
Diminished Chord: A Protocol for
Heterogeneous Subgroup Formation in

Peer-to-Peer Networks

David R. Karger1 and Matthias Ruhl2

1 MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139, USA

karger@csail.mit.edu
2 IBM Almaden Research Center

San Jose, CA 95120, USA
ruhl@almaden.ibm.com

Abstract. In most of the P2P systems developed so far, all nodes play
essentially the same role. In some applications, however, different ma-
chine capabilities or owner preferences may mean that only a subset of
nodes in the system should participate in offering a particular service.
Arranging for each service to be supported by a different peer to peer
network is, we argue here, a wasteful solution.
Instead, we propose a version of the Chord peer-to-peer protocol that al-
lows any subset of nodes in the network to jointly offer a service without
forming their own Chord ring. Our variant supports the same efficient
join/leave/insert/delete operations that the subgroup would get if they
did form their own separate peer to peer network, but requires signifi-
cantly less resources than the separate network would.
For each subgroup of k machines, our protocol uses O(k) additional stor-
age in the primal Chord ring. The insertion or deletion of a node in the
subgroup and the lookup of the next node of a subgroup all require
O(log n) hops.

1 Introduction

In most of the P2P systems developed, all nodes play essentially the same role
in the system. In many applications, however, this might not be appropriate:
nodes might be heterogeneous either in their capabilities or their approved uses.
From the capability perspective, a bandwidth-intensive application might wish
to limit itself to the subset of nodes with high connectivity, a storage-intensive
one might focus on nodes with large disks, a compute intensive one on fast
machines. Socially, in an environment where many different P2P services can be
offered, some users might be comfortable running only certain “nice” services
on their machines, steering clear of music-piracy services, music piracy detection
services, or code-cracking endeavors by hackers or the NSA.

One way to support such endeavors would be to form a separate P2P over-
lay for each service, and let nodes join all the overlays in which they wish to



participate. This is inefficient, however, as the same routing infrastructure will
have to be replicated repeatedly—a machine may find itself pointing at the same
successors and fingers in an unlimited number of distinct P2P networks. Even
worse, it might need to maintain different successors and fingers in each of its
networks.

In this paper, we give an efficient mechanism for an arbitrary set of nodes
to form “subgroups” without increasing their overhead. We augment the Chord
protocol to allow queries of the following form: find the first node in subgroup
X whose address follows a given address on the Chord ring. This query can be
answered in the same O(log n) time as standard Chord queries. To join a given
group, a machine performs O(log n) routing hops and deposits a tiny constant
amount of additional information. In other words, within the larger Chord ring,
we are able to simulate a Chord ring on the nodes in group X. The maintenance
traffic a node uses to maintain its groups is negligible (per group) compared
to the amount of traffic the node spends maintaining the underlying Chord
infrastructure.

Besides the precisely measurable improvements in efficiency, our use of sub-
rings instead of independent rings provides a less quantifiable reduction in com-
plexity by delegating some of the most complex parts of the ring maintenance
protocol to be performed only once, by the primal ring, instead of once per
subring. For example, our approach simplifies the rendezvous problem. To join
a Chord ring, a node needs to identify, using some out-of-band mechanism, at
least one node already in the ring. This remains true for joining the base Chord
ring in our protocol. But once a node is in the base Chord ring, it can easily join
any existing subgroup in the ring, without any new out-of-band communication.
Thus, if the primal join problem is solved once (for example, by making all nodes
in the world part of a primal Chord ring) it never needs to be addressed again.
As a second example, consider the use of numerous redundant successor pointers
by Chord to provide fault tolerant routing in the presence of node failures. Since
the subrings live inside of a ring that provides such fault tolerance, the subrings
themselves do not have to do so.

Our protocol works by embedding in the base Chord ring, for each subgroup,
a directory tree that lets a node find its own successor in the subgroup. We
arrange for the edges of the directory tree to be fingers of the Chord ring so
that traversing the directory tree is cheap. Finding the group-X successor of a
given key is accomplished by finding the primal-ring successor s of the key and
then finding the group-X successor of node s (from a practical perspective, this
suggests that such subring lookups will take roughly twice as long as standard
ones).

1.1 Chord

Our discussions below are in the context of the Chord system [1] but our ideas
seem applicable to a broader range of P2P solutions. Since we are only interested
in routing among subgroups of nodes, we can ignore item assignment issues and
concentrate on the routing properties of the system.



Chord defines a routing protocol in which each node maintains a set of
O(log n) carefully chosen neighbors called fingers that it uses to route lookups
in O(log n) hops. To do so, it maps the nodes onto a ring which we shall consider
to be the interval [0, 1] (where the numbers 0 and 1 are identified). Every node
receives as address some random (fractional) number in the interval (e.g. by
hashing the node’s name or IP-address). A node with address a then maintains
finger pointers to all nodes with addresses of the form succ(a+2−b), where b ≥ 1
is an integer. By succ(x) we refer to the first node succeeding address x in the
address space. It can be shown that with high probability, only O(log n) of the
pointers are distinct. Thus, each node has O(log n) neighbors.

For the purposes of this work, we will ignore the insertion and deletion of
nodes into the (underlying) Chord system itself.

1.2 Our Results

The formal problem considered in this work is the following. We have a subset
of nodes in the network which are associated with some identifier X. We want
to efficiently (in terms of storage and communication) perform the following
operations:

Insert(q, X): Inserts the node with address q into the subset with identifier
X.
Lookup(q, X): Returns the first node succeeding address q that is a member
of the subset with identifier X.

Note that our protocol has to handle an arbitrary number of subgroups in the
P2P system simultaneously. Using the Lookup-function as a primitive, each
node in a subgroup can determine its successor in the subgroup. Also, as with
the base Chord protocol, we assume that deletions are handled just like node
failures: nodes repeatedly insert themselves to stay in the system while alive,
and are eventually expunged once they depart and stop inserting themselves.

We will give algorithms for Insert and Lookup that require O(log n) hops
to execute. The protocol does not have to know the size of the subgroups to
operate. For each subgroup of size k, we have to store O(k) additional data in
the network (i.e. at nodes that are not necessarily in the subgroup themselves),
but at most O(log n) data per subgroup at any single node.

Moreover, our algorithms are load-balanced in the following sense. If random
nodes call Insert and Lookup, then the access load will be equally distributed
among Ω(k) nodes. This precludes, for example, storing the entire group mem-
bership list at a single node, since this node would get swamped with requests.
If k = 1 the claimed load balance does not offer much help. While in this case
we are already expecting the single member of X to cope with all requests to
X, our approach does have the drawback of swamping a single non-member of
X with routing requests. Presumably caching techniques can be used to address
this issue.

The simplest version of our protocol relies on a minor technical modification
of the Chord protocol. It requires that with every finger pointer succ(a + 2−b)



we also maintain a prefinger pointer to the immediate predecessor pred(a+2−b)
of our finger. Here pred(x) denotes the node preceding an address x. In Chord,
fingers are actually found by finding prefingers and taking their immediate suc-
cessors, so maintaining the additional prefinger information does not increase
the processing requirements of the protocol.

For completeness we also give (more complicated) variants of our protocols
that do without the prefinger pointers. These protocols require O(log n log∗ n)
hops, however.

1.3 Related Work

An application where our subgroup protocol might be useful is a Usenet-caching
application that runs on a P2P system [2]. The goal is to replace the current
broadcast of Usenet news to all news servers with a more limited broadcast to an
appropriate subset of servers from which news can be pulled by clients who want
to read it. In this application, a given P2P node may wish to cache only certain
newsgroups (e.g., those used by the node’s owners). Our subgroup protocol can
support this scheme by creating a single subgroup for each newsgroup.

Similar in spirit to our results, the OpenHash system [3] tries to separate the
system layer in P2P system from the application layer. This allows several P2P
applications to co-exist independently within the same P2P system.

In [4] subgroups within P2P systems are created, but the focus is on sub-
groups corresponding to regions of administrative control. To maintain this con-
trol, lookups are required to be resolved wholly within subgroups, not utilizing
the rest of the network, as is done in our work.

2 The Subgroup Protocol

In this section, we state and analyze a Diminished Chord protocol for subgroup
creation. For simplicity, we will just consider a single subgroup in the following
discussion. We will refer to the nodes in the given subgroup as “green nodes.”
Later we will discuss the interactions between multiple groups.

2.1 A Tree-Based Solution

To provide some intuition, we outline a solution for the case where the nodes
in our P2P network have somehow formed an ordered (by addresses) depth-
O(log n) binary tree, such that each machine has a pointer to its parent machine
in the tree. Some of the leaf nodes in the tree can become green, and we want
any leaf node to be able to resolve a query of the form “what is the first green
node following me in the tree?”

To support such queries, we augment the tree so that every node x stores the
minimum address of a green node in the right subtree of x, if one exists. Note
that this requires storing at most one value in any node. In fact, since each green
node can be stored only in its ancestors, each green node will generate O(log n)



storage in the tree. When a new node decides to become green, it takes O(log n)
work for it to announce itself to its O(log n) ancestors.

Given such storage, we can easily answer a green-successor query. Let q be a
leaf node and s the green successor of q. Consider the root-leaf paths to q and to
s. These two paths diverge at some node a with the path to q going left and the
path to s going right (since s is a successor of q). To be the green-successor of q,
it must be that s is the first green node in the right subtree of a. It follows by
the previous paragraph that a will hold s. This leads to the following algorithm
for finding s in time O(log n). Walk up the path from q to the root. Each time
we arrive at a node along a left-child pointer, inspect the contents of the node.
This will ensure that we inspect node a and thus that we find s.

Since a green node may be stored in all of its ancestors, this scheme uses
O(log n) space per green node. We can improve this bound by noticing that we
only need to store s in the highest node in which it is stored in the scheme above.
Since s is stored only at ancestors of s, any query that traverses any node storing
s will necessarily, as it continues up to the root, traverse the highest node that
stores s. This reduces the space usage to O(1) per green node.

2.2 Embedding the Tree

We studied the tree because our approach using Chord is to embed just such a
tree into the Chord ring. This can be explained most simply by assuming that
all addresses in the Chord ring are occupied by nodes; once we have done so we
will explain how to “simulate” the full-ring protocol on a ring with only a small
number of nodes.

Our tree is actually built over a space of “address representations” in the
Chord ring. For each subgroup, we have a base address a0, which for example
could be computed as a hash of the group’s name X. Let 〈a, b〉 denote the address
(a0 + b/2a) mod 1 for 1 ≤ a and 0 ≤ b < 2a (recall that we have defined the
Chord ring to be the interval [0, 1], so all addresses are fractions). Note that
representations are not unique—in particular, 〈a, b〉 actually defines the same
address as 〈a + 1, 2b〉—but we will treat these as two distinct nodes in the tree.
The work for a particular tree node will be done by the machine at the address
the node represents; one machine thus does work for at most one tree node on
each level of the tree.

We make the 〈a, b〉 into a tree by letting 〈a, b〉 be the parent of the two nodes
〈a + 1, 2b− 1〉 and 〈a + 1, 2b〉 (where 〈a,−1〉 := 〈a, 2a − 1〉). Note that under
this definition, one (the right) child of a node actually defines the same address
as that node, while the left child is a (not immediate) predecessor of the node.
Furthermore, given the full address space assumption, the address gap between a
node and its parent is a (negative) power of two—meaning that there is a finger
pointing from each node to its parent (see Figure 1).

Notice also that the tree thus defined is properly ordered with respect to the
address space—that is, that the set of addresses represented in a node’s subtree
is a contiguous interval of the ring, and that the subtrees of the two children
of a node divide the node’s interval into two adjacent, equal-sized contiguous



segments. It follows that our tree-based green-successor algorithm can be applied
to this tree, and will return the minimal green tree-successor, which by the
consistent ordering is also the minimal green address successor, of any node in
the tree. The depth of the tree is equal to the number of bits in the address
space, and this determines the time to query or update the data structure.

The actual tree-structure of the addresses (i.e., which finger is the parent
pointer of a given address) depends on the base addresses a0. It would be pro-
hibitively expensive to record the tree structure; however, this is unnecessary as
the correct parent pointer can easily be determined as a function of the current
address and the base address.

a  +1/80

a0

a  +5/80

a +1/20

a  +3/80

a +1/40

a  +7/80
a +3/40

Fig. 1. The Chord address space shown as a loop. Nodes preceding the indicated ad-
dresses will be selected as nodes p(a, b). The dashed lines show tree-pointers from left
children to their parents.

2.3 Sparser Rings

It remains to extend this scheme to sparsely populated rings. We use the same
“simulation” approach as was used to simulate a de Bruijn network over the full
address space in the Koorde protocol [5]. The work a given address 〈a, b〉 needs
to do is simulated by the machine immediately preceding that address on the
Chord ring. We will call that machine p(a, b).

To implement both Insert and Lookup, we have to traverse a path through
the (logical) tree from a leaf address q towards the root a0 until we find an
answer. To simulate this traversal, we need to visit all the nodes immediately
preceding addresses on this path. We give two different algorithms for this. The



first, simpler one takes O(log n) hops, but requires that with each finger to a
node succ(a + 2−b) in Chord we also maintain a prefinger to pred(a + 2−b), the
node preceding the address a + 2−b. As discussed above, prefingers are already
found by Chord when it looks up fingers [1]. Thus, this additional information
comes “for free.”

For completeness, we sketch a second algorithm that computes a node-to-root
path without requiring prefinger pointers. This algorithm takes O(log n log∗ n)
hops for Insert and Lookup, and is considerably more complicated to imple-
ment.

With Prefingers. Given our embedding, there are two kinds of edges on a
(logical) path through the tree. The edge from a right child to its parent is easy
to follow in simulation since p(a + 1, 2b) = p(a, b), i.e. the two tree nodes are
mapped to the same physical machine. It therefore suffices to show how to get
from a left child p(a + 1, 2b− 1) to its parent p(a, b).

So assume that we are at some machine q1 = p(a + 1, 2b− 1) responsible for
address 〈a + 1, 2b− 1〉 and want to find the machine q2 = p(a, b) representing its
parent 〈a, b〉. We know that q1 precedes address a1 = a0 + (2b− 1)/2a, while q2

precedes address a2 = a1 + 1/2a+1. First, we use the distance-1/2a+1 prefinger
from node q1 to arrive at the node q preceding address addr(q1) + 1/2a+1. Then
we repeatedly compute the successor of q until we pass the address a2. This
yields the last node before address a2, i.e. node q2.

To bound the running time, note that we perform one (prefinger) hop per
move along the path. Since the tree has depth O(log n), this results in O(log n)
hops. The prefinger from p(a+1, 2b−1) may not point to exactly the node p(a, b)
that we want. For the node p(a + 1, 2b − 1) is at an address slightly preceding
〈a + 1, 2b− 1〉, so its prefinger may be at an address slightly preceding 〈a, b〉 and
some nodes might end up in the gap. So we may have to follow some successor
pointers to reach p(a, b). Nonetheless, it can be shown [1] that over the whole path
the number of successor computations is only O(log n) with high probability.

As with Koorde, it would seem that our simulation must perform a number
of hops equal to the number of address bits. However all but the first few hops
of the simulation are actually in the purview of the same node, so take no time
to simulate. The number of actual hops performed in the simulation is O(log n)
with high probability.

Without Prefingers. In the previous algorithm we crucially needed the fact
that we had access to prefinger pointers. Had we used fingers, the uneven dis-
tribution of nodes on the ring could have made us “overshoot” the addresses we
actually needed to traverse, without any option of backtracking to them. The
intuition in the following algorithm is to leave some “buffer” between the visited
machines and the addresses on the path to absorb the overshoot.

In this discussion, we use the word “distance” to denote the amount of the
ring’s address space traversed by a finger; i.e. a finger reaching halfway around
the circle is said to traverse distance 1/2.



In the previous algorithm, we simulated the traversal of a sequence of ad-
dresses on the ring by traversing the nodes immediately preceding those ad-
dresses, using prefinger pointers. The addresses we want to visit are separated
by distances that are exact (negative) powers of two. Suppose that at each
step, we instead traverse the finger corresponding to the desired power-of-two
distance. This finger may traverse a slightly greater distance. But the random
distribution of nodes on the ring means that the distance traversed by the ring
is only O(1/n) units greater than the intended power of two, and that over a
sequence of O(log n) hops, the distance traversed is O((log n)/n) units greater
than the sum of the intended powers of two (this analysis is similar to that used
for Koorde [5]). In other words, even with the overshoots, we remain quite close
to the intended path.

To cope with this overshoot, we arrange to begin the search at a node q′ that is
at distance O((log n)/n) before q (note that finding q′ seems to require computing
predecessors to move backward on the ring, which Chord does not support,
but we will remove this technicality in a moment). From q′ we use fingers to
perform the same power-of-two hops that we would follow from q. By the previous
paragraph, we will never overshoot the addresses we wanted to traverse from q.
At the same time, those desired addresses will be only O((log n)/n) distance
ahead of the nodes we visit; the random node distribution means that in such
an interval there will be O(log n) nodes with high probability. To summarize,
our finger-following path will traverse a sequence of O(log n) nodes, each only
O(log n) nodes away from the address we actually want to traverse.

Chord actually proposes that each node keep pointers to its Θ(log n) im-
mediate successors for fault tolerance; these pointers let us reach the addresses
we really want with one additional successor hop from each of the nodes we
encounter on our path and thus accomplish the lookup in O(log n) time.

If we do not have the extra successor pointers, we can reach each desired ad-
dress using O(log log n) Chord routing hops from the addresses we actually tra-
verse. By doing this separately for each address, we can find all the addresses on
the leaf-to-root path of q in O(log n log log n) steps. This bound can be decreased
to O(log n log∗ n) by computing not just one path starting Θ(log n) nodes before
q, but log∗ n paths starting at distances log(k) n before q. (Here log(k) stands for
the k-times iterated logarithm.) We omit the details in this paper, in particular
since this algorithm is probably too complicated to be useful in practice.

It remains to explain how to get around the requirement of starting the search
at a node q′ which is Θ(log n) nodes before q. Instead of going backward Θ(log n)
steps, we go forward Θ(log n) steps using successor pointers. If we encounter a
green node, we are done. If not, we end up at a node q′′ with the same green
successor as q. Since q is at distance Θ((log n)/n) preceding q′′, we can use q as
the starting node to perform the green node lookup for q′′, also providing the
answer for q.



2.4 Load Balance

For a given subgroup, our protocol treats certain nodes (the ancestors of green
nodes) as “special” nodes that carry information about the subgroup. These
nodes attract query-answering work even though they are not part of the group,
which may seem unfair. But much the same happens in the standard Chord pro-
tocol, where certain nodes “near” (immediately preceding) a given node become
responsible for answering lookups of that node. And like the Chord protocol,
our protocol exhibits a nice load balancing behavior when there are numerous
subgroups. Recall that for a subgroup X, the “root” of the lookup tree for a
subgroup named X is determined by a hash of the name, and is therefore effec-
tively random. Thus, by symmetry, all addresses have the same probability of
being on the lookup path for a given subgroup query. Since Chord distributes
nodes almost-uniformly over the address space, we can conclude that the proba-
bility of any node being “hit” by a subgroup query is small. More precisely, since
there are O(log n) steps per subgroup query, and each node is responsible for
an O(1/n) fraction of the address space in expectation, the probability a given
node is hit by a subgroup query is O((log n)/n).

Of course, queries about the same subgroup tend to hit the same nodes.
But suppose that many different subgroups are formed. The random (hashed)
placement of query tree roots means that queries to different subgroups are not
correlated to each other. This makes it very unlikely for any node to be in-
volved in queries for many different subgroups. Space precludes fully formalizing
this effect, but as one particular example, suppose that m different (possibly
overlapping) subgroups are formed, and that one subgroup lookup is done for
each group. Then with high probability, each node in the ring will be hit by
O(m(log n)/n) subgroup queries.

3 Discussion

We stated and analyzed a protocol that allows for the creation of subgroups
of nodes in the Chord P2P protocol. These subgroups are useful for efficiently
carrying out computations or functions that do not require the involvement of
all nodes. Our protocol utilizes the routing functionality of the existing Chord
ring, so that subgroups can be implemented more efficiently than by creating a
separate routing infrastructure for each subgroup.

Adding a node to the subgroup, or locating a node of the subgroup that
follows a given address takes O(log n) hops. Although the algorithm is omitted
for space reasons, the deletion of nodes from a subgroup can be performed in
the same time bounds.

Our scheme requires only O(k) storage per size-k subgroup, compared to the
O(k log k) storage resulting from creating a new Chord ring for the subgroup. As
opposed to the naive scheme, however, our protocol requires that information is
stored at machines that are not part of the subgroup. We do not think that this is
a significant problem however, as the protocol load is roughly equally distributed



among at least Ω(k) machines in the network – the machines corresponding to
the top k nodes in the embedded tree for a subgroup. A more complete analysis
of the load distribution properties of our protocol will be in the full version of
this paper.

Beyond the simple resource-usage metrics, our subring approach has an im-
portant complexity benefit over one using redundant, independent rings for each
subgroup. The primal chord ring needs to handle complex correctness issues,
keeping redundant successor pointers to preserve ring connectivity in the face of
node failures, carefully maintaining successor pointers so as to avoid race con-
ditions that would create artificial network partitions, and so on. Subrings can
take all of this infrastructure for granted, using less robust but more efficient
algorithms and relying on the primal chord ring to guarantee eventual correct-
ness. Our approach thus parallels Chord’s approach of layering efficient elements
(such as proximity routing) atop a core that focuses on correctness issues (such
as preserving connectivity).

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments.

References

1. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scal-
able Peer-to-peer Lookup Service for Internet Applications. In: Proceedings ACM
SIGCOMM. (2001) 149–160

2. Sit, E., Dabek, F., Robertson, J.: UsenetDHT: A Low Overhead Usenet Server. In:
Proceedings IPTPS. (2004)

3. Karp, B., Ratnasamy, S., Rhea, S., Shenker, S.: Spurring Adoption of DHTs with
OpenHash, a Public DHT Service. In: Proceedings IPTPS. (2004)

4. Mislove, A., Druschel, P.: Providing Administrative Control and Autonomy in Peer-
to-Peer Overlays. In: Proceedings IPTPS. (2004)

5. Kaashoek, F., Karger, D.R.: Koorde: A Simple Degree-optimal Hash Table. In:
Proceedings IPTPS. (2003)


