. In particular, the rear guard of the first enclosure precedes the guard of the sec-
ond enclosure.

Lemma 7.4 If � and �7L are disjoint enclosures of © with «dyL¬ for some «d.8� and ¬m.8��L ,
then rgd &x�¶*�y gd &x�JLx* .
Proof: Since Â and Â   are disjoint, � lÁ¥Â , so by the definition of a rear guard, rgd ¢ Â §O�}� . Since
rgd ¢ Â § lÁºÂ   , we have by the definition of a guard, rgd ¢ Â §B� gd ¢ Â  x§ .

Any vertex that is ordered by a topological sort of a dag between the guard and rear
guard of an enclosure is either in the enclosure or is not ordered by the dag with respect to
any vertex of the enclosure.

Lemma 7.5 If � is a topological sort of a dag © and � is an enclosure of © then for all «��.Y�
such that gd &x�B* �b� « ��� rgd &x�B* , « is not ordered by © with respect to any vertex in � .

Proof: Since � Á Sch ¢�æ�§ , if gd ¢ Â §vªM¦��YªM¦ rgd ¢ Â § for � lÁ¯Â , then ��®× gd ¢ Â § and rgd ¢ Â §�®×�� . Thus,
for � ÁºÂ , �l®×�� and �e®×�� .

The intersection and union of two intersecting enclosures are also enclosures, and their
guards and rear guards are the guards and rear guards of the original enclosures.

Lemma 7.6 If � and � L are enclosures with a nonempty intersection, then ��wâ� L is an en-
closure with gd &x�bwC�JL�*�. � gd &x�B*µ� gd &x�pLx* � and rgd &x�bwI�pLx*�. � rgd &x�B*µ� rgd &x�pLx* � , and ��k=�pL is
an enclosure with gd &x��k=� L *�.3� gd &x�B*µ� gd &x� L *Y� and rgd &x�bkC� L *�.m� rgd &x�B*µ� rgd &x� L *Y� .

Proof: Suppose gd ¢ Â § ÁÚÂ   . For all � ÁÚÂ 9 Â   ô Â , gd ¢ Â §�×�� and for all � lÁÚÂ 9 Â   , either � lÁÚÂ or� lÁ«Â   , so if ����� , either ��� gd ¢ Â § or ��� gd ¢ Â   §U× gd ¢ Â § . Thus, gd ¢ Â § is a guard of Â 9 Â   .
For all � Á«Â £ Â   , either � Á�Â   or � ÁºÂ . In the first case, gd ¢ Â  �§Y×u� and for all � lÁºÂ £ Â  �� Â   ,

if � ��� then ��� gd ¢ Â  ,§ . In the second case, gd ¢ Â  ,§× gd ¢ Â §¢×�� , and for all � lÁ0Â £ Â  C� Â , if���u� then ��� gd ¢ Â § , and since gd ¢ Â § Á�Â   , ��� gd ¢ Â  ,§ . Thus, gd ¢ Â  x§ is a guard of Â £ Â   .
If gd ¢ Â § lÁmÂ   , let � ÁâÂ 9 Â   . Then gd ¢ Â §_�w� ÁmÂ   , so gd ¢ Â §_� gd ¢ Â  ,§ . Since gd ¢ Â  �§¢×w� andÔ gd ¢ Â §A±_�øÕ ô Â , we have gd ¢ Â  x§ Á«Â . By symmetry with the previous case, gd ¢ Â  �§ is a guard of Â 9 Â  

and gd ¢ Â § is a guard of Â £ Â   .
The proof that rgd ¢ Â 9 Â  �§ and rgd ¢ Â £ Â  �§ are either rgd ¢ Â § or rgd ¢ Â  ,§ is similar.

An important, and perhaps surprising, property of enclosures is that it is possible to
find a topological sort of any dag in which every enclosure is a contiguous subsequence.
This property holds even if the enclosures are overlapping.

Lemma 7.7 For any dag © , there is a topological sort � such that every enclosure of ©
appears contiguously in � .

Proof: We prove this lemma by strong induction on the number of vertices in � . If every enclosure
is either V� or a singleton set, then any topological sort of � satisfies this lemma. Otherwise, let Â
be any enclosure that is neither V� nor a singleton set.

Define �O  so that V� á ¡ V�Úí Â £Sv gd ¢ Â § y and E � á ¡ ��� �
V� á . We have

�
V�ø� � � ¡ � Â � ª �

V� �
,

and, because
� Â � î�¼ , �

V� á � ª �
V� �

. Thus, by the inductive hypothesis, there are topological sorts� for �O  and
4

for � � �
in which every enclosure appears contiguously. Since gd ¢ Â § Á V� á , we can
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decompose � into �¶°>� gd ¢ Â §g����² . Let 5 ¡��¶°>� 4 �Z��² . We show that 5 is a topological sort of � in which
every enclosure appears contiguously.

To see that 5 is a topological sort of � , first note that it is a serialization of V� because
4

is a
serialization of Â and � ° �Z� ² is a serialization of V� á í v gd ¢ Â § y ¡ V� í Â . Suppose ¢���±���§ Á E � . If��±�� ÁÚÂ then �Cª O�� , so �Yª T � . If ��±)� lÁ«Â then ��±�� Á V� á and ¢���±��`§ Á E � á , so �Cª ¦ � and �Yª T � .
If � lÁ«Â and � ÁÚÂ then, since Â is an enclosure of � , �â� � gd � ¢ Â §Y× � � , so �Iª ¦ gd � ¢ Â §¶¤ØO�� , and
thus, �Yª T � . If � ÁeÂ and � lÁ¯Â then gd � ¢ Â §p� � �{� � � , so gd � ¢ Â §vª ¦ � and � Á elems ¢x� ² § . Since� Á«Â ¡ elems ¢ 4 § , �=ª T � .

Suppose Â   is an enclosure of � . If gd ¢ Â  ,§
± rgd ¢ Â  ,§ Á�Â then Â   ô Â , so Â   is an enclosure of� � �
and it appears contiguously in

4
. Thus, Â   appears contiguously in 5 . If Â and Â   are disjoint

then Â   is an enclosure of �O  because �o��� á ���Øó �����0� for all ��±�� Á V� á . Thus, Â   appears
contiguously in � , and since gd � ¢ Â § lÁºÂ   , Â   appears contiguously in either �T° or ��² . In either case,Â   appears contiguously in 5 . If gd ¢ Â  ,§
± rgd ¢ Â  ,§ lÁeÂ with Â and Â   not disjoint, then by Lemma 7.6,Â ô Â   . So Â   í Â £ v gd ¢ Â § y appears contiguously in � . Because elems ¢ 4 §v¡ Â ô Â   includes gd ¢ Â § ,Â   appears contiguously in 5 . If gd ¢ Â  ,§ lÁºÂ and rgd ¢ Â  �§ Á�Â then since gd ¢ Â  ,§U×�� rgd ¢ Â  �§ and Â is an
enclosure, we have gd ¢ Â  �§v��� gd ¢ Â §Y×�� rgd ¢ Â  ,§U×�� rgd ¢ Â § . By Lemma 7.6, Â 9 Â  -¡FÔ gd ¢ Â §
± rgd ¢ Â  x§~Õ
is an enclosure, so it appears contiguously in

4
, and because it includes gd ¢ Â § , it is a prefix of

4
.

Also, Â  Eí Â £ v gd ¢ Â § y is an enclosure of �O  because �{� � á ��� ó �{� � � for all ��±�� Á V� á , so it
appears contiguously in � , and in fact, is a suffix of � ° � gd ¢ Â § . Thus, Â   appears contiguously in 5 .
Similarly, if gd ¢ Â  ,§ ÁºÂ and rgd ¢ Â  x§ lÁ«Â , we have that Â   appears contiguously in 5 .

7.2 Computations with Locks

In the traditional setting, a thread requests a lock from the system, and waits until the lock
is acquired. Once acquired, the lock is held by the thread until the thread releases it. The
operations executed by the thread while a lock is held—that is, between an acquisition of
a lock and its subsequent release—comprise a locked section of the computation. In this
section, we show how to model the acquisition and release of locks in the computation-
centric framework, where there is no explicit notion of threads or time. We also formally
define the locked sections of a computation with locks.

We model locks as being independent of operations on the data type. A system is
parameterized by its set � of locks. Each lock is treated independently, and may be ac-
quired or released by any operation, which we specify using annotations as follows: ACQ

indicates that the lock is to be acquired; REL indicates that the lock is to be released; A/R

indicates that the lock is to be acquired and then immediately released; and NIL indicates
that the lock is neither acquired nor released.

Formally, a computation with (mutex) locks � is a computation with annotation set� L � �|��2��Ú3 LockOps � , where LockOps ��� ACQ � REL � A/R � NIL � . For 'W. V̄ and �=.�� ,
we use the notation �7¯J&('¶�	�+*b� ann ¯J&('B*+&_�+* . An operation ' acquires a lock �¯.�� in 9 if�D¯7&('¶�	�+*h.=� ACQ � A/R � , and it releases � if �7¯7&('¶�	�q*/.=� REL � A/R � . We denote the set of all op-
erations that acquire � by Acqs ¯ &_�q*_�W�U'I. V̄¯2��D¯7&('B�	�q*p� ACQ ���D¯J&('¶�	�+*7� A/R � , and the
set of all operations that release � by Rels ¯J&_�+*p���U'C. V̄e2��D¯J&('B�	�q*J� REL ���D¯J&('B�	�q*J� A/R � .
We omit the subscript when the computation is clear from context.

Example 7.3 With the annotation set Ö L, the computation from Example 3.12 might be better rep-
resented as follows:
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read º¥À » � write º¥À�Ã ¹.»
Èu� NIL

read ºÂÁ » �
Èu� NIL Èu� REL

write ºÂÁ�Ã µ¿» � write º¥À�Ã ´A»
Èu� NILÈu� ACQÊ�� ACQ Ê � NIL Ê�� NIL Ê¡� NIL

write ºÂÁ�Ã ¹�»
È�� RELÈu� ACQ

read ºÂÁ » � read º¥À » �
Èu� NIL Èf� NIL

write ºÂÁ�Ã µ¿» � read ºÂÁ » ·
Èu� NILÊ�� NIL Ê � ACQ Ê¡� REL Ê¡� NIL

Ê � REL

Ê � NIL

We often omit the entries for locks that are neither acquired nor released.

Our definition allows clients to specify any pattern of acquiring and releasing locks,
even if the resulting computation is incompatible with our intuitive notion of locking. For
example, an operation may specify that it releases a lock that has not been acquired. In
Section 7.3, we discuss a well-formedness condition that rules out such computations.

Example 7.4 Although the following computation on
×

with locks ÌxÖ�Í can be specified, it is not
compatible with the notion that a lock must be acquired before it can be released.

write º¥À�Ã ¹.»
Èu� ACQ

read º¥À »Èu� REL

write º¥À�Ã ´A»
Èu� REL

The operation that acquires a lock, and any operation that follows it in the partial order
defined by the computation, holds the lock until it is released. That is, an operation holds
a lock if it acquires the lock, or is preceded by an operation that acquires the lock with no
intervening operation that releases the lock. The operation that releases the lock holds the
lock.

Formally, an operation z holds �h.f� acquired by '=. Acqs &_�+* in 9 if â 'B�xz�*¶w Rels &_�+*p� � ;
that is, if there is no ¢¯. Rels &_�q* such that '3®�¢¯y�z . We also say that ' acquires � for z in9 . The set Holds &_�R��'B* of operations for which ' acquires � is called a locked section for � , or
an � -section, of 9 . We say that z holds � , or that � is held by z , if some operation acquires �
for z . We denote the set of operations that hold � by Holds ¯7&_�q*p�L� Û ! Acqs %¤£ ) Holds ¯J&_�q��'¶* . As
usual, we omit the subscript when the computation is clear from context.

Example 7.5 In the computation from Example 7.3, read ¢�©`§A° acquires Ö for itself, write ¢�©`±+¼½§ , read ¢ ¬J§�°
and write ¢ ¬J±xð%§�° , and it acquires Ç for itself, write ¢Z©`±+¼½§ and read ¢ ¬J§A° . read ¢ ¬J§�² acquires Ö for itself
and write ¢ ¬J±+¼½§ , and write ¢�¬J±+¼½§ acquires Ç for itself, read ¢�©`§,² and write ¢ ¬J±xð%§�² . Thus, the Ö -sections
are Ì read ¢�¬J§(²-± write ¢ ¬J±q¼½§(Í and Ì read ¢Z©`§
°�± write ¢�©`±q¼½§
± read ¢ ¬J§�°Ý± write ¢�¬J±xð%§�°µÍ , and the Ç -sections areÌ read ¢�©`§
°�± write ¢�©`±+¼Ý§
± read ¢ ¬J§
°+Í and Ì write ¢ ¬J±+¼½§�± read ¢�©`§�²X± write ¢�¬J±xð%§�²�Í .
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Example 7.6 In the computation from Example 7.4, read ¢�©`§ acquires Ö for itself. No other opera-
tion holds the lock. Thus, the only locked section is the Ö -section Ì read ¢Z©`§ Í .
Example 7.7 In the following computation on

×
with locks Ì,ÖK±pÇ�Í , write ¢Z©�±q¼½§ acquires Ö for ev-

ery operation, read ¢�©`§�° acquires Ç for itself and write ¢�©`±U¾%§ , and write ¢�©`± ï-§ acquires Ç for itself.
Thus, it has one Ö -section with all the operations, and two Ç -sections, Ì read ¢�©`§a°½± write ¢Z©`±U¾-§�Í andÌ write ¢Z©`± ï#§�Í .

write º¥À�Ã ¹.»
Ê � A/R

write º¥À�Ã ¼¶»Ê � ACQ

read º¥À » �
Ê�� REL

write º¥À�Ã ´A»
Èu� REL

read º¥À » �
Èu� ACQ

7.3 Well-Formedness

Although the annotations allow the clients to specify any pattern of acquiring and releas-
ing locks, clients are expected to use the locks in a restricted way. For example, an oper-
ation should not release a lock that it does not hold, nor should it acquire a lock that it
already holds. In this section, we define a well-formedness condition for clients specifying
a computation with locks, which formally expresses the properties we expect of computa-
tions specified by the clients. There are other possible well-formedness conditions, as we
discuss at the end of this section.

Informally, we impose four restrictions on how the clients may acquire and release
locks. First, the clients may not release a lock unless it is held. Second, they may not
acquire a lock that is already held. Third, acquisitions and releases of locks must come
in matching pairs; that is, for each operation that acquires a lock, there must be a unique
corresponding operation that releases it. Fourth, the acquisition of a lock must “guard”
its locked section in the following sense: If ' acquires a lock for z then any operation that
precedes z and does not hold the lock acquired by ' must also precede ' .

Formally, a computation with locks � is well-formed if for all �¥.¥� , the following
conditions are satisfied:� Rels &_�q*�N Holds &_�+* ; that is, only operations that hold � release it.� For each 'I. Acqs &_�+* ,

– Holds &_�R��'v*¨w Acqs &_�q*p���U'%� ; that is, no operation that holds � acquired by ' , other
than ' itself, acquires � .

– there exists zG. Rels &_�q* such that Holds &_�R��'B*� â '¶�xzZã ; that is, there is a unique
release operation corresponding to ' .

– For zi. Holds &_�R��'¶* and ¢¦�. Holds &_�R��'¶* , if ¢¥yGz then ¢lyc' ; that is, ' guards
Holds &_�R��'v* .
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We denote the set of well-formed computations by WFL.

Example 7.8 The computations from Examples 7.3 and 7.7 are well-formed; the computation from
Example 7.4 is not.

In a well-formed computation, an operation cannot hold the same lock acquired by two
different operations. Thus, locked sections for the same lock are disjoint; that is, the set of
operations that acquire a lock by one operation is disjoint from the set of operations that
acquire the same lock by a different operation.

Lemma 7.8 If 9 is a well-formed computation with locks � , and '¶��'�L�. Acqs &_�q* for some�h.f� such that 'mr��' L , then Holds &_�R��'¶*`w Holds &_�q��' L *p� � .

Proof: Let Â ¡ Holds ¢5§F±x©�§ and Â  -¡ Holds ¢y§F±U©v ,§ . Because æ is well-formed, © lÁ Holds ¢5§F±x©¶ ,§ and ©B  lÁ
Holds ¢5§F±x©�§ . Suppose, for contradiction, ¬ Á=Â 9 Â   . By the definition of Holds ¢y§F±U©�§ , © ×¥¬ . Becauseæ is well-formed and © lÁ Holds ¢y§F±U©B ,§ , ©��8©B  . By symmetry, ©B ��8© , which is a contradiction.

The previous lemma means that � Holds &_�R��'¶*x� Û ! Acqs %¤£ ) is a partition of Holds &_�+* , so every
operation ' that holds a lock � is in a unique � -section. When the computation is clear
from context, we denote the � -section that contains '=. Holds &_�q* by � £ &('v* . Formally, � £ &('v*T�
Holds &_�q�xz~* such that z|. Acqs &_�q* and '=. Holds &_�R�xz~* .

The well-formedness condition requires a locked section to have a final operation that
releases the lock. No other operation in the locked section releases the lock.

Lemma 7.9 For any � -section � of a well-formed computation with locks, \ �bw Rels &_�q*µ\½�4 .

Proof: Let © Á Acqs ¢5§F§ be such that Â ¡ Holds ¢y§F±U©`§ . By well-formedness, there exists ¬ Á Rels ¢5§F§
such that Â ¡�Ô ©`±,¬TÕ . Because ¬ holds § acquired by © , Ô ©`±,¬p§ 9 Rels ¢y§F§¡ K . Thus, Â 9 Rels ¢y§F§O¡Ô ©�±,¬*Õ 9 Rels ¢y§F§`¡�¢pÔ ©`±,¬p§ 9 Rels ¢y§F§
§%£I¢�Ì�¬�Í 9 Rels ¢5§F§
§�¡YÌ ¬�Í .

Just as the operation that acquires a lock guards its locked section, the operation that
releases the lock is a “rear guard” for the section in that every operation outside the section
that is preceded by any operation in the section is preceded by the release operation.

Lemma 7.10 In a well-formed computation with locks � , for �|.¨� , ' . Acqs &_�+* , z5.
Holds &_�q��'¶*�w Rels &_�q* , ¢>. Holds &_�R��'¶* and ¢ L �. Holds &_�R��'v* , if ¢>y�¢ L then ¢J®�z�y�¢ L .
Proof: By well-formedness and Lemma 7.9, Holds ¢y§F±U©`§�¡�Ô ©`±,¬TÕ , so ©D×mxØ×m¬ .

Since x%  lÁ Holds ¢y§F±x©`§ and ©0×�x���x%  , there exists ¬/  Á Rels ¢y§F§ such that ©[×|¬/ p��x%  . Choose
an “earliest” such ¬/  ; that is, choose ¬/  Á Rels ¢y§F§ such that ©8×8¬� ���x-  and there is no ¬�    Á Rels ¢y§F§
such that © ×0¬/   ��m¬�  . By definition, ¬/  Á Holds ¢5§F±x©`§ , so by Lemma 7.9, ¬h %¡=¬ . Thus, ¬Y�lx%  .

The locked sections of a well-formed computation with locks define regions—sets of
operations—with special characteristics: The operation that acquires the lock for a locked
section � is denoted by gd &x�B* , the guard of � . The operation that releases the lock is rgd &x�B* ,
the rear guard of � . A region with a guard and a rear guard is called an enclosure. Regions,
guards, rear guards and enclosures are formally defined in Section 7.1.

The following lemma summarizes the basic properties of an � -section:

Lemma 7.11 In a well-formed computation 9 with locks � , for �_.f� and '=. Holds &_�q* ,
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� � £ &('v* is an enclosure of 9 .� � £ &('v*p� Holds &_�q� gd &x� £ &('v*F*µ* .� � £ &('v*�w Acqs &_�q*p� � gd &x� £ &('B*F* � .� � £ &('v*�w Rels &_�q*p� � rgd &x� £ &('B*F* � .� � £ &('v*p���U')��< � �Y&('B�	�q*p� A/R.

Proof: By Lemma 7.8, we know that Âª© ¢Z©`§ is well-defined. By well-formedness and Lemma 7.9,
there are ¬ Á Acqs ¢y§F§ and x Á Rels ¢5§F§ such that Âª© ¢Z©`§�¡ Holds ¢5§F±�¬7§`¡FÔ ¬J±|x�Õ , and Âª© ¢Z©`§ 9 Acqs ¢y§F§�¡YÌ�¬`Í
and Â�© ¢�©`§ 9 Rels ¢5§F§M¡WÌ_xRÍ . By well-formedness and Lemma 7.10, Â«© ¢Z©`§ is an enclosure with ¬d¡
gd ¢ Â © ¢Z©`§�§ and x�¡ rgd ¢ Â © ¢�©`§
§ . Finally, Â © ¢Z©�§�¡0Ì ©�Í if and only if ©b¡ gd ¢ Â © ¢Z©�§A§�¡ rgd ¢ Â © ¢�©`§�§ , which is
true if and only if © Á Acqs ¢5§F§ 9 Rels ¢y§F§ , that is, if ¬º¢Z©�±]§F§`¡ A/R.

It follows immediately that the operations that acquire � are the guards of the � -sections,
and those that release � are the rear guards.

Corollary 7.12 For any lock �=.�� of a well-formed computation with locks � , we have
Acqs &_�q*p� � gd &x� £ &('B*F*T2?'I. Holds &_�+* � and Rels &_�+*J� � rgd &x� £ &('v*+*T2Ý'=. Holds &_�q* � .

From now on, we consider only computations that are well-formed.
We can relax our well-formedness assumptions so that multiple operations release a

lock acquired by a single operation. This relaxation requires the memory system to keep
track of partial releases of a lock, which greatly complicates the semantics. We opt for the
simpler semantics in this thesis.

Even if operations that acquire and release locks must come in matching pairs, the well-
formedness condition may be relaxed by allowing an operation that acquires a lock but is
not a guard of the region for which it acquires the lock. For example, Cheng’s proposal for
introducing concurrency within critical sections in Cilk [24] allows this relaxation. How-
ever, the resulting locked regions do not have the nice properties of enclosures, and so are
more difficult to reason about. Again, we opt for the simpler semantics.

Some systems have an even stronger well-formedness condition: They do not permit
concurrency while a lock is being held; that is, every locked section must be serial. In
a traditional setting with threads, a thread cannot fork or spawn another thread while it
holds a lock. Formally, we model this condition as a client restriction, the serial locked
sections restriction:

SerLockSec ���+9�. WFL 2 every locked section of 9 is serial �¨�
Example 7.9 The computation from Example 7.3 is in SerLockSec, but the one from Example 7.7 is
not.

Example 7.10 The following computation has serial locked sections:
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Ê � REL

noop �noop � read º¥À »
È�� ACQ

Ê � A/R

write ºÂÁ�Ã ´(»È�� REL

write º¥À�Ã ´A»È�� REL

read ºÂÁ »
write ºÂÁ�Ã ¹�»
Ê � ACQÈf� ACQ

write º¥À�Ã ¹�»
noop ·

Although the serial locked sections restriction is a very strong restriction, it is com-
monly assumed when programming concurrent systems. For example, for processor-
centric systems, discussed in Chapter 6, any well-formed computation with locks satisfies
this condition, because the processors that acquire and release locks are sequential. We use
this restriction in Section 7.8.

Much of the literature on data race detection [96, 25] also assumes serial locked sections,
which greatly simplifies the algorithms for detecting data races. If locked sections may
have concurrency within them, then operations within the locked section may comprise a
data race. We discuss data races in more detail in Section 7.6.

7.4 Respecting Locking

Clients specify locking for the same reason they specify precedence dependencies: to re-
strict how the system may execute the operations of a computation. In the traditional
setting, a system with locks ensures that no lock is held by two threads at the same time.
In this section, we adapt this notion to the computation-centric framework, where there is
no notion of threads or time, by defining what it means for a schedule to respect locking.
We also prove several lemmas about schedules that respect locking. Just as we require
schedules to respect precedence dependencies for memory models in general, in modeling
memories with locks, we restrict our attention to schedules that respect locking.

Informally, each lock must be acquired before it is released, and it must be released
before it is acquired again. Clients may specify concurrent requests to acquire a lock; the
system must ensure that the lock is released before allowing it to be acquired again. Such
a system is said to respect locking.

Formally, for a schedule � of a computation 9 with locks � , we define the acquire-
release schedule of � for a lock �.3� to be the projection onto the operations that acquire
or release � , denoted by � £ � ��\Acqs %�£ )k Rels %�£ ) . A schedule � respects � if � £ � S � . Acqs &_�q* and�Y&�� £ � ��� �	�+*7� ACQ < � �Y&�� £ � � � S � �	�+*7� REL, for b��� � \ � £ \ ; that is, the first operation of an
acquire-release schedule acquires the lock, and an operation acquires but does not release
the lock if and only if the next operation in the acquire-release schedule releases and does
not acquire the lock. A schedule respects (mutex) locking for � if it respects � for all �~.'� .
We denote the set of schedules of 9 that respect locking by RespLock &A9~* .
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Example 7.11 For the computation from Example 7.7, only two schedules respect locking:

write ¢Z©`±+¼½§�± read ¢Z©`§ ° ± write ¢�©`±U¾%§
± write ¢�©`± ï#§�± read ¢�©`§ ²
write ¢Z©`±+¼½§�± write ¢Z©�±
ï#§
± read ¢Z©�§ ° ± write ¢�©`±U¾%§
± read ¢�©`§ ²

The other schedule, write ¢Z©`±+¼½§�± read ¢Z©�§A°½± write ¢Z©`± ï#§�± write ¢Z©�± ¾-§
± read ¢Z©�§�² , does not respect Ç .

Example 7.12 The computation from Example 7.4 has no schedules that respect locking.

Example 7.13 A computation that is not well-formed may have schedules that respects locking.
Consider the following computation on

×
with locks Ì�ÖK±pÇ�Í :

Èf� ACQ

write º¥À�Ã ¹�»
Èu� ACQ

write º¥À�Ã ¼¶»Èf� REL

write º¥À�Ã ´(»

Èu� REL

read º¥À »
The schedule write ¢�©`±q¼½§
± write ¢�©`±U¾%§
± write ¢�©`± ï#§�± read ¢�©`§ respects locking—it is the only one—even
though the computation is not well-formed.

In the acquire-release schedule of any schedule that respects locking, an acquire is im-
mediately followed by its matching release.

Lemma 7.13 If 9�. WFL and � respects �/.f� then for all � ,�C&�� £ � � � �	�q*J� ACQ

� � £ � � � S � � rgd &x� £ &�� £ � ��� *F*F�

Proof: Suppose this lemma is not true. Pick the minimum » violating this lemma, that is, with¬«¢x� © h ¸ i ±z§F§�¡ ACQ and � © h ¸x·v°
i ®¡ rgd ¢ Âª© ¢U� © h ¸�i §
§ . Let ©|¡ � © h ¸x·B°
i and ¬W¡ gd ¢ Â�© ¢�©`§
§ . Because �
respects § , ¬«¢�©`±]§F§/¡ REL, so, since æ is well-formed, ¬º¢�¬p±]§F§_¡ ACQ, ©Y¡ rgd ¢ Â«© ¢�¬J§�§ and ¬��ØÖI© .
Choose £ such that ¬�¡V� © h ¡ i . Because � is a schedule of æ , we have ¬ ª ¦@® © , or equivalently,£�ª0»#èC¼ . We know £�®¡â» because rgd ¢ Â © ¢ ¬J§A§`¡Y©¯®¡ rgd ¢ Â © ¢U� © h ¸�i §
§ . But then � © h ¡ ·v°ki ®¡C©b¡ rgd ¢ Â © ¢ ¬J§�§ ,
contradicting the minimality of » .

For well-formed computations, there is a more natural characterization of schedules
that respect locking: A schedule respects a lock if the release corresponding to each acquire
of the lock appears before the next acquire of the lock.

Lemma 7.14 For 9�. WFL, �{. Sch &A9~* and �_.f� , � respects � if and only if for all � -sections� and � L , gd &x�B* �b� gd &x� L * 
n�
rgd &x�B* ��� gd &x� L * .

Proof: Suppose � respects § , and Â and Â   are § -sections such that gd ¢ Â §�ªM¦ gd ¢ Â  ,§ . If Â ¡ v gd ¢ Â § y
then rgd ¢ Â §¡ gd ¢ Â §MªO¦ gd ¢ Â  x§ . Otherwise, since gd ¢ Â §�± gd ¢ Â  x§ Á Acqs ¢5§F§ by Corollary 7.12, we
have gd ¢ Â §º¡P� © h ¸�i and gd ¢ Â  ,§>¡ � © h ¸ á i with »¯ªV»�  , and ¬º¢ gd ¢ Â §�±z§F§º¡ ACQ. By Lemma 7.13,
rgd ¢ Â §�¡�� © h ¸x·B°
i , so rgd ¢ Â §B¤ ¦ gd ¢ Â  ,§ . Since rgd ¢ Â §7®¡ gd ¢ Â  x§ , rgd ¢ Â §`ª ¦ gd ¢ Â  ,§ .
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Suppose � does not respect § . Since æ is well-formed and � is a schedule of æ , � © h °ki Á Acqs ¢y§F§ ,
so there exists » such that either ¬º¢U� © h ¸ i ±z§F§�¡ ACQ and ¬º¢U� © h ¸x·v°gi ±z§F§7®¡ REL or ¬«¢x� © h ¸ i ±z§F§�®¡ ACQ and¬«¢x� © h ¸x·v°
i ±]§F§�¡ REL. Let Â ¡ Âª© ¢U� © h ¸�i § and Â  -¡ Â�© ¢U� © h ¸U·v°
i § .

In the first case, � © h ¸ i ¡ gd ¢ Â §J®¡ rgd ¢ Â § and � © h ¸x·v°gi ¡ gd ¢ Â  ,§ by Corollary 7.12, since � © h ¸�i ±µ� © h ¸U·v°
i Á
Acqs ¢y§F§ and � © h ¸ i�lÁ Rels ¢y§F§ . Since gd ¢ Â §�ª ¦ ® rgd ¢ Â § , we have gd ¢ Â §`ª ¦ gd ¢ Â  ,§B¤ ¦ rgd ¢ Â § .

In the second case, � © h ¸�i ¡ rgd ¢ Â § and � © h ¸U·v°
i ¡ rgd ¢ Â  ,§I®¡ gd ¢ Â  ,§ by Corollary 7.12, since� © h ¸�i ±µ� © h ¸x·v°ki Á Rels ¢y§F§ and � © h ¸x·v°gi�lÁ Acqs ¢y§F§ . Since gd ¢ Â  ,§�ª ¦ ® rgd ¢ Â  �§ and gd ¢ Â §�®¡ gd ¢ Â  x§ , we have
either gd ¢ Â  ,§�ª ¦ gd ¢ Â §B¤ ¦ rgd ¢ Â §`ª ¦ rgd ¢ Â  ,§ or gd ¢ Â §`ª ¦ gd ¢ Â  ,§v¤ ¦ rgd ¢ Â §�ª ¦ rgd ¢ Â  ,§ .

It follows immediately from the previous lemma that two schedules that respect lock-
ing have the same acquire-release schedule as long as they consistently order the acquires;
in an acquire-release schedule, a release, if it is a separate operation, immediately follows
its matching acquire.

Corollary 7.15 For 9�. WFL and �/� � . RespLock &A9~* , if ��\ Acqs %¤£ ) � � \Acqs %�£ ) then � £ � � £ .
If a schedule respects locking, then any operation that holds a lock � and is scheduled

between the guard and rear guard of an � -section is in that � -section. That is, � -sections do
not overlap in a schedule that respects locking.

Lemma 7.16 For 9�. WFL, if � . RespLock &A9~* , � is an � -section of 9 for some ��.¦� , and'I. Holds &_�q* then '=.0�¯< � gd &x�B*�� � 'I� � rgd &x�¶* .
Proof: If © ÁYÂ then by the definition of gd ¢ Â § and rgd ¢ Â § , gd ¢ Â § ×ØÖÚ©0×_Ö rgd ¢ Â § , and since � is a
schedule of æ , gd ¢ Â §¶¤ ¦ ©>¤ ¦ rgd ¢ Â § .

If © lÁ«Â then gd ¢ Â © ¢�©`§
§7®¡ gd ¢ Â § . If gd ¢ Â © ¢�©`§
§`ª ¦ gd ¢ Â § then by Lemma 7.14, ©>¤ ¦ rgd ¢ Â © ¢Z©`§
§`ª ¦
gd ¢ Â § . If gd ¢ Â §`ª ¦ gd ¢ Â © ¢Z©�§�§ . then by again Lemma 7.14, rgd ¢ Â §�ª ¦ gd ¢ Â © ¢�©`§�§v¤ ¦ © .

The previous lemma implies that if two operations are in different � -sections, then the
rear guard of the first operation is scheduled before the guard of the second operation.

Corollary 7.17 For 9W. WFL, �t. RespLock &A9~* , �.°� and 'B�xz4. Holds &_�q* , if � £ &('v*�r��� £ &Zz�*
and ' � � z then rgd &x� £ &('v*F* � � gd &x� £ &Zz�*F* .
Proof: Since � is a schedule of æ , which is well-formed, ©>ªO¦M¬â¤<¦ rgd ¢ Â�© ¢�¬J§�§ . Since © lÁ¯Âª© ¢�¬p§ , by
the previous lemma, ©ºªM¦ gd ¢ Âª© ¢�¬p§A§ . Again, since gd ¢ Âª© ¢�©`§�§7¤<¦K© and gd ¢ Â�© ¢ ¬J§A§ lÁ=Â�© ¢�©`§ , we have
by the previous lemma, rgd ¢ Âª© ¢�©`§
§�ªM¦ gd ¢ Âª© ¢�¬J§
§ .

Respecting locking is a “monotonic” property in that adding precedence dependencies
does not introduce any new schedules that respect locking.

Lemma 7.18 If 9 is stricter than 9 L then RespLock &A9~*�N RespLock &A9 L * .
Proof: If � Á RespLock ¢�æ�§ then � Á Sch ¢�æ�§ ô Sch ¢�æ� �§ respects locking, so � Á RespLock ¢
æ_ ,§ .

Also, requiring a system to respect locks will not get the system “stuck”, provided the
clients specify a well-formed computation. That is, every well-formed computation has
some schedule that respects locking.

Lemma 7.19 For 9�. WFL, RespLock &A9~*sr�î� .
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Proof: By Lemma 7.7, there exists � Á Sch ¢
æ�§ such that every enclosure of æ appears contiguously
in � . We show � Á RespLock ¢
æ�§ ; that is, for all § Á²± , � respects § .

Let Â and Â   be any § -sections of æ such that gd ¢ Â §�ªM¦ gd ¢ Â  ,§ . By Lemma 7.8, gd ¢ Â  �§ lÁºÂ . Since
every enclosure appears contiguously in � and Â is an enclosure, ©Kª ¦ gd ¢ Â  x§ for any © ÁºÂ , and in
particular, rgd ¢ Â §`ª ¦ gd ¢ Â  �§ . Thus, by Lemma 7.14, � respects § .

The definition for respecting locking formally expresses the intuitive semantics of locks,
of which there are several variants. We focus primarily on mutex locks, that is, locks that
guarantee mutual exclusion. Other kinds of locks, which allow more concurrency than
mutex locks, require different definitions for what it means to respect them. Many of the
results in this and later sections have obvious analogies for other kinds of locks. In Sec-
tion 7.9, we consider one variant, shared/exclusive locks. For now, however, we restrict our
attention to mutex locks.

7.5 Memories with Locks

In this section, we define several computation-centric models for memory systems with
locks. Like the memory models defined in Chapter 5, these models are unifications and
generalizations of many models or implementations of systems with locks [16, 49, 96, 25],
because of the computation-centric framework in which they are defined. We first define
sequential consistency with locking. Then we define weaker models that allow return values
to be explained by different schedules. The models differ in how they synchronize lock
accesses, ranging from generic locking, which does not guarantee any synchronization, to
strong sequential locking, in which every lock access synchronizes with every other opera-
tion. The most important of these weak models for our purposes is weak sequential locking,
which synchronizes lock access only with other accesses to the same lock.

A memory system with locks guarantees that the values returned for operations are
generated by schedules that respect locking. The strongest memory model we consider
simply adds the locking constraint to sequential consistency. Thus, all the return values are
explained by a single schedule. Formally, the memory model for sequential consistency
with locking is:

SCL ���R&A9<�#Ú)*T2����{. RespLock &A9~*µ�R� explains ÚH�
Of course, sequential consistency with locking implements sequential consistency.

Lemma 7.20 SCL implements SC.

Proof: Immediate from the definitions of SCL and SC, since RespLock ¢
æ�§ ô Sch ¢�æ�§ for any æ .

Because locks were introduced to structure the programs of early concurrent systems,
which were sequentially consistent, sequential consistency with locking is the model pro-
grammers typically assume.

The constraints imposed by locks have two components. First, as mentioned above,
the schedules used to generate return values are restricted to schedules that respect lock-
ing. Second, access to the locks is typically synchronized; that is, the system schedules
the lock accesses consistently. We want to minimize the synchronization because it is ex-
pensive. To explore this space, we define a model that only restricts the schedules, but
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does not synchronize any operations, and then strengthen this model with varying levels
of synchronization.

The base model that respects locking is the generic locking memory model. Formally,

GL ���q&A9<�#Ú)*p2 � '=. V̄7�����{. RespLock &A9~*µ�#Ú�&('B*J� retval &('¶�R��*U�¨�
Except that only schedules that respect locking are used to explain the return values, this
definition is identical to the definition from Section 5.1 of generic memory GM, the weakest
of all memory models. Without synchronization, generic locking is too weak to implement
critical sections. We use it as the basis for memory models with locks that synchronize.

Example 7.14 The return value functions defined below are all the observer functions for the com-
putation from Example 7.7.© write ¢�©`±q¼½§ read ¢�©`§�° write ¢�©`±U¾%§ write ¢�©`± ï-§ read ¢�©`§�²ç-¢�©`§ ACK ¼ ACK ACK ïç% U¢�©`§ ACK ï ACK ACK ¾ç%   U¢�©`§ ACK ¼ ACK ACK ¾ç)      ¢�©`§ ACK ï ACK ACK ï
All these observer functions are also admissible according to GL. Only ç and ç�  are admissible
according to SCL.

Example 7.15 GL and SCL admit observations for computations that are not well-formed, as long
as they have schedules that respect locking. The observer functions for the computation from
Example 7.13 are: © write ¢�©`±q¼½§ write ¢�©`± ¾-§ write ¢�©`±
ï#§ read ¢Z©�§ç-¢�©`§ ACK ACK ACK ïç%  ¢�©`§ ACK ACK ACK ¾
Although the computation is not well-formed, GL and SCL admit ç , but not ç¨  , for it.

Although the generic locking memory provides very weak guarantees, it is incompa-
rable to, not weaker than, sequential consistency.

Lemma 7.21 GL is incomparable to SC.

Proof: To see that GL ®ô SC, consider the observer function ç       from Example 7.14. GL admits ç      
for the computation from Example 7.7, but SC does not.

To see that SC ®ô GL, consider the observer function ç¨  from Example 7.15. SC admits ç¨  for the
computation from Example 7.13, but GL does not.

We model synchronization using synchronizing transformations, which are formally
defined in Section 5.5. Synchronized operations are ordered consistently in every sched-
ule that the system uses to generate return values for operations. Synchronizing trans-
formations are defined using a synchronization predicate, which indicates whether two
operations must be synchronized. The transformation adds precedence dependencies to
the specified computation so that operations that must be synchronized according to the
predicate are ordered by the computation. Thus, synchronized operations appear in the
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same order in any schedule of a transformed computation. That is, the synchronizing
transformation defined by a synchronization predicate � is

÷ s� ��³s&A9<��9 L *¶2 V̄=� V̄ ^ ý E ¯YN E ¯ ^ ý ann ¯=� ann ¯ ^ý &��«&('¶�xz~��9~* 
� '[®�¯ ^ z��GzB®�¯ ^ 'B*;´ �
Sequential consistency with locking is the same as generic locking with all operations

synchronized.

Lemma 7.22 SCL �î÷ s
True & GL * .

Proof: If ¢
æ7±�ç�§ Á SCL then there exists � Á Sch ¢�æ�§ that respects locking and explains ç . Consider
the computation æh  Á ã s

True ÔÂæNÕ that is the same as æ except that E Ö á ¡dªM¦ . We have ¢
æh ,±�ç�§ Á GL
because � Á Sch ¢�æ_ x§ .

If ¢�æ�±�ç�§ Á ã s
True ¢ GL § then there exists æ_  Á ã s

True ÔöæõÕ such that ¢
æh ,±�ç�§ Á GL. By the definition
of

ã s
True, VÖ á is totally ordered by ×ØÖ á , so æh  has only one schedule. Because ¢�æ� �±�ç�§ Á GL, the

lone schedule � respects locking and ç-¢Z©`§M¡ retval ¢�©`±+�¶§ for all © Á VÖ á , so � explains ç . Thus,¢�æ�±�ç�§ Á SCL.

We now define three models that specify intermediate levels of synchronization: weak
sequential locking, sequential locking, and strong sequential locking. Informally, sequential
locking and strong sequential locking are defined by designating every lock access as a
synchronization operation. Most shared memory models with locks are defined in this
way [2, 26]. Sequential locking guarantees that all synchronization operations are syn-
chronized with each other, which corresponds to weak synchronization from Example 5.1.
Strong sequential locking requires that the synchronization operations also synchronize
with nonsynchronization operations, corresponding to strong synchronization from Ex-
ample 5.2. Weak sequential locking relaxes the guarantees of sequential locking by requir-
ing lock accesses to synchronize on a per-lock basis only; accesses to the same lock must
be synchronized, but accesses to different locks need not be.

We present these models from strongest to weakest. As we shall see, the results that
we prove in this thesis depend only on the guarantees of weak sequential locking. Thus,
the formal definitions of sequential locking and strong sequential locking can be skipped
without loss of continuity.

Most weakly consistent multiprocessor systems have special synchronization opera-
tions that provide stronger consistency guarantees than the ordinary operations. When
locks are implemented on such systems, the lock accesses are synchronization operations.
Different systems provide different guarantees for synchronization operations. For exam-
ple, the weak ordering model from Example 6.10 requires every operation to synchronize
with the synchronization operations [32]. This corresponds with strong synchronization
from Example 5.2. The model resulting from implementing locks on strongly synchronized
systems is strong sequential locking.

Formally, an operation acquires or releases a lock �O.m� if �Y&('¶�	�+*�r� NIL. So the strong
sequential locking synchronization predicate is� SSL &('¶�xz���9~*\1 &M���_.f�¶�µ�D¯J&('¶�	�q*sr� NIL *�� &M��� L .f�¶�µ�D¯7&Zz~�	� L *<r� NIL *F�
That is, two operations synchronize if either acquires or releases any lock. The strong
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sequential locking memory model is SSL �î÷ s�
SSL

& GL * .
In other systems, the synchronization operations synchronize only with each other,

corresponding with weak synchronization from Example 5.1. Release consistency [43], for
example, specifies this level of synchronization. The model resulting from implementing
locks with weak synchronization, where two operations synchronize if they both access
some lock (not necessarily the same one), is sequential locking. Formally, the sequential
locking memory model is SL �î÷ s�

SL
& GL * , where� SL &('B�xz~��9~*S1 &M���/.u�¶�µ�D¯7&('¶�	�+*<r� NIL * ý &M��� L .f�T�µ�D¯7&Zz~�	� L *~r� NIL *F�

For the results we prove in this thesis, it suffices to synchronize access to a lock only
with other accesses to the same lock. That is, two operations synchronize if there is some
lock that they both access. This allows different locks to be maintained by parts of a dis-
tributed system that do not communicate with each other. Formally, the weak sequential
locking memory model is WSL �î÷ s�

WSL
& GL * , where� WSL &('¶�xz~��9~*31¶���h.%�¶�½&)�D¯�&('B�	�q*<r� NIL ý �D¯J&Zz��	�q*sr� NIL *F�

Example 7.16 Consider the observer functions from Example 7.14. WSL, SL and SSL all admit ç
and ç)  , but not ç%    and ç)      , for the computation from Example 7.7.

As the names suggest, strong sequential locking implements sequential locking, which
implements weak sequential locking. Sequential consistency with locking is stronger than
all of these models.

Lemma 7.23 SCL N SSL N SL N WSL.

Proof: This lemma follows immediately from Lemma 5.8 because SCL ¡ ã s
True ¢ GL § by Lemma 7.22

and � WSL ¢�©`±�¬J±�æ�§7ò*ó·� SL ¢�©`±�¬J±�æ�§7ò*ó·� SSL ¢�©`±�¬J±�æ7§ .
None of these models are the same: Sequential consistency with locking guarantees

sequential consistency even when no locks are accessed; all three sequential locking vari-
ants are equivalent to generic memory in this case. We can see that the sequential locking
variants differ from each other in the following example:

Example 7.17 Consider the following computation on Î (from Example 2.1) with locks Ì�ÖK±pÇ�Í :
write º ¹.»
Ê¡� A/R

read � read ·
Èu� A/R

read � © read ° read ² read ö write ¢U¼Ý§ç-¢�©`§ ¼ É É ACKç) x¢Z©�§ É ¼ É ACK

WSL admits both ç and ç)  for this computation;
SL admits only ç)  ; SSL does not admit either of
these observer functions.

Example 7.18 Consider the following program:
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x,y,z = 0

P1: Acquire(A) P2: repeat{t <- read(z)}
write(x,1) until (t = 1)
Release(A) Acquire(B)
write(y,1) a <- read(x)
write(z,1) b <- read(y)

Release(B)

On a system that doesn’t allow reordering, the program generates the following computation,
except that there may be multiple instances of the read ¢yxX§ operation. The last one, we know, gets a
return value of ¼ .

Èf� ACQ

noop

read º{¸ » noop

Ê¡� ACQ

noop

Èu� REL

write º¥À�Ã ¹.» write ºÂÁ�Ã ¹�»
read º¥À »

read ºÂÁ »
write º{¸zÃ ¹�»

noop

Ê � REL

If the return value for read ¢{xX§ is ¼ , then the only schedule that explains this value orders all the
operations of ²B¼ before any operations of ²%¾ . Consider the observer functions for this computation
with the following return values for the read operations:© read ¢yxE§ read ¢�©`§ read ¢ ¬J§ç-¢�©`§ ¼ ¼ ¼ç) x¢Z©�§ ¼ ¼ Éç)   U¢�©`§ ¼ É ¼ç)     U¢�©`§ ¼ É É

If this program on a memory system that guarantees only WSL, it may observe any of these
observer value functions. Running on SL, the read ¢�©`§ and read ¢ ¬J§ are after the acquire of Ç . Since
write ¢Z©�±q¼½§ appears before a release of Ö , and the release of Ö and acquire of Ç are synchronized,
the read ¢�©`§ must see the write. Because the write ¢�¬J±+¼½§ does not have any synchronization operation
after it, its value need not propagate throughout the system, so read ¢ ¬J§ can get É . Thus, SL admits
both ç and ç)  . However, SSL requires all operations to be ordered with respect to the synchroniza-
tion operations, so it only admits ç .

Although it may seem a natural relaxation to synchronize lock accesses on a per-lock
basis, few multiprocessor systems allow this. The only ones we are aware of are the scope
consistency and entry consistency models [59, 15], and a proposed memory model for
Java [94].1

7.6 Data Races Under Locking

Because a memory with locks synchronizes lock accesses, locks are used to resolve races
in computations. Operations that do not hold any lock in common, however, may form

1The current memory model for Java [49] is similar to sequential locking with coherence.
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unsynchronized races, or data races. In this section, we formally define data races for mem-
ories with locks, and prove that clients that avoid data races can assume sequential consis-
tency when running on a system that guarantees only weak sequential locking.

A system guarantees that the locks are acquired and released in a consistent way, using
the lock accesses as synchronization operations. Because locked sections for the same lock
do not overlap in any schedule that respects locking, competing operations in different
locked sections of the same lock cannot actually be concurrent. We say that the lock arbi-
trates the race. Operations that are not arbitrated are not synchronized; if they compete,
they form a data race.

Formally, two operations of a well-formed computation with locks � share a lock �/.u�
if they both hold � . They are arbitrated by � if they share � and are not in the same � -section.
Two operations compete under locking if they compete and are not arbitrated by any lock;
they form a data race under locking. A well-formed computation is data-race-free under
locking if no operations compete under locking, that is, if all races are arbitrated.

A program is data-race-free under locking if it generates only computations that are
data-race-free under locking. The client restriction for data-race-freedom under locking is:

DRFL �|�+9l2%9 is data-race-free under locking ���
If a computation is data-race-free under locking, then schedules that consistently order

the accesses to each lock are strongly equivalent.

Lemma 7.24 If 9�. DRFL, �/� � . RespLock &A9~* and for all �_.f� , � £ � � £ , then �31 str
�

.

Proof: The relation E ÖK£ � © Ü@¹ ª ¦ ® is a strict partial order because it is contained in ªO¦ . Let æ_  be
the computation such that VÖ á ¡ VÖ and E Ö á ¡ E ÖK£8� © Ü@¹ ª ¦ ® . Since � © ¡ 4 © for all § Áº± , both �
and

4
are schedules of æ_  . We show that æ_  is completely race-free, which implies that �D6 str

4
.

For ©`±�¬ Á VÖ such that ©ÚªM¦�¬ , if © and ¬ compete in æ then they are protected by some lock§ , since æ is date-race-free under locking. So © and ¬ both hold § and © lÁ=Â © ¢�¬J§ . By Corollary 7.17,
rgd ¢ Â © ¢�©`§
§�ª ¦ gd ¢ Â © ¢�¬J§�§ . Because æ is well-formed, rgd ¢ Â © ¢�©`§A§ Á Rels ¢y§F§ and gd ¢ Â © ¢�¬J§�§ Á Acqs ¢y§F§ ,
so ¢ rgd ¢ Â © ¢�©`§
§�± gd ¢ Â © ¢ ¬J§�§�§ Á E Ö á , and ©\× Ö á rgd ¢ Â © ¢�©`§
§s� Ö á gd ¢ Â © ¢ ¬J§A§_× Ö á ¬ . So © and ¬ do not
compete in æ_  . Thus, æ_  is completely race-free.

We now prove the main result of this chapter: When clients are data-race-free under
locking, weak sequential locking implements sequential consistency.

Theorem 7.25 WSL implements SCL under DRFL.

Proof: If ¢�æ�±�ç�§ Á WSL
�
DRFL then æ Á DRFL and ¢�æ_ ,±�ç�§ Á GL for some æ_  Á ã s�

WSL
ÔÂæõÕ , so for every© Á VÖ á , ç-¢Z©`§/¡ retval ¢Z©`±µ�¶§ for some � Á RespLock ¢�æ_ x§ ô RespLock ¢�æ�§ . Let � Á RespLock ¢�æ�§ be a

schedule that explains the return value of some operation © Á VÖ . We show that for all ¬ Á VÖ ,ç-¢ ¬J§�¡ retval ¢ ¬J±µ�¶§ .
Let

4 Á RespLock ¢
æ_ x§ be the schedule that explains ç � è ? ê . For all § Á»± , Acqs ¢5§F§?£ Rels ¢5§F§ is totally
ordered by × Ö á , so � © ¡ 4 © . By Lemma 7.24, �D6 str

4
, since æ Á DRFL, so ç-¢ ¬J§�¡ retval ¢�¬p±+�¶§ . Thus,� explains ç , and ¢
æ�±�ç�§ Á SCL.

It follows immediately that all the sequential locking variants are equivalent to sequen-
tial consistency with locking under data-race-free clients.

Corollary 7.26 WSL, SL, SSL and SCL are all equivalent under DRFL.
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Proof: Immediate from Theorem 7.25 and Lemmas 7.23, 4.3 and 4.4.

Theorem 7.25 is a crucial result for using weakly consistent memories that have locks.
It is similar to Theorem 5.4, which requires a programmer to write only completely race-
free programs. However, complete race-freedom is a strict discipline, suitable for “em-
barrassingly parallel” problems or systems that can specify barrier synchronization and
provide it cheaply. Depending on the facilities of the programming system, it may be
difficult to structure a program so that it is completely race-free. In contrast, data-race-
freedom under locking is the recommended style for programming concurrent systems
with locks [22, 16, 51, 70], even when the system guarantees sequential consistency. Data
races are usually considered bugs, and there is a rich body of research on algorithms to de-
tect data races in systems with locks [31, 96, 25, 24], again often on systems that guarantee
sequential consistency. Theorem 7.25 says that if you write a program that is data-race-
free under locking for a sequentially consistent system, then you can run the program
unchanged on a system that provides only weak sequential locking (assuming the systems
have the same interface).

An alternative proof for Theorem 7.25 builds directly on the proof for Theorem 5.4.
It uses the following lemma, which says that with weak sequential locking, a data-race-
free computation is completely race-free, or else does not have any schedules that respect
locking.

Lemma 7.27 If 9�. DRFL and 9MLB.H÷ s�
WSL

â�9�ã then either RespLock &A9OLU*T� � or 9MLv. RF.

Proof: Suppose RespLock ¢�æ� ,§Ú®¡ K . Let � Á RespLock ¢
æ_ ,§ ô RespLock ¢�æ�§ . Consider ©`±�¬ Á VÖ á .
Assume, without loss of generality, that ©¯ª ¦ ¬ . If © and ¬ do not compete in æ then they do not
compete in æ_  since E Ö ô E Ö á . If © and ¬ compete in æ then, since æ Á DRFL, they are arbitrated
by some lock § Áu± ; that is, ©`±,¬ Á Holds ¢y§F§ and Â © ¢Z©`§<®¡ Â © ¢ ¬J§ . ( Â © ¢Z©`§ and Â © ¢ ¬J§ are § -sections and
enclosures of æ .) Let ©B �¡ rgd Ö ¢ Â © ¢�©`§
§ and ¬/ �¡ gd Ö ¢ Â © ¢ ¬J§A§ . By Corollary 7.17, ©B �ª ¦ ¬/  . Because
E Ö ô E Ö á , ©�×_Ö á ©B  and ¬� ×_Ö á ¬ . Since ©B  Á Rels ¢y§F§ , ¬/  Á Acqs ¢y§F§ and æ_  Á ã s�

WSL
ÔöæõÕ , we have

either ©v h�_Ö á ¬�  or ¬/ /�_Ö á ©B  . The latter is not possible because ©¶ JªM¦¯¬/  and � Á Sch ¢�æ_ �§ . So© ×_Ö á ©   �_Ö á ¬   ×_Ö á ¬ , and thus, © and ¬ do not compete in æ   .
Theorem 7.25 follows immediately from this lemma, because if &A9<�#Ú)*�. WSL \ DRFL

then &A9MLU�#Ú)*º. GL for some 9MLO. ÷ s�
WSL

â�9�ã . So RespLock &A9OLU*=r� � , and thus, 9OLM. RF. By
Lemma 5.3, GL and SCL are equivalent under RF, so &A9�L �#Ú)*�. SCL, and thus, &A9<�#Ú)*/. SCL.

7.7 Locks vs. Direct Synchronization

The literature contains many results similar or related to the results of the previous sec-
tion [43, 45, 5, 11, 70, 59]. The most widely cited result, by Gharachorloo, et al. [43], says that
release consistency guarantees sequential consistency for “properly labeled” programs.
Much of the work on similar results has been done in the context of programmer-centric
memory models, which we discuss in Section 6.7. In this section, we discuss the differences
between the programmer-centric results in that section and the results of this chapter.

There are two basic modeling differences. First, the results of the previous chapter
assume a processor-centric view of memory; the results of this chapter do not. That is,
the precedence dependencies may define an arbitrary partial order on the operations as
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long as the locked sections form enclosures in the computation, and the data type of the
memory may be arbitrary, rather than being restricted to a simple read/write memory.
This flexibility in the partial order allows us to model systems such as in Cilk [105] and
Java [49], which do not have a fixed assignment of computation to processors.2 Second,
we model locks explicitly in the computation rather than specifying the synchronization
to implement them. The data-race-free computations of the programmer-centric models
implement locking using synchronized reads and writes on the memory, and they encode
the order of these synchronization operations, and thus the order in which the locks are
acquired, using precedence dependencies. We discuss the problems of using precedence
dependencies to model synchronization in Section 5.5. The computations in this chapter
have more abstract information and look more similar to a high level program.

In addition to differing in the approach to modeling, the results in this chapter also dif-
fer from the results about programmer-centric models in the level of synchronization re-
quired of the system. Theorem 6.13 uses weak ordering, which is similar to—even slightly
stronger than—strong sequential locking. We could also have used release consistency,
which is similar to sequential locking. In either case, every operation that accesses a lock
is synchronized with every other operation that accesses a lock, even if they access dif-
ferent locks. Theorem 7.25 uses weak sequential locking, which requires operations to
be synchronized only if they access the same lock, and thus admits more efficient imple-
mentations. More complicated programmer-centric models, such as the data-race-free-1
and properly-labeled-2 models [5, 41], distinguish additional types of operations, such
as unpaired synchronization or nsync operations, which only synchronize with conflicting
synchronization operations, allowing them to handled more efficiently than ordinary syn-
chronization operations. However, nsync operations cannot be used to implement locks
or synchronize access to data by “ordinary” operations, so they have limited utility.

Finally, because we model locks explicitly, Theorem 7.25 guarantees sequential consis-
tency with locking, not just sequential consistency, for computations that are data-race-free
under locking. Because the theorems about programmer-centric models in the literature
guarantee only sequential consistency, we would need to reason separately about the lock-
ing guarantees.

7.8 Locks and Locations

For a memory with locations, there is a simple locking discipline that guarantees data-race-
freedom under locking: Associate a lock with each location in memory, and access the
location only when the lock is held. This locking discipline is widely used, or at least
widely recommended [16, 70]; various forms of it appear in the early literature on concur-
rent programming and transaction processing [28, 57, 22, 35]. In this section, we express
this discipline in the computation-centric framework, and show that, together with some
implicit assumptions about the system, it guarantees data-race-freedom under locking.

2The current specification of Java’s memory model [49], as well as the proposals to replace it [82, 94, 46], are
processor-centric; they assume that there is a virtual processor for each thread. Pugh and Manson propose to
model the dependencies implied by dynamic thread creation as an imaginary synchronized (volatile) memory
access [94].
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There are many variations, usually relaxations, of this discipline. We discuss some of them
briefly at the end of this section.

A lock �/.f� is associated with a location
� .H� in a well-formed computation 9�. WFL

if every operation performed on
�

holds � ; that is, V̄T\ �N Holds ¯�&_�+* . A computation locks
all locations if every location has an associated lock. We characterize clients that lock all
locations by LockLocs �W�+9�. WFL 2 � � .H�O���K�/.f�T�	� is associated with

� � . Locking all loca-
tions is the basic locking discipline used to avoid data races under locking. The dynamic
data race detector Eraser [96] checks that this discipline is obeyed, reporting violations as
potential data races.

Example 7.19 The computation from Example 7.10 locks all locations; Ö is associated with © and Ç
is associated with ¬ .

The discipline of locking all locations originated in the context of systems that did
not expect concurrency within a locked section. Locking all locations does not “protect”
against races within a single locked section. We avoid such races by requiring the com-
putations to satisfy the serial locked sections restriction from Section 7.3: SerLockSec ��+9�. WFL 2 every locked section of 9 is serial � .
Example 7.20 Consider the following computation with locks ÌxÖ_Í . (This computation is the com-
putation from Example 7.7 without the lock Ç .) Although Ö is associated with © , this computation
is not data-race-free under locking.

read º¥À » �
write º¥À�Ã ¼¶»

write º¥À�Ã ´A»
Èu� ACQ

write º¥À�Ã ¹.»
Èu� REL

read º¥À » �

Clients that lock all locations and have serial locked sections are data-race-free under
locking.

Lemma 7.28 LockLocs w SerLockSec N DRFL.

Proof: If æ Á LockLocs 9 SerLockSec and two operations compete in æ then they must be performed
on the same location. Since æ Á LockLocs, they must both hold some lock § . They cannot be in
the same § -section, because all § -sections in æ are serial, and so do not contain races. Thus, the
operations are in different § -sections, and are arbitrated by § .

From the previous lemma, it immediately follows that for clients that lock all locations
and have serial locked sections, sequential locking implements sequential consistency.

Theorem 7.29 WSL implements SCL under LockLocs w SerLockSec.

Proof: Immediate from Theorem 7.25 and Lemma 7.28.

There are several ways we can relax the simple discipline of locking all locations, and
still guarantee data-race-freedom. On a read/write memory, we can take advantage of the
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semantics of the operations, recognizing that reads do not conflict. For example, we can
associate several locks with each location, and require that a write hold all the associated
locks, while a read hold at least one. Although we do not formalize this discipline, it is
easy to see that it guarantees data-race-freedom under locking. Alternatively, we can use
read/write locks, which provide weaker exclusion guarantees than mutex locks. We discuss
read/write locks, also called shared/exclusive locks, in Section 7.9.

We can also relax this discipline by not requiring clients to acquire the lock for oper-
ations that are not in any races. For example, operations that initialize a location should
be ordered before any other operations to that location. Also, some locations—final vari-
ables in Java [49], for example—are written only at initialization. Savage, et al. [96] extend
Eraser to accommodate these two cases. We can generalize this discipline even further by
allowing concurrency within locked sections, as long as every race is arbitrated by some
lock.

Formally, a location
� .s� is protected by �_.f� in a well-formed computation 9�. WFL

if every pair of competing operations on
�

is arbitrated by � . A computation protects all
locations if every location is protected by some lock. Clients that protect all locations are
characterized by ProtLocs ���+9�. WFL 2 � � .s�O�����h.%�¶�	� protects

� � .
Example 7.21 In the computation from Example 7.7, Ç protects © but Ö does not. Ironically, Ö is
associated with © but Ç is not.

Lemma 7.30 ProtLocs N DRFL.

Proof: Immediate from definition.

Theorem 7.31 WSL implements SCL under ProtLocs.

Proof: Immediate from Theorem 7.25 and Lemma 7.30.

The umbrella locking discipline of Cheng, et al. [25] is slightly less restrictive than ProtLocs,
but still implies data-race-freedom under locking. Informally, the computation is divided
into a sequence of phases, so that every operation in one phase logically precedes every
operation in the next phase. The umbrella locking discipline allows a location to be “pro-
tected” by different locks in different phases. This discipline is used to efficiently detect
potential races in Cilk computations. Cheng extends their algorithm to computations that
allow concurrency within locked sections [24]. We do not formalize this discipline here.3

Example 7.22 The following computation is data-race-free under locking. It obeys the umbrella
locking discipline.

3Its exact formalization requires computations to be representable as series-parallel parse trees, which holds
for computations generated by Cilk programs but not for arbitrary well-formed computations.
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Èf� A/R Ê � A/R

Ê � A/RÈf� A/R

noop

write º¥À�Ã ´(»
write º¥À�Ã ¹�» write º¥À�Ã ¼¶»

read º¥À » �
write º¥À�Ã µA»

read º¥À » �

Example 7.23 The following computation does not lock all locations, nor does it protect all loca-
tions or even obey the umbrella locking discipline. It is, however, data-race-free.

Èu� A/R

write º¥À�Ã ¹.»
Ê � A/R

Ê � A/R

read º¥À »
È�� A/R

read º¥À »

7.9 Shared/Exclusive Locks

In this chapter, we have focused on mutex locks, which are the simplest and strongest kind
of locks. To allow greater concurrency, some systems provide more flexible locks [14, 51].
The results in this chapter can be easily extended to results about other kinds of locks.
In this section, we discuss how to model the most common variant, shared/exclusive locks,
which are often called read/write locks.

Shared/exclusive locks extend mutex locks by allowing a lock to be acquired in one of
two modes, which the client must specify when it attempts to acquire the lock. A shared
acquire acquires the lock in shared mode, while an exclusive acquire acquires the lock in ex-
clusive mode. The well-formedness condition is the same as with mutex locks, except that
acquires now specify whether they are shared or exclusive. The mode of a lock held by an
operation in a locked section is determined by the operation that acquires the lock.

Shared/exclusive locks differ from mutex locks in how they constrain the schedules
allowed by the system. A shared acquire may proceed as long as no thread holds the lock
in exclusive mode. An exclusive acquire may proceed only if no thread holds the lock in
either mode. Thus, several threads may hold the lock concurrently in shared mode, but if
any thread holds the lock in exclusive mode, no other thread may hold it in either shared
or exclusive mode.

This difference is reflected in the definition of what it means to respect locking. For a
well-formed computation, a schedule respects shared/exclusive locking if� the release corresponding to any shared acquire occurs before the next exclusive ac-

quire of the same lock, and� the release corresponding to any exclusive acquire occurs before the next acquire,
shared or exclusive, of the same lock.
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Several shared acquires may occur before any of the corresponding releases, but exclusive
acquires may not occur until the releases corresponding to all previous acquires have oc-
curred. This characterization of schedules that respect shared/exclusive locking is similar
to the characterization in Lemma 7.14 of schedules that respect locking, except that a lock
may be acquired multiple times in shared mode without being released. The condition for
mutex locking is identical to the case in shared/exclusive locking where all lock acquisi-
tions are exclusive.

Because the condition for respecting locking is relaxed, we also modify the definition of
data-race-freedom under locking. In particular, two shared acquisitions of a lock no longer
arbitrate a race. Two operations are arbitrated by a shared/exclusive lock if they are in different
lock sections of the lock, and at least one operation holds the lock in exclusive mode. A data
race under shared/exclusive locking is a race that is not arbitrated by any shared/exclusive
lock. A computation is data-race-free under shared/exclusive locking if there are no data races
under shared/exclusive locking.

With these definitions, we can modify the results from earlier sections of this chapter,
so that they hold for shared/exclusive locking. In fact, the weak sequential locking model
may be further relaxed so that it no longer needs to synchronize the shared lock accesses
with each other. They must, of course, be synchronized with the exclusive lock accesses.

When the data type of the memory is read/write memory, each location can have an
associated lock, as discussed in Section 7.8. If every write operation holds the lock in
exclusive mode, and every read operation holds the lock in either shared or exclusive
mode, and lock sections are serial, then the computation is guaranteed to be data-race-free
under shared/exclusive locking. For this reason, these locks are often called read/write
locks, with shared acquires called read acquires, and exclusive acquires called write acquires.

7.10 Discussion

In the literature, it is common to characterize the pattern of synchronization reads and
writes needed to implement locking, describe the consistency guarantees of a system for
these synchronization operations, and show that programs that follow the prescribed pat-
tern run on the system as though it were sequentially consistent. However, locks guar-
antee more than just sequential consistency, and the programmer was left to reason that
the exclusion constraints implied by locking were also guaranteed. Although this latter
reasoning could be done assuming sequential consistency, experience has shown that even
sequentially consistent systems are difficult to program correctly [70].

In this chapter, we model locks directly instead of modeling the synchronization mech-
anisms used to implement locking. In doing so, we adopt a more abstract view of memory
systems with locks. The computations capture the programmer’s intent, as expressed in
the program. The memory model captures the properties that the programmer relies on
when reasoning about a program. This more abstract view has the usual advantages of
good abstraction. The analysis is simpler, corresponds more closely with the program-
mer’s informal reasoning, and is more robust under changes to the program or the system.
We can also easily extend our theory to model different kinds of locks. We take the ap-
proach of specifying the programmer’s intent even further in the next chapter, where we
show how to model transactions, which locks are often used to implement.
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In many systems, locks are assumed to be held by a single processor, and no concur-
rency is allowed within a locked section. The use of computations makes this restriction
unnecessary and also allows us to model systems that provide arbitrary data types.

Because we focus on locking, the models in this chapter capture only the properties
needed to use locks effectively, decoupling them from properties such as coherence, which
are typically also provided by memory systems. By separating these properties, we give
system designers greater flexibility and control in defining the guarantees of their systems.
In particular, the freedom from having to maintain coherence gives compiler writers much
needed room for improving the code generated by reordering operations [93].

An obvious way to extend the work in this chapter is to study other kinds of locks and
the conditions needed to use them effectively, or refine the conditions given in this chapter
for mutex and shared/exclusive locks. Similarly, we can explore how to relax the well-
formedness conditions for computations with locks. For example, Cheng [24] notes that in
the Cilk programming system, operations that acquire locks need not guard their locked
sections.

We might also want to allow locks to be passed in a more flexible way. For example,
in some multithreaded languages [16, 49, 96], new threads may be created (spawned or
forked) while a lock is being held, but “ownership” of a lock is not passed to newly created
threads. We can model this behavior by assigning every vertex in the computation at most
one primary edge, which indicates the flow of control of the parent thread. A lock must be
released by the same thread that acquired it, and an operation holds a lock only if there is
a path from an acquisition of the lock along primary edges and without any intervening
releases of the lock.
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Chapter 8

Transactions

Although locking is a high level synchronization primitive, it is primarily a mechanism
to implement critical sections. A critical section is a section of code that is intended to
appear as though it executes atomically; that is, operations outside the section do not see
any state internal to the section. Thus, the critical section appears to be a single complex
operation, often called a transaction. In this chapter, we define memories that allow clients
to explicitly specify transactions rather than a mechanism that implements them. We show
how these memories can be used and implemented. To our knowledge, no other frameork
for specifying weak memory consistency handles transactions explicitly.

Informally, a transaction is a collection of operations with four “ACID” properties [51]:
atomicity, consistency, isolation and durability. We are most concerned with isolation, also
called serializability [14], which asserts that each transaction appears to execute alone, that
is, without other operations executing concurrently. We also briefly consider consistency1

or integrity, which requires transactions to maintain certain constraints on the state of the
memory. Atomicity2 and durability primarily address fault-tolerance, which we do not
deal with in this thesis.

Transactions are a powerful concept for structuring concurrent programs, encouraging
a style that has been proven to produce large fault-tolerant distributed systems, a “dis-
tributed system application development approach that can be used by mere mortals [51].”
In particular, the ability to consider transactions in isolation supports abstraction and mod-
ularity, both laterally and hierarchically. The literature on transactions is vast; the discus-
sion in this chapter barely scratches the surface.

In practice, transactions are usually implemented using two-phase locking [35]. We show
how to model two-phase locking in the computation-centric framework, and, using a tech-
nique called reserialization, we prove it implements transactions. Although two-phase lock-
ing typically assumes sequential consistency, we show that systems that provide weak
sequential locking, as defined in Chapter 7, are sufficient to guarantee the transactional
behavior. We also show how to use a different technique called program reduction [73] to
show that a collection of consecutive operations appears as a transaction.

1This property is distinct from the memory consistency we discuss in this thesis.
2Lynch, et al. [80] use atomicity in a much stronger sense, combining the atomicity, isolation, and durability

properties above.
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Transactions are expensive to implement because they inhibit concurrency between
transactions that access the same data. To mitigate this cost, weaker models have been
defined, that admit more efficient implementations but guarantee weaker “degrees of iso-
lation”. Unfortunately, it is difficult to characterize the guarantees of these systems. We
define internally consistent transactions, which can be implemented efficiently, but which
still provide isolation.

Outline: Section 8.1 defines computations with transactions, gives a well-formedness
condition for these computations, and characterizes schedules that respect transactions.
In Section 8.2, we define the basic transactional memory, sequentially consistent transactional
memory. Section 8.3 introduces the technique of reserialization, which is used in Section 8.4,
where we discuss two phase locking. We discuss program reduction in Section 8.5. In
Section 8.6, we introduce weaker transactional memories, which we show share several
useful properties of sequentially consistent transactions. In particular, in Section 8.7, we
formally define integrity, and show how internally consistent transactions maintain it. In
Section 8.8. we define what it means for two transactions to compete, and we give condi-
tions under which the weaker transactional models are indistinguishable from sequentially
consistent transactions. Section 8.9 discusses the work presented and the many future di-
rections that are possible.

Reading Guide: This chapter is more the beginning of an exploration than a finished
work. The first four sections parallel and build on the work on memory systems with
locks in Chapter 7. Section 8.5 is an aside, exploring a rather different approach to rea-
soning about concurrent programs; it is independent of the other sections. Sections 8.6
through 8.8 are explore relaxed transactional models and the properties they guarantee.
These sections are more tentative and speculative than the rest of this thesis because there
are no real systems that have guarantees like the ones proposed here. We believe that fur-
ther investigation of these and similar models would be very fruitful, and these sections
are an attempt to point out some directions.

8.1 Computations with Transactions

A transaction is specified by indicating the operations that begin and end the transaction;
it consists of the operations between its beginning and its end. Each transaction is assigned
an identifier by the operation that begins it. A transaction should appear to occur atomi-
cally to operations outside the transaction. In this section, we define the formal mechanism
to describe transactions in the computation-centric framework, and the well-formedness
condition for computations with transactions. We also formally characterize the schedules
that respect transactions, that is, the schedules in which the transactions appear atomic.

A system that supports transactions has a set TI of transaction identifiers. An opera-
tion that begins a transaction is annotated by BT & ÌX* , where Ìm. TI is the identifier of the
transaction. Similarly, the end of a transaction is annotated by ET & ÌX* .

Formally, a computation with transactions is a computation with annotation set � T �� BT & ÌX*T2¶ÌK. TI �qk_� ET & ÌX*¶2¶Ì. TI � . For a computation 9�.3° ±] T
, we denote the set of identifiers
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used in 9 by 9~� tids �|�
Ìs2 ann ¯J&('v*�.=� BT & ÌX*µ� ET & ÌX*U� for some 'I. V̄�� .
Example 8.1 The computation from Example 3.13 is a computation with transactions.

Example 8.2 Another computation with transactions:

write ºÂÁYÃ ¹.»
BT º}Í � »

write º¥À�Ã ¹.» write ºÂÁ�Ã ´A»

BT º}Í � »
read º¥À » �

read º¥À » �
ET º}Í � »

ET º}Í � »
write º¥À�Ã ´(»

read ºÂÁ »
We model the clients as assigning the transaction identifiers, placing on them the bur-

den of maintaining unique identifiers. We could instead let the clients specify only that
a transaction is beginning or ending, leaving the system to choose the identifier. Because
there are no constraints on the form of the identifiers, there is little semantic difference
between these choices. Requiring transaction identifiers to be explicit in the computation
makes the well-formedness condition easier to state.

Well-formedness. As the terminology suggests, the identifier for each transaction must
be unique, the operation that begins a transaction must precede the operation that ends
it. Because a transaction should appear atomic, operations outside the transaction that
precede any operation of the transaction must precede the beginning of the transaction.
Similarly, operations outside the transaction that follow any operation of the transaction
must follow the end of the transaction. Finally, a transaction cannot start or end inside
another transaction.

Formally, a computation 9 .n° ±] T
with transactions is well-formed if for all Ìº.�9~� tids,

the following conditions hold:� there is a unique operation bt ¯J& ÌE*/. V̄ such that ann ¯�& bt ¯7& ÌX*F*p� BT & ÌX* ,� there is a unique operation et ¯�& ÌE*�. V̄ such that ann ¯7& et ¯J& ÌX*F*p� ET & ÌE* ,� â bt ¯J& ÌX*+� et ¯J& ÌX*�ã is an enclosure of 9 , and� ann ¯J&('v*J� NIL for all '=.¥& bt ¯J& ÌE*q� et ¯J& ÌE*+* .
The first two clauses assert the uniqueness of transaction identifiers. The third clause ex-
presses the next two informal conditions, which follow from the definition of an enclosure
of a dag in Section 7.1; that is, that bt ¯J& ÌX* is a guard, and et ¯J& ÌX* is a rear guard, of the trans-
action. The last clause restricts our computations to “flat” transactions; that is, transactions
are all disjoint. It is not difficult to extend this framework to nested transactions, but we do
not do so in this thesis. We denote the set of well-formed computations with transactions
by WFT.
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Example 8.3 The computation from Example 3.13 is well-formed; the one from Example 8.2 is not.

Example 8.4 The following computation with transactions is well-formed:

write ºÂÁYÃ ¹.» write º¥À�Ã ¹�»
write º¥À�Ã ´(» ET º}Í � »

read º¥À » �
ET º}Í � »

read º¥À » �write ºÂÁ�Ã ´(»
BT º}Í � »

read ºÂÁ »
BT º}Í � »

From now on, we consider only computations that are well-formed.

Transactions and isolated operations. For 9�. WFT and Ì�.{9~� tids, the operations bt ¯J& ÌX*
and et ¯J& ÌX* are well-defined, and the transaction of Ì is Tr ¯J& ÌE*0� â bt ¯7& ÌX*µ� et ¯7& ÌX*�ã . Such
transactions are nontrivial; they have at least two operations, bt & ÌX* and et & ÌX* . An operation
that is not in the transaction of any transaction identifier used in 9 is isolated, and the set of
isolated operations is denoted by Isol ¯C� V̄>� ��¼ !W¯ o tids Tr & ÌX* . We omit the subscript when
the computation is clear from context. Any singleton set containing an isolated operation
is a trivial transaction.

Example 8.5 The computation from Example 8.4 uses two transaction identifiers, Ó ° and Ó ² , with
transactions Tr ¢}Ó?°½§O¡�Ì write ¢�¬p± ¾-§
± read ¢Z©�§�°FÍ and Tr ¢}Óq²�§O¡�Ì read ¢�¬J§
± read ¢�©`§(²�Í respectively. It has
three isolated operations, write ¢�¬J±+¼½§ , write ¢Z©�±q¼½§ and write ¢�©`±U¾%§ .

By definition, every operation is in some transaction, and the trivial transactions are
disjoint from each other and from the nontrivial transactions. We show that the nontrivial
transactions are also disjoint.

Lemma 8.1 If 9�. WFT and Tr ¯J& ÌX*�w Tr ¯J& Ì-Lx*~r� � then Ì<�FÌ-L .
Proof: Since æ is well-formed, Tr ¢}ÓÝ§ and Tr ¢XÓ� (§ are enclosures of æ , and by Lemma 7.6, Â ¡ Tr ¢}ÓÝ§ 9
Tr ¢}Ó   § is an enclosure with gd ¢ Â § Á v gd ¢ Tr ¢XÓÝ§
§�± gd ¢ Tr ¢}Ó   §�§ y . Without loss of generality, suppose
gd ¢ Â §O¡ gd ¢ Tr ¢}ÓÝ§�§M¡ bt ¢}ÓÝ§ . Then bt ¢XÓÝ§ Á�Â ô Tr ¢}Ó� (§ . Since ann Ö ¢ bt ¢}ÓÝ§�§M¡ BT ¢}ÓÝ§ , ann Ö ¢ et ¢XÓE ,§
§M¡
ET ¢}ÓX �§ , and ann Ö ¢ ¬J§�¡ NIL for ¬ Á Tr ¢}ÓX ,§vílÌ bt ¢}ÓX �§�± et ¢}ÓX ,§ Í , we have bt ¢XÓÝ§�¡ bt ¢}ÓX ,§ . And since
ann Ö ¢ bt ¢XÓE ,§
§�¡ BT ¢XÓE ,§ , we have Ó�¡3ÓX  , as required.

The previous lemma implies that � Tr & ÌX*U� ¼ !W¯ o tids partitions V̄�� Isol; that is, the nontrivial
transactions partition the non-isolated operations. We associate with each non-isolated
operation, the identifier of the transaction that contains it; that is, 'B� tid ��Ì if '�. Tr & ÌE* .3

The transaction of 'I. V̄ is Tr &('B*T� Tr &('v� tid * if ''�. Isol, or Tr &('B*p���x')� if 'I. Isol.
The transaction of any operation is an enclosure.

3An alternative way to specify transactions is to annotate each operation with the identifier of its transac-
tion, or NIL if the operation is isolated. The well-formedness condition is that Tr º}Í » c�½~À�¾ ann º¥À » c ÍÀ¿ is an
enclosure of the computation for every transaction identifier Í that annotates an operation.
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Lemma 8.2 If 9�. WFT and '=. V̄ then Tr &('B* is an enclosure of 9 .

Proof: If © lÁ Isol then Tr ¢�©`§h¡ Tr ¢�©`³ tid §h¡ Ô bt ¢�©`³ tid §
± et ¢Z©`³ tid §XÕ , which is an enclosure because æ is
well-formed. Otherwise, © Á Isol, so Tr ¢Z©`§`¡YÌ(©�Í , which is an enclosure by Lemma 7.2

Often, each transaction is requested by a single sequential client, which we model as a
client restriction. Formally, the serial transactions restriction is:

SerTr ���+9�. WFT 2 every transaction of 9 is serial �¨�
Example 8.6 The computation from Example 8.4 satisfies the serial transactions restriction; the one
from Example 3.13 does not.

Respecting transactions. We now formalize the informal semantics that a computation
with transactions is intended to specify. Following our treatment of locking, we charac-
terize the schedules that respect transactions. Informally, a transaction should appear to be
performed atomically; that is, operations outside the transaction should not observe the
effects of some but not all of the operations of the transaction, and operations within the
transaction should not observe any interference by outside operations. This property is
variously called atomicity,4 serializability or isolation [14, 51, 80]. We model it by requiring
the operations of a transaction to be scheduled consecutively; that is, they must appear
contiguously in the schedule.

Formally, suppose 9 is a well-formed computation with transactions. A schedule ��.
Sch &A9~* respects transactions if for all Ì¥.[9~� tids, Tr ¯�& ÌE* appears contiguously in � . We
denote the set of schedules that respect transactions by RespTr &A9~* .
Example 8.7 The schedules of the computation from Example 8.4 that respect transactions are:

write ¢ ¬J±+¼½§�± write ¢�©`±+¼½§�± write ¢Z©`±U¾-§�± write ¢�¬p± ¾-§
± read ¢Z©�§A°½± read ¢�¬J§
± read ¢�©`§(²
write ¢ ¬J±+¼½§�± write ¢�©`±+¼½§�± write ¢Z©`±U¾-§�± read ¢�¬p§�± read ¢�©`§�²�± write ¢�¬J±U¾-§�± read ¢�©`§
°
write ¢ ¬J±+¼½§�± write ¢�©`±U¾-§�± write ¢Z©`±+¼½§�± write ¢�¬p± ¾-§
± read ¢Z©�§ ° ± read ¢�¬J§
± read ¢�©`§ ²
write ¢ ¬J±+¼½§�± write ¢�©`±U¾-§�± write ¢Z©`±+¼½§�± read ¢�¬p§�± read ¢�©`§ ² ± write ¢�¬J±U¾-§�± read ¢�©`§ °
write ¢ ¬J±+¼½§�± write ¢�©`±U¾-§�± read ¢�¬J§
± read ¢�©`§ ² ± write ¢Z©`±+¼½§�± write ¢�¬p± ¾-§
± read ¢Z©`§ °

There are sixteen schedules all together, so restricting to those that respect transactions significantly
decreases the number of schedules to reason about.

Example 8.8 Because of isolated operations, merely acquiring a system-wide lock at the beginning
of each transaction and releasing it at the end does not guarantee that a schedule that respects
locking will also respect transactions. Consider the following modification of the computation
from Example 8.4:

4In the transaction processing context, atomicity also refers to a related property, that either all or none of
the effects of a transaction are seen. The concern in that context is that the transaction may fail to complete
because of some fault in the system. We do not treat fault tolerance in this thesis, so the issue does not arise.
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write ºÂÁYÃ ¹.» write º¥À�Ã ¹�»
write º¥À�Ã ´(» Èu� REL

read º¥À » �
Èu� REL

read º¥À » �write ºÂÁ�Ã ´A»
Èf� ACQ

read ºÂÁ »
Èf� ACQ

The following is a schedule of this computation, but not one of the original computation:

write ¢�¬J±+¼½§�± write ¢Z©�± ¾-§
± read ¢�¬p§�± write ¢Z©`±+¼½§�± read ¢Z©`§ ² ± write ¢�¬p± ¾-§
± read ¢Z©�§ ° ³
As the term “serializability” suggests, transactions appear not to execute concurrently.

That is, in a schedule that respects transactions, if any operation of one transaction pre-
cedes any operation of another, then every operation of the first precedes every operation
of the second.

Lemma 8.3 Suppose 9 is a well-formed computation with transactions, �V. RespTr &A9~* ,
and '¶�xz�. V̄ with Tr &('B*~r� Tr &Zz_* . If ' �b� z then ' L �K� z L for all ' L . Tr &('v* and z L . Tr &Zz�* .
Proof: Immediate from the definition of respecting transactions, because the operations of Tr ¢Z©`§
appear contiguously in � , as do the operations of Tr ¢ ¬J§ .

Every well-formed computation has some schedule that respects transactions.

Lemma 8.4 For 9�. WFT, RespTr &A9~*<r� � .

Proof: Immediate from Lemmas 7.7 and 8.2

8.2 Sequentially Consistent Transactions

In this section, we define a sequentially consistent transactional memory. This model guaran-
tees the traditional serializable transactions. Sequentially consistent transactions provide
a powerful way to structure concurrent programs.

The definition of sequentially consistent transactional memory is analogous to that of
sequential consistency with locking: Any observation of this model can be explained by a
single schedule that respects transactions. Formally,

SCT �|�R&A9<�#Ú)*J2,�v�{. RespTr &A9~*µ�R� explains ÚH����R&A9<�#Ú)*p2@���{. RespTr &A9~*µ� � 'I. V̄p�#Ú�&('v*p� retval &('B�R��*U�
This model is often called serializable transactions or atomic transactions [14, 80].

Obviously, a sequentially consistent transactional memory is sequentially consistent.

Lemma 8.5 SCT implements SC.

Proof: Immediate from the definitions since RespTr ¢�æ�§ ô Sch ¢�æ�§ .
Every well-formed computation has some observation admissible according to SCT.
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Lemma 8.6 SCT is complete under WFT.

Proof: Immediate from the definitions and Lemma 8.4.

Although comparing the “naturalness” of different kinds of guarantees is difficult, se-
quentially consistent transactional memory seems to be an attractive model to program.
Many techniques for structuring or reasoning about programs—critical sections [30], lock-
ing [14, 51], “pretending atomicity” [69], and others [80, 70]—are essentially ways to use
the guarantees of this model.

The chief attraction of transactions is that they support modularity and abstraction:
A programmer using a memory that guarantees sequentially consistent transactions does
not need to consider possible interactions among transactions except at the beginning and
end of each transaction. Thus, the correctness of one transaction does not depend on the
correctness of other transactions, making it possible to build complex operations using a
memory that supports a fairly simple data type. Unlike programming a memory with
locks, there is no need for a programmer to obey a locking discipline to guarantee correct
behavior; in particular, there is no need to keep track of which locks must be held to safely
perform each operation.

Because the system must maintain the appearance of serializable transactions as well as
sequential consistency, sequentially consistent transactions can be expensive to implement.
They are often implemented using two-phase locking, a method we discuss in Section 8.4.
For now, it suffices to note that this method often requires locks to be held for a long time,
restricting the possible concurrency. Relaxations of sequentially consistent transactions
have been defined to improve performance by permitting more concurrency. We discuss
some relaxed transactional memory models in Section 8.6.

8.3 Reserialization

In this section, we introduce a technique called reserialization for proving that a schedule of
a computation with transactions is equivalent to some schedule that respects transactions.
This technique is used in the next section to prove that two-phase locking implements
transactional memory, and it is necessary to understand the proofs in that section. It can
be skipped initially and referred to as needed. Only the main result, Theorem 8.11, is
needed outside of this section.

The idea behind reserialization is this: For each transaction, designate one operation
as its serialization point. A schedule is reserialized by reordering the operations according
to their serialization points, yielding a schedule that respects transactions. If conflicting
operations have not been reordered, the resulting schedule is equivalent to the original
schedule.

Reserialization is defined for any serialization of a set using a function that specifies
the serialization point for each element of the set. Given a set � , a function sp 2N�[3 �
and a serialization � of � , the reserialization of � according to sp, denoted reserial sp &���* ,
is a serialization

�
of � such that ' �8I z if and only if sp &('v* ��� sp &Zz�* or sp &('v*>� sp &Zz�*

and ' ��� z . Informally, sp &('v* is the serialization point for ' and reserialsp &���* orders the
elements of � according to their serialization points. Elements with the same serialization
point retain their order from � . The set of serialization points is range & sp * .
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Elements with the same serialization point are contiguous in the reserialization.

Lemma 8.7 If � is a serialization of � and sp 2��G3 � then for all '�. range & sp * , the set
sp QTS?&('v* appears contiguously in reserialsp &���* .
Proof: Immediate from the definition of reserialsp ¢x�¶§ , since the elements are ordered first by their
image under sp.

Given a computation, if the operations corresponding to each serialization point form
an enclosure containing the serialization point then the reserialization of any schedule is
also a schedule of the computation.

Lemma 8.8 For any computation 9 , if �{. Sch &A9~* and sp 2 V̄=3 V̄ such that sp QTS &('v* is an
enclosure of 9 with 'I. sp Q¶SH&('B* for all 'C. range & sp * , then reserialsp &���*�. Sch &A9~* .
Proof: Let

4 ¡ reserialsp ¢x�¶§ . Suppose that ¢Z©`±�¬J§ Á E Ö . If sp ¢�©`§`¡ sp ¢ ¬J§ then ©�ªM¦~¬ since � Á Sch ¢�æ�§ ,
so ©�ª O ¬ , as required. Otherwise, let Â ¡ sp ¹v° ¢ sp ¢�©`§
§ and Â  -¡ sp ¹B° ¢ sp ¢ ¬J§
§ . Note that Â and Â   are
disjoint enclosures with sp ¢�©`§ Á=Â and sp ¢�¬J§ Á=Â   . By Lemma 7.4 and the definitions of guard and
rear guard, sp ¢�©`§U× rgd ¢ Â §B� gd ¢ Â  ,§�× sp ¢ ¬J§ , so sp ¢�©`§�ªM¦ sp ¢�¬J§ , so ©Kª O ¬ , as required.

For a computation with transactions, if each transaction has a single serialization point
within the transaction, then the reserialization of any schedule is a schedule that respects
transactions.

Lemma 8.9 For 9�. WFT and sp 2 V̄03 V̄ such that sp QTS?& sp &('v*F*/� Tr &('B* for all 'â. V̄ , if�{. Sch &A9~* then reserialsp &���*�. RespTr &A9~* .
Proof: Let

4 ¡ reserialsp ¢x�¶§ . By the definition of sp, for all © Á sp ¢ VÖB§ , sp ¹v° ¢Z©`§¡ Tr ¢Z©`§ , which
is an enclosure of æ . Since © Á Tr ¢�©`§ , by Lemma 8.8,

4 Á Sch ¢
æ7§ . By Lemma 8.7, Tr ¢�©`§ appears
contiguously in

4
, so

4 Á RespTr ¢�æ�§ .
If conflicting operations are not reordered, that is, the order of their serialization points

is consistent with their order, the reserialization is equivalent to the original serialization.

Lemma 8.10 Given a set � of operations and sp 2T� 3 � , if � is a serialization of � such
that sp &('v*�� � sp &Zz�* whenever ' and z conflict and ' �>� z , then reserialsp &���*Z1 str � .

Proof: Let
4 ¡ reserialsp ¢U�¶§ . If ©>ª ¦ ¬ and ¬CªPO© , then sp ¢ ¬J§¶ª ¦ sp ¢�©`§ . Thus, sp ¢�©`§_®¤ ¦ sp ¢ ¬J§ , so ©

and ¬ do not conflict. By Theorem 2.16,
4 6 str � , as required.

We combine the previous two lemmas to get the main result of this section, which gives
conditions under which a schedule of a computation with transactions can be reserialized
to yield an equivalent schedule that respects transactions. The key to using this theorem is
choosing a serialization point for each transaction so that conflicting operations of different
transactions are ordered in the schedule consistently with their serialization points.

Theorem 8.11 For 9o. WFT and sp 2 V̄Y3 V̄ such that sp Q¶S & sp &('B*F*7� Tr &('B* for all 'C. V̄ ,
if ��. Sch &A9~* such that sp &('B*� � sp &Zz�* whenever ' and z conflict and ' ��� z , then there
exists

� . RespTr &A9~* such that
� 1 str � .
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Proof: By Lemmas 8.9 and 8.10, reserialsp ¢x�¶§ Á RespTr ¢�æ�§ and reserialsp ¢x�¶§N6 str � .

Theorem 8.11 is a variant of the serializability theorem [35, 14], which is usually used to
prove that a system implements sequentially consistent transactions. Serializability is the
property that a schedule has an equivalent schedule that respects transactions, although
the notion of equivalence used is even stronger than strong equivalence.5 The serializabil-
ity theorem gives a necessary and sufficient condition for the serializability of a schedule,
which is equivalent to the condition of Theorem 8.11.

8.4 Two-Phase Locking

In practice, transactions are almost always implemented using two-phase locking [35], and
in particular, a variant called strict two-phase locking [14]. A two-phase locking implemen-
tation consists of a transaction manager6 and a sequentially consistent system with locking.
The clients submit operations to the transaction manager, which adds lock accesses before
propagating the operations to the underlying system. In this section, we show how to
model the transaction manager as a transformation from computations with transactions
to computations with the appropriate lock accesses. We also show that such a manager
guarantees sequentially consistent transactions even when the underlying system only
supports weak sequential locking.

Informally, a transaction manager for two-phase locking ensures that the computation
executed on the underlying system is data-race-free under locking. In addition, once a lock
has been released for a transaction, no new locks may be acquired. Thus, each transaction
can be divided into two phases: a growing phase, during which locks are acquired, and a
shrinking phase, during which locks are released, with the growing phase preceding the
shrinking phase.

In the literature, two-phase locking is defined for systems in which transactions are
serial, data-race-freedom is enforced by associating locks with data items or entities as de-
scribed in Section 7.8, and locks are not held across transactions. Because these additional
restrictions are not necessary for the correctness of two-phase locking, we omit them from
our definition. We require only that the computation is data-race-free and that for each
transaction, every acquire operation precedes every release operation. We allow the trans-
action manager to add precedence dependencies to enforce data-race-freedom.

Formally, a region � of a computation with locks � is two-phase if every operation in
the region that acquires a lock precedes every operation in the region that releases any
lock; that is, if 'M®�z for all '�.��«w � £ !@Á Acqs &_�q* and z�.��«w � £ !,Á Rels &_�q* . A two-phase
locking transaction manager is modeled by the following computation transformation:

÷ 2PL � ³ &A9<��9 L *T2 V̄e� V̄ ^Vý E ¯YN E ¯ ^Vý 9�. WFT ý 9 L . DRFLý � Ì.{9~� tids � Tr ¯7& ÌE* is a two-phase enclosure of 9 L ´
5Bernstein, et al. also discuss a weaker notion of serializability, called view serializability, based on strong

equivalence, which they call view equivalence [14].
6Our transaction manager combines some of the functionality of the transaction manager and scheduler of

Bernstein, et al. [14], and of the resource managers and the transaction manager of Gray and Reuter [51].
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This transformation takes a well-formed computation with transactions and yields a data-
race-free computation with locks in which the transactions of the original computation are
two-phase enclosures of the transformed computation.

To show that using this transformation, sequential consistency with locking imple-
ments sequentially consistent transactions, we use the reserialization technique defined
in the previous section: We identify a serialization point for each transaction, and show
that for any schedule that respects locks, if the operations are reordered according to their
serialization points, the result is an equivalent schedule that respects transactions.

For two-phase locking implementations, the serialization point for each transaction is
an operation that holds every lock held by the transaction in the transformed computation;
that is, an operation in the same � -section as any operation in the enclosure that holds � .
First, we show that an operation in an enclosure of a well-formed computation with locks
has this property exactly when it follows every operation in the enclosure that acquires �
and precedes every operation in the enclosure that release � .
Lemma 8.12 For 9�. WFL, if � is an enclosure of 9 and 'I.Y� then, for all �h.f� ,& � z�.0�bw Acqs &_�q*µ�xz�®�'B* ý & � z|.Y�bw Rels &_�q*µ��'H®�z�*< � � z�.Y�bw Holds &_�q*µ�½&('Y. Holds &_�+* ý � £ &('v*J�t� £ &Zz_*F*
Proof: Suppose ¢¥ë�¬ Á¥Â 9 Acqs ¢5§F§
±,¬L×�©`§ ù ¢¥ë�¬ Á¥Â 9 Rels ¢y§F§�±x©n×W¬J§ and ¬ Á¥Â 9 Holds ¢y§F§ . If
gd ¢ Â © ¢�¬J§�§ ÁmÂ then gd ¢ Â © ¢�¬J§�§¢×d© since gd ¢ Â © ¢ ¬J§�§ Á Acqs ¢5§F§ . Otherwise, since gd ¢ Â © ¢ ¬J§A§�×t¬ Á8Â
and Â is an enclosure of æ_  , gd ¢ Â © ¢ ¬J§�§7× gd ¢ Â §8× © . In either case, gd ¢ Â © ¢ ¬J§A§8×V© . Similarly,©M× rgd ¢ Â © ¢�¬J§�§ . Thus, © Á�Â © ¢ ¬J§ . Since æ Á WFL, we have © Á Holds ¢y§F§ and Â © ¢Z©`§M¡ Â © ¢ ¬J§ , as
required.

Suppose ë�¬ Á«Â 9 Holds ¢5§F§
±R¢Z© Á Holds ¢5§F§ ù Âª© ¢Z©�§`¡ Â�© ¢�¬p§�§ . If ¬ Á«Â 9 Acqs ¢y§F§ ô Â 9 Holds ¢y§F§ , then© Á Holds ¢y§F§ and Â�© ¢�©`§�¡ Âª© ¢ ¬J§ . Since ¬ Á Acqs ¢5§F§ , ¬e¡ gd ¢ Âª© ¢ ¬J§�§�¡ gd ¢ Âª© ¢Z©`§
§ , so ¬0×l© . Similarly, if¬ Á«Â 9 Rels ¢y§F§ , then © × rgd ¢ Â�© ¢�©`§
§`¡ rgd ¢ Âª© ¢�¬p§A§�¡=¬ .

In any two-phase enclosure of a well-formed computation with locks, there is some
operation that follows every lock acquisition and precedes every lock release.

Lemma 8.13 An enclosure � of a well-formed computation 9 with locks � is two-phase if
and only if there exists 'I.0� such that for all �_.f� , z�®�' for all z|.0�bw Acqs &_�+* and 'H®�z
for all z|.Y��w Rels &_�q* .
Proof: Suppose Â is two-phase. If Â 9 � © Ü@¹ Acqs ¢y§F§�¡ K then for any § Á»± , we have Â 9 Acqs ¢y§F§�¡�K ,
and gd ¢ Â §P×W¬ for all ¬ Á�Â 9 Rels ¢5§F§ . Otherwise, choose © Á�Â 9 � © Ü@¹ Acqs ¢5§F§ such that ©�®�W¬
for all ¬ Á�Â 9 � © Ü@¹ Acqs ¢y§F§ . For any lock § , we have ©n×W¬ for all ¬ Á�Â 9 Rels ¢y§F§ because Â is
two-phase. For ¬ ÁºÂ 9 Acqs ¢y§F§ , we have © × rgd ¢ Â«© ¢ ¬J§A§ ô Rels ¢y§F§ , because ©J× rgd ¢ Â §B� rgd ¢ Âª© ¢ ¬J§A§
if rgd ¢ Â�© ¢ ¬J§�§ lÁ=Â , since Â is an enclosure. Because æ is well-formed and ©Y®�l¬ , we have © ÁeÂI© ¢ ¬J§ ,
so ¬=¡ gd ¢ Â © ¢�¬J§�§U×{© .

The other direction is trivial: For all ¬ ÁYÂ 9 � © Ü@¹ Acqs ¢y§F§ and ¬/  Á0Â 9 � © Ü@¹ Rels ¢5§F§ , we have¬0×{© ×m¬   .
Together, the previous two lemmas give an alternative characterization of the two-

phase locking transformation, in which every transaction has an operation that holds every
lock held by any operation in the transaction.
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Lemma 8.14

÷ 2PL � gÂÂi ÂÂj &A9<��9 L *¶2 V̄I� V̄ ^ ý E ¯YN E ¯ ^ ý 9�. WFT ý 9 L . DRFLý � Ì.{9~� tids � Tr ¯J& ÌX* is an enclosure of 9 Lý �%'=. Tr ¯J& ÌE*µ� � �_.f�T� � z|. Tr ¯7& ÌX*�w Holds ¯ ^ &_�q*µ�&('=. Holds ¯ ^ &_�q* ý � £ &('B*p��� £ &Zz�*F* p ÂÂrÂÂs
Proof: Except for the last condition, this definition is identical to the definition of

ã
2PL. The last

condition follows from Lemmas 8.12 and 8.13.

We use this characterization and the reserialization theorem from the previous section
to prove that, using the two-phase locking transformation, every schedule of the trans-
formed computation that respects locking is equivalent to some schedule of the original
computation that respects transactions.

Lemma 8.15 If ��. RespLock &A9LU* for some 9MLO.2÷ 2PL â�9�ã then there exists
� . RespTr &A9~*

such that
� 1 str � .

Proof: By Lemma 8.14, for every Ó Á æ�³ tids, there exists sp Ã Á Tr ¢XÓÝ§ such that for all ¬ Á Tr ¢}ÓÝ§ and§ Áu± , if ¬ holds § then sp Ã holds § and Â�© ¢ sp Ã�§�¡ Â�© ¢ ¬J§ . Define sp Ó VÖ ò VÖ so that sp ¢Z©`§J¡ sp Ã if© Á Tr ¢}ÓÝ§ and sp ¢Z©�§`¡0© otherwise, that is, if © Á Isol. Note that sp ¹B° ¢ sp ¢�©`§
§`¡ Tr ÖB¢Z©`§ for all © Á VÖ .
Except for the annotations, � Á Sch ¢�æ�§ because E Ö ô E Ö á . If © and ¬ conflict and ©¥ªM¦0¬

then because æ   Á DRFL, either © and ¬ are arbitrated by some lock § ÁÄ± , or ©|� Ö á ¬ . In the
first case, Â © ¢Z©`§�®¡ Â © ¢ ¬J§ , so by Corollary 7.17, rgd ¢ Â © ¢�©`§
§sª ¦ gd ¢ Â © ¢�¬p§A§ . Since Â © ¢ sp ¢�©`§
§M¡ Â © ¢Z©`§
and Â © ¢ sp ¢ ¬J§A§h¡ Â © ¢ ¬J§ , we have sp ¢Z©`§~¤ ¦ rgd ¢ Â © ¢�©`§A§/ª ¦ gd ¢ Â © ¢ ¬J§�§<¤ ¦ sp ¢ ¬J§ . In the second case,
either sp ¢�©`§/¡ sp ¢ ¬J§ or Tr ¢�©`§ and Tr ¢�¬p§ are disjoint enclosures of æ~  , so by Lemma 7.4, sp ¢�©`§Ë× Ö á
rgd Ö á ¢ Tr ¢�©`§
§/� Ö á gd Ö á ¢ Tr ¢�¬J§�§× Ö á sp ¢ ¬J§ . In either case, sp ¢�©`§�¤ ¦ sp ¢ ¬J§ , so by Theorem 8.11, there
exists

4 Á RespTr ¢�æ�§ such that
4 6 str � .

We now prove the main theorem of this section: Two-phase locking—that is, sequen-
tial consistency with locking using the two-phase locking transformation—implements
sequentially consistent transactions.

Theorem 8.16 ÷ 2PL & SCL * implements SCT.

Proof: If ¢�æ�±�ç�§ Á ã
2PL ¢ SCL § then there exist æ_  Á ã

2PL ÔöæõÕ and � Á RespLock ¢
æ_ x§ such that � explainsç . By Lemma 8.15, there exists
4 Á RespTr ¢
æ�§ such that

4 6 str � . Thus,
4

also explains ç , and¢�æ�±�ç�§ Á SCT.

Our formulation of Theorem 8.16 is a bit more general than the usual statement of this
theorem [35, 14, 51] because we do not assume that transactions are serial nor that there is a
fixed association between locks and data items. Also, we allow the transaction manager to
take advantage of the way the transactions are requested, and to use additional precedence
dependencies rather than locks to enforce data-race-freedom. For example, the manager
does not need to use locks to arbitrate conflicting operations of transactions that are not
concurrent, or it may explicitly serialize two concurrent transactions instead of using locks
to serialize them. We also allow locks to be held across transactions.

The decomposition of a two-phase locking system into a transaction manager and a
sequentially consistent system with locking is merely conceptual. It may not correspond
with any physical decomposition of the system.
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Real implementations of two-phase locking typically use shared/exclusive locks, as
discussed in Section 7.9: Locks are held in shared mode for data that will only be read,
and in exclusive mode for data that may be written. Although our definition implicitly
assumes mutex locks, all the lemmas and theorems in this section hold, with essentially the
same proofs, for systems using shared/exclusive locks, provided the notions of respecting
locking and data-race-freedom under locking are adapted as described in Section 7.9.

Two-phase locking with weak sequential locking. Although Theorem 8.16 assumes that
the underlying system is sequentially consistent with locking, we know from Chapter 7
that a data-race-free computation executes on a system that guarantees only weak sequen-
tial locking as though the system were sequentially consistent with locking. Because the
transaction manager ensures that the computation for the underlying system is data-race-
free, two-phase locking implements sequentially consistent transactions even when the
underlying system guarantees only weak sequential locking, which requires significantly
less synchronization than sequential consistency with locking.

Corollary 8.17 ÷ 2PL & WSL * implements SCT.

Proof: Immediate from previous theorem and Theorem 7.25 because range ¢ ã 2PL § ô DRFL.

Strict two-phase locking. For various reasons that are outside the scope of this thesis, al-
most all implementations of two-phase locking guarantee strict two-phase locking, in which
every lock acquired during a transaction is held until the end of the transaction, at which
point all locks are released.

A transaction manager cannot release any lock until it knows that no more locks need
to be acquired to enforce data-race-freedom. A strict two-phase locking manager satisfies
this requirement simply by not releasing any locks under the end of the transaction. We
also restrict the manager from adding precedence dependencies. Formally, a strict two-
phase locking transaction manager is modeled by the following transformation:

÷ S2PL � ³ &A9<��9 L *T2 V̄=� V̄ ^ý E ¯e� E ¯ ^Vý 9�. WFT ý 9 L . DRFLý � �/.%�T� Rels ¯v^a&_�q*p��� et & ÌX*T2¶ÌK.{9~� tids ��w Holds ¯�^F&_�+* ´
A strict two-phase locking manager is a two-phase locking manager.

Lemma 8.18 ÷ S2PL is more restrictive than ÷ 2PL.

Proof: If ¢
æ7±�æh ,§ Á ã
S2PL then VÖ�¡ VÖ á , E Ö�¡ E Ö á , æ Á WFL, and æ_  Á DRFL. For Ó Á æ�³ tids,

Tr Ö¶¢}ÓÝ§ 9 � © Ü@¹ Rels Ö á ¢y§F§_¡�Ì et ¢}ÓÝ§(Í and ©\× rgd ¢ Tr Ö¶¢}ÓÝ§�§h¡ et ¢}ÓÝ§ for all © Á Tr ÖT¢XÓÝ§ 9 � © Ü@¹ Acqs Ö áa¢y§F§ .
Thus, Tr Ö¶¢}ÓÝ§ is two-phase in æ_  .

Thus, using strict two-phase locking, weak sequential locking implements sequentially
consistent transactions.

Theorem 8.19 ÷ S2PL & WSL * implements SCT.

Proof: Immediate from previous lemma and Corollary 8.17.
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Degrees of isolation. Two-phase locking, especially strict two-phase locking, may re-
quire locks to be held for a long time by each transaction, inhibiting a lot of potential
concurrency. To allow greater concurrency, the two-phase locking requirement is often re-
laxed, holding some locks more briefly at the expense of allowing some partial effects of
a transaction to be observed by other transactions. These relaxations are said to provide
lower degrees of consistency or degrees of isolation [50, 51].

The degrees of isolation are most easily defined in terms of how and when locks may
be acquired and released, assuming that a shared/exclusive lock is associated with each
data item. Third degree isolation requires two-phase locking: Any operation that accesses
a data item must hold its associated lock—in exclusive mode if the data is written—and
every transaction must be two-phase. Second degree isolation relaxes the two-phase re-
quirement for shared access; that is, additional locks may be acquired after a lock held in
shared mode has been released. First degree isolation dispenses with using locks to protect
reads altogether; locks are only acquired when an item is to be written. Transactions that
run with only first degree isolation may introduce data races into the computation. Zeroth
degree isolation requires only that operations that write data hold the associated lock in
exclusive mode. Different transactions may run with different degrees of isolation.

Unfortunately, it is not easy to characterize the guarantees of systems with transactions
running at lower than third degree of isolation. In particular, in a computation that has
transactions with a lower degree of isolation, even a transaction with the third degree
isolation may observe inconsistencies.7 This difficulty is due in part to the definition of
degrees of isolation as relaxations of the two-phase locking protocol, rather than by the
properties that they guarantee. In Section 8.6, we present relaxed transactional memory
models that directly relax the serializability requirement while retaining the some of the
spirit of transactions.

8.5 Program Reduction

Even when a concurrent program is not data-race-free, we can reduce the complexity of
reasoning about its behavior if we can prove that a collection of its operations can be com-
bined into a single atomic operation. This technique is called program reduction [73]. The
reduced program is easier to reason about because it has fewer operations, and thus fewer
possible schedules. In the literature, program reduction is described and proven by model-
ing a concurrent system as a state machine [69, 70]. In this section, we adapt this technique
to the computation-centric framework, focusing on the specific case of systems with locks,
and compare our results to those in the literature. Our exposition most closely follows that
of Lampson [70]. This section is independent of the other sections of this chapter.

In a state machine formalism, the operations of a program are modeled as sets of tran-
sitions of the state machine. An operation is enabled in a state when it has a transition
from that state to another (possibly the same) state. Only a subset of the operations are

7Inconsistencies here refer to violations of integrity constraints in the state of the memory, not the need to
use different schedules to explain the values returned for different operations. We discuss integrity further in
Section 8.7.
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enabled in any state. When operations are combined, their transitions are replaced with
the transitions for the new atomic operation.

The basic reduction result may be paraphrased as follows: The “sequential composi-
tion” of two atomic operations—that is, one operation immediately followed by another in
the program of a thread—may be considered atomic if the first operation “right commutes”
with every operation of every other thread that may be enabled after the first operation.

In the computation-centric framework, the sequential composition of two operations
corresponds to an enclosure comprised of the two operations. Rather than introduce the
formal machinery to model the “compound operation” that would result from combining
the operations, we prove that the sequential composition appears atomic as we did for
transactions: by showing that any schedule is equivalent to some schedule in which the
operations appear contiguously.

Unlike operations of state machines, every operation in our framework is total and de-
terministic. We introduce nondeterminism only by scheduling the operations, and limit
how operations may be applied by requiring schedules to respect the precedence depen-
dencies and the constraints specified by the annotations. For example, acquiring a lock,
which can cause a thread to block, is considered an operation of the state machine; we
specify lock acquisition using the annotations and restrict schedules to those that respect
locking.

The conditions for when one operation is enabled after another, and when one right
commutes with another depend on the condition for respecting the constraints implied by
the annotations. An operation ' is enabled after another operation z if ' appears immedi-
ately after z in some schedule that respects the constraints specified by the annotations. An
operation ' right commutes with z if, whenever ��'B�xz�� may appear in a schedule, it may be
replaced by ��z~��'`� ; that is, if ������'¶�xz��q�(��L is a schedule that respects the constraints specified
by the annotations, then ���(��z~��'`�q� � L is too, and ������'B�xz��q� � L 1 str ���(��z~��'��q� � L .

Considering only the precedence dependencies, an operation is enabled after another
if they are concurrent, and an operation right commutes with another if they are inde-
pendent.8 Locking imposes the following additional restrictions: If ' holds and does not
release a lock � , then no operation that holds � is enabled after ' unless it is in the same� -section. Also, if ' releases a lock and z acquires it, then ' does not right commute with z .

Formally, an operation ¢ is enabled (immediately) after ' in a computation with locks� if they are concurrent and for each �_.f� , either they are not arbitrated by � or 'I. Rels &_�+* .
An operation ' right commutes with ¢ if they are independent and there is no lock � such
that '=. Rels &_�q* and ¢>. Acqs &_�+* .

If ' and z are sequentially composed, then any operation scheduled between ' and z
is enabled after ' .

Lemma 8.20 Suppose 9 is a well-formed computation with locks � , and ���i�x'¶�xzJ� is an
enclosure of 9 with gd &x�B*p��' and rgd &x�B*T�¥z . If �{. RespLock &A9~* then ' ��� ¢ ��� z implies
that ¢ is enabled after ' for all ¢�. V̄ .

8By our informal description, if º¥À�Ã~Á »CÅ
E Æ then Á may be enabled after À . In that case, À does not right

commute with Á , by the informal description, even if they are independent. These two changes cancel each
other. Defining Á not to be enabled after À simplifies the proofs. It is a simple but tedious exercise to verify
that Lemma 8.20 and Theorem 8.21 would hold had we followed the informal definitions more closely.
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Proof: By Lemma 7.5, x is concurrent with ©�¡ gd ¢ Â § . For § ÁÇ± , if either © or x does not hold § then
they are not arbitrated by § . If they both hold § and © lÁ Rels ¢y§F§ then ¬ Á{Âª© ¢�©`§ . By Lemma 7.16,
gd ¢ Â�© ¢Z©`§�§v¤<¦s©ªM¦Èx_ªM¦�¬C¤<¦ rgd ¢�©`§ , so x ÁºÂª© ¢Z©`§ . Thus, © and x are not arbitrated by § for all § Á²± ,
so x is enabled after © .

For computations with locks, the basic reduction theorem is:

Theorem 8.21 Suppose 9 is a well-formed computation with locks � , �¯�|�U'¶�xz7� is an enclo-
sure of 9 with gd &x�B*T��' and rgd &x�B*p�¥z , and ' right commutes with every operation that is
enabled after it. If �l� � � '�� � L � zh� � L L . RespLock &A9~* then � L � � � � L �(��'¶�xz��q� � L L . RespLock &A9~*
and �_L*1 str � .

Proof: By Lemma 8.20, every operation in
4   is enabled after © , and thus, is concurrent with © . Also,© right commutes with every operation enabled after it, so © is independent of every operation in4   and if © Á Rels ¢5§F§ for some § Á»± , then no operation in

4   acquires § .
Because © is independent of every operation in

4   , ©T� 4  �6 str
4  �� © by Lemma 2.15. So �7 �6 str � .

If ¢{xX±|x   § Á E Ö , then xsªM¦ x   , so xsªM¦ á x   unless xO¡8© and x   Á elems ¢ 4   § . This latter case is not
possible because © is concurrent with every operation in

4   . So �7  Á Sch ¢�æ�§ .
For any § Áu± , we show below that either © lÁ Acqs ¢5§F§)£ Rels ¢y§F§ or x lÁ Acqs ¢5§F§�£ Rels ¢5§F§ for allx Á elems ¢ 4  ,§ . In either case, �7  © ¡|� © and thus, �7  respects § . So �7  Á RespLock ¢
æ�§ .
If © Á Rels ¢y§F§ , then, as reasoned above, no operation in

4   acquires § . Since © releases § and no
operation in

4   acquires it, no operation in
4   can acquire § .

If © Á Acqs ¢y§F§�í Rels ¢5§F§ then suppose, for contradiction, that some operation in
4   releases § . Letx ó be the first such operation in

4   . Because æ is well-formed and � Á RespLock ¢
æ7§ , rgd ¢ Â«© ¢Z©�§�§�¡ux ó
by Lemma 7.13. Since © acquires § and does not release it, and no operation in

4   releases § , neither
can any operation in

4   acquire § .
By applying this theorem repeatedly, we can show that the sequential composition of

several operations appears atomic, as long as each operation right commutes with every
operation enabled immediately after it.

Theorem 8.21 captures the essence of Lampson’s result [70], although his result does
not restrict the mechanism for enabling or disabling operations to locking and allows non-
deterministic operations. We use the condition for respecting locking to explicitly restrict
the possible schedules; other mechanisms imply different restrictions on the schedules,
and require their own condition to specify them.

There are several ways in which this result can be extended. For example, the condition
that �U'B�xzJ� is an enclosure is stronger than necessary. It is sufficient to require that z be a rear
guard. Thus, by repeated application of that theorem, we can show any region with a rear
guard can be considered atomic provided each operation in the region, except for the rear
guard, right commutes with every operation enabled after it. Also, we can get analogous
results for an operation that “left commutes” with operations that are “enabled before” it.
Lamport and Schneider state and prove a rather general theorem of this kind [69], about
when an invariant is preserved by reduction.

Lampson assumes sequential consistency in his analysis, as do Lamport and Schneider
in theirs. This assumption is reflected in our theorems by the use of schedules: Having
a single schedule is equivalent to sequentially consistent semantics. As we have shown
throughout this thesis, results about the equivalence of schedules can be used to reason
about memories with weak consistency. However, we do not develop these results any
further in this thesis.
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8.6 Relaxed Transactional Memory Models

In this section, we define three relaxed memory models—generic transactional memory, inter-
nally consistent transactional memory, and internally synchronized transactional memory—that
adhere to the spirit of transactions more closely than the degres-of-isolation models. To
our knowledge, these models have not been defined before, and no systems have been de-
signed to implement them.9 However, they retain several useful properties of sequentially
consistent transactions, as we demonstrate in the next two sections.

We begin, as we did for systems with locks, by defining a generic transactional memory
that guarantees only that schedules respect transactions. Formally, the model for generic
transactional memory is

GT ����&A9<�#Ú)*T2 � '=. V̄p�����{. RespTr &A9~*µ�#Ú�&('B*p� retval &('¶�R��*U�¨�
The generic transactional memory is the weakest possible memory that respects transac-
tions. Although every return value is explained by some schedule that respects trans-
actions, a generic transactional memory allows the schedules used to explain the return
values to order both the transactions and the operations within each transaction in com-
pletely different ways. Thus, a generic transactional memory does not guarantee isola-
tion: a transaction may observe behaviors that it could never observe when executed in
isolation. However, in Section 8.8, we give conditions under which generic transactional
memory implements sequentially consistent transactional memory.

The two other models do guarantee isolation but give up serializability. Specifically,
each transaction must have a single consistent view of the memory, with no partial effects
of other transactions; we say that the transactions are internally consistent. The first model
allows a transaction to be observed by other transactions in an order different from the
one used to generate its return values; the second model forbids this by synchronizing
operations within the same transaction. Unlike the degrees-of-isolation models, which
assume read/write memory with locks, these models are defined for arbitrary data types.

Formally, the model for internally consistent transactional memory is

ICT � � &A9<�#Ú)*T2 � '=. V̄p�����{. RespTr &A9~*µ�R� explains Ú)\ Tr % Û ) � �
Unlike the sequential locking models in the previous chapter, ICT is not merely a

generic transactional memory with extra synchronization. Synchronization guarantees
that some operations are ordered consistently in all schedules used to explain the value
returned for any operation, whether in a transaction or not. Internally consistent trans-
actional memory makes no guarantees about the schedules of operations outside trans-
actions other than that they respect transactions. Instead it requires the return values of
operations in the same transaction to be explained by a single schedule.

Example 8.9 Consider a memory model that synchronizes at the beginning and end of every trans-
action. That is, SBET ¡ ã s�

SBET
¢ GT § , where � SBET ¢Z©�±,¬J±µÕ é ±µÕ ? §76 Õ é ®¡ NIL �GÕ ? ®¡ NIL. This mem-

ory is similar to the strong synchronization memory from Example 5.2, except that it also respects

9Of course, any system that implements sequentially consistent transactional memory also implements
these relaxed models.
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transactions. Consider the following computation and observer functions:

write º ´(»
write º ¹�»BT º}Í »

read � read �
ET º}Í »

read ·
© read ° read ² read ö write ¢U¼½§ write ¢�¾-§ç-¢�©`§ ¼ ¾ ¾ ACK ACKç)  ¢�©`§ ¼ ¼ É ACK ACK

SBET admits ç , but not ç   , for this computation;
ICT admits ç)  but not ç . So the two models are
incomparable.

To get internally synchronized transactions, we strengthen ICT by synchronizing the
operations of each transaction. In adding edges to the computation, we need to be careful
not to incorporate any isolated operation into a nontrivial transaction, so we cannot di-
rectly use a synchronizing transformation of the kind defined in Section 5.5. Formally, if 9
is a well-formed computation with transactions, then � Tr &('B�xz~��9~*31 Tr ¯7&('v*T� Tr ¯�&Zz_* . The
model for internally synchronized transactional memory is

IST �î÷ IST & ICT * , where ÷ IST � � &A9<��9 L *�.H÷ s�
Tr

2 Isol ¯ ^ � Isol ¯ � �
The computation resulting from transforming a well-formed computation using ÷ IST

has serial transactions.

Lemma 8.22 ÷ IST â�9�ãJN SerTr for all 9�. WFT.

Proof: Immediate from the definitions of
ã

IST and SerTr.

Sequentially consistent transactions implement internally synchronized transactions,
which implement internally consistent transactions.

Lemma 8.23 SCT N IST N ICT.

Proof: Immediate from the definitions.

For computations with serial transactions, internally consistent transactions and inter-
nally synchronized transactions are equivalent.

Lemma 8.24 IST and ICT are equivalent under SerTr.

Proof: If æ Á SerTr then æ Á ã
IST ÔÂæNÕ , so ICT implements IST under SerTr.

Because there is no synchronization across transactions, internally consistent or inter-
nally synchronized transactions may be significantly cheaper to implement than sequen-
tially consistent transactions. For example, on a replicated system, each replica can service
transactions independently. The effect of a transaction is then lazily propagated among
the replicas. Each replica processes one transaction at a time. For internally synchronized
transactions, the replicas must also propagate the order in which the operations of each
transaction were applied. Because the transactions may not be processed in the same or-
der at different replicas, the transactions may not be serializable.
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Another possible implementation borrows from certification or optimistic concurrency
techniques for implementing sequentially consistent transactions [14, 70]. The processor
executing a transaction caches the parts of the shared memory it accesses, and writes them
back atomically at the end of the transaction. If the parts of the memory that were read for
the transaction have since been written by another transaction, the processor must redo
the transaction using the new state of the memory. Because the new results may differ
from those returned to the client, the original transaction must be aborted to implement
sequentially consistent transactions. Aborting transactions is not necessary, however, for
internally consistent or internally synchronized transactions.

8.7 Integrity

Historically, one of the main motivations for transactions was to maintain the integrity of
the data in a database.10 Integrity is modeled by constraints on the state of the database,
which are specified by the system. The clients violate integrity if they specify transactions
that, executing in isolation, would falsify an integrity constraint; the system violates it
if it does not properly isolate concurrent transactions. In this section, we show how to
model integrity constraints and prove that an internally consistent transactional memory
maintains integrity provided every transaction maintains integrity.

A database typically stores information about the real world; transactions are used to
update that information to reflect changes in the world. Although there is no way to deter-
mine, looking only at the database, whether it is consistent with the world—this would be
true integrity—we want to ensure that it is at least consistent with some possible state of
the world. We formalize this requirement using integrity constraints that characterize states
of the database that correspond to possible states of the world. Programmers often assume
integrity for the correctness of their programs. A transaction maintains the integrity of the
memory if, whenever the transaction is applied (in isolation) to a state that satisfies the
integrity constraints, the final state also satisfies the integrity constraints.

Formally, for a memory with data type ÃÀ�À&xÄ��+ÅÆp�qÇ«�µu7��È�* , an integrity constraint is a
predicate -?2�Ä�3 Bool that is true for Å Æ . For 9�. WFT, a transaction d of 9 maintains - in9 if -R&�Æ¶* 
� -R&(È¨�� &�ÆT�R��*F* for all Æ�.�Ä and � . Sch &A9~\ Év* . A computation maintains - if
each of its transactions maintains - . We characterize the computations that maintain - by
the following client restriction:

Maintains &p-+*p���+9�. WFT 2)9 maintains - �
We would like a transactional memory to maintain integrity whenever the computa-

tion maintains integrity. That is, if the computation does not violate integrity, the system
will not either. Unfortunately, in the computation-centric framework, we cannot easily de-
termine whether the state of the memory satisfies an integrity constraint; the state of the
memory is only well-defined in the serial setting. We cannot even easily characterize the
set of possible states of the memory “after” an operation. We can, however, tell whether

10This property is also called consistency—the ‘C’ of the ACID properties of transactions [51].
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the values returned for the operations of a transaction are consistent with the memory be-
ing in some state satisfying the integrity constraint at the beginning of the transaction. In
that case, the return values for that transaction satisfy the integrity constraint. A memory
model maintains an integrity constraint if for any computation that maintains the constraint,
it admits only observer functions that satisfy the constraint for all transactions.

Formally, a return value function ÚB2 V̄I3 u satisfies - for d (in 9 ) if there exists ÆY.0Ä
and �i. Sch &A9~\ ÉB* such that -R&�Æ¶* and Ú�&('v*«� retval ��&('¶�R��* for all '4.�d . A return value
function satisfies - for 9�. WFT if it satisfies - for all transactions of 9 . A memory model
M maintains - if for all 9�. Maintains &p-+* and Ú�. M â�9�ã , Ú satisfies - for 9 .

If a computation maintains an integrity constraint, then the return values of any sched-
ule that respects transactions satisfy the constraint.

Lemma 8.25 For any integrity constraint - , if 9�. Maintains &p-+* , �{. RespTr &A9~* and ÚB2 V̄e3u such that Ú�&('v*T� retval &('¶�R��* for all 'I. V̄ , then Ú satisfies - for 9 .

Proof: Since � respects transactions, �0¡ 4 °#� 4 ²¿��������� 4 ´ , where
4 ¸ Á Sch ¢�æ � ÊQ[ § for the transactionsË °a± Ë ²�±+³q³+³µ± Ë ´ of æ . Let 	 ó ¡ x 	 and recursively define 	�¸�¡WÒ � � ¢
	X¸x¹v°Ý± 4 ¸q§ for »b¡[¼½±q³+³q³+±U¿ . SinceÌ ¢ x 	�§ and æ maintains

Ì
, we have

Ì ¢�	�¸q§ for all » by induction. By Lemma 2.7, ç-¢Z©`§7¡ retval ¢�©`±+�¶§J¡
retval ; [ ¢�©`± 4 ¸+§ for each © Á Ë ¸ , so ç satisfies

Ì
for all

Ë ¸ .
Internally consistent transactional memory maintains any integrity constraint.

Theorem 8.26 ICT maintains any integrity constraint.

Proof: Let
Ì

be an integrity constraint, æ be a computation that maintains
Ì

and ç be admitted by
ICT for æ . For any transaction

Ë
of æ , there exists � Á RespTr ¢�æ�§ that explains ç � Ê

. By Lemma 8.25,
retval ¢���±µ�¶§ satisfies

Ì
for æ , so it satisfies

Ì
for

Ë
. Since ç-¢�©`§7¡ retval ¢�©`±µ�¶§ for all © Á Ë

, ç satisfies
Ì

for
Ë

. Because this proof holds for any transaction, ç satisfies
Ì

for æ .

It immediately follows from this theorem that internally synchronized and sequentially
consistent transactional memory also maintain any integrity constraint.

Corollary 8.27 IST and SCT maintain any integrity constraint.

Transactional systems are often constructed so that there is fixed set of programs that
run as transactions. These programs are developed and checked carefully to ensure that
they maintain integrity. Application programs invoke these transaction programs to access
the shared database, and so are guaranteed to maintain integrity. Typically, each transac-
tion is serial and essentially deterministic; that is, the observable effects of the transaction,
from the application programmer’s point of view, depend only on the apparent state of
the database when the transaction begins.11 In this case, we can abstract away the under-
lying system into a memory whose data type has states that correspond to the states of
the underlying data type that satisfy the integrity constraints, and whose operations are
the transaction programs. An internally consistent transactional memory is the equivalent

11This state is not necessarily the actual state of the database when the operation that begins the transaction
is executed, which may not even satisfy the integrity constraints. Rather, it is the state that transaction appears
to begin in. In a two-phase locking implementation, this state would correspond to the state of the database
at the serialization point of the transaction.
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of a generic memory for this abstract system. Thus, transactional memory models form
the basis for a hierarchical construction of systems. We do not develop this construction
further in this thesis.

8.8 Races within Transactions and Transaction Races

Because transactions are isolated, programmers of transactional memory systems can rea-
son about each transaction separately. In particular, they need to consider only races within
a single transaction, not those between operations in different transactions. However,
they do need to consider transaction races, that is, “races” between whole transactions. In
this section, we formally define transaction races, and show that for computations with
no transaction races, internally synchronized transactional memory, which resolves races
within each transaction, implements sequentially consistent transactions. Furthermore, for
computations with no transaction races and no races within transactions, any transactional
memory implements sequentially consistent transactional memory.

Informally, each transaction can be viewed as a single complex operation. With this
view, we can ask whether any transactions compete; that is, does the order in which the
transactions are applied matter? To answer this question, we define transaction races. Be-
cause the result of a transaction—its effect on the state of the memory and the values re-
turned for its operations—may depend on how the transaction is scheduled, we adapt this
definition to consider different schedules for each transaction: concurrent transactions do
not compete if the order in which they are applied does not matter regardless of how each
transaction is scheduled internally.

Formally, two distinct transactions, d and dsL , of a well-formed computation 9W. WFT
are independent if ����� L 1 str � L � � for all ��. Sch &A9~\ Év* and � L . Sch &A9~\ É`^ * . They conflict
if they are not independent. They are concurrent if any operation of one is concurrent
with any operation of the other.12 They compete if they conflict and are concurrent. Two
competing transactions comprise a transaction race. A computation with no transaction
races is transaction-race-free. The corresponding client restriction is

TRF ���µ9�. WFT 2)9 is transaction-race-free ���
Transaction-race-freedom guarantees that an internally synchronized transactional mem-

ory implements sequentially consistent transactions.

Theorem 8.28 IST implements SCT under TRF.

Proof: This theorem follows immediately from Theorem 8.31 and Lemma 8.29, proved below.

Internally consistent transactional memory does not guarantee sequentially consistent
transactions for transaction-race-free computations: The transactions may be nondeter-
ministic, and this nondeterminism need not be resolved consistently for different trans-
actions. That is, the order in which a transaction observes its operations to be scheduled

12Because transactions are enclosures, this condition implies that every operation of one is concurrent with
every operation of the other.
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may not be the same order observed by a later transaction. This problem does not arise if
the transactions are serial, because serial transactions are deterministic. We can generalize
this observation to transactions that appear deterministic to outside operations, that is, for
determinate transactions. A transaction is guaranteed to be determinate if it is race-free,
that is, if none of its operations compete.

Formally, a convex region � of a computation 9 is (completely) race-free in 9 if 9~\ �
is completely race-free. If 9 is a well-formed computation with transactions and Tr & ÌX* is
race-free for all Ì«.t9~� tids, we say that 9 has race-free transactions. The client restriction
for computations with race-free transactions is:

RFT �|�+9�. WFT 2)9 has race-free transactions. �
Although complete race-freedom is a strong restriction for computations, individual

transactions are typically race-free. In particular, serial transactions are race-free.

Lemma 8.29 SerTr is more restrictive than RFT.

Proof: Immediate because a serial computation has no concurrent operations.

If a computation is transaction-race-free and its transactions are race-free then all sched-
ules that respect transactions are equivalent.

Lemma 8.30 If 9�. TRF w RFT and �/�R�~LB. RespTr &A9~* then �31 str �_L .
Proof Sketch: Suppose

Ë ° , Ë ² , ³+³q³ ,
Ë ´ are the transactions of æ (including trivial transactions). Let4 ¸ ¡�� � Ê [

and
4  ¸ ¡��   � Ê [ for »¶¡|¼Ý±+³+³q³+± ¿ . Because � and �   respect transactions, there exist permu-

tations Í and Í�  of ÌA¼Ý±+³+³q³+± ¿¶Í such that �º¡ 4�Î ô °µõ � 4�Î ô ²�õ ��������� 4�Î ô ´�õ and �7 -¡ 4  Î á ô °Fõ � 4  Î á ô ²�õ ��������� 4  Î á ô ´�õ .
Thus, we have �«¡ 4�Î ô °Fõ � 4�Î ô ²�õ ��������� 4�Î ô ´�õ6 str

4  Î ô °Fõ � 4  Î ô ²�õ ��������� 4  Î ô ´`õ because æ Á RFT6 str
4  Î á ô °µõ � 4  Î á ô ²�õ ��������� 4  Î á ô ´�õ because æ Á TRF¡¥�J 

The above lemma implies that any memory that respects transactions implements se-
quentially consistent transactions.

Theorem 8.31 GT implements SCT under TRF w RFT.

Proof: Immediate from Lemma 8.30.

8.9 Discussion

One of the main lessons in the development of large distributed systems is that they are
hard to manage; they are extraordinarily complex and even seemingly simple programs
may have subtle behavior. We badly need methods to understand and organize distributed
systems. Transactions are one of the few viable candidates.
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A transactional system supports modularity through integrity and isolation. If each
transaction maintains the integrity of the data when running alone and the memory sys-
tem guarantees isolation, then the composed system will also maintain integrity. Thus,
programmers of a transactional memory can assume integrity and consider each transac-
tion independently of all others, as long as they ensure it maintains integrity. This mod-
ularity is the main reason we believe transactions may be the foundation of a method to
organize large distributed systems. The work in this chapter should be seen as a beginning
to further study of transactions and how to use them to structure concurrent programs.

Although there has been a lot of work on transactions [51], most of the formal work
has focused on serializable transactions [14]. We are interested in relaxed transactional
memory models. In particular, what properties should such a model guarantee, what can
we implement with these properties, and can a system implement this model efficiently?
The property we believe is ultimately important is modularity.

We have shown that, unlike the degrees-of-isolation models, internally consistent trans-
actions guarantee enough isolation to maintain integrity as described above. Clients can
see inconsistent views but not within a single transaction. Is this guarantee strong enough
for programmers to build large distributed systems?

One way in which transactions may be used to structure systems is to implement pow-
erful abstract data types on top of a memory that has a simple data type. This approach
encourages the data-oriented programming that has been successful in sequential pro-
gramming. The advantage of this method is that there are a limited number of transaction
programs written, so each of them can be checked carefully to ensure that it maintains
integrity. Several aspects of the computation-centric framework need to be extended to ac-
commodate this approach. In particular, we need to have some mechanism for hiding the
values returned for “internal” operations, and we may consider several different return
values to be logically equivalent. These changes require a new notion of equivalence for
operator sequences.

Nondeterministic data types are another extension to the framework that may be useful
for modeling abstract data types implemented by transactions. A transaction may cause
the state to change in any one of several nonequivalent ways, and the client is willing to
deal with this nondeterminism. Determinacy may be unrealistic—and unnecessary–for
concurrent systems. If we have nondeterministic data types, we probably want to define
an implementation relation between data types.

One difficulty with modeling transactions in the computation-centric framework is that
the operations that comprise a transaction may depend on the values returned for the
early operations of the transaction. This problem is not unique to transactions; rather, it
is endemic to the computation-centric approach. In Chapter 9, we propose state machine
models to address the problem with computations as a whole. To use the same approach
for transactions would effectively require clients to submit a state machine as a transaction.
This approach was taken by Lynch, et al. [80] in their book on atomic transactions.

We also want to consider how transaction interact with other mechanisms for synchro-
nizing or organizing concurrent programs. We want to do this with every mechanism,
but it is particularly important for transactions or any mechanism that may serve as the
basis for organizing concurrent systems into modules. Ideally, each module could use its
own form of synchronization, and some other form of synchronization could be used over
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the transactions. In locking implementions of transactions, the synchronization within a
transaction can interfere with synchronization within other transactions—in fact, it must to
guarantee transactions—which goes against the idea of transactions providing modularity.

One other aspect of transactions that is attractive is that they were developed originally
for fault tolerance. The atomicity and durability of transactions have little meaning with-
out the possibility of failures. Asynchronous concurrency and fault tolerance are the two
most difficult aspects distributed computing; it is serendipitous that both are addressed
with a single mechanism.
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Chapter 9

Dynamic Memory Models

Although computation-centric memory models provide a basis for a simple and powerful
way to reason about shared memory systems, they do not capture the dynamic interaction
between the memory and its clients. In particular, a computation-centric model specifies
what values may be returned when a given computation is requested by the clients, but
the computation requested may depend on values returned by the memory. In this chap-
ter, we develop a theory based on state machines that captures this dynamic interaction.
This theory builds on the computation-centric theory developed in earlier chapters, using
results about computation-centric models to derive analogous results about the dynamic
models. Indeed, we give a generic translation from the computation-centric framework to
the dynamic framework that preserves the results of the computation-centric framework.

In addition to being more expressive than computation-centric models, using state
machines to specify memory consistency guarantees has the advantage that state ma-
chines are widely used to model computer systems. Nonetheless, as we discussed in
Section 4.6, the state machine approach to specifying memory models has not been as suc-
cessful as static postmortem approaches because the state machine representation of a sys-
tem does not make clear what consistency properties the system guarantees. By building
on the computation-centric theory, we can define dynamic memory models that capture
the properties expressed by computation-centric models and leverage the results from the
computation-centric theory in our development of a theory for dynamic memory models.

The key feature of the computation-centric framework that enables us to use it as a basis
for the dynamic framework is the clean split between the clients and the memory provided
by computations and observer functions. We maintain this split by using input/output (I/O)
automata [81, 79] to formalize the dynamic models. The computation is specified by a
clients automaton, the observer function by a memory automaton. The interface between
these automata is illustrated in Figure 9-1.

To allow the computation to depend on the return values, a clients automaton specifies
the computation by requesting one operation at a time, and a memory automaton responds
with one return value at a time. The clients may request several operations before receiv-

The automaton models in this chapter are similar to models used in earlier papers [77, 36], but the explicit
connection to computation-centric models, which constitutes most of the work presented in this chapter is
new.

169
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Memory

response º¥À�Ã5Ï »Clients

request º¥À�Ã ³ Ã|Ð »

Figure 9-1: Interaction diagram for the clients and the memory. The clients request an
operation ' with a set Ñ of operations that ' depends on and an annotation @ . The memory
responds with the operation ' and its return value ¬ .

ing responses to earlier operations. In keeping with the spirit of the computation-centric
framework, we require the clients to specify the precedence dependencies and annotation
for each operation. Thus, the requests at any point of an execution define a computation.
The memory’s responses include the operation being responded to and its return value,
defining a partial return value function on the requested operations. By using precedence
dependencies and annotations, we preserve the linguistic neutrality of the computation-
centric framework.

We develop general mechanisms to translate concepts from the computation-centric
framework into the dynamic framework. We show that if one computation-centric model
implements another, the translation of the first implements the translation of the second,
allowing us to leverage much of the work we did in the computation-centric framework
into the dynamic framework. Since the dynamic framework is richer, this translation is not
uniquely defined; in fact, we give two such translations, a simple one for complete memory
models and a more complicated one that takes into account well-formedness conditions.

Outline: Section 9.1 provides an overview of the I/O automaton model, which we use
in Section 9.2, to define the dynamic interface between the clients and the memory. In
Section 9.3, we discuss how systems, and particularly programs, are modeled using au-
tomata. In Section 9.4, we define dynamic versions of some simple memory models, in-
cluding sequential consistency, and in Section 9.5, we define the client restrictions of safety
and race-freedom, and we prove the analogue of Theorem 5.4, that any memory imple-
ments sequential consistency under race-free clients. In Section 9.6, we show how to de-
rive computation-centric models from automaton models for systems, and we compare
the dynamic and computation-centric frameworks we have proposed. Sections 9.7 and 9.8
reverse the derivation of the previous section and define two simple general translations
from the computation-centric framework to the dynamic framework.

Reading Guide: This chapter is just a beginning of a dynamic theory, leveraging the
computation-centric theory we have developed in this thesis. All the results we derive
are either analogues of results in the computation-centric theory, or show how we can
translate results from the computation-centric framework to the dynamic framework. The
chief contribution of this chapter is to show how the computation-centric framework can
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serve as a basis and guide to a full theory of memory consistency, addressing the concerns
we expressed in Sections 3.8 and 4.6.

9.1 The Input/Output Automaton Model

The input/output (I/O) automaton [81] is the formal device we use to model asynchronous
distributed systems. This section provides an overview of the I/O automaton model and
introduces notation and terminology used to describe and reason about I/O automata.
Because we do not deal with liveness in this thesis, we omit the aspects of I/O automata
related to liveness. Most of this terminology is standard in the literature. Readers familiar
with I/O automata may skip this section.

An I/O automaton is a labeled state-transition system, where each transition, or step,
from one state to another is labeled with an action. The actions are partitioned into input,
output and internal actions. The input and output actions represent the visible, or external,
aspects of an automaton; other aspects of the automata—states and internal actions—are
not visible outside the automaton. The behavior of an automaton is modeled by a sequence
of external actions, called a trace.

A distributed system composed of modular interacting components can be modeled
as the composition of several I/O automata, one for each component. The composition
of the component automata, which models the entire system, is also an I/O automaton.
Component interaction is modeled by shared actions; the output actions of one automaton
may be input actions of other automata.

In addition to describing systems, I/O automata can specify system requirements. That
is, I/O automata can model both system implementations and specifications. One automa-
ton implements another if every behavior of the first is a possible behavior of the second.
An automaton that describes the system at one level of detail may be a specification for a
more detailed view of the system.

9.1.1 Formal Definitions

This subsection contains the formal definitions and results from I/O automaton theory
that are required in this chapter. It may be skipped initially and referred to as needed. A
full discussion of I/O automata can be found in the literature (e.g., [81, 79]).

An I/O automaton is a labeled state-transition system. An execution of the automaton is a
sequence of labeled steps. The labels, called actions, indicate the kind of event that happened
in the system that caused the state to change. Actions may be input, output or internal. The
behavior of the system being modeled is described by the traces of the automaton, which
are the input and output actions that label an execution of the automaton.

Formally, a (nonlive) input/output (I/O) automaton Ò consists of:� a set acts &)Ò=* of actions, partitioned into three (disjoint) sets: in &)Ò=* , out &)Ò=* and int &)Òe* ;� a set states &)Ò=* of states;� a nonempty subset start &)Ò=* of start states;
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� a set steps &)Òe*�N states &)Ò=*�� acts &)Òe*�� states &)Ò=* of steps such that for all Ób. states &)Òe*
and Ô�. in &)Òe* , there exists Ó L . states &)Ò=* with &_Ó#�]Ôh�	Ó L *�. steps &)Òe* .

We call the actions in in &)Òe* , out &)Òe* and int &)Ò=* the input, output and internal actions re-
spectively. The input and output actions are also called external actions, and the set of
external actions is denoted by ext &)Ò=* . We say that Ó is the pre-state and Ó�L is the post-state
of the step &_Ó��]Ôh�	Ó%L
* . We write Ó�ÕÖ 3Ø× Ó-L or just ÓÙÕÖ 3 Ó-L as shorthand for &_Ó#�]Ôh�	Ó%L *�. steps &)Ò=* .
An action Ô is enabled in Ó if there exists Ó L such that Ó ÕÖ 3 Ó L . Note that every input action is
enabled in every state.

Executions and traces. An automaton executes by beginning in a start state and taking
steps. An execution fragment Óz^#�]Ô S �	Ó S �]ÔB}-�	Ó�}%������� is a finite or infinite sequence of alternat-
ing states and actions such that Ó½� Q¶S Õ  Ö 3 ÓR� for all � . An execution is an execution fragment
whose first state is a start state; that is, where Ó(^C. start &)Òe* . We denote the set of execu-
tions of Ò by execs &)Ò=* . An event is an occurence of an action in an execution. A state is
reachable in Ò if it appears in any execution of Ò . An invariant of Ò is a predicate that is
true of every reachable state of Ò .

The behavior of a system is modeled by its external image. The states and internal ac-
tions of an execution cannot be seen by external observers. A system is characterized by
its traces, which model the behaviors that might be observed when the system executes.
Formally, the external image of an execution fragment � is its projection ��\ ext % × ) onto its
external actions. A trace of Ò is the external image of an execution, and the set of traces is
denoted by traces &)Ò=* . Two executions with the same trace cannot be distinguished, even if
they are executions of different automata.

Composition. We often describe a distributed system by specifying the components that
comprise the system. The entire system is modeled by an automaton that is the composition
of the automata that model the components. Informally, composition identifies actions
with the same name at different component automata. When an action is executed, it is ex-
ecuted by all components with that action. The composite automaton has the actions of all
its components. Actions are classified as internal or external according to their classifica-
tion by the component automata, and the input actions of the composition are those input
actions of component automata that are not output actions of any other component. Some
restrictions on the automata to be composed are necessary so that the composition makes
sense. In particular, internal actions cannot be shared, an action can be the output action
of at most one component, and actions cannot be shared by infinitely many components.

Formally, a family �MÒ��U� �
!#" of automata is compatible if int &)Òº�+*_w acts &)Ò �A*{� � and
out &)Ò��+*-w out &)Ò �a*T� � for all ���p�_.�- such that �r�F� , and no action is in acts &)Òº�+* for infinitely
many �M.n- . The composition ÒG��$ � !-" Ò�� of a compatible family �|Ò>�U� � !-" of automata has
the following components:� in &)Ò=*p� � � !-" in &)Ò��+*�� � � !-" out &)Ò��+*

out &)Ò=*p� � �
!#" out &)Ò��+*
int &)Ò=*p� � �
!#" int &)Ò��+*� states &)Ò=*p��$ � !#" states &)Ò>�+*
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� start &)Ò=*T� $ �
!#" start &)Ò��+*� steps &)Ò=*p��ÚJ&_Ó#�]Ôh�	Ó L *¶2 � ��. -q�	ÓR� ÕÖ 3 ×   Ó L� �Ð&�Ô��. acts &)Ò��+* ý ÓR����Ó L� *;Û
We denote the composition of two compatible automata Ò and Ü by ÒV�uÜ . Composition
is associative and commutative up to isomorphism.

Given an execution of a composite automaton, we often want to look at the part of that
execution that “belongs” to one of the components. That is, we want the part of the exe-
cution, called the projection of the execution onto a component, that consists of the actions
of that component, and the component of the state that corresponds to the component
automaton. We define the projection of a trace similarly.

Formally, suppose �|Ò>�U� � !-" is a compatible family of automata. For ��. execs &µ$ � !#" Òb�+* ,
the projection ��\ ×   onto Ò�� is the sequence ��L consisting of alternating states and actions
of Ò�� such that � L \ acts % ×   ) �:��\ acts % ×   ) and the states of � L are the � th component of the
states in � preceding the actions in �<L (and the final state if � is finite). Similarly, for� . traces &�$ � !-" Ò��µ* , its projection

� \ ×   onto Ò�� is its projection
� \ acts % ×   ) onto the actions ofÒ�� . We also write execs & $ � !-" Ò��µ*µ\ ×   and traces & $ � !-" Ò��+*F\ ×   for the sets of projections ontoÒ�� of executions and traces of $ � !#" Òb� .

We now prove several results that are useful in reasoning about composite automata.
The projections of executions and traces of composite automata onto their components

are executions and traces of the components.

Theorem 9.1 If �{. execs & $ � !-" Ò��µ* then ��\ ×   . execs &)Ò��+* .
Proof: Straightforward by induction on the length of the execution.

Corollary 9.2 If
� . traces & $ � !-" Ò��+* then

� \ ×   . traces &)Ò��+* .
The next three results are the converse, in a fashion, of the previous two. The first

lemma says that executions of the components that meet certain requirements—that their
common actions appear in the same order—can be “pasted” together into an execution of
the composite automaton.

Lemma 9.3 Suppose
� . acts & $ � !#" Òb�+* � and �v�~. execs &)Ò��+* such that

� \ acts % ×   ) ���v�F\ acts % ×   )
for all �~.�- . Then there exists �{. execs &a$ � !-" Ò��µ* such that

� �W��\ acts %{Ý  �ÞSß ×   ) and �v�7�W��\ ×  
for all �~.\- .
Proof Sketch: By induction on the length of

4
. Note that input actions are always enabled, and4

last is an internal or output action of at most one of the component automata.

The next theorem is exactly the same as the previous lemma, except that it only looks
at the external actions.

Theorem 9.4 Suppose
� . ext & $ � !-" Ò��+* � and �v�<. execs &)Ò��+* such that

� \ ext % ×   ) ���v�+\ ext % ×   )
for all �~.�- . Then there exists �l. execs &a$ �
!#" Òb�µ* such that

� �W��\ ext %{Ý  �ÞSß ×   ) and �v�7�W��\ ×  
for all �~.\- .
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Proof Sketch: Every action in ��¸ but not
4

is an internal action of
c ¸ and not an action of any

other component automaton. Create a new sequence
4   Á acts ¢,à ¸ Ü¤ c ¸+§ � by inserting the internal

actions of each ��¸ into
4

so that
4   � acts ô�à [ õ ¡V�¨¸ � acts ô¤à [ õ for each » Á Ì

. By the previous lemma,
there exists � Á execs ¢ à ¸ Ü¤ c ¸ § such that

4  /¡Ô� �
acts ô{á [_â�ã à [ õ and � ¸ ¡ � � à [ for all » Á Ì

. Thus,4 ¡ 4   � ext ô á [�âQã à [ õ ¡|� �
ext ô á [�âQã à [ õ .

A corollary of the previous theorem states that traces of component automata can be
pasted together if they have the same common actions; that is, a sequence of external
actions of a composite automata that projects to a trace on each component automaton is a
trace of the composite automaton.

Corollary 9.5 If
� . ext & $ �
!#" Ò��+* � such that

� \ ext % ×   ) . traces &)Ò��+* for all �C.E- then
� .

traces & $ � !-" Ò��+* .
Proof: Since

4 �
ext ô¤à [ õ Á traces ¢ c ¸+§ , there exists ��¸ Á execs ¢ c ¸R§ such that

4 �
ext ô�à [ õ ¡��¨¸ � ext ô¤à [ õ for each» Á Ì

. By the previous theorem, there exists � Á execs ¢Uà ¸ Ü¤ c ¸q§ such that
4 ¡[� �

ext ô á [�âQã à [ õ , so4 Á traces ¢ à ¸ Ü¤ c ¸ § .
If all the automata share all their external actions, that is, if the output actions of each

automaton are input actions to all the others, then the traces of the composite automaton
are exactly those that are traces of all the component automata.

Corollary 9.6 If �|Ò>� � � !-" is a compatible family of automata and ext &)Ò«�+*M� ext &)Ò�� ^ * for all�½��� L . - , then traces &�$ � !-" Ò��µ*p�wä � !-" traces &)Ò��+* .
Proof: Immediate from Corollaries 9.2 and 9.5.

Implementation and simulations. In addition to modeling distributed systems, I/O au-
tomata can be used as specifications for such systems: An automaton specifies what be-
haviors a system is allowed to exhibit when it executes. A system that exhibits only those
behaviors (but not necessarily all of them) is said to implement the specification.

Formally, we say that an automaton Ò implements another automaton Ü , and writeÒcN�Ü , if in &)Òe*/� in &�ÜO* , out &)Ò=*/� out &�ÜO* , and traces &)Ò=*~N traces &�ÜO* . We say that Ò and Ü
are equivalent, and write Ò 1�Ü , if they implement each other.

The “implements” relation is not symmetric: If one automaton—the implementation—
implements another—the specification—then any behavior the implementation exhibits is
a behavior that the specification allows. However, the specification may allow behaviors
that the implementation never exhibits. Given the implementation, an external observer
cannot distinguish it from the specification. But another automaton implementing the
specification may exhibit a behavior that the original implementation would not.

Because the behaviors of an implementation may be more restricted than those of the
specification, the guarantees provided by the implementation may be stronger than those
provided by the specification. Nonetheless, we often prefer to reason about the specifica-
tion automaton because it is usually simpler than the implementation automaton.

Implementation is a composable property; that is, if Ò and Ü are composite automata
with corresponding components, and if each component of Ò implements its correspond-
ing component in Ü then Ò implements Ü . If a system is described as a composition, we
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need to check only that each component implements its specification to guarantee that the
entire system implements its specification.

Theorem 9.7 If Ò>�/NÄÜJ� for all �~.�- then $ � !-" Ò��/N $ � !-" ÜJ� .
Proof: If

4 Á traces ¢xà ¸ Ü¤ c ¸+§ then
4 � å,[ ¡ 4 � à [ Á traces ¢ c ¸+§ ô traces ¢ ê ¸+§ [since ext ¢ c ¸R§7¡ ext ¢ ê ¸+§ ]

for all » Á Ì
. Thus, by Corollary 9.5,

4 Á traces ¢Uà ¸ Ü¤ ê ¸+§ .
Similarly, if one composite automaton implements another, then replacing one compo-

nent with an automaton that implements it preserves the implementation relation.

Theorem 9.8 If Ò[�%Ü�N�Ò0L��EÜ and Ü�L�NÄÜ then Òi�%Ü�LvN�ÒCLv�EÜKL .
Proof: If

4 Á traces ¢ c m ê   § then
4 � à Á traces ¢ c § ô traces ¢ c   § and

4 � å á Á traces ¢ ê   § by Corollary 9.2.
Thus,

4 Á traces ¢ c  Tm ê  (§ by Corollary 9.5.

One common way to show that one automaton implements another is to use a simula-
tion, which establishes a correspondence between the states of the two automata. Formally,
if Ò and Ü are automata with in &)Òe*�� in &�ÜM* and out &)Ò=*h� out &�ÜM* then a forward simula-
tion from Ò to Ü is a relation æ between states &)Òe* and states &�ÜO* such that:� If Ó�. start &)Ò=* then there exists some «�. start &�ÜO* such that &_Ó��g«<*/.fæ .� For reachable states Ó and « of Ò and Ü , if &_Ó��g«~*�.�æ and Ó ÕÖ 3 × Ó#L , then there exists

some « L such that &_Ó L �g« L *�.fæ and there is some execution fragment of Ü from « to « L
with the same external image as Ô .

We denote ��«¥2�&_Ó��g«<*/.%æE� by æøâ Ó.ã , and we typically write «�.%æøâ Ó�ã instead of &_Ó#�g«~*h.%æ .

Theorem 9.9 If there is a forward simulation from Ò to Ü then Ò[N¦Ü .

Proof: By induction on the length of an execution of
c

.

There is a particularly simple case, when two automata are identical except that one
has a more restrictive step relation. We need to consider only steps whose pre-states are
reachable.

Corollary 9.10 Suppose Ò and Ü are identical I/O automata except for steps and internal
actions. If int &)Ò=*�N int &�ÜO* and Ó ÕÖ 3 × Ó-L implies Ó ÕÖ 3�ç Ó-L for all reachable states Ó then ÒiN¦Ü .

Proof: Immediate from Theorem 9.9 because the identity function is a forward simulation.

9.1.2 State Variables and Precondition-Effect Statements

I/O automata are often described in a stylized way using state variables to describe the
states and precondition-effect statements to describe the steps. This style, common in the
literature, typically produces a concise description of the automaton.1 We briefly discuss
the main features of this style.

1Automaton descriptions tend to be longer than programs written for a concurrent system because such
systems have a restricted model of concurrency, which is assumed implicitly by the programs. For example,
programs almost always have an implicit program counter; concurrent programs may have several. When
these counters are modeled explicitly, the programs become as long as the automaton descriptions.
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We describe the state of an automaton by a set of state variables, each with a given do-
main. The state space of the automaton is the product of the domains of its state variables.
We denote the value of a state variable ' in state Ó by ÓX� ' . Typically, each state variable has
a unique initial value, which defines a unique start state for the automaton.

Actions are usually fixed labels with parameters. Each choice of parameters defines a
different action, but actions with the same fixed label are similar. The steps are described
by precondition-effect statements, typically with a single precondition-effect statement for
each group of actions sharing a fixed label. The precondition defines when the action is
enabled. The effect is described by a simple program, usually written in pseudo-code
with only simple control structures, which defines the relation between the pre-state and
post-state of a step. All variables not specifically mentioned are unchanged between the
pre-state and the post-state.

Sometimes it is natural to state the enabling condition of an action in terms of the post-
state of the step. We use primed variables in the precondition to indicate the value of the
variable in the post-state. That is, if ' is a state variable of an automaton, then 'hL in the
precondition of a step statement refers to the value that ' would have after applying the
effect clause for that step.

If a state variable has a unique initial value and is changed only by external actions,
which update it deterministically, then the value of the variable in any reachable state of
the automaton can be determined by looking only at the external image of an execution
that leads to that state. We call such variables trace (state) variables; they are determined
by the trace. Several compatible automata may have the same trace variable with the same
initial value updated in the same way by all the automata. An invariant of the composition
of these automata is that the variable has the same value in all components. In this case,
we often think of there being only one variable for the composite automaton.

Sometimes there is a condition that we want to check, but is cumbersome to write in the
code. In this case, we employ derived (state) variables, which are not really state variables
at all. Instead, they are functions of the real state variables. Derived variables may be
used in the precondition-effect statements, but they are never assigned a new value. A
derived variable may change even when not mentioned specifically in the precondition-
effect statement, if a state variable it is derived from changes. A derived variable is also a
trace variable if it is a function of trace variables only.

9.2 The Dynamic Interface

In the computation-centric framework, the clients specify a computation and the memory
specifies an observer function for the computation. This interface fails to capture the dy-
namic dependence that the computation may have on the values returned by the memory.
In this section, we formally define the interface illustrated in Figure 9-1 on page 170 using
I/O automata. This interface captures the dynamic interaction between the clients and
the memory by allowing the clients to request one operation at a time and the memory
to respond to one operation at a time. We define a generic clients automaton, which mod-
els the interface from the clients’ side, and a generic memory automaton, which models the
interface from the memory’s side. These generic automata express basic well-formedness
requirements for all clients and memory automata.
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Because we are concerned only with the interaction between the clients and the mem-
ory, we model the clients as a single automaton; communication among clients is internal
to this automaton. We call this automaton a clients automaton to emphasize that it models
all the clients together. Real implementations of the clients, of course, are usually dis-
tributed. Similarly, we model the memory as a single automaton, although it too may be
distributed.

Each client request specifies one operation, together with its precedence dependen-
cies and annotation. The precedence dependencies are specified by a set of previously
requested operations on which the new operation depends. Although the clients request
operations one at a time, they need not block; a client may request new operations before
it receives return values for operations requested earlier.

Each memory response contains the return value for one operation. The memory need
not respond to the operations in the order it received them; it may even respond to an
operation before it responds to another operation that logically precedes it. Such an inver-
sion reflects the variation in the delay from the time an operation is applied to the time its
return value is propagated to the clients.

There are some simple well-formedness conditions on these automata: The clients must
ensure that each operation is unique and that the operations it depends on have been re-
quested previously. The memory may return values only once for each requested oper-
ation. In addition, the memory cannot make up return values; every return value must
be explained by some schedule of the requested operations. Because the condition on the
clients automaton prevents cyclic and dangling dependencies, the requests define a com-
putation, which we call the client constraints graph. The responses define a partial return
value function on the requested operations. We prove these properties in Invariants 9.11
and 9.12 below.

The full formal definitions of the generic clients automaton and the generic memory
automaton appear in Figure 9-2. Both automata are parameterized by the data type Ã
and the annotation set � , and they maintain the same state variables: reqs records all the
operations that have been requested; deps records the precedence dependencies specified
in the requests; ann records the annotation for each requested operation; and resps records
the values returned for the operations that have received responses. The client constraints
graph CCG is derived from reqs, deps and ann. The client constraints graph is a computa-
tion in any reachable state of the generic clients automaton. We call its precedence order
the client-specified order, or simply the client order, and denote it by y�è , which is also a
derived state variable of this automaton.

The action request &('B�	Ñ���@B* is an output action of the clients automaton and an input
action of the memory automaton. It is enabled in the clients automaton if ' has not yet
been requested and all the operations in Ñ have been. It is always enabled in the memory
automaton because it is an input action. The effect in both automata is to add ' to reqs.

The response actions are output actions of the memory and input actions of the clients.
The precondition of the response action in the memory automaton ensures that responses
are generated only once for each requested operation. The value returned must be ex-
plained by some schedule of the client constraints graph. The effect of a response action
in both automata is to record the value returned for the operation.

Because all the state variables are updated deterministically by external actions, they
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Generic Clients Automaton: énê/&�ÃI�A�«* Generic Memory Automaton: é�85&�Ã=�A�«*
Actions
Input:

response º¥À�ÃyÏ »
, where À Å¡ë and Ï Å¡ì

Output:
request º¥À�Ã ³ ÃzÐ » , where À Å¡ë ,

³¡í0ë
and Ð Å È

Actions
Input:

request º¥À�Ã ³ Ã|Ð »
, where À Å¡ë ,

³Ùí0ë
and Ð Å È

Output:
response º¥À�ÃyÏ » , where À Å¡ë and Ï ÅÙì

State Variables
reqs: a subset of

ë
, initially empty

deps: a binary relation on
ë

, initially empty

ann ¾ ë �/ÈUî , initially all ï
resps ¾ ë � ì î , initially all ï
Derived variable: CCG: the graph º reqs Ã deps

»
annotated by ann ð reqs

Derived variable: ñóònc TC º deps
»
, a binary relation on reqs

Steps
Output request º¥À�Ã ³ Ã|Ð »

Pre: À�ôÅ reqs³�õ
reqs

Eff: reqs ö reqs ÷ø½~Àq¿
deps ö deps ÷�½pºÂÁ�Ã�À » ¾bÁ Å�³ ¿
ann º¥À » öùÐ

Input response º¥À�ÃyÏ »
Eff: resps º¥À » ö�Ï

Steps
Input request º¥À�Ã ³ Ã|Ð »

Eff: reqs ö reqs ÷�½~Àq¿
deps ö deps ÷�½pºÂÁ�Ã À » ¾bÁ ÅR³ ¿
ann º¥À » öúÐ

Output response º¥À�ÃyÏ »
Pre: À Å reqs û domain º resps

»Ï�c retval º¥À�Ã]ü »
for some schedule ü of CCG

Eff: resps º¥À » öwÏ
Figure 9-2: The generic clients and memory automata with data type Ã � &xÄ_�+ÅÆT�qÇ«�µu7��È�*
and annotation set � . They have the same state variables.

are trace variables; their values in any reachable state can be determined from any trace
leading to that state. Furthermore, they are updated in the same way by both automata,
so their values in each automaton are the same, as suggested by the joint listing of the
variables in Figure 9-2.

A clients automaton for Ã and � is any automaton that implements éê/&�ÃI�A�«* , and a
memory automaton for Ã and � is any automaton that implements éS85&�ÃI�A�«* . Because
the data type and annotation set are fixed, we usually drop them from the notation. For
convenience in later discussion and analysis, we assume that every clients automaton and
every memory automaton has the variables listed in Figure 9-2 and updates them in exactly
the same way. Real implementations need not maintain these variables, of course; we
maintain them abstractly for analysis.

The following invariant implies that the client constraints graph is a computation in
any reachable state of a clients automaton.

Invariant 9.11 For éê : domain & ann *T� reqs and deps is a strict partial order.

Proof: Immediate by induction on the length of the execution.

We say that two operations are concurrent in a state if they are concurrent in the client
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constraints graph of that state, and they compete in a state if they compete in the client
constraints graph of the state.

In any reachable state of a memory automaton, only requested operations have re-
sponses.

Invariant 9.12 For é�8 : domain & resps *�N reqs.

Proof: Immediate by induction on the length of an execution.

Because é�8 is the most general memory automaton and énê is the most general clients
automaton, the composition of any memory automaton and any clients automaton main-
tains the invariants of both é�8 and énê . Furthermore, resps defines a “partial observer
function” for CCG; that is, every return value recorded in resps is explained by some sched-
ule of CCG.

Invariant 9.13 For éS8 �uénê : For every 'â. domain & resps * , resps &('B*�� retval &('B�R��* for some�{. Sch & CCG * .
Proof: We prove this invariant by induction on the length of an execution. It is trivially true in the
initial state because domain ¢ resps §`¡�K .

If this invariant holds in o and o request ô é @$ý#@ Û õñUñ-ñ�ñ�ñ�ñ#ñ�ñ�ñ,ò oX  then for ¬ Á domain ¢�o�  ³ resps §T¡ domain ¢ oÝ³ resps § ,
there exists � Á Sch ¢ oÝ³ CCG § such that o#  ³ resps ¢ ¬J§_¡Ùo?³ resps ¢ ¬J§�¡ retval ¢ ¬J±+�¶§_¡ retval ¢ ¬J±µ��� ©`§ , and��� © Á Sch ¢�o   ³ CCG § since © , which was just added to reqs, does not precede any operations in o   ³ CCG.
So the invariant holds in o�  .

If the invariant holds in o and o response ô é @ þ õñEñ�ñ�ñ�ñ#ñ�ñ�ñÝò o�  then we have resps ¢Z©`§b¡���¡ retval ¢�©`±µ�¶§ for
some � Á Sch ¢ oÝ³ CCG § from the precondition of response ¢�©`±���§ . For ¬ Á domain ¢ o#  ³ resps §`íâÌ�©�Í~¡
domain ¢ oÝ³ resps § , we have o#  ³ resps ¢ ¬J§�¡�o?³ resps ¢ ¬J§K¡ retval ¢�¬p±+�¶§ for some � Á Sch ¢ oÝ³ CCG § . SinceoX  ³ CCG ¡�o?³ CCG, the invariant holds in o�  .
9.3 Modeling Memory Systems in the Dynamic Framework

One of the advantages of using state machines to model memory systems is that describing
a system as a state machine is relatively straightforward and well understood throughout
computer science. For an I/O automaton model of a system, we also need to define the
input and output actions that form the interface for the system. I/O automata have been
used for many years to describe distributed systems and there is a mature theory support-
ing them [79].

To model the behavior of a program, we must have a model for the system that the
program is executed on. Sequential systems typically have a simple model, in which the
progress through the program is tracked by a program counter. This approach is com-
monly extended to concurrent systems by using multiple program counters.

Example 9.1 Consider the following program from Example 3.20:

int x = 0
sync int y = 0

P1: write(x,1)
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write(y,1)

P2: repeat
t1 <- read(y)

until t1 = 1
read(x)

We model this program by two simple I/O automata, one for each process. The clients au-
tomaton is the composition of these two automata. We assume the processes are blocking; that is,
processes that wait for a response before requesting the next operation. The output actions of each
automaton are its request actions, and its input actions are response actions. Each automaton has
its own program counter, which indicates the current operation and whether the operation has been
requested. At the end of the program, the program counter is set to DONE. To make every operation
unique, the automaton for ²%¾ also has a counter index, which indexes each read ¢ ¬J§ operation.

Because response actions are input actions, controlled by the memory, these actions have no
precondition; a process must accept any response from the memory, but it can ignore the responses
by not changing state when a response is received. In these automata, a response are ignored unless
it is for the operation that was last requested.Ñ7

State Variables
pc � Å ½ preWX Ã postWX Ã preWY Ã postWY Ã DONE ¿ ,

initially preWX.

Steps
Output request º write º¥À�Ã ¹.» ÃMÿ¶Ã NIL

»
Pre: pc � c preWX
Eff: pc � ö postWX

Output request º write ºÂÁYÃ ¹.» Ã�½ write º¥À�Ã ¹.» ¿(Ã SYNC
»

Pre: pc � c preWY

Eff: pc � ö postWY

Input response º¥À�ÃyÏ »
Eff: if pc � c postWX and À�c write º¥À�Ã ¹.»

then pc � ö preWY

if pc � c postWY and À�c write ºÂÁ�Ã ¹.»
then pc � ö DONE

Ñ��
State Variables

pc � Å ½ preRY Ã postRY Ã preRX Ã postRX Ã DONE ¿ ,
initially preRY.

index
Å��

, initially Ð .

Steps
Output request º read ºÂÁ »   Ã ³ Ã SYNC

»
Pre: pc � c preRY� c index � ¹³ c � ½ read ºÂÁ »

index ¿ if index � Ðÿ otherwise
Eff: index ö index � ¹

pc � ö postRY

Output request º read º¥À » Ã ³ Ã NIL
»

Pre: pc � c preRX³ c²½ read ºÂÁ »
index ¿

Eff: pc � ö postRX

Input response º¥À�Ã5Ï »
Eff: if pc � c postRY and Àøc read ºÂÁ index

»
then pc � ö �

preRX if Ï�c ¹
preRY otherwise

if pc � c postRX and À�c read º¥À »
then pc � ö DONE

Example 9.2 We can also model nonblocking processes; that is, processes that do not wait for a
response to a requested operation. The automata that model nonblocking processes for the program
from Example 9.2 are:
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State Variables

pc � Å ½ WX Ã WY Ã RY ¿ , initially WX.

Steps
Output request º write º¥À�Ã ¹.» ÃMÿ¶Ã NIL

»
Pre: pc � c WX

Eff: pc � ö WY

Output request º write ºÂÁYÃ ¹.» Ã�½ write º¥À�Ã ¹.» ¿(Ã SYNC
»

Pre: pc � c WY
Eff: pc � ö RY

Input response º¥À�ÃyÏ »
Eff: None.

Ñ��
State Variables

pc � Å ½ RX Ã CONSUME Ã RY ¿ , initially RX.

index
Å��

, initially Ð .

Steps
Output request º read ºÂÁ »   Ã ³ Ã SYNC

»
Pre: pc � c RX� c index � ¹³ c � ½ read ºÂÁ »

index ¿ if index � Ðÿ otherwise
Eff: index ö index � ¹

Output request º read º¥À » Ã ³ Ã NIL
»

Pre: pc � c CONSUME³ c²½ read ºÂÁ »
index ¿

Eff: pc � ö RY

Input response º¥À�Ã5Ï »
Eff: if Àøc read ºÂÁ »   for some

� Å��
and Ïøc ¹

and pc � c RX

then pc � ö CONSUME

As in the computation-centric framework, we can use a memory automaton as a spec-
ification for a memory system and a clients automaton to express a client restriction. In
this case, we use the I/O automaton notion of implementation—that is, trace inclusion—
to determine whether a memory system implements its specification. Similarly, a clients
automaton meets a client restriction if it implements the automaton that models the client
restriction. In the next two sections, we give examples of simple dynamic memory models
and client restrictions, analogous to some of the models and client restrictions in Chapter 5,
and we prove results analogous to those proved in that chapter.

9.4 Simple Dynamic Memory Models

In this section, we define dynamic analogues for some of the simple computation-centric
memory models in Chapter 5. In particular, we define memory automata for sequential
consistency, coherence and weak synchronization.

In this chapter, we define memory automata by adapting the definition of é�8 , de-
scribing the parts that differ from éS8 —often only an extra clause in the precondition of
the response actions. It is often easier to express the extra precondition in terms of the
post-state, for which we use primed variables as described in Section 9.1.2.

For sequential consistency, there must be a single schedule that explains all the return
values. Thus, the dynamic model for sequential consistency is� ê : Changes from é�8

Output response º¥À�Ã{Ï »
Pre: À Å reqs û domain º resps

»ü explains resps ^ for some schedule ü of CCG.
Eff: resps º¥À » ö�Ï
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The use of resps L in the precondition means that the schedule must also explain ¬ as a return
value for ' . So this clause supercedes the clause in the definition of é�8 .

In any reachable state of
� ê , some schedule of the client constraints graph explains all

the return values.

Invariant 9.14 For
� ê : There is a schedule of CCG that explains resps.

Proof: Immediate by induction on the length of an execution.

One aspect of this definition that may seem odd is that each response action may use
a different schedule. The “real” schedule is never recorded in the state. Nonetheless, this
automaton models sequential consistency because there is always some schedule of the
client constraints graph that explains all the values returned so far.

If the schedule preceding an operation were fixed when the memory returns a value for
that operation, the resulting model would be linearizability [53], which is strictly stronger
than sequential consistency. However, linearizability and sequential consistency are in-
distinguishable in the computation-centric framework; a linearizable system is modeled
by SC. We discuss the relationship between linearizability and sequential consistency in
Section 9.6.

The automaton for coherent memory is similar to
� ê , except that the schedule needs to

explain only those operations on the same location. Formally, we haveê oh: Changes from é�8
Output response º¥À�ÃyÏ »

Pre: À Å reqs û domain º resps
»ü explains resps ^ ð �
	 loc for some schedule ü of CCG.

Eff: resps º¥À » öwÏ
In any reachable state of ê oh and for each location of the data type, there is a schedule

of the client constraints graph that explains the return values of the operations on that
location.

Invariant 9.15 For ê oh: For each location
�
, there is a schedule of CCG that explains resps \Â� .

Proof: Immediate by induction on the length of an execution.

Obviously, sequentially consistent memory implements coherence.

Lemma 9.16
� ê{N°ê oh.

Proof: Immediate from Corollary 9.10 because
ä é

and
é

oh are identical except that the precondition
on the response actions for

é
oh are weaker than for

ä é
.

For a weakly synchronized memory, all operations must see the same order for the
synchronization operations. The system synchronizes an operation by fixing its order rel-
ative to the other synchronization operations, and it does not allow any operation to see
the effects of a synchronization operation until it has been synchronized.

To model weak synchronization, we add to the generic memory automaton an internal
synchronize &('v* action and a state variable so that records the order in which operations
are synchronized. The synchronize &('B* action appends a synchronization operation ' to the
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sequence so, which represents the “synchronization order”. The schedule that explains
the return value of an operation must be consistent with the synchronization order, and
synchronization operations may precede the operation in that schedule only if they have
been synchronized. Formally, we have� �

ync: Changes from é�8
Additional State Variable

so
Å¡ë " , initially � ; the “synchronization order”.

Additional and Modified Steps
Internal synchronize º¥À »

Pre: À Å reqs û elems º so
»Ð�º¥À » c SYNC½}Á ¾qÐ�ºÂÁ » c SYNC MÁ ñ ò Àq¿ õ elems º so

»
Eff: append À to so

Output response º¥À�Ã{Ï »
Pre: À Å reqs û domain º resps

»
for some schedule ü of CCG,Ï�c retval º¥À�Ã]ü »ü is consistent with � soÁ����À�}Ð�ºÂÁ » c SYNC ��� Á Å

elems º so
»

Eff: resps º¥À » ö�Ï
9.5 Client Restrictions in the Dynamic Framework

In this section, we define clients automata that specify client restrictions. We retain the fla-
vor of the computation-centric client restrictions by simply restricting the client constraints
graphs that the automata may generate. We give clients automata that model the client re-
strictions of safety and race-freedom. We also prove that any memory automaton appears
sequentially consistent to safe, or race-free, clients in the dynamic framework.

Like the memory automata in the previous section, we define the clients automata
in this section by adapting the definition of the generic clients automaton éê and only
showing the parts that differ. In this case, we typically augment the precondition of the
request actions, again using primed variables for the value of the state variables in the
post-state.

As in the computation-centric framework, we use determinacy and race-freedom to
define restricted clients. A clients automaton is safe if the client constraints graph in every
reachable state is determinate. It is (completely) race-free if the client constraints graph in
every reachable state is completely race-free. We express these restrictions using

�
afe and���

, where a clients automaton is safe if and only if it implements
�

afe, and it is race-free
if and only if it implements

���
. Formally,
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�
afe: Changes from énê

Output request º¥À�Ã ³ Ã|Ð »
Pre: À�ôÅ reqs³�õ

reqs
CCG ^ is determinate

Eff: reqs ö reqs ÷�½~Àq¿
deps ö deps ÷�½pºÂÁYÃ�À » ¾pÁ Å�³ ¿
ann º¥À » öùÐ

���
: Changes from éê

Output request º¥À�Ã ³ ÃzÐ »
Pre: À�ôÅ reqs³�õ

reqs
CCG ^ is completely race-free

Eff: reqs ö reqs ÷ø½~Àq¿
deps ö deps ÷ø½pºÂÁ�Ã À » ¾bÁ Å�³ ¿
ann º¥À » ö�Ð

With these characterizations of safe and race-free clients, we can prove results anal-
ogous to those in Section 5.3. The main result is that any memory appears sequentially
consistent to race-free clients. First we prove that race-free clients are safe, and that any
memory appears sequentially consistent to safe clients.

Lemma 9.17
��� N �

afe.

Proof: Immediate from Corollary 9.10 because every race-free computation is determinate.

Lemma 9.18 é�8 � � afe N � êm� � afe.

Proof: � × m ä
afe and

ä é m ä
afe are identical except for the precondition of the response actions. By

Invariant 9.13, for all © Á domain ¢ resps § , there exists � Á Sch ¢ CCG § such that resps ¢Z©`§�¡ retval ¢Z©`±µ�¶§ .
Since CCG is determinate in any reachable state of � × m ä

afe, all schedules have the same return
values for all operations, so there exists � Á Sch ¢ CCG § such that for all © Á domain ¢ resps § , resps ¢�©`§`¡
retval ¢�©`±+�¶§ . Thus, the preconditions for � × and

ä é
are logically equivalent in all reachable states

of � × m ä
afe. By Corollary 9.10, � × m ä

afe ô ä é m ä
afe.

Theorem 9.19 é�8 � ��� N � ê{� ���
.

Proof: Immediate from Lemmas 9.17 and 9.18.

9.6 Relating the Two Frameworks

Because we have proposed two different frameworks for modeling and reasoning about
memory systems, it is natural to inquire about the relationship between these frameworks.
In this section, we show how to derive computation-centric models from dynamic models,
and we discuss the relationship between corresponding models in each framework.

As we discussed in Section 9.3, it is usually straightforward to give a dynamic model
of a system that corresponds closely to the actual operation of the system. Given automa-
ton models for a memory system and its clients, we can formalize the intuition in Chap-
ters 3 and 4 about how to construct the corresponding computation-centric models. For
a clients automaton ê and a memory automaton 8 , we use cc &�ê7* , cc &�8Ð* and cc &�8 �uê7*
to denote the computation-centric versions of the clients, memory and composed system
respectively.

For a clients automaton ê , the corresponding client restriction cc &�ê�* is the set of client
constraints graphs in any reachable state of the automaton. Formally,

cc &�ê7*p���]ÓX� CCG 2@Ó is a reachable state of ê����
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For a memory automaton 8 , we cannot use the set of all pairs of & CCG � resps * in any
reachable state of 8 for the computation-centric model because resps may not be defined
on all operations of CCG. So we only include those pairs that are observations, that is, the
pairs for which there is a return value for every requested operation. Formally,

cc &�8Ð*p� � &_ÓX� CCG �	Ó�� resps *¶2@Ó is a reachable state of 8 and Ó�� resps \ � o reqs is total � �
Because a memory system with a client restriction is just a more restricted memory

system in the computation-centric framework, the computation-centric version of a mem-
ory automaton composed with a clients automaton is derived in the same way as the
computation-centric version of a memory automaton. That is,

cc &�8 �0ê7*T� � &_ÓX� CCG �	Ó�� resps *¶2@Ó is a reachable state of 8 �0ê and ÓX� resps \ � o reqs is total � �
Some systems that exhibit different behaviors in the dynamic framework have the same

computation-centric model. As mentioned earlier, although linearizability and sequential
consistency do not allow the same set of behaviors—linearizability is strictly stronger—
they are both modeled by SC in the compuation-centric framework. Linearizability and
sequential consistency can be distinguished only by the time that responses are received:
An operation must be scheduled after any operation that received a response before it was
requested; that is, strict temporal precedence implies logical precedence. This implication
is deliberately absent from observations in the computation-centric framework. A client
that sees a value and requests an operation based on that value should include a prece-
dence dependency to reflect that.

Because the computation-centric framework takes a static approach to modeling mem-
ory guarantees, the computation-centric versions of the automaton models do not capture
the dynamic dependence that the computations may have on the values returned by the
memory. Behaviors that are not possible because of this dependence may seem possible if
we study the system only within the computation-centric framework. Unlike the distinc-
tion between linearizability and sequential consistency, the failure to capture the depen-
dence of computations on the return values is a shortcoming of the computation-centric
framework, and it is for this reason that we developed the automaton models for memory.

Example 9.3 Consider the clients automaton from Example 9.1. The computation generated by
this automaton is

SYNC

read ºÂÁ » �
SYNC

read ºÂÁ » �
write º¥À�Ã ¹.» write ºÂÁYÃ ¹.»

SYNC

SYNC

read ºÂÁ » Ñ
read º¥À »

When composed with a sequentially consistent memory automaton, that is, a memory automaton
that implements

ä é
, the return value for read ¢Z©�§ must be ¼ . However, SC admits observer functions

with all the read operations returning É for this computation.
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Despite the gap between computation-centric models and the systems they represent,
the results derived in the computation-centric framework can be used directly to make
claims about the automaton models. In particular, the computation-centric models are
conservative in the following sense: Any observation of the real system, as modeled by
memory and clients automata, is admissible according to the computation-centric models
for the system.

Theorem 9.20 cc &�8 �0ê7*�N cc &�8Ð*µ\ cc %�� ) .
Proof: If ¢�æ�±�ç�§ Á cc ¢ × m é § then for some reachable state of

× m é
, CCG ¡Mæ and resps

�
reqs ¡Mç . So

there is some reachable state of
×

with CCG ¡îæ and resps
�
reqs ¡îç , and some reachable state of

é
with CCG ¡Bæ . Thus, ¢�æ�±�ç�§ Á cc ¢ × § and æ Á cc ¢ é § , and thus, ¢
æ�±�ç�§ Á cc ¢ × § � cc ô�� õ

Theorem 9.20 implies that if we can prove within the computation-centric framework
that a property holds for every observation of a system, that property holds for every
observation of the system, as modeled by I/O automata.

Corollary 9.21 Suppose 8 is a memory automaton and ê is a clients automaton, and let
M � cc &�8Ð* and CR � cc &�ê�* be their computation-centric versions. For a predicate Ñ on
observations, if Ñh&A9<�#Ú)* for all &A9<�#Ú)*�. M \ CR then in any reachable state of 8 �0ê in which
every requested operation has received a response, Ñ_& CCG � resps \ reqs * .
9.7 From Computation-Centric to Dynamic Models

In this section, we show how to “translate” memory models and client restrictions from
the computation-centric framework into the dynamic framework. We show that our trans-
lation preserves implementation under a client restriction. In the next section, we define
a more careful translation that is sometimes necessary for memory models that are not
constructible.

The basic idea of the translation is simple: A computation-centric client restriction
translates to a clients automaton that generates only computations that satisfy the restric-
tion. A computation-centric memory model translates to a memory automaton that returns
values consistent with some admissible observer function for the client constraints graph.

Formally, let  be the set of all I/O automata. The translation of a computation-
centric memory model M .FÞ ±] by the function dyn 2*Þ ±] 3! is a memory automaton
dyn & M * that is identical to é�8 except for an additional clause in the precondition of the
response &('¶��¬B* action that restricts the return values to be consistent with some observation
admissible according to M.

dyn & M * : Changes from é�8
Output response º¥À�Ã{Ï »

Pre: À Å reqs û domain º resps
»Ïøc retval º¥À�Ã]ü »

for some schedule ü of CCGº CCG Ã#" »�Å M for some extension " of resps ^
Eff: resps º¥À » ö�Ï

The new precondition ensures that the value returned is part of a total response allowed
by the memory model. Because resps L is the value of resps in the post-state, it includes the
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assignment of ¬ to resps &('B* . Because the memory responds to one operation at a time, we
cannot require & CCG � resps L * to be an admissible observation of M; some operations may
not yet have responses. Instead, we require only that there be some extension of resps L in
M â CCGã .

In any reachable state of dyn & M * , M admits some observer function for CCG that is
consistent with all the values returned for operations so far.

Invariant 9.22 For dyn & M * : & CCG �#Ú)*�. M for some extension Ú of resps.

Proof: Immediate by induction on the length of an execution. The invariant holds in the initial
state because the empty computation with the null function is admissible according to any memory
model.� ê and ê oh from Section 9.4 are equivalent to the translations of SC and Coh by dyn.

Lemma 9.23
� ê31 dyn & SC * and ê oh 1 dyn & Coh * .

Proof: This is trivial for
ä é

and dyn ¢ SC § because the two automata are identical; the preconditions
for their response actions are logically equivalent.

For
é

oh and dyn ¢ Coh § , the precondition in
é

oh is implied by the precondition in dyn ¢ Coh § , but
the converse is not true. However, by Invariant 9.15, in any reachable state of

é
oh, for each location� , there is a schedule of CCG that explains resps

� �
. Thus, ¢ CCG ±�ç�§ Á Coh for some extension ç of

resps, which implies that the preconditions are logically equivalent in any reachable state. So, by
Corollary 9.10,

é
oh 6 dyn ¢ Coh § .

Translation by dyn preserves the implementation relation.

Theorem 9.24 If M implements M L then dyn & M * implements dyn & M L,* .
Proof: Since dyn ¢ M § and dyn ¢ M  ,§ are identical except for the precondition of the response actions
and since M ô M   , we have dyn ¢ M § ô dyn ¢ M  ,§ by Corollary 9.10.

We translate client restrictions in a similar fashion, abusing notation by using the same
name for the translation function. Formally, the translation of a computation-centric client
restriction CR .��%$ à á by dyn 2)��$ à á�3& is a clients automaton dyn & CR * that is identical toénêh&�Ã=�A�«* except for an additional clause in the precondition of the request action to ensure
the client constraints graph defined is a computation allowed by the restriction.

dyn & CR * : Changes from énê
Output request º¥À�Ã ³ Ã|Ð »

Pre: À�ôÅ reqs³�õ
reqs

CCG ^ Å CR
Eff: reqs ö reqs ÷ø½~Àq¿

deps ö deps ÷�½pºÂÁ�Ã�À » ¾bÁ Å�³ ¿
ann º¥À » öùÐ

The client constraints graph in any reachable state of dyn & CR * is in CR.

Invariant 9.25 For dyn & CR * : CCG . CR.
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Proof: Immediate by induction on the length of an execution.

The clients automata
�

afe and
���

from Section 9.4 are identical to the translations of
Safe and RF by dyn.

Lemma 9.26
�

afe � dyn & Safe * and
��� � dyn & RF * .

Proof: Immediate from the definitions.

Translation by dyn preserves the relative restrictiveness of clients.

Theorem 9.27 If CR is more restrictive than CR L then dyn & CR * implements dyn & CR L * .
Proof: Immediate from Corollary 9.10 and the definitions.

The translation of a computation-centric model and its projection under a client restric-
tion are equivalent when composed with the translation of the client restriction.

Lemma 9.28 dyn & M \ CR *�� dyn & CR *Z1 dyn & M *�� dyn & CR *
Proof: Let

c ¡ dyn ¢ M §am dyn ¢ CR § and
ê ¡ dyn ¢ M �

CR § m dyn ¢ CR § . First, note that M
�
CR ô M, so

dyn ¢ M �
CR § ô dyn ¢ M § by Theorem 9.24. Thus, by Theorem 9.7,

ê ô c
.

Now we prove that the identity function is a forward simulation from
c

to
ê

. The start states
are identical, as are the steps involving request actions, so we only need to check that if o is a reach-
able state of

c
and o response ô é @ þ õñEñ�ñ#ñ#ñ�ñ�ñ�ñÝò à oX  then o response ô é @ þ õñHñ#ñ�ñ#ñ�ñ�ñ�ñÝò å o�  . By the precondition of response ¢�©`±)��§

in
c

, there is an extension ç of o�  ³ resps such that ¢ oÝ³ CCG ±�ç�§ Á M. By Invariant 9.25, oÝ³ CCG Á CR, so
by the definition of M

�
CR, ¢�o?³ CCG ±�ç�§ Á M

�
CR. Since the effect clause of response ¢Z©`±���§ is the same inc

and
ê

, we have o response ô é @ þ õñEñ�ñ#ñ�ñ�ñ�ñ-ñ�ò å oX  , as required.

We now prove the main theorem of this section: Translation under dyn preserves im-
plementation under a client restriction when the resulting memory models are composed
with the translation of the client restriction.

Theorem 9.29 If M implements M L under CR then dyn & M *?� dyn & CR *�N dyn & M L *H� dyn & CR * .
Proof: By the definition of implementation under CR, M

�
CR implements M   � CR. By Lemma 9.28

and 9.24, dyn ¢ M §m dyn ¢ CR §õ6 dyn ¢ M �
CR §m dyn ¢ CR § ô dyn ¢ M   � CR §Wm dyn ¢ CR §N6 dyn ¢ M  ,§m dyn ¢ CR § .

9.8 From Computation-Centric to Dynamic Models, Part II

Because the computation-centric framework supports a postmortem analysis of concur-
rent systems, the computations in a client restriction model the logical structure of finished
executions and memory models specify admissible observer functions for these computa-
tions. However, neither the client restriction nor the memory model may be appropriate
for modeling computations and observations in intermediate states of a program’s execu-
tion. For example, there may be no way to construct the desired final computation one
operation at a time without going through intermediate computations that do not satisfy
the client restriction. In this section, we refine the translation from the previous section to
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handle client restrictions and memory models that are not applicable to intermediate exe-
cution states. We show that the two translations are equivalent when the client restrictions
and memory models are applicable to intermediate states.

We consider the translation for client restrictions first. For many client restrictions,
there is no way to construct the allowed computations one operation at a time without
going through intermediate computations that do not satisfy the restriction. For example,
in a well-formed computation with locks, every acquire has a matching release, which is
not true for computations in any state immediately following the acquisition of a lock.
Informally, we want to allow the clients to request operations as long as they are building
up towards a computation allowed by the client restriction.

Formally, the translation of a computation-centric client restriction CR by dyn � 2-� $ à á83 is a clients automaton dyn � & CR * that is identical to énêh&�ÃI�A�«* except for an additional
clause in the precondition of the request action that requires the client constraints graph
defined to be a prefix of a computation allowed by the restriction.

dyn � & CR * : Changes from énê
Output request º¥À�Ã ³ Ã|Ð »

Pre: À�ôÅ reqs³�õ
reqs

CCG ^ is a prefix of some ' Å CR
Eff: reqs ö reqs ÷ø½~Àq¿

deps ö deps ÷�½pºÂÁ�Ã�À » ¾bÁ Å�³ ¿
ann º¥À » öùÐ

Similarly, a computation-centric memory model that assumes a client restriction CR
may not specify any observations for the intermediate computations generated by the
clients automaton. However, the dynamic version of such a memory should still be able to
respond to operations, as long as it will not “get stuck” as the computation is extended.2

To model this, we need to specify what restriction the memory assumes. These restrictions
are typically the well-formedness conditions of the system.

Formally, the translation of a computation-centric memory model M assuming WF by
dyn � 2&Þ ±] �I� $ à á¥3( is a memory automaton dyn � & M � WF * that is identical to éS8 except
for an additional clause in the precondition of the response &('B��¬B* action that restricts the
return values to be consistent with some observation allowed by M for every computation in
WF that extends CCG.

dyn � & M � WF * : Changes from é�8
Output response º¥À�Ã5Ï »

Pre: À Å reqs û domain º resps
»Ïøc retval º¥À�Ãµü »

for some schedule ü of CCG
for every ' Å WF that extends CCG, there exists " Å M ) '%* that extends resps ^

Eff: resps º¥À » ö�Ï
As with the simpler translation by dyn, translation by dyn � preserves implementation.

The following theorem is analogous to Theorem 9.24.

2We can also define a less conservative translation in which the system can return a value for an operation
as long as it is might not get stuck.
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Theorem 9.30 If M N M L then dyn � & M � WF *�N dyn � & M LU� WF * .
Proof: Immediate from definition and Corollary 9.10.

Strengthening the well-formedness conditions weakens the resulting dynamic memory
model.

Theorem 9.31 If WF N WF L then dyn � & M � WF L *�N dyn � & M � WF * .
Proof: Immediate from definition and Corollary 9.10.

This theorem makes sense because the system with stronger well-formedness conditions
does not need to guarantee consistency on as many computations; the system implemen-
tors make stronger assumptions about the behavior of the clients.

The next theorem is the analogue of Theorem 9.27: Translation by dyn � preserves the
relative restrictiveness of clients.

Theorem 9.32 If CR N CR L then dyn � & CR * implements dyn � & CR L * .
Proof: Again, immediate from Corollary 9.10 and the definitions.

When translating a memory model under a client restriction by dyn � , we do not trans-
late the memory model and the client restriction separately, as we did when translating
by dyn. Instead, the client restriction is used as the assumed well-formedness condition
of the system. Thus, the next two results, analogues of Lemma 9.28 and Theorem 9.29, do
not consider the composition of a memory and a clients automaton, as the results in the
previous section did.

When assuming a client restriction, the translation of a memory model is the same as
the translation of the memory model under that restriction.

Lemma 9.33 dyn � & M \CR � CR *�1 dyn � & M � CR * .
Proof: Because M

�
CR ÔÂæõÕ¨¡ M ÔöæõÕ when æ Á CR, the two automata are identical.

Translation under dyn � preserves implementation under a client restriction.

Theorem 9.34 If M implements M L under CR then dyn � & M � CR *�N dyn � & M LU� CR * .
Proof: By the definition of implements under CR, M

�
CR ô M   � CR, so by Lemma 9.33 and Theo-

rem 9.30, dyn
� ¢ M ± CR §N6 dyn

� ¢ M �
CR ± CR § ô dyn

� ¢ M   � CR ± CR §õ6 dyn
� ¢ M  �± CR § .

We now show how to relate the two translations for memory models. It is easy to see
that the new translation of client restrictions produces weaker clients automata than the
old translations.

Theorem 9.35 dyn & CR *�N dyn � & CR * .
Proof: Immediate from the definition because any computation is a prefix of itself.

We cannot compare the translations of memory models so easily because the new trans-
lation has an additional parameter, the assumed well-formedness condition. However, if
we do not make any well-formedness assumptions, then the translation by dyn � is at least
as strong as the translation by dyn because it must guarantee that the return values are
consistent with every possible extension of the client constraints graph.
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Theorem 9.36 dyn � & M ��° ±] *�N dyn & M * .
Proof: Immediate from Corollary 9.10 since the precondition of response ¢�©`±)��§ in dyn

� ¢ M ± ð å Þ § im-
plies the one in dyn ¢ M § .

If the computation-centric model is constructible, the two translations are identical.

Theorem 9.37 If M is constructible then dyn � & M ��° ±] *J� dyn & M * .
Proof: Immediate from Corollary 9.10 since the precondition of response ¢�©`±��`§ in dyn ¢ M § implies
the one in dyn

� ¢ M ± ð å Þ § when M is constructible.

We do not have an exact condition that characterizes when the translations are equiva-
lent for client restrictions. One sufficient condition is prefix-closure. A client restriction CR
is prefix-closed if for all 9i. CR, every prefix of 9 is also in CR. Any computation that
is allowed by a prefix-closed client restriction can be constructed one operation at a time,
in any order consistent with the precedence order, with the intermediate computations
satisfying the restriction.

Theorem 9.38 If CR is prefix-closed then dyn � & CR *p� dyn & CR * .
Proof: Immediate from the definitions.

The translation by dyn � of a memory model assuming a prefix-closed client restriction
implements the translation of the memory model by dyn when they are composed with
the translation of the client restriction.

Theorem 9.39 If CR is prefix-closed then dyn � & M � CR *�� dyn � & CR *�N dyn & M *�� dyn & CR * .
Proof: By Theorem 9.38, dyn

� ¢ CR §~¡ dyn ¢ CR § , so by Invariant 9.25, CCG Á CR in any reachable
state of both composite automata. Thus, in any reachable state, the precondition of the response
action in dyn

� ¢ M ± CR § implies the precondition of the response action in dyn ¢ M § , which proves the
theorem.

Combining the previous results, we have that the translation by dyn � of a constructible
memory model assuming a prefix-closed client restriction is equivalent to the translation
of the memory model by dyn when they are composed with the translation of the client
restriction.

Theorem 9.40 If CR is prefix-closed and M is constructible for CR then dyn � & M � CR *K�
dyn � & CR *�1 dyn & M *�� dyn & CR * .
Proof: By Theorems 9.37 and 9.38, dyn ¢ M §&m dyn ¢ CR §`¡ dyn

� ¢ M ± ð å Þ §&m dyn
� ¢ CR § . By Theorem 9.31,

dyn
� ¢ M ± ð å Þ § ô dyn

� ¢ M ± CR § since CR ô ð å Þ , so dyn ¢ M § m dyn ¢ CR § ô dyn
� ¢ M ± CR § m dyn

� ¢ CR § . Thus,
by Theorem 9.38, dyn

� ¢ M ± CR §Um dyn
� ¢ CR §`¡ dyn ¢ M §Ym dyn ¢ CR § .
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Chapter 10

Conclusions and Future Work

In this thesis, we have presented the computation-centric framework for reasoning about
memory consistency. We have demonstrated its utility by specifying and reasoning about
a variety of memory models, including familiar models, such as sequential consistency
and coherence, and new ones, such as weak sequential locking and internally consistent
transactions. We have proven theorems that identify conditions under which systems with
weak consistency guarantees appear to have strong guarantees.

However, the true value of any framework for reasoning about systems lie in its impact
on real systems. In this chapter, we discuss how the work we present here may impact real
systems and point out promising directions for further study.

10.1 Implications on Memory System Design and Use

There are at least three ways in which this framework may have impact on real systems.
First, it may be used by programmers of these systems to reason about their programs.
Second, it may be used by system designers to determine what consistency properties to
guarantee and to express these guarantees precisely and unambiguously. Third, it may be
used by system implementors to verify their implementations are correct. In this section,
we describe why we believe the computation-centric framework could be used in these
ways. Actual use, of course, can only take place over time.

Use by programmers. Several of the theorems in this thesis have been directed towards
programmers, who are the main audience for the computation-centric framework. For
example, the main result of Chapter 7, Theorem 7.25, says that programmers can assume
sequential consistency with locks as long as they write programs that are data-race-free
under locking and the system guarantees weak sequential locking. Since weak sequential
locking is a very weak model, any system that provides locks should implement it. Thus,
the only burden on programmers is to verify that their programs are data-race-free under
locking, which is generally recommended for concurrent programming with locks.

We do not expect that programmers will always formally prove that their programs are
correct using the computation-centric framework. Rather, the computation-centric frame-
work provides a nice basis for informal “back of the envelope” reasoning, as well as for
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rigorous proof. Having a precise definition for data-race-freedom under locking means
that when there is ambiguity, one can resort to the formal definition.

Many relaxed memory models that have been proposed have been too difficult to un-
derstand [56]. We believe that the computation-centric framework can be readily grasped
by programmers with a minimal discrete math background. The only formal background
necessary is a bit of graph and set theory. More importantly, computation provide a simple
visual way to understand the structure of a program’s execution that we believe program-
mers will find easy to map to their understanding of the program.

Use by designers. One of the difficulties with memory consistency models is that any
given system guarantees various consistency properties. Most models do not separate out
these properties so that designers can understand the cost and benefit of each property.

For example, as we saw in Sections 5.3, 6.7 and 7.6, coherence is not necessary to guar-
antee sequential consistency in almost any case. Nonetheless, almost all multiprocessors
guarantee coherence. In earlier work on computation-centric memory models [40], we
showed that any constructible memory model that implements a particular form of dag
consistency guarantees coherence. Because dag consistency is a very weak model, speci-
fied by ruling out anomalous behaviors, Frigo concluded that every “reasonable” memory
model should guarantee coherence [39]. However, the observation above gives evidence
against this conclusion. Although a system may exhibit unreasonable behavior for some
computations, as long as it guarantees weak sequential locking, which does not imply
coherence, it will execute any data-race-free program correctly.

Similarly, release consistency and weak ordering require all lock access to be synchro-
nized, even accesses of different locks. However, weak sequential locking requires accesses
to be synchronized only if they access the same lock. Clearly, this allows more efficient
implementations. If a lock is implemented by synchronized access to a single memory
location, the system need not synchronize operations performed on different locations to
execute data-race-free programs correctly.

A multiprocessor that provides fine-grained synchronization can take advantage of this
weak synchronization requirement to improve performance. Indeed, several shared mem-
ory multiprocessors have supported fine-grained synchronization, including HEP [102],
Monsoon [92], Tera [10], the Wisconsin Multicube [48] and the MIT Alewife machine [7].
However, most modern multiprocessors memory models, including the SPARC relaxed
memory ordering [107], the PowerPC [84], the Alpha [101] and release consistency [43],
provide only coarse-grained synchronization that does not distinguish memory operations
by location. Supporting fine-grained synchronization requires greater hardware complex-
ity, but there is evidence that the performance advantage is worth the added complex-
ity [65]. To the best of my knowledge, more recent literature does not address this question
further.

On the other side of the memory interface, designers (and implementors) of shared
memory multiprocessors seem to assume that sequential consistency is good enough, pre-
sumably because sequential consistency can be used to implement locks and other syn-
chronization mechanisms. Although there is a rich body of literature, derived from multi-
programming, on using sequentially consistent memory, the consensus is that it is hard [70].
Books on concurrent programming teach high level constructs to make this task easier.
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In fact, almost all multiprocessor systems provide hardware support for some kind of
synchronization. But the implications of these mechanisms on memory consistency is only
described in terms of guaranteeing sequential consistency. We want to make the power of
these mechanisms directly available to the programmer through the memory model.

Use by implementors. We have not done much work on results that are directly useful
to system implementors. Nonetheless, we provide a clear and precise specification of a
memory system, so it is possible for implementors to verify their implementations against
these specifications.

10.2 Future Work

Despite its length and breadth, this thesis presents a very preliminary investigation into
how to reason about shared memory systems. The discussion sections of the chapters
include many suggestions for extending the computation-centric framework. In addition,
there are whole areas that we are leaving unexamined, including issues of language design
and compilation. Indeed, there is much more to do than has been done, and this field is
ripe for the picking. In this section, we point out some of the directions we believe will be
the most fruitful to explore.

Data types. We focus on one property—independence—of data type operators. There are
other properties, such as transparency and obliteration,1 that may simplify the analysis
of concurrent systems. Allowing blocking and nondeterministic operators will also be
necessary to model the data types of some memory systems. Blocking operators could be
used to implement locks in memory, and modeling transactions as providing abstract data
types may require nondeterministic operators.

Alternative notions of operator sequence equivalence are also important to model, es-
pecially for transactional memories, which may want to “hide” the return values for inter-
nal operators.

One idea that we began to explore and looks promising is to “iterate” data types. An
iterated data type is derived from a data type by allowing sequences of operators to be
requested. In the concurrent setting, these sequences would have to be applied atomically;
thus, iterated data types can be used to model the abstract data types implemented by
transactions.

Computations. We need to bridge the gap better between computations and programs.
This issue is discussed in Section 3.5. We model precedence dependencies specially in-
stead of modeling them as annotations. Are there other constraints that we should treat
similarly? For example, we might distinguish “external” and “internal” operations and
use a notion of operator sequence equivalence that exploits this distinction.

1See page 29 for an informal definition of these properties.
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It may also be helpful to give annotations more structure by defining annotation types,
which specify the well-formedness condition and scheduling constraints in addition to the
possible annotations.

Memory models. One intriguing possibility is to model the dynamic interaction between
the memory and its clients directly over the computation-centric framework instead of
imbedding the computations within a state machine model. One simple approach is to
model a system’s execution as a sequence of intermediate observations; this approach re-
quires us to allow partial observer functions.

Our models also completely neglect liveness. It may be easy to incorporate the liveness
aspects of I/O automata to study liveness in the state machine models. It would be good
to have a way to study liveness directly in the computation-centric framework, perhaps
indicating that some observations are “quiescent” while others require further action.

Program models. The shortcoming of the computation-centric framework in capturing
the dynamic interaction between the memory and its clients is a problem in one direction:
Clients, as modeled by computations, do not see the return values. Client restrictions
are a crude tool for modeling clients, especially with the kinds of computations we have
specified thus far.

Value synchronization, as suggested at the end of Section 5.5, is one possible way to
improve the modeling of clients without jettisoning the computation-centric framework
completely. With value synchronization, the values seen for earlier operations may be
incorporated into the annotations of later operations.

Specific memory models and systems. The task of modeling memory systems is never
finished because new systems, and new ways to program these systems, are continu-
ally being developed. An exhaustive cataloging and analysis of even those already pro-
posed and implemented would be a herculean task,2 and not one I suggest to undertake.
However, several particular models, or relaxations of models already specified here, seem
worth examining.

One useful synchronization concept that we do not model is stability. Informally, an
operation ' is stable when the entire system agrees on the order of the operations that
precede ' . This order may not explain the values returned for those operations—such
constraints must be expressed by the memory model: the system may return “tentative”
values for some operations—but the schedules that explain later operations will have the
same prefix.

Besides mutex and shared/exclusive locks, there are other kinds of locks and other
locking disciplines that are worth considering, in part because they are widely used. The
simplest extension is to relax the well-formedness conditions for mutex locks, so that
locked sections need not be enclosures of the computation. Other possibilities are to model
the locking associated with lower degrees of isolation, or to model a set of hierarchical
locks, where acquiring a lock requires the acquisition of all higher locks.

2Probably the slaying of the Lernean Hydra or the cleaning of the Augean stables.
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Another extension relating to memories with locks is to decouple the passing of locks
from the precedence dependencies. For example, a thread may spawn a new thread but
not pass the locks that it holds to that thread.

As we suggest at the end of Chapter 8, transactions are a promising concept for provid-
ing a foundation for concurrent computing. Section 8.9 discusses several ways to explore
transactional models further. I believe that further study into what is possible with weak
transactional models, both those defined here and others as yet undefined, will be greatly
rewarded.

Other issues. To avoid language design considerations, we designed computations to
be flexible enough to model almost any kind of constraint that might be expressed in a
concurrent programming language. However, we do not view the choice of language as
a minor point to be decided when everything else has been worked out. The design or
choice of proper constructs and disciplines for organizing a concurrent program may be
the most important issue for concurrent systems. We focused on the memory consistency
semantics because it is not clear what, if any, constructs are truly useful. If shared memory
is the right way for concurrent threads to communicate, then a framework for reasoning
about memory semantics is necessary to assess the various candidates.

Compilation is important because of the gap it produces between the program and the
actual code executed on the system. However, program semantics should not be defined
by their compilers or the systems the programs are executed on. Rather, every program-
ming language should have a precise abstract execution model that is independent of the
system. This execution model includes the memory consistency model in its specification.
We believe that much of the difficulty and confusion with compiling for concurrent sys-
tems is a result of not having such a model, without which there can be no precise notion
of a correct compilation of a program. Just-in-time compilation throws a new twist into
the compilation quagmire, because the way code is compiled may depend on the values
returned for earlier operations. Nonetheless, as long as the program execution model is
invariant under changes to the compiler or the system, as it should be, reasoning about a
program not be affected by compilation.

Compilation should affect memory semantics, however, in the same way that architec-
ture affects memory semantics: The execution model for a programming language should
be efficiently implementable using current compilation and architectural techniques. Un-
derstanding these techniques, and their impact on memory consistency, is essential to the
design of memory models.

Another important issue that we have not discussed is performance. Good analytic per-
formance models are rare—almost non-existent—for concurrent systems. We need more
and better models to predict performance.

Finally, one of the advantages of formal methods is that we can use formal tools—
theorem provers, verifiers, perhaps even automatic code generators—to help in designing,
reasoning and building systems. There is a lot of work in this area for all kinds of systems,
including shared memory systems.
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hold a lock, 119
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implementation
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computation-centric model, 70–71

independence
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location, 38, 38
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locking, 52

generic, see generic locking
sequential, see sequential locking
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ing
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of memory models, 69
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Munin, 13
mutual exclusion (mutex) lock, 119ë , 22
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nonuniform memory access (NUMA), 13
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observer function, 66
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precedence dependency, 43
precedence order, 44

precedence, logical, 48
precedence-based memory, 50
prefix

of dag, 44
prefix region, 121
prefix-closed, 191
primed variable, 176, 181
processor consistency, 12, 80, 100, 103
processor-centric, 11, 51
processor-centric memory, 51, 91
program order, 10, 48, 61, 81
program order dependency, 114
programmer-centric approach, 14, 15, 91, 113
programmer-centric model, 92, 113
projection

on component automaton, 173
onto a location, 38
onto a processor, 94
onto a set, 23

properly labeled program, 13, 14, 137
properly-labeled-1 (PL1), 114
properly-labeled-2, 101, 138
protected by a lock, 140
protects all locations, 140
ProtLocs, 140
PSO, 97
/

, 24d , 22Î , see read/write register, 26
race, 49, 59
race under locking, see data race under lock-

ing
race-free transaction, 165
race-freedom

complete, see complete race-freedom
range, 22
RC, 101
Rd, 94
RdFd, 97
reachable state

of automaton, 172
of data type, 27

read, 24
read acquire, 142
read forwarding, 93, 96–99
read-modify-write operation, 24, 93
read-only, 29
read/write lock, see shared/exclusive lock
read/write memory, 24, 28, 93, 94, 142

typical for multiprocessors, 21
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read/write register, 24, 25–28
rear guard, 121, 126
region, 121
regions, 126
register

compare-and-swap, see compare-and-swap
register

fetch-and-increment, see fetch-and-increment
register

read/write, see read/write register
test-and-set, see test-and-set register

REL, 123
relaxed memory ordering (RMO), 98
release, 13, 101
release a lock, 119
release consistency, 13, 14, 75, 81, 86, 101

eager, see eager release consistency
lazy, see lazy release consistency

Rels ¢5§F§ , 123
reordering, 109, 111–113
reordering of operations, 92
reordering transformation, 75, 94
replicated data service, 13
reqs, 177
reserialization, 151
respect, 58

a lock, 128
locking, 119, 128
shared/exclusive locking, 141
transactions, 149

RespLock ¢U§ , 128
resps, 177
restriction

of a function, 22
of a relation, 22

return value, 24
retval ¢U§ , 30Î æ

, 188
RF, 83, 188
RFT, 165
rgd ¢ § , 121
RMO, 98³ s, 24ä

afe, 188
Safe, 83, 188
safe clients, 83
satisfies integrity, 163ä é

, 181, 187
SC, 68, 81, 187
Sch ¢�æ�§ , 58

schedule, 43, 58
acquire-release, see acquire-release sched-

ule
scheduling constraint, 59, 63
scope consistency, 13
SCT, 150
section§ -, see § -section

locked, see locked section
separates locations, 85
SepLocs, 85
sequential consistency, 11, 68, 81–82, 92, 181
sequential consistency normal form, 14
sequential consistency with locking, 131, 131
sequential locking, 133, 134

strong, see strong sequential locking
weak, see weak sequential locking

sequential specification, 41
sequentially consistent execution, 114
sequentially consistent transactional memory,

150
Serial, 72, 75
serial data type, 23, 21–42
serial locked sections restriction, 127, 139
serial region, 121
serial transactions restriction, 149
serializability, 145, 153
serializability theorem, 153
serialization, 23
serialization point, 151, 154
SerLockSec, 127
SerTr, 149
share a lock, 136
shared acquire, 141
shared mode of a lock, 141
shared virtual machine (SVM), 13
shared/exclusive lock, 120, 140, 141
shrinking phase, 153
simulation, forward, see forward simulation
SL, 134Â�© ¢�©`§ , 126
so, 182
SPARC, 97, 98
SSL, 134
SSync, 88
stability, 196
stable, 196
statistical accumulator, 35–36
step, 171, 172
store barrier, 97
strict partial order, 23
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strict two-phase locking, 153, 156
strict two-phase locking transaction manager,

156
stricter, 69
strong determinacy, 60
strong equivalence

data type, 37
operator sequence, 32

strong ordering, 12
strong sequential locking, 131, 133, 134
strong synchronization, 88
stronger, 69
subgraph, induced by, 44
SYNC, 50, 100
synchronization, 10, 50–51, 87–91
synchronization operation, 12, 85, 113
synchronization predicate, 87, 99, 132
synchronization variable, 50
synchronize, 182
synchronizing transformation, 88, 99, 132
system-centric approach, 91
system-centric model, 92Ò , 24
t å s, 25Ò � �

, 26Ò · , 26Ò · � , 26
TC, 23ã c

CR, 75
test-and-set, 24, 93
test-and-set register, 25, 28
thread, 10
TI, 146
TITI, 52
topological sort, 44
total order, 23
total store ordering (TSO), 97
trace, 171, 172
trace variable, 176
transaction, 52, 145, 148
transaction identifier, 146
transaction manager, 153
transaction race, 164, 164
transaction-race-freedom, 164
transformation, computation, see computation

transformation
transition function, 24
translation, 186, 187, 189

assuming well-formedness, 189
transparency, 29

TreadMarks, 13
trivial transaction, 148ã~ä

, see test-and-set registerã
ser, 74, 75

TSO, 97
tuple, 22
two-phase locking, 151, 153
two-phase locking transaction manager, 153
two-phase transaction, 153

umbrella locking discipline, 140
uniform model, 81
unpaired synchronization, 138
using a computation transformation, 74

V� , 44³ v, 24³ � , 94
validity (for operator sequences), 29, 30

not severe restriction, 31
value synchronization, 90
view equivalence, 34
view serializability, 153
virtual processor, 116

weak ordering, 12, 14, 75, 81, 92, 100
weak sequential locking, 119, 131, 133, 134
weak synchronization, 88, 182
weaker, 69
well-formed computation, 47
well-formedness condition, 47, 50, 63, 70

for locking, 125
for processor-centric systems, 51, 94
for transactions, 147

WFL, 126
WFP, 94
WFP · , 114
WFT, 147
withdraw, 25
WMB, 95
WO, 100
Wr, 94
write, 24
write acquire, 142
write buffer, 91, 93
write memory barrier, 95
write serialization, 91, 100, 101
WS, 103
WSL, 134
WSync, 880 ä

ync, 183
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