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Abstract

In recent work (Feldman and Karger [8]), we introduced a new approach to decoding
turbo-like codes based on linear programming (LP). We gave a precise characterization of
the noise patterns that cause decoding error under the binary symmetric and additive white
Gaussian noise channels. We used this characterization to prove that the word error rate
is bounded by an inverse polynomial in the code length. Furthermore, for any turbo-like
code, our algorithm has the ML certificate property: whenever it outputs a code word, it is
guaranteed to be the maximum-likelihood (ML) code word.

In this paper we extend these results and give an iterative decoder whose output is
equivalent to that of the LP decoder. We also extend the ML certificate property to the more
efficient iterative tree reweighted max-product message-passing algorithm developed by
Wainwright, Jaakkola, and Willsky [13]: we show that whenever this algorithm converges
to a code word, it must be the ML code word.

Finally, we demonstrate experimentally that the noise patterns that cause decoding
error in the LP decoder also cause decoding error in the standard iterative sum-product and
max-product (min-sum) message-passing algorithms. Consequently, the deterministically
constructible interleaver used by the LP decoder to achieve its bounds on error rate is
useful in practice not only for the LP decoder, but for these standard iterative decoders as
well.

1 Introduction
The introduction of turbo codes [3] surprised the field of coding theory by achieving error
probabilities that far outperformed any other code at the time. A great deal of subsequent work
has focused on design, implementation, and analysis of turbo codes and their variants [12],
called “turbo-like” codes. One of the goals of this research has been to achieve a theoretical
understanding of the remarkably good performance of turbo-like codes.

A lot of progress has been made [7, 2, 11] using “code ensembles,” where all interleavers
are considered simultaneously, leading to an understanding of the asymptotic behavior of a
randomly chosen interleaver. The natural extension of this work is to identify the precise noise
patterns under which decoding error occurs, derive fixed interleavers, and prove tight bounds
on the error rate using these interleavers.

�
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In this paper, we give a new iterative algorithm to decode any turbo-like code. When
applied to a repeat-accumulate (RA) code, with an appropriate choice of step size, the algorithm
is guaranteed to converge to a certain fixed point. Additionally, the error patterns for which this
fixed point is the original transmitted code word are well characterized. This allows us to prove
that the the algorithm has a WER that is bounded by an inverse-polynomial in the block length
under the binary symmetric channel (BSC) or the additive white Gaussian noise (AWGN)
channel. This bound holds for (i) any code length, (ii) a specific, deterministically constructible
interleaver and (iii) a simple message-passing decoder. Additionally, the algorithm has the ML
certificate property: whenever it outputs a code word, it is guaranteed to be the ML codeword.

1.1 Techniques. Our analysis extends recent work by Feldman and Karger [8], where we
introduced a new approach to decoding turbo-like codes based on linear programming (LP)
relaxation, a standard technique for finding approximate solutions to difficult optimization
problems. This approach allowed us to isolate a cycle-like structure called a promenade in a
graph

�
modeling the code, where

�
is related to the factor graph of the code. We proved that

our LP decoder produces an error if and only if the total noise across some promenade in
�

exceeds a certain level; we call this a noisy promenade. We then used this theorem to design an
interleaver, and proved that the WER of the LP decoder is bounded by an inverse polynomial
in the block length, as long as the noise in the channel is below a certain constant threshold.

A similar structural analysis has recently been used to produce results for other codes under
the binary erasure channel (BEC): Di et al. [6] showed that under the BEC, iterative decoding
of low-density parity-check (LDPC) codes produces an error if and only if the pattern of erased
bits forms a “stopping set” in the underlying graph.

To obtain the new iterative decoder, we reformulate the linear program in its dual form,
and invoke a standard optimization technique. Under an appropriate choice of step size, this
gives an iterative algorithm that is guaranteed to produce the same output as the LP decoder.
However, it may take a long time to converge in practice, since this algorithm is inherently
more “careful” about its steps than the standard iterative methods. This motivates exploring
other more aggressive iterative algorithms and drawing connections to them as well.

Wainwright, Jaakkola and Willsky [13] recently proposed an approach to computing opti-
mal configurations in factor graphs based on tree-reweighted max-product (TRMP) message-
passing updates. Here we prove that when the TRMP algorithm reaches a certain stopping
condition, then it has found the ML code word. We prove this by relating the algorithm di-
rectly to the dual form of the LP.

We also shed some light on the mysterious good behavior of the more conventional iterative
decoders used for decoding turbo-like codes. We show experimentally that the existence of a
noisy promenade is strongly correlated to the success of the sum- and max-product algorithms.
Specifically, under the BSC with a crossover probability of at most �������	��

� � , using rate-1/2
RA codes, the observed WER for both the max- and sum-product algorithms, regardless of the
interleaver, is always less than ������������� ��� . In contrast, in the presence of a noisy promenade,
the WER always exceeds ��� . It is then no surprise that under max- and sum-product decoding,
the interleaver we designed (to make noisy promenades rare) far outperforms a random one.

1.2 Outline. The remainder of the paper is organized as follows. Section 2 provides back-
ground on the problem of decoding RA codes. In Section 3, we review the LP-based approach
of Feldman and Karger. In Section 4, we describe iterative methods for solving the linear pro-
gram, and our results concerning the stopping condition of the TRMP algorithm of Wainwright
et al. Section 5 contains a discussion of our experimental work. We conclude in Section 6 with
a discussion of open problems and future work.



2 Background
The class of turbo-like codes (as defined by Divsalar and McEliece [7]) is defined as any com-
bination of convolutional codes concatenated in serial and in parallel, with interleavers between
each constituent code. Repeat-accumulate (RA) codes (introduced in the same paper [7]) are
perhaps the simplest non-trivial example of turbo-like codes. Their simple structure and highly
efficient encoding scheme make them both practical and simpler to analyze than other more
complex turbo-like codes. In fact, Kahale and Urbanke [10] show that the asymptotic distance
of a random interleaver for any parallel concatenated convolutional code depends only on the
number of parallel branches, not on the distance of the code; this suggests that accumulators
make as good a choice as any convolutional code for use as the constituent code.

Let RA( � ) denote a rate-1/ � RA code. In this paper, we use the RA(2) code as a running
example of a turbo-like code because its simple structure allows clear presentation. The LP
decoder has a natural analogue for any turbo-like code, as do the iterative algorithms we give
in this paper. When appropriate, we give intuition on generalizations to RA( � ) codes. We
leave the general form for turbo-like codes for a later version.

RA(2) Encoding. The encoder for an RA(2) code takes the information word, repeats every
bit twice, then sends it through an interleaver (known permutation), and then through an accu-
mulator. The accumulator maintains a partial sum (modulo two) of the input seen so far, and
outputs the new sum at each step.1

More formally, let ������� � � ���	��
 ��

�

be a binary information word, and let 
������ . Let � be a
permutation on � ��� � � ����
������ . The vector ����� ��� ���! will represent the repeated and permuted
information word; specifically, for all "��#� ��� � � ���$��� , we let �!%'&)(+*-,.�/��%0&1(+*32 
 ,4�5� * . The RA(2)
code using � , given � , outputs a code word ��67�8� � � �9��6  ��


�
, where for all :;�<� ��� � � �=��
>� �0� ,

60?@� A ?*3B � ��?DCFEHGI� . Furthermore, we define J * to be the set of � code word indices to
which information bit " was repeated and permuted. Formally, J * � �����K�0" � �L�M�N�0"MO �

� � ,
"P�Q� �R� � � �9�$�S� ��� . Let TU�V��J *.W � �<"YX/��� . In RA( � ) codes, each bit is repeated � times
before being sent through the permutation and the accumulator, and thus the sets J * �ZT each
have � members.

The Accumulator Trellis. Figure 1 shows the trellis [ for the accumulator. We will use
�0\ �� � � � ���$\ � � and �0\ 

 � � � ���]\ 
 ��
 � to refer to the sets of “0-parity” and “1-parity” nodes of the
trellis, respectively.2 Node \�^? represents the encoder being in state _ at time : . The trellis
contains edges between nodes on consecutive segments of the trellis; i.e., for all _Y��`��#� ��� �0� ,
:��a� ��� � � ����
Z� ��� where \ ^? �]\8b? 2 
 �/[ , there is an edge �K\ ^? �$\�b? 2 


�
. A “0-edge” is one that

transitions between nodes of the same parity ( _c�d` ), and a “1-edge” transitions between
nodes of different parity ( _fe�a` ); these edge types, respectively, represent information bits 0
and 1 and have solid and dashed lines in figure 1.

The state transitions of an accumulator from time 0 to time 
 can be represented by a pathg
in the trellis from \ �� to \ � . The label h��K\8^? �$\ b? 2 


�
of an edge �K\8^? �$\ b? 2 


�
represents the output

of an encoder using that transition edge of the trellis, so h��N\ ^? �$\�b? 2 

� �i` , for all _M��`j�j� ��� ��� .

If we concatenate the labels h��Nk � on edges k along
g

, we get the code word output by the
accumulator. The “types” of the edges on

g
(either 0-edge or 1-edge) represent the repeated

and permuted information word � that was provided as input to the accumulator.

1So as to keep the paper simpler, we assume that the input contains an even number of 1s. This can be achieved
by padding the information sequence with an extra parity bit. Thus the rate of this code is actually lnm�o@pLqKr$s=m , or
p�r=s.out�lvpLq . The t�l�pLq can be avoided by a more technical argument.

2Since we know that the start state is w , we do not need the node x9yz . Since we know that there are an even
number of 1s, we do not need a node x$y{ .
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Figure 1. The trellis for an accumulator, used in RA codes. The edges are of two types, “0-edges”
and “1-edges,” corresponding to information bits 0 and 1, respectively. The edges are labeled with their
associated output (code) bit.

Let ���6��8� � � �����6  ��

�

represent the noisy symbols received from the BSC or AWGN channel.
The cost � �K\ ^? �$\�b? 2 


�
of an edge is a measure of the probability that the encoder entered state `

at time :.O � , given that it was in state _ at time : , and given the received symbol �67? . For the
BSC the cost is the Hamming distance between h��K\!^? �$\ b? 2 


�
and the received symbol �6�? ; for the

AWGN channel, the cost is the Euclidean distance. The cost of a path is the sum of the costs of
the edges on the path, and the minimum cost path is the path most likely taken by the encoder.

Decoding. Not every path in the trellis corresponds to a valid codeword, which is why the the
Viterbi algorithm, which simply finds the most likely path from \ �� to \ � , does not work. Let
� * be some arbitrary information bit, where J * � ��:$� �:�� ; suppose for illustrative purposes that
� * � � . Since � * constitutes the input bit to the accumulator at time : and at time �: , any path
through [ representing a valid encoding would take a 1-edge at time step : and at time step �: .
In general, any path representing a valid encoding would do the same thing (as in take a 1-edge
or a 0-edge) at time steps : and �: . We say a path is agreeable for � * if it has this property for
� * . An agreeable path is a path that is agreeable for all � * . A path is agreeable if and only
if it represents a valid encoding. The goal of the ML decoder, then, is to find the most likely
agreeable path from \ �� to \ � , which we will refer to as the ML agreeable path.

3 RALP: Repeat-Accumulate Linear Program
The algorithm of Feldman and Karger [8] is based on the technique of linear programming
relaxation. In this technique, an optimization problem is first expressed as an integer program
(IP), which consists of a set of (typically binary) variables under linear constraints, with a
linear objective function. Since IPs are NP-hard to solve, the variables are relaxed to take on
real values in a fixed range, resulting in a solvable linear program (LP).

We illustrate the technique on the problem of finding the ML agreeable path in the trellis.
Let

�
represent the set of all paths from \ �� to \ � in the trellis. We have a variable ��� for each

path in
�

, and a variable �� * for each information bit � * . The IP enforces ��� � � ��� �0� . Let 	 ?
be the set of paths that use a 1-edge at trellis segment : . Let ��
 g�� �aA�
�� � ��
 k � denote the cost
of a path. We also define linear constraints and a linear objective function:

RALP: C���� A� ���
��
 g�� ��� s.t.

A� ��� ���I� �

A� ����� ���I� A� ������ �������� * � ��:$� �:]�S� T (agreeability)

Note that we have defined an an exponential number of variables, which typically makes even
the LP relaxation inefficient to solve. However, we can use the concept of a network flow
(see the book [1] for background) to express the LP with only a linear number of variables.



For details on this representation of RALP, we refer the reader to the paper of Feldman and
Karger [8].

A feasible solution to an integer or linear program is a setting of the variables such that
all the constraints are satisfied. An optimal solution is a feasible solution that minimizes the
objective function over all feasible solutions. If we enforce the constraints � � �<� ��� ��� , then
all feasible solutions to the resulting IP will have ���c� � for some agreeable path

g
and

��� � � � for all
g�� e� g

. Furthermore, an optimal solution would be an ML agreeable path.
Unfortunately, we cannot solve IPs efficiently, so we relax the constraint � � �/� ��� ��� to � �
����� � to make it a solvable LP.

We say a solution to an LP is integral if all its values are integers. If the optimal solution
to an LP relaxation is integral, then it must be the optimal solution to the associated IP, since
all feasible solutions to the IP are feasible for the LP. Therefore, if our LP optimal solution has
����� � for some path

g
,
g

must be the ML agreeable path. In this case we know the ML code
word, and can output the associated information word by simply examining the variables �� * .

If the solution is not integral, we get get a values � �� for each path
g

, constituting an
agreeable distribution; this is a distribution on paths where for all information bits � * , where
J * �c��:$� �:]� , the total mass on paths that take a 1-edge at time : is equal to the mass on paths
that take a 1-edge at time �: . In this case, we concede a decoding error. Alternatively, we could
request a retransmission, produce an erasure, or try to guess at a solution; this depends on the
application.

To actually solve the LP, the simplex algorithm [1] is the usual choice, but it can be slow
sometimes in practice. However, there are efficient alternatives to using a general purpose LP
solver for the case of RA(2) codes, where RALP can be solved by finding a (standard) min-cost
flow in a certain auxiliary graph whose size is the same as the trellis [9]. This fact allows us
to use various efficient methods for solving min-cost flow problems [1]. In Section 4 of this
paper, we prove that the RALP can also be solved for arbitrary turbo-like codes by running
iterative message-passing algorithms.

Finally, we note that RALP has a general form for any turbo-like code. For example, for
RA( � ) codes, the sets J * ��T have size � , and we enforce agreeability among all :F�5J * .
Formally, we enforce the agreeability constraint A � � � � �������� * for all : �IJ * .

3.1 Error pattern conditions and provable error bounds for RA codes. An advantage
of casting the decoding problem as the solution to a linear program is that the noise patterns
that cause decoding error can be well characterized. We have identified a particular graph

�

modeling the code and a kind of subgraph of
�

called a promenade; we proved that our LP
decoder produces an error if and only if the total noise across some promenade in

�
exceeds a

certain level [8]. We call this a noisy promenade.
The structure of the graph

�
is dictated by the interleaver � , and the “noise” on a promenade

depends on the symbols received from the channel. Our theorem suggests a design criterion
for the interleaver: it should be chosen so as to induce a graph in which the probability of
a noisy promenade is low. The theorem holds for any turbo-like code [9], but for the case
of RA(2) codes, we provide [8] a deterministic interleaver construction that obeys this design
criterion. We also prove that by using this construction, the probability of the graph having a
noisy promenade is bounded by an inverse-polynomial in the block length 
 .

In the remainder of this section, we formally define a promenade for RA(2) codes, and the
conditions under which it is considered “noisy” for the BSC (the conditions for the AWGN
channel are similar). We also describe how this definition can be generalized to any RA( � )
code. We then state our bounds [8] for RA(2) codes, under both the BSC and AWGN, on the



probability of a noisy promenade.

Promenades. Let
�

be an undirected line graph with 
 nodes � � ��� � � �9� �  ��

�
, and an edge

between every pair of consecutive nodes. Let the cost � � � ? � � ? 2 

�

of edge � � ? � � ? 2 

�

be � � if the
:�� � bit of the transmitted codeword is flipped by the channel, and O�� otherwise.

Let
g ������� � � denote the subpath � ��� � � � �9� ��� � � . Let 	 be an arbitrary set of subpaths of this

form. For some node � ? in
�

, let G�

� ? ��	 � be the number of subpaths in 	 that start or end at� ? . Formally, G�

� ? ��	 � ��� � g ������� � � ��	 W � �V: E���� � �V:]��� . We say 	 is a promenade if for
all information bits � * , where J * � ��:$� �:]� , G�
�� ? ��	 � �/G�

���? ��	 � . The cost � ��	 � of a promenade
	 is the sum of the costs of its subpaths. Formally, � ��	 � � A � & ��� � � , �
� A

� �
��
� � � ��� � �
� 2 


�
. A

promenade is noisy if its cost is less than or equal to zero.

Theorem 1. [8] RALP decodes correctly iff
�

has no noisy promenades.

For a proof of this theorem, we refer the reader to the paper of Feldman and Karger [8].
Every edge of

�
has negative cost ( � � ) with the crossover probability � X 
( , and positive

cost (+1) otherwise. Therefore, promenades with more edges are less likely to have a total
negative cost. For the case of RA(2) codes, the promenade takes a simple form. If extra (zero-
cost) edges are added to

�
between � ? and � �? for every ��:$� �:]� �QJ * , then a promenade can be

described as a type of tour through
�

(non-simple cycle). The girth of a graph is the length
of its shortest simple cycle. Since every promenade contains at least one simple cycle, graphs
with high girth will have promenades with many edges.

Therefore, from the perspective of the RALP decoder, a good interleaver is one that pro-
duces a graph

�
with high girth. An � ��
 � � -time construction of Erdös [5] yields a graph

�

with girth ! �#" E���
 � , and it is straightforward to derive the Erdös interleaver from
�

. Theo-
rem 1, along with this interleaver construction and a union bound over the promenades in

�
,

gives an analytical bound on the probability of error of RALP decoding:

Theorem 2. [8, 9] For any $&%�� , the rate �('�� RA code with block length 
 using the Erdös
interleaver decoded with a RALP decoder, under the binary symmetric channel (BSC) with
crossover probability �fX ���*) &,+ 2 &,-/.�0�( ) ,21+( , , or under the AWGN channel with noise variance3 ( � -/.�0 


) 2 (4-/.�0 � 2 ) + , has a word error probability
g65

of at most 
 � + .
As $87 � , the noise threshold for the BSC approaches �:9 � �<; � 
�= . For the AWGN, the

noise threshold approaches 3 ( 9 �)� � � , which corresponds to an SNR of >@?�'
A �B9 � �DC�� . We
refer to this bound as the path bound because it is based on an analysis of the paths that make
up the promenade. Figure 3 shows how the path bound compares to our experiments, where
we measured the probability of a noisy promenade under the BSC. The figure also includes a
tighter tree bound based on a different analysis [9]; the drawback to this bound is that we do
not yet have a closed-form expression for it. We note that Theorem 2 also implies the same
bound on ML decoding.

For RA( � ) codes, the degree constraint for � * on subpaths is enforced across all � segments
in J * . For example, for RA(3), we say that 	 is a promenade if, for all � * where J * �f��:$�L: � �L: � � � ,
G�
�� ? ��	 � � G�

� ? � ��	 � � G�

� ? � � ��	 � . In this case, if hyperedges � � ? W :S� J * � are added to

�
,

promenades can be described as a “hyper-tour.”

4 Iterative algorithms
In this section, we provide iterative algorithms for solving RALP. We begin by developing a
particular Lagrangian dual formulation, the optimal value of which is equivalent to the optimal



value of the RALP relaxation. As we describe, this dual formulation suggests the use of an iter-
ative subgradient optimization method [4]. Such methods, while guaranteed to converge with
appropriate choice of step size, may be slow in practice. We then consider the variant of the
max-product algorithm, known as tree-reweighted max-product (TRMP), recently proposed by
Wainwright, Jaakkola and Willsky [13] for maximum likelihood calculations on factor graphs.
Like the standard max-product and sum-product algorithms, the algorithm is based on simple
message-passing updates, so it has the same complexity per iteration as those algorithms. Here
we show that TRMP is also attempting to solve a dual formulation of RALP. In addition, we
prove that when TRMP reaches a certain stopping condition, it has found an optimal integral
point of RALP, and thus has found the ML code word.

4.1 Lagrangian Dual. Without the agreeability constraints, the RALP problem is a stan-
dard shortest path problem. This observation motivates a partial Lagrangian dualization pro-
cedure, wherein we deal with the troublesome agreeability constraints using Lagrange multi-
pliers. More specifically, for a particular path

g
, the “agreeability” of that path with respect to

some J * � T>�LJ * � ��:$� �:]� can be expressed by the following function � :

� * � g � ��� 
 g � 	 ? � ��� 
 g � 	 �? � (1)

Here � 
 g � 	 ? � is an indicator function that takes the value one if path
g

is in 	Y? (uses a 1-edge
on segment : ), and zero otherwise. Note that � * � g � � � for all J * � ��:$� �:]� if and only if

g
is agreeable. We then consider the Lagrangian obtained by assigning a real-valued Lagrange
multiplier � * to each agreeability constraint:

� � g�� � � � ��
 g�� O
�
	�
 �
� � * � * �

g �
(2)

For a fixed vector �f����� � � , the corresponding value of the dual function ����� � is obtained
by minimizing the Lagrangian over all paths — that is, � ��� � � C���� � ��� � � g�� � � where

�
denotes the set of all paths through the trellis. Since the dual is the minimum of a collection of
functions that are linear in � , it is concave. Moreover, for a fixed � , calculating the dual value
����� � corresponds to solving a shortest path problem on the trellis, where the 1-edges in each
paired set of segments ��:$� �:]� � J * , have been reweighted by � * and ��� * respectively. Since
there may not be a unique shortest path, we consider the set ���S��� � � � g W � � g�� � � ������� � �
of shortest paths under the weighting � .

Note that the value of an agreeable path is unchanged by the reweighting � , whereas any
non-agreeable path may be affected by � . Thus, if a decoder could find a setting of � such
that all non-agreeable paths have higher cost under � than the ML agreeable path, then the ML
agreeable path would “exposed” by the Viterbi algorithm, since it would be the shortest path
under � .

From linear programming duality [4], it follows that the optimal value � � �5C���� � �"!$# %�# ����� �
of this Lagrangian dual problem is equal to the optimal value of the RALP relaxation, so that
solving this problem is equivalent to solving RALP.

4.2 Iterative Subgradient Decoding. An iterative technique to compute � � is the subgra-
dient optimization algorithm [4]. For a concave function � , a subgradient at � is a vector &
such that ���(' � �)����� � O*&,+ �(' �*� � for all ' . For the particular form of � at hand, it can be
shown [4] that the collection of all subgradients is given by the following convex hull:

- � ��� � � .0/2143@���@� g � � g �5���S��� � � (3)



The subgradient method is an iterative method that generates a sequence � � � � of Lagrange
multipliers. As previously described, for any pair J * �V��:$� �:]� , segment : is reweighted by � �* ,
whereas segment �: is reweighted by � � �* . At each iteration � , the algorithm entails choosing
a subgradient &���� � � � - � ��� � � , and updating the multipliers via

� � 2 
 � � � O _ � &���� � � � (4)

where _ � is a step size parameter. Note that a subgradient & ��� � � can be calculated by finding
a shortest path in the reweighted trellis

� � g �"� � � . With appropriate choice of step size, it can
be shown [4] that the sequence � � � � will converge to a dual optimal solution. In practice,
however, the rate of convergence may be slow.

4.3 Iterative TRMP Decoding. In lieu of the subgradient updates, we now consider the
TRMP updates [13], which take a simple form for a turbo code with two constituent codes.
The TRMP updates are similar to but distinct from standard max-product (min-sum) updates.
Like the subgradient updates of equation (4), the TRMP algorithm generates a sequence of
Lagrange multipliers � � � � . At each iteration, it uses the reweighted trellis problem

� � g �"� � �
to compute two shortest paths for each segment : : the shortest path that uses a 1-edge in
segment : , as well as a competing shortest path that uses a 0-edge. As with standard decoding,
it then uses this information to form a min-log likelihood ratio for each trellis segment:

����� ��� � � : � � C����� ��� �
� � g �"� � � �<C � �� 1��� �

� � g �"� � � (5)

The value
����� ��� � � : � corresponds to the difference between the costs of the most likely paths

using a 1-edge or a 0-edge respectively on segment : . At iteration � , the log likelihood ratios
can be efficiently computed using a single forward-backward pass of the Viterbi algorithm on
the trellis, where � � is used to reweight the edges appropriately.

The goal of the iterative decoder is to come to a decision for each information bit, i.e., to
make the sign of

����� ��� � � : � agree with the sign of
����� ��� � � �: � for all J * � ��:$� �:]� . With this

goal in mind, the Lagrange multipliers are updated via the recursion

� � 2 
* �)� �* O _ ��� ����� ��� � � �: � � ����� ��� � � : �
	 � (6)

where _ � � � ��� � � is a step size parameter. Note that, as with the subgradient updates (4), the
sum of the reweighting factors on segments : and �: is zero at all iterations.

An often used heuristic for standard iterative decoding algorithms is to terminate once
thresholding the LLRs yields a valid codeword. With TRMP, we can prove that a heuristic of
this form is optimal; specifically, if we terminate when for each segment ��:$� �:]� , both of the
LLRs have the same sign, then we have found the ML codeword. Formally, call a setting of �
an agreement if for all ��:$� �:]�F�jT ,

����� ��� � : ��� ����� ��� � �: � % � . In other words,
����� ��� � : � and����� ��� � �: � have the same sign, and neither is equal to zero.

Theorem 3. If � � is an agreement, then ���@��� � � contains only one path
g

that corresponds to
the ML code word.

Proof. Since
����� ��� � � : � e� � for all segments : , the type of edge (either 1-edge or 0-edge) used

at each segment by any path in ���S��� � � is determined. It follows that ���S��� � � contains only one
path

g
. Since � � is an agreement, we know that for every J * � T , where J * � ��:$� �:]� , the type

of edge used by
g

at segment : matches the type used at segment �: , i.e., � * � g � � � . It follows
that

g
is agreeable, and that

� � g�� � � � � ��
 g�� . Since
g �5���S��� � , ����� � � � � � g�� � � � � ��
 g�� .



Now consider the primal solution to RALP that sets ���Q� � , and ��� � � � for all
g � e� g

.
The value of this primal solution is ��
 g�� . Thus we have exhibited a primal solution

g
and a

dual solution � � with the same value ��
 g�� . By strong duality, they must both be optimal. Thusg
is the ML code word.

Corollary 4. If TRMP finds an agreement, then it has found the ML code word.

We have not yet shown that TRMP always finds an agreement whenever RALP has an inte-
gral solution. Consequently, unlike the subgradient algorithm, we cannot assert that the TRMP
result is always equivalent to RALP. However, we have observed identical behavior in exper-
iments on RA codes, and further investigation should deepen the connection between these
algorithms.

5 Experimental Results
Our experimental work focuses on testing the standard iterative sum-product (iterative MAP)
and max-product (min-sum, SOVA) algorithms against the existence of a noisy promenade.
Our experiments show that the decoding error of both the sum-product and max-product al-
gorithms are strongly correlated to the existence of a noisy promenade under the BSC (see
Figure 2). Specifically, at a crossover probability of at most � � ���	��

� � , when there is no noisy
promenade, the observed WER of both algorithms, regardless of the interleaver, is always less
than ������� ����� ��� . In contrast, in the presence of a noisy promenade, the WER always exceeds
� � . Since the Erdös interleaver was designed to make noisy promenades rare, it is no surprise
that the performance of the iterative decoders improves markedly (see Figure 3) when the Erdös
interleaver is used.

Based on this evidence, we conjecture that for lower rate RA codes, and for other turbo-
like codes, the decoding success of sum- and max-product both have a strong correlation to the
existence of a noisy promenade analogue. If this were the case, then interleavers designed for
LP-based decoding (based on the structure of promenades) would also be useful for the typical
(and more efficient) iterative methods.

Our data also show the relationship between the upper bounds from Section 3.1 and the
observed probability of the existence of a noisy promenade (see Figure 3) for the BSC. The
gap between the bounds and the observed probabilities is most likely due to a union bound
used in the analysis. The closed-form path bound of Theorem 1 and the recursively defined
tree bound [9] could potentially be improved by a deeper understanding of the distribution of
noisy promenades, but the slope of the bounds seems quite accurate.

6 Conclusions and Future Work
We have described an iterative algorithm for decoding any turbo-like code whose decoding
success is precisely characterized by a combinatorial condition on the noise pattern. For the
case of RA codes, this implies an inverse polynomial bound on the error rate of the decoder.
Additionally, the decoder has the desirable property that whenever it outputs a code word, it is
guaranteed to be the ML code word. We have extended the ML certificate property of the lin-
ear programming (LP)-based decoder to the tree-reweighted max-product (TRMP) algorithm,
showing that when the TRMP algorithm finds a code word, it is the ML code word.

There are several interesting open question about the relationship between LP decoding and
iterative methods. We have shown that when the TRMP algorithm finds a code word, it is the
ML code word. To complete this result, we would like to see a proof that when the LP decoder
finds the ML code word, the TRMP finds it as well. Experimental evidence suggests that this
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NP? Max-Product, Erdös interleaver
Y 787506 / 796648 .989 55817 / 59519 .938 1914 / 2099 .912 101 / 112 .902
N 4 / 203352 2e-5 0 / 940481 0 0 / 997901 0 0 / 999888 0

Sum-Product, Erdös interleaver
Y 792176 / 796648 .994 55461 / 59519 .932 1918 / 2099 .914 98/ 112 .875
N 19258 / 203352 .0947 2 / 940481 2e-6 0 / 997901 0 0 / 999888 0

Max-Product, random interleaver
Y 859856 / 886050 .970 176905 / 229738 .770 36153 / 55146 .656 9912 / 16234 .611
N 3 / 113950 3e-5 1 / 770251 1e-6 0 / 944854 0 0 / 983776 0

Sum-Product, random interleaver
Y 864673 / 886050 .976 170668 / 229738 .743 35225 / 55146 .639 9935 / 16234 .612
N 12042 / 113950 .106 11 / 770262 1e-5 0 / 944854 0 0 / 983766 0

��
�
 = number of errors ����� = total trials � ��
 = word error rate NP = noisy promenade

Figure 2. Word error data for the standard max-product and sum-product iterative decoding algorithms,
using the Erdös interleaver, and using a random interleaver (a new random interleaver is picked for each
trial). For each of the four combinations, the data are separated into the case where there is a noisy
promenade (Y), and when there is not (N). An RA(2) code with block length 128 is used, under the BSC
with varying crossover probability � . The data show one million trials for each interleaver type.

is the case. Preliminary experiments also show that the more aggressive sum- and max-product
algorithms converge faster than subgradient or TRMP decoding, and perform just as well. It
would be interesting to see how the insights provided by LP-based decoding carry over to the
performance of the sum and max-product algorithms.

Finally, the error bounds we gave [8] for LP decoding, and its iterative extension, were
geared specifically for RA(2) codes. Although they trivially hold for higher rate RA codes, we
suspect that significantly better bounds can be achieved by a deeper understanding of the com-
binatorics of “generalized promenades.” Achieving this sort of bound requires the construction
of an analogue to the Erdös interleaver, to make all promenades “large.” There is evidence for
a better bound in the work of Kahale and Urbanke [10], where they show that when at least
three parallel branches of accumulators are used, the distance of a random set of interleavers
approaches 
 + (for some constant $ that depends on the number of parallel branches), whereas
for two parallel branches, the distance is at most logarithmic in 
 . Thus, since we achieved
an inverse polynomial error rate for rate 1/2 (which is exponential in the distance), we would
expect to achieve an error rate on the order of k����4� � � ��
 + �L� for codes of rate at most 1/3.
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