5
Wigner’s Semi-Circle
vThe classical & most famous rand eig theorem
vLet S = random symmetric Gaussian
vMATLAB: A=randn(n);  S=(A+A’)/2;
vNormalized eigenvalue histogram is a semi-circle
vPrecise statements require n®¥ etc.
n=20;  s=30000; d=.05;     %matrix size, samples, sample dist
e=[];       %gather up eigenvalues
im=1;     %imaginary(1) or real(0)
for i=1:s,
  a=randn(n)+im*sqrt(-1)*randn(n);a=(a+a')/(2*sqrt(2*n*(im+1))); 
  v=eig(a)'; e=[e v];
end
hold off; [m x]=hist(e,-1.5:d:1.5); bar(x,m*pi/(2*d*n*s));
axis('square'); axis([-1.5 1.5 -1 2]); hold on;
t=-1:.01:1; plot(t,sqrt(1-t.^2),'r');
MATLAB Handle Graphics