
A Parallel File I/O API for Cilk

by

Matthew S. DeBergalis

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science

and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2000

c© Matthew S. DeBergalis, MM. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

May 22, 2000

Certified by. .
Charles E. Leiserson

Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

A Parallel File I/O API for Cilk

by

Matthew S. DeBergalis

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2000, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Computer Science

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Cheerio is an application programming interface (API) for efficient parallel file in-
put and output (I/O) modeled closely after traditional serial POSIX I/O. Cheerio
remedies a long-lived gap in multithreaded programming environments, which typi-
cally ignore file I/O and force programmers to implement parallel file I/O semantics
on top of the raw operating system I/O API. Not only is this approach clumsy and
semantically ugly, it can yield inefficient multithreaded programs.

Cheerio defines three parallel I/O modes, all of which are “faithful extensions” to
traditional POSIX I/O, meaning that each mode reduces to ordinary POSIX seman-
tics when running on a serial system. Under global mode, all threads share a single
file pointer. Local mode specifies that each thread has a unique pointer unaffected
by I/O operations in other threads. Serial-append mode guarantees that the final
output of a program is identical to the output of the serial execution order. The
serial-append mode is crucial for applications whose processing can be parallelized,
but which must output results in a standard serial order. Serial-append mode departs
significantly from other parallel APIs, and its definition and implementation form my
major contribution.

I present an implementation of Cheerio under Cilk, a C-like multithreaded lan-
guage which runs efficiently on a wide variety of hardware platforms. Cilk and Cheerio
share much of the same philosophy, which makes Cilk suitable as an underlying par-
allel system. In particular, Cilk is a faithful extension of C in that programs can
be reduced to a correct serial execution by deleting the Cilk keywords. Benchmarks
confirm Cheerio’s efficiency. A database program based on the GNU DBM database
facility has a near-perfect speedup on 4 processors using local I/O. A version of the
popular compress benchmark converted to output using serial-append mode achieves
a speedup of 1.8 on 2 processors and 3.75 on 4 processors.

Thesis Supervisor: Charles E. Leiserson
Title: Professor

2

Acknowledgments

First, thanks to my advisor Charles Leiserson, and group members Harald Prokop

and Matteo Frigo for their advice and guidance through the last few years. Your help

has been indispensable.

Special thanks to Orca Systems, Inc. for their generous support. I can’t imagine

a finer place to work, even if it’s now in Waltham.

Finally, there are some people who have had a tremendous impact on me over the

years. I will not try to make a list, but rest assured that you all have had a profound

effect on me, and I am indebted to you for who I am today.

3

Contents

1 Introduction 8

1.1 A motivating example . 9

1.2 Contributions . 12

1.3 Overview . 13

2 The Cheerio Parallel I/O API 15

2.1 Global mode . 16

2.2 Local mode . 17

2.3 Serial-append mode . 21

2.4 Cheerio API reference . 23

2.5 Porting applications to use Cheerio 24

3 Cheerio Design Rationale 26

3.1 Cheerio as a faithful extension of POSIX 26

3.2 Criteria for a parallel I/O API . 27

3.3 Comparison between Cheerio and other parallel APIs 31

4 Implementation of Global and Local Modes 33

4.1 Supporting I/O under multiple workers 34

4.2 Global mode . 36

4.3 Local mode . 37

4.4 Portability and nonconformance . 39

4

5 Implementation of Serial-Append Mode 42

5.1 Formal definition and conceptual solution 42

5.2 Initial implementation . 45

5.3 Improved implementation . 54

5.4 Reading the Cheerio file . 55

6 Benchmarks 59

6.1 Sources of overhead in Cheerio . 59

6.2 Scaling with the number of processors 62

6.3 A closer look at serial-append mode 63

7 Future Directions 66

7.1 Improvements to existing implementation 66

7.2 Moving Cheerio into the operating system 67

7.3 Research of theoretical interest . 68

5

List of Figures

1-1 Sample 7-node binary tree. 10

1-2 Serial tree traversal algorithm written in C 10

1-3 Parallel tree traversal algorithm written in Cilk 11

1-4 Parallel tree traversal algorithm written in Cilk using Cheerio 12

2-1 Cheerio’s global mode . 17

2-2 Cheerio’s local mode . 18

2-3 Spawns give rise to three possible local mode semantics 19

2-4 A small tree of threads in serial-append mode 22

5-1 A single process doing an appending file write. 44

5-2 Two threads doing an appending file write. 44

5-3 A simple Cheerio data file. 46

5-4 An empty Cheerio I/O node . 46

5-5 A tree of Cheerio nodes . 48

5-6 Parallel pseudo code for flattening Cheerio files. 57

6

List of Tables

6.1 Summary of the overhead in Cheerio operations. 62

6.2 The overhead for each Cheerio mode 64

7

Chapter 1

Introduction

Parallelism is one of the most popular techniques for achieving high computing per-

formance. Advances in processor speed, parallel architecture design, and compiler

technology have all increased the power of parallel computers, but in many cases this

has merely pushed the bottleneck elsewhere. For many “Grand Challenge” prob-

lems [SC00], input/output (I/O) bandwidth became the limiting factor. More recent

work (see [JWB96] for some examples) has successfully addressed the need for higher

throughput I/O, but these systems are almost exclusively tailored for the sort of

structured I/O patterns associated with regular scientific applications. Nieuwejaar

and Kotz’s extensions to I/O paradigms to allow efficient strided access [NK96] are

a good example of this line of work, as are [MS96] and [DJT96].

The recent availability of cheap symmetric multiprocessor (SMP) systems has

helped to shift the focus of parallel computing. Many desktop workstations now

have two or four processors and run traditional POSIX-compliant1 operating systems

instead of the highly specialized environments of larger parallel hardware. These

advances in turn drive a need for programs, other than the traditional scientific ap-

plications, that can run in parallel on such systems.

Supporting parallel I/O under SMP environments presents three challenges. Com-

1Specifically, the IEEE 1003.1-1990 standard, commonly referred to as “POSIX,” specifies a
standard application API, including support for I/O. The first standard was approved in 1990. The
POSIX.4 realtime extensions were adopted in IEEE Std 1003.1b-1993 in 1993, which extended some
of the I/O-related API calls.

8

pared to scientific computing programs, many applications running on these SMP

machines have less structured I/O requirements and cannot make effective use of I/O

APIs tuned for the regular I/O access patterns typically found in scientific appli-

cations. Another issue is that the POSIX I/O API, though providing some of the

necessary features for a parallel I/O API, falls short in several key areas. It does not

include many of the necessary synchronization guarantees between threads, nor does

it have support for various useful pointer-sharing semantics. While it is true that

most POSIX I/O implementations in use today are thread-safe from the perspective

of operating-system level threads, these threads may not correspond to the parallel

threads of execution in a given parallel environment.

This thesis describes the design and implementation of Cheerio, a parallel file I/O

API that addresses these deficiencies. The rest of this chapter introduces Cheerio

and outlines the thesis. Section 1.1 presents a motivating example for serial-append

mode, the most interesting of Cheerio’s three I/O modes. Section 1.2 details the main

contributions of this thesis: the design of Cheerio and its implementation in the Cilk

runtime system. Finally, Section 1.3 gives a roadmap for the remaining chapters of

this thesis.

1.1 A motivating example

As a demonstration of Cheerio’s utility, this section walks through a simplified ex-

ample of an application that is converted to use Cheerio. It begins with a typical

serial algorithm for traversing a tree, modifies it into a parallel algorithm, and then

uses Cheerio to preserve the original order of the file. Figure 1-1 is a simple binary

tree with nodes numbered 1 through 7, and Figure 1-2 shows a straightforward serial

(single-threaded) algorithm for traversing it. In this case, the value of each node is

printed using the UNIX stdio mechanism. Traversing the example tree yields the

output 1 2 3 4 5 6 7.

In a real application there may be a significant amount of computation required

at each node that walk() visits. If the computation at different nodes is mostly inde-

9

6

1 75

2

4

3

Figure 1-1: Sample 7-node binary tree.

f = fopen(name, "r");
walk(root);

void walk(node n)
{

if (n.left)
walk(n.left);

fprintf(f, "%d ", n.val);
if (n.right)

walk(n.right);
}

Figure 1-2: Serial tree traversal algorithm written in C

pendent, it may be advantageous to write a parallel version of the traversal algorithm

that can visit multiple nodes concurrently. Figure 1-3 shows the same algorithm as

before, but written in Cilk instead of C. A description of Cilk is outside the scope

of this work, but intuitively, instead of recursively calling itself on the left and right

children of the current node, walk() spawns concurrent threads to visit the children

simultaneously. The only synchronization in this example is the sync; statement

which forces the two recursively spawned walk()s to return before their parent com-

pletes.2 Many different outputs from the parallel traversal can occur depending on

the particular schedule of an execution; two such possibilities are 4 6 5 2 3 1 7 and

2 4 3 6 1 7 5. This example assumes that the calls to printf() are atomic. Once

2In fact, the sync; statement is only needed in this example for extra clarity, since every Cilk
procedure ends with an implicit sync;.

10

f = fopen(name, "r");
walk(root);

cilk void walk(node n)
{

if (n.left)
spawn walk(n.left);

fprintf(f, "%d ", n.val);
if (n.right)

spawn walk(n.right);
sync;

}

Figure 1-3: Parallel tree traversal algorithm written in Cilk

one thread initiates output, it completes that output before another thread can begin.

Cheerio preserves this same atomicity guarantee.

If the computation at each node is independent, then the programmer can run

the traversal in parallel, boosting performance. Unfortunately, the order of output is

nondeterministic, which may not be acceptable under certain cases. If the program-

mer wants the output of the program in serial order, then either she cannot make

use of the available parallelism, or she must buffer the output until all of the preced-

ing threads write their output. Doing that for a 7-node tree isn’t too difficult, but

such a solution doesn’t scale well to larger problems, or from problem to problem.

Cheerio’s serial-append I/O mode offers a more desirable solution. Figure 1.1 shows

the same algorithm as the parallel version written in Cilk, but now it uses Cheerio

to open the file in serial append mode. Nothing else changes, which is an important

strength of Cheerio. The program still runs in parallel, but now the output is guaran-

teed to be the output of the serial version, namely 1 2 3 4 5 6 7. Cheerio provides

this behavior with little performance overhead and near-zero additional programmer

effort.

11

#include <cheerio.h>

f = fopen(name, CIO SERIAL, "r");
walk(root);

cilk void walk(node n)
{

if (n.left)
spawn walk(n.left);

fprintf(f, "%d ", n.val);
if (n.right)

spawn walk(n.right);
sync;

}

Figure 1-4: Parallel tree traversal algorithm written in Cilk using Cheerio. The only
difference from Figure 1-3 is the mode specification in the fopen() call.

1.2 Contributions

The central contribution of this thesis is the design and implementation of Cheerio, a

parallel API designed for unstructured parallel I/O. Cheerio maintains compatibility

with traditional POSIX I/O semantics when appropriate, easing the task of porting

serial applications to a parallel execution environment. As a proof of concept, the

thesis includes an implementation of Cheerio for the multithreaded Cilk language, a

parallel language developed at MIT. Cilk is designed to aid programmers in writing

parallel applications by hiding the details of scheduling parallel execution, thus sim-

plifying the work of the programmer. Cilk also allows the runtime system to schedule

the same program efficiently on a wide range of platforms, from a single-processor

machine to a machine with hundreds of processors. The Cilk runtime library is op-

timized for low overhead when spawning a new thread, so parallel programs can be

written to use many concurrent execution streams and not suffer when running on

a machine with fewer processors. Cilk has the further advantage of guaranteeing

efficient and predictable performance, despite running on such a variety of parallel

platforms. Cilk is more fully described in [FLR98] and [Ran98].

Despite Cilk’s goal of simplifying parallel software development, it lacks a parallel

file I/O framework. Cilk programs must use the standard POSIX file I/O library, and

12

they must explicitly arrange any necessary serialization or multiplexing. A program-

mer who wants to use parallel I/O with some deterministic behavior must provide

her own I/O routines to do the necessary locking and bookkeeping. User I/O is made

difficult because of Cilk’s involved mapping of Cilk threads to operating system pro-

cesses. Even worse, for those userspace routines to be efficient on a wide variety of

hardware platforms, they must contain several different routines optimized for each

hardware case. This lack of portability goes against the principle that the Cilk system

should abstract away that sort of detail, and it breaks the property that the same

application runs efficiently on both single-processor and multiprocessor machines.

1.3 Overview

The remainder of this thesis is organized as follows.

Chapter 2 describes the Cheerio API. It defines the semantics of Cheerio’s three

I/O modes: global, local, and serial-append. A complete reference of Cheerio entry

points follows, along with a list of caveats, and a discussion about porting applications

to Cheerio.

Chapter 3 presents the rationale for Cheerio’s design decisions. It presents the

crucial idea of a faithful extension, first introduced in [FLR98], along with four criteria

for designing Cheerio: similar to POSIX when appropriate, high performance, hard-

ware and platform independent, and minimal but complete. Chapter 3 also presents

two other parallel APIs, compares them to Cheerio, and demonstrates why Cheerio

is a better API in certain situations.

Chapter 4 describes the implementation of Cheerio’s local and global modes in the

Cilk runtime library. This description also includes the underpinnings of the third

mode, serial-append. This chapter ends with sections on a discussion of implementa-

tion and file portability, and it lists the ways that my implementation of Cheerio is

not entirely conformant to the specification presented in Chapter 2.

Chapter 5 describes the implementation of Cheerio’s serial-append mode in the

Cilk runtime library. It builds off of the data structures introduced in Chapter 4,

13

going on to explain the Cheerio file format, the structure of Cheerio I/O nodes,

and an internal API to manipulate them. Chapter 5 concludes with a discussion of

accessing the data in Cheerio files after program execution.

Chapter 6 contains some measured results. These results include performance

benchmarks of Cheerio that verify it scales well with available processors, does not

impose high overhead, and compares favorably with regular I/O throughput.

Chapter 7 presents some conclusions and suggestions for future work.

14

Chapter 2

The Cheerio Parallel I/O API

The approach I took in designing the Cheerio parallel I/O API was to begin with

POSIX and add as little as possible to achieve low-overhead, high-performance I/O.

The end result is an API based on POSIX I/O which provides several parallel “modes”

appropriate for different programming situations. This chapter describes Cheerio’s

syntax and semantics, and it discusses porting applications to use Cheerio. Chapter 3

will present the design rationale behind Cheerio and justify the choices made in

building the API.

The crucial addition to POSIX necessary for a complete parallel I/O API is a spec-

ification of the behavior of the file pointer in the presence of simultaneous threads

accessing the file. POSIX does specify an API entry point (fork(2)) to create mul-

tiple processes, but although it describes the behavior of shared descriptors across a

fork, it is insufficient for two reasons. First, related processes under POSIX share a

common file pointer. This semantics is useful under some circumstances, but trouble-

some when threads need to have independent pointer behavior. POSIX does provide

a way to duplicate a descriptor to allow for thread-independent pointers, but it is

cumbersome to use, requiring an open() to create the first descriptor, a dup() to

create the copy, and then two close() calls after the fork(), one in each process.

In a nutshell, POSIX I/O was not really designed to support tightly-integrated par-

allel programs. The second issue with just using the POSIX API is that under Cilk,

computation threads and UNIX processes are different entities. Even under other

15

parallel environments, it may be incorrect to assume that the threads provided by

the environment use POSIX pointer sharing semantics.

The Cheerio API is similar to the POSIX I/O API. Programs still open files using

the open() call before using them. The open() call returns an integer handle used

to identify the open file in all other API calls. The program should close files with

close() when it is finished with them. An open file handle has a current file pointer,

which is an integer offset into the file. The read() and write() calls read from

and write to the file, respectively, starting from the current file pointer and updating

it appropriately. Cheerio provides the lseek() function to move the pointer. A

specification of these API entry points follows, but the only major difference between

these functions and their POSIX equivalents are that open() takes an additional

parameter specifying the Cheerio mode of the file. The Cheerio mode specifies the

behavior of the file pointer across parallel Cilk threads.

The Cheerio API provides three modes for file I/O: global, local, and serial-

append. The modes specify different behaviors for the file pointer, and are other-

wise equivalent. This chapter describes global mode in Section 2.1, local mode in

Section 2.2, and serial-append mode in Section 2.3. Section 2.4 is a programmer’s

reference to the Cheerio API, and Section 2.5 discusses porting programs to use Chee-

rio.

2.1 Global mode

This section describes global mode, the simplest mode in the Cheerio API. All threads

using a file descriptor in global mode share a common file pointer. Figure 2.1 describes

this mode pictorially. File access is atomic, so when two threads read from the same

descriptor, they read different pieces of the file. Global mode is part of Cheerio for

two reasons: it is an obvious counterpart to local mode (described below), and it has

a simple implementation. Since global mode is expensive to use, it is only appropri-

ate when threads require the strong synchronization of file access. A well-structured

parallel application should require as little synchronization between threads as pos-

16

T3T1 T2

Figure 2-1: Cheerio’s global mode. Each thread shares a single common file pointer.

sible. In particular, one does not want file access to require “one at a time” access

limits. Global mode is therefore often useful as a stopgap measure when a program

is first parallelized. It is the moral equivalent of mutexed access to global variables:

it may be necessary at first, but for maximal performance the programmer should

restructure the application to avoid synchronized access to those variables.

2.2 Local mode

Local mode is significantly more useful than global mode for parallel applications, but

at the cost of a more complex semantics and implementation. This section describes

these semantics, particularly the preservation of pointer locations across spawns. It

then describes a parallel database library based on the GNU DBM implementation,

a good example of local mode’s strength.

In local mode, since each thread has its own value of the file pointer, pointer up-

dates in one thread do not affect another thread. Figure 2.2 shows this arrangement.

Each thread can read or write to the Cheerio file descriptor independently of the other

threads. Using a file opened in local mode is similar to opening a new descriptor for

the file in each thread, but without the overhead of so many opens, and with the

added advantage of some semantics governing a thread’s initial pointer position when

17

T3T1 T2

Figure 2-2: Cheerio’s local mode. Each thread has its own independent file pointer.

it is spawned. Because different threads have independent pointers, the semantics

of local mode must also specify the location of the file pointer in both the parent

and child of a spawn. Implementing this behavior, however, turns out to be difficult,

because the natural parallel semantics and the natural serial semantics conflict with

each other. We define the serial semantics to be the behavior of the program where

the spawns are replaced with normal function calls, making it a single-threaded serial

program. This transformation is called the serial elision of the program, whose notion

is developed further in Chapter 3. Consider a thread Tp that has an open Cheerio

local mode descriptor, and suppose that Tp spawns thread Tc. Two important cases

do yield consistent semantics across both models. In the first, suppose that Tc and its

children never use the open descriptor. One would certainly expect the pointer in Tp

to remain unchanged across the spawn, and this behavior is a sane semantics in the

parallel world. In the second case, Tp never uses the pointer again, suggesting that Tc

should begin execution with the same pointer location as Tp had at the spawn point.

Again this behavior is consistent in a parallel view.

The difficulty begins when both Tc and Tp use the pointer, because the serial

elision specifies behavior that runs counter to the natural parallel semantics. Namely,

in the serial elision, Tc executes and modifies the pointer, and after Tc returns, Tp sees

an updated pointer location. On the other hand, parallel semantics imply that Tc

18

C
Tc

Tp

A
B

Figure 2-3: Spawns give rise to three possible local mode semantics. In this example,
Tp spawns Tc just after statement A. If Tc does not use the open local descriptor then
statement B will have the same pointer location that statement A had. If Tp never
uses the open descriptor again, then statement C will inherit the pointer position that
statement A had. If both Tp and Tc use the descriptor, then the initial pointer after
the spawn at both points B and C is left undefined.

and Tp should both start with the same initial file pointer position. Cheerio legislates

a solution to the problem: since no initial pointer semantics is consistent in both the

serial and parallel views, the value of the file pointer after a spawn in both the child

and the parent threads is left undefined. As described above, the important exception

occurs if one of the two threads doesn’t use the pointer, in which case the other

thread keeps the value of the pointer from before the spawn. Figure 2.2 illustrates

the different possibilities.

These semantics can be considered as dag consistent, described in [Fri98], [FLR98],

and [Ran98]. In the context of shared memory, dag consistency states that a read can

“see” a write only if there is some serial execution which is a valid schedule of the reads

and writes in which the read sees the write. Consequently, different executions can

19

yield different values for the read, if they both correspond to valid serial executions in

the dag. While there is only one serial elision of a Cilk program, there can be many

valid serial executions; two threads that are spawned without an intervening sync

can execute in any order and still preserve the dag.

The same concept applies to I/O access, or in particular to the initial file pointer

in a thread. When a thread is spawned, we define its initial pointer to be whatever

its parent’s pointer is. If thread A spawns threads B and C and then does a sync,

then the dag allows either B or C to execute first in a serial path. In the case where

A spawns B and does no I/O itself, there is no write in the serial path regardless of

which path is taken, so B is guaranteed to start with A’s pointer value. Similarly,

if B does no I/O, then again there is no write regardless of path, so A’s pointer is

preserved. If both A and B attempt I/O, then different paths can give rise to different

pointer values, and thus Cheerio cannot guarantee an initial pointer value in either

A or B.

Some clarification is in order here. Only the initial pointer value is dag consistent.

Inside a function, local mode semantics specify that only the current thread can

affect the value of a pointer. On the other hand, the actual I/O access is always dag

consistent, because two threads pointing at the same location in a file might write to

it in either order if there are valid serial executions including both orders in the dag.

Local mode has numerous applications in the parallel programming space. The

GNU database manager (GDBM) [GNU] was one of the first applications ported to

Cilk and Cheerio as a validation of the Cheerio API design. It remains an excellent

example of the power of Cheerio’s local mode semantics. The serial version of GDBM

maintains a table of 〈key, value〉 pairs. Queries search the table for matching keys

using a hash table of the keys for greater efficiency. The port to Cilk parallelizes

queries by spawning multiple threads, each of which search a different part of the key

space. Parallel GDBM also extends the GDBM API with a parallel query, which can

search for multiple keys in parallel, returning a list of answers once the query has

completed. This model of multiple threads each searching a difference piece of the

key space is perfectly suited for local mode, because each searching thread operates

20

independently of the rest of the searching threads.

2.3 Serial-append mode

Serial-append mode represents the bulk of this thesis work. This mode opens a whole

class of applications to parallelization that were previously difficult. This section

describes its semantics, which are simple and straightforward. Specifically, serial-

append specifies that the final output of a parallel program doing appending writes

is the same as the output of the serial elision of the program, regardless of the actual

order of thread execution.1 These are simple semantics, but an efficient implementa-

tion of serial-append is tricky. Chapter 5 is devoted to explaining the implementation

of serial-append under Cilk. This section also gives several examples of applications

that benefit from serial-append.

Global and local modes support appending opens by specifying a flag to the Chee-

rio open call, just as files are opened for appending in the POSIX API. Serial-append

mode is different, because the semantics rely on an appending write in the serial case.

A mode which guarantees serial output regardless of pointer updates would be far

more difficult to implement, and it doesn’t appear to have many useful applications.

Serial-append is most useful for when an application needs to be parallelized, but

the output must still correspond to a serial version. This semantics allows paral-

lelization of programs that were previously difficult to port to Cilk because of their

inherent serial I/O needs. The range of such applications is tremendous. Compilers,

text processing tools such as LATEX and troff, and various formatting tools like fmt

and indent all share this attribute. As a specific example, fmt refills paragraphs of a

text file to have even margins. Parallelizing fmt without serial-append is challenging,

because much of the program’s work is I/O bound, and paragraphs may be larger

or smaller after filling due to the addition or deletion of spaces and carriage returns.

With serial-append the parallelization is almost trivial. The program simply reads in

1This definition assumes that the program is deterministic. In the nondeterministic case, the
semantics must be reduced to guaranteeing that the output of the program is equivalent to some
execution of the serial elision.

21

T2 T3

T1

ED

A

B

C

Figure 2-4: A small tree of threads in serial-append mode. Capital letters are regions
of I/O and arrows represent spawns. In this example, the correct serial ordering of
the output is A D B E C.

a paragraph and spawns a thread to fill it. Each thread writes the filled paragraph

back to disk. None of the global structure of the program has to change, and there

is no need to have the entire file in memory at any time, yet fmt can make full use of

multiple processors and enjoys a high speedup when running in parallel.

Other types of applications are also appropriate, including anything that needs to

log a record of execution. Serial-append and local mode with appending writes form

a nice complement here. Imagine a chess-playing program that logs each evaluated

board position. Suppose that many threads are evaluating different positions, and

each thread writes some summary information to an open Cheerio file for each visited

position. If the file is opened in local mode with the append flag set, then the output

is a record of evaluated boards in order of their evaluation, with the various threads

output interleaved. Changing the mode from local to serial-append in the open call

changes the behavior so that the written output file is a record of the positions

evaluated, but this time in the order that the serial elision would have visited them.

The version of the program that uses serial-append mode could yield, say, a depth-

22

first search order of the tree, which may be far more useful to analyze that some

random ordering of the positions. Generally there are some cases where the output

should reflect the parallelism, but for those where it should not, serial-append allows

the programmer to leverage the benefits of parallel execution while still producing

the necessary output.

2.4 Cheerio API reference

This section is a complete Cheerio API reference.2

• int open(const char *path, int cheerio mode, int flags, mode t mode)

The file name specified by path is opened for reading and/or writing as speci-

fied by the argument flags and the file descriptor returned to the calling thread.

The flags specify whether the file is being opened for read or write, appending

behavior, and a variety of other modifiers on the open descriptor. If successful,

open() returns a nonnegative integer, termed a file descriptor. It returns −1 on

failure. The file pointer used to mark the current position within the file is set

to the beginning of the file. The variable cheerio mode is one of CIO GLOBAL,

CIO LOCAL, or CIO SERIAL APPEND. In the case of CIO SERIAL APPEND, the pres-

ence of O APPEND in the flags is implied. The open() call is the only Cheerio

entry point whose prototype differs from the corresponding POSIX call.

The open() call is purposely incompatible with the traditional POSIX proto-

type because a programmer using Cheerio should be required to explicitly pick

the correct parallel mode of I/O for each open descriptor. Cheerio does support

an alternate form of the open call which omits the cheerio mode parameter.

In this case, the mode defaults to global mode.

• int close(int d)

2The prototypes and much of the descriptions of the Cheerio API functions come from the
NetBSD Programmer’s Manual, which is itself derived from the 4.4BSD release described in
[MBKQ96].

23

The close() call deletes an open descriptor from the table of descriptors. If the

descriptor being closed is the last reference to the underlying file, then the object

is deactivated. In particular, the current seek pointer associated with the file

is lost. In the case of serial-append mode, which might buffer file metadata in

memory, all metadata is flushed to the output file on close. There is an implicit

close of every open Cheerio descriptor when the Cilk program completes.

• off t lseek(int fildes, off t offset, int whence)

• int read(int d, void *buf, size t nbytes)

• int write(int d, void *buf, size t nbytes)

These three functions work exactly as their POSIX counterparts. The lseek()

function repositions the pointer according to the values of offset and whence.

The read() and write() functions use and update the current file pointer in

whatever manner is appropriate for the Cheerio mode of the open file, and either

read into a buffer or write the contents of the buffer to the file.

• int dup(int oldd)

• int dup2(int oldd, int newd)

The dup() function duplicates an existing Cheerio descriptor and returns its

value to the calling thread. The integer oldd must be a currently open Cheerio

descriptor. The new descriptor shares the old descriptor’s underlying file object,

including the seek pointer and Cheerio mode. The dup2() variant allows the

program to specify the desired new descriptor number as newd. If that descriptor

is already open, it is first implicitly closed.

2.5 Porting applications to use Cheerio

This section describes several issues that arise when porting applications that do not

use the POSIX I/O API to Cheerio. Porting applications that already use POSIX

24

I/O to use Cheerio is quite easy, owing to the intentional similarly in the APIs. The

compile-time headers rename all of the necessary functions so that calling open, read,

and the like invokes the Cheerio-aware implementations instead of the underlying

operating system calls. Typically, the programmer need not concern herself with

such details, however, and needs only to modify the initial open call to specify a

Cheerio mode.

Many programs do not use raw POSIX I/O calls, which complicates the picture

slightly. The implementation of Cheerio described in this thesis allows other I/O

implementations to work as well, particularly the standard I/O library typically pro-

vided by UNIX-like operating systems. Cheerio supports these calls differently from

the way it supports traditional POSIX calls. Instead of reimplementing the stan-

dard I/O library for Cheerio, which would be a significant undertaking, the Cheerio

implementation takes advantage of the fact that the standard I/O library, and in-

deed any library that provides an I/O framework, must use the POSIX API to do

the actual I/O. By playing tricks with the system toolchain and the runtime library

paths, Cheerio inserts itself between these I/O libraries and the POSIX system call

entries, so that an unmodified vendor-provided standard I/O library will use Chee-

rio instead of traditional POSIX for its underlying I/O. This technique also allows

programs that use the curses library[AA86] to be parallelized, since the curses calls

would eventually turn into an entry into the Cheerio library.

25

Chapter 3

Cheerio Design Rationale

Cheerio was designed to fill a need that current parallel I/O APIs do not address.

Instead of targeting specific file access patterns, Cheerio is designed to accommodate

programs that have I/O access patterns more typical of a traditional serial program.

This chapter describes the rationales behind Cheerio’s design. Section 3.1 begins

by describing the concept of a faithful extension, which forms the basis of Cheerio’s

design, and then Section 3.2 discusses tradeoffs between Cheerio’s four other design

criteria: similarity to POSIX, high performance, hardware and platform independent,

and minimal but complete. Finally, Section 3.3 compares Cheerio to more traditional

parallel APIs like MPI-IO and Vulcan.

3.1 Cheerio as a faithful extension of POSIX

Cilk’s philosophy is to be a parallel extension of C. One way of expressing this philos-

ophy is to consider the serial elision of a Cilk program, which is obtained by eliding

all of the Cilk keywords from the program text. The result is a valid C program,

which is a correct serial implementation of the original parallel program. The ability

to construct a valid serial version of the original program is how Cilk can be called a

faithful extension of C [FLR98]. That concept is a crucial part of Cilk’s design, and

one of its consequences is that the porting of serial programs to Cilk is simplified.

Since every serial C program is already a valid Cilk program, a programmer merely

26

converts pieces of the program into parallel functions and can do as much or little as

she needs.

In a similar vein, Cheerio is a faithful extension of POSIX. Cheerio extends POSIX

I/O in the natural parallel way, but in this case there are three different modes, global,

local, and serial-append, each corresponding to a different natural extension. Again,

looking from the reverse perspective, the serial elision of each Cheerio mode degen-

erates into the normal serial POSIX semantics. Similarly, all Cheerio modes behave

exactly the same way when running on a single processor. Just as Cilk’s extension

of C makes Cilk an easy porting target, being a faithful extension of POSIX I/O

makes Cheerio particularly easy to target. Applications do not need to fundamen-

tally change their I/O framework to take advantage of Cheerio’s parallel semantics,

and in many cases a programmer can get away with only minor modifications to select

the right parallel mode.1

There is an important distinction between sharing a philosophy with Cilk and

tying Cheerio to a particular parallel environment. Cheerio’s modes are all faithful

extensions of POSIX I/O, something not found in other parallel APIs. An API that is

a faithful extension of POSIX offers advantages regardless of the parallel environment

in which it is used. Cheerio certainly meshes well with Cilk’s own philosophy, but

that doesn’t mean Cheerio is any less appropriate for doing I/O under Pthreads or

some other parallel environment.

3.2 Criteria for a parallel I/O API

Given that Cheerio is intended to be a faithful extension of POSIX I/O, it must

also satisfy four criteria. This section describes Cheerio’s four design criteria. These

are similarity to POSIX, high performance, hardware and platform independent, and

minimal but complete. The order of these criteria is significant: as an example,

Cheerio sacrifices higher performance for the sake of being POSIX-compliant. The

1The UNIX compress utility provides a good example. Porting compress from C to Cilk required
some effort, but solving the I/O ordering problem required changing two calls to open() to specify
the serial-append Cheerio mode, and nothing more.

27

opposite tradeoff quickly leads one into the realm of parallel I/O APIs designed for

specific classes of applications instead of being appropriate across a wide range of

programmer needs.

Similar to POSIX when appropriate

First and foremost, Cheerio is intended to be as similar to the traditional POSIX

I/O API as possible. Just as Cilk does not require any fundamental change in the

structure of the program nor any change in the syntax of the program,2 converting a

program to use Cheerio should not require any significant changes in the program’s

structure or syntax. Similarity to POSIX need not extend to 100% compatibility, and

that leeway is justified by a few factors. First, I/O operations occur at well-defined

points of a program, and some of them like open() occur fairly rarely. For example, if

Cheerio required a change in the interface to open(), it wouldn’t be unreasonable to

change each invocation of open() appropriately. Less desirable, but still acceptable,

would be to change the interface to read() or write(), which occur fairly frequently.

Least acceptable would be an API that replaced the notion of reading and writing

a file using a file pointer with some other paradigm. Such a change would require a

complete rewrite of the I/O calls, and possibly an even more drastic change in the

program’s organization.

The second factor reducing the importance of maintaining complete POSIX com-

patibility is that parallel I/O can be quite different from serial I/O. No single file

pointer semantics makes perfect sense for all applications; rather, several different

extensions to the serial semantics are all appropriate in different contexts. Declaring

one of them to be the default semantics is merely confusing and offers little advantage.

Typically, programs ported to use Cheerio are either serial programs that were not

written with concurrent I/O in mind, or they are programs with internal parallel I/O

2The straightforward parallelization of an efficient serial algorithm does not necessarily lead
to an efficient parallel algorithm, for there are many examples where such a parallelization is far
less efficient than a different algorithm. Rather, the point is that the naive parallelization is easy
to program, and modulo any issues with the algorithm itself, the naive parallelization will have
reasonable parallel speedup.

28

code which is better replaced with Cheerio API calls. In either case, the program’s

I/O logic needs to be closely examined, and so there is little disadvantage in forcing

small changes in certain I/O API entry points. Cheerio does in fact change the in-

terface to open(), and as expected this change has not adversely affected the ease of

porting applications to use the API.

High performance

The API certainly must not prevent high-performance I/O. Performance is typcially

governed by the implementation of the API, not its design, but it is important to

avoid designs that effectively paint the programmer into a low-performance corner.

Examples would be APIs that can only be implemented with multiple system calls

per I/O request or APIs that require excessive amounts of memory, such as an API

interface that requires a large data buffer even for small reads and writes.

Hardware and platform independent

One of Cilk’s virtues is that it runs efficiently on a wide range of hardware. The run-

time system can distribute work across many processors, but especially on machines

with few processors, the overhead from the Cilk runtime system is nearly negligible.

The I/O system should also run efficiently on a varying number of processors, so that

it the programmer need not worry about how many processors the target machine

runs. A properly designed API yields maximum I/O performance across the entire

supported hardware space.

The API must also hide platform variations from the end user whenever possible

or appropriate. Files written on a little endian machine should be readable from

a big endian machine. As with traditional I/O, the application is still responsible

for preserving the correct byte order of the file data itself, but any metadata in the

file used by the runtime system must be properly interpreted on either endianness.

Similarly, files written on a 32-bit machine should work on a 64-bit machine, and

vice-versa. Finally, the underlying file system should be transparent, so that Cheerio

29

operations on top of an NFS other remote file system should work just as well as files

written to local disk, modulo performance differences between the file systems.

Minimal but complete

A good parallel API walks a fine line between useful semantics and efficient imple-

mentation. At one extreme are APIs which hide all of the complexity of parallel I/O

from the programmer but require excessive resources or have overly complex imple-

mentations. At the other extreme are extremely simple and efficient APIs that are

cumbersome to use in practice, because they don’t encompass enough functionality.

Since the best solutions to problems in computer science tend to be elegant and mini-

mal, Cheerio follows that design philosophy as much as is practical. A minimal set of

APIs simplifies porting Cheerio to other architectures. It also allows a programmer to

grasp Cheerio more easily than an alternative API with dozens of modes and options.

Cilk is a minimal extension to C, and the Cheerio API exhibits the same spirit as

much as possible. A minimal API eliminates redundant modes and modes that are

easily implemented in terms of other modes, and it also chooses simpler interfaces to

API functions over more complicated, overly generic interfaces. Other existing parallel

APIs are generally geared toward massive amounts of I/O that have uniform access

patterns, and as a result these APIs tend to differ significantly from the POSIX API

([POS90] and [POS93]) A good example is the MPI-II standard ([MPI97a]), which

includes an API for parallel I/O. While compatibility or even similarity with POSIX

is not a requirement, it is an advantage. Cheerio’s similarity to POSIX eases the

task of parallelizing I/O intensive applications using Cilk, whereas implementing an

entirely different paradigm for parallel I/O may entail extensive rewrites of parts of

applications.

As an example of eliminating a mode that can be trivially emulated using other

modes, the Cheerio API does not support synchronizing I/O at granularity higher

than single read()s and write()s. One can imagine a program that wants to output

several lines to a file and ensure that they appear sequentially. There are several

possible solutions at an API level, including a continuing write() function that

30

does a normal write but maintains a lock on the descriptor until a normal write()

releases it. Another possibility is to have a queue write() which queues writes in

some intermediate buffer until a commit() call. Either of these solutions works,

but it is just as easy for an application that needs this functionality to enclose the

required atomic operations inside a lock. Alternatively, the application can buffer

up its output internally before issuing a single write, leaving the API uncluttered.

Allowing the application to handle this leaves Cheerio as the desired minimal set of

primitives.

3.3 Comparison between Cheerio and other paral-

lel APIs

Cheerio is unique among parallel I/O APIs in several respects. This section surveys

other APIs in the parallel I/O space and compares them to Cheerio. While there are

many other solutions for parallel I/O, to date they have all clustered around the needs

of scientific applications. Specifically, they are not faithful extensions of POSIX I/O

and do not satisfy all four of Cheerio’s criteria.

MPI-IO

The Message-Passing Interface (MPI) standard, defined in [MPI97b] and extended

in [MPI97a], provides a set of primitives for message-passing that enables the devel-

opment of portable parallel message-passing programs. MPI-IO is an extension to

MPI that defines I/O primitives appropriate for these sorts of parallel applications.

It is highly geared for structured scientific applications, and it includes many pieces

of other parallel I/O frameworks, including PPFS [HER+95], PIOUS [MS94, MS96],

and Vesta [CF94].

MPI-IO is targeted at scientific applications, and it specifically favors perfor-

mance over functionality [CFF+96]. It does not attempt to be compatible with the

UNIX (POSIX) file interface, which is acceptable because programs must generally

31

be rewritten from scratch to make use of the message-passing paradigm.

Other APIs typically provide support for parallel I/O by defining modes specify-

ing different semantics for simultaneous file access, much as does Cheerio. MPI-IO

departs from this model to define I/O as a form of message passing, resulting in

an API that encourages highly structured file access. Applications define the sort of

high-level data type they will be reading and writing, declaring a stride and interleave

pattern for file access. This model works well for scientific applications but falls well

short of Cheerio’s goal to support arbitrary I/O in an efficient manner. With some

effort MPI-IO can support file access patterns similar to those allowed in global and

local modes, but it offers nothing similar to the semantics of Cheerio’s serial-append

mode.

Parallel file systems

Another common approach to solving the parallel I/O problem is to build a parallel file

system, such as Vesta. Here, the problem is reduced to a systems design task: the goal

is to accelerate I/O by striping data across multiple disks as in RAID [PCGK89], or

using multiple I/O processors as in the Vulcan massively parallel processor [SSA+94].

As with MPI-IO, the API for these solutions is intended for applications reading

or writing large amounts of data to disk in a structured manner, and they fail to

satisfy the needs of many applications that can benefit from Cheerio, which efficiently

implements semantics similar to POSIX instead of forcing programs to use an entirely

different I/O API.

32

Chapter 4

Implementation of Global and

Local Modes

Chapter 2 describes an API which is largely independent of the choice of underlying

thread implementation and operating system. Indeed, independence from the thread-

ing environment is one of the design goals of Cheerio. The implementation of Cheerio

under Cilk, in contrast, is highly integrated with the Cilk runtime, leveraging various

aspects of the Cilk implementation to improve performance. This chapter discusses

how the semantics of Cheerio’s global and local modes can be efficiently realized under

Cilk.

The initial implementation of Cheerio was a set of wrappers that were explicitly

compiled into a Cilk program. The wrappers served as a useful prototyping framework

to evaluate different API designs. Performance and complete POSIX compatibility

was not particularly important in the prototype, which allowed for a simple but

inefficient implementation and a faster design cycle.

Once Cheerio was 90% designed, I abandoned the wrappers in favor of a “real”

implementation that prioritized performance and compatibility. In this form, Cheerio

was made part of the the Cilk runtime library, which contains the Cilk scheduler,

locking primitives, and bootstrapping code. Some of the library, such as the scheduler,

works behind the scenes to support parallel execution. Other parts serve as APIs

exported to the Cilk user code. Cheerio is split between the two: the Cilk runtime

33

library exports a user-visible API for parallel I/O, but a good amount of user-invisible

runtime support is also required.

The user-visible API overrides the traditional POSIX I/O entry points using the

cilk compat.h header file, just as Cilk replaces calls to functions like malloc() with

Cilk-compatible versions. Programs can explicitly call the native OS versions of the

Cheerio entry points, but there is typically no reason to do so, since OS descriptors

can behave in unexpected ways under Cilk.

This chapter details the implementation of global and local modes. Section 4.1

explains how Cheerio’s implementation handles Cilk’s worker process model. This is

relevant to all three Cheerio modes. Section 4.2 then explains the implementation

of global mode, and Section 4.3 describes local mode’s implementation. Finally Sec-

tion 4.4 discusses parts of the implementation that are not entirely conformant to

the specification in Chapter 2 and portability issues that arise when using Cheerio on

multiple platforms.

4.1 Supporting I/O under multiple workers

Cilk creates an native operating system process or thread for each available processor

in the machine. This presents a difficulty for Cheerio, which must make open Cheerio

files available to threads running on any processor. This section describes how Cheerio

reopens native descriptors on each worker as necessary to allow transparent access to

Cheerio files on every processor.

The Cheerio implementation under Cilk is a layer on top of the native POSIX I/O

API. Each Cheerio read or write maps to a POSIX read or write, and under ideal

conditions there is little additional overhead. Certain conditions require additional

POSIX calls for a Cheerio read or write, but the implementation tries fairly success-

fully to minimize the amortized cost of each read and write. Open and close calls are

allowed to have more overhead, since applications tend not to call those as frequently

or in critical paths.

When a process opens a file in Cilk, the runtime system makes a corresponding

34

call to the native open() function and saves the returned native descriptor in an

internal table, indexed by the Cheerio descriptor. When a Cilk program issues an

I/O request, the runtime system looks up the corresponding native file descriptor in

the table and passes the call on to the operating system. Opening a single operating

system descriptor for each Cheerio descriptor is insufficient, however, due to the way

Cilk uses multiple processors in a machine. For each available processor, Cilk creates

an operating system process or thread, depending on how it was configured. These

native processes execute Cilk threads, and when a processor runs out of work to do,

it steals work from another processor. Thus, from the perspective of the operating

system, an executing Cilk program consists of n concurrent processes, where typically

n is equal the number of processors.1

The Cilk worker processes are created during the Cilk runtime’s bootstrap se-

quence before any of the programmer’s Cilk code runs, so a descriptor opened on one

worker are not shared with any of the other workers. Therefore, when a thread opens a

Cheerio file descriptor, the corresponding operating system descriptor is only opened

in the worker running on that particular processor. If another Cilk thread tries to use

that Cheerio descriptor while running on another processor, there is no correspond-

ing operating system descriptor open in that worker process, so the runtime system

must have a way to reopen the file on other workers as it becomes necessary. To do

so, the runtime system saves away a copy of the arguments to the original Cheerio

open call so that other worker processes can reopen the file on the fly as necessary.

Consequently, each Cheerio call must first verify that the current worker has a valid

operating system descriptor open, and if not, must first open it and reset the file

pointer before proceeding with the specified operation.

To keep track of native descriptors and file descriptors on each worker, the Cilk

runtime library keeps an internal table, indexed by the Cheerio descriptor, which

1Cilk allows the user to specify how many of these worker processes to create. One can specify
fewer than the number of available processors, in which case some processors remain idle. One
can also specify more workers than available processors, which causes the operating system to task
switch among various workers on the same processor. Modulo performance issues related to task
switch overhead, cache properties, and the like, the parallelism of Cilk comes from multiple worker
processes and has nothing to do with the number of physical processors in a system.

35

includes the native descriptor for each processor, the information needed to open the

file on other workers, and pointer information appropriate for the descriptor’s mode.

When a Cilk program opens a file, the Cilk runtime library opens a corresponding

native OS file descriptor to the same file. This native descriptor is only valid on the

current worker process, so the runtime system must have a way to reopen the file on

other workers as it becomes necessary. In particular, assume process Pa has a Cilk

thread at the top of its stack, and process Pb steals it. If the thread tries to perform

I/O using a Cheerio file descriptor opened on Pa, the corresponding OS descriptor

opened on Pa is useless, because native file descriptors are not shared among worker

processes. Consequently, the runtime system must reopen a new descriptor for Pb’s

worker before proceeding with the thread’s I/O request. To do so, the runtime system

saves away a copy of the arguments so that it can reopen the file on other processors

as that becomes necessary.

A similar issue arises when a Cilk thread closes a Cheerio file descriptor. The

runtime system can immediately close the corresponding native descriptor, but the

other native descriptors associated with other processors must be closed by their own

worker processes. The current implementation uses a lazy closing scheme. When a

thread closes a Cheerio descriptor it closes the native descriptor on the current worker,

but the rest of the native file descriptors associated with the Cheerio descriptor are

left open. The runtime system sets an invalid flag for the rest of the workers, signi-

fying that the open native descriptor for that Cheerio descriptor is no longer valid.

Eventually, a Cilk thread opens another file and reuses that Cheerio descriptor. When

the Cilk runtime system accesses the native descriptor on a Cheerio read or write, it

checks the valid flag. If set, the worker closes the stale native descriptor and then

reopens a new descriptor as described in the previous paragraph.

4.2 Global mode

This section describes the implementation of global mode and an potential optimiza-

tion that is not implemented in this thesis. Global I/O in Cheerio is straightforward.

36

Since Cilk threads update the same pointer in global mode, the runtime system cannot

rely on the native pointer associated with OS descriptors. Instead, they use shared

memory to keep track of the pointer for each Cheerio descriptor. The runtime system

updates the kernel pointer for the current worker from the shared Cheerio copy, per-

forms the native read or write operation, and then updates the shared pointer based

on the result of the I/O operation. A running Cilk thread is never preempted, but

since two threads on different processors may be accessing the same Cheerio descrip-

tor, the pointer updates and the I/O operation must occur atomically. Global I/O

has significantly reduced throughput because of this need for a global lock around

each Cheerio API call.

One possible improvement which I chose not to implement for this thesis was

to create an initial pool of descriptors before the runtime system forks off its pool

of worker processes. These descriptors would then share a common pointer in the

kernel, and the runtime system could leverage the shared native descriptors to have

a cheaper way of maintaining cross-processor pointer consistency. If global mode

were more useful in parallel applications, this improvement may have been worth

the programming effort, but there are several tricky issues involved in preserving

compatibility under this scheme that made it not worth the additional effort.

4.3 Local mode

This section details the implementation of local mode, whose analysis is considerably

more involved that global mode’s. It describes the portability and performance prob-

lems that beset the initial implementation in the user-level wrappers. A description

of the current Cheerio implementation follows, including an explanation of how to

efficiently preserve the pointer inheritance semantics described in Section 2.2.

When a file is opened in local mode, each thread maintains its own local pointer

for each Cheerio descriptor. Recall that the Cheerio implementation converts each

API request into a native operating system system call. Without any further work

beyond passing each Cheerio request to the corresponding POSIX call, the I/O uses

37

whatever offset is stored in the kernel associated with the current worker process. Two

different Cilk threads running on the same worker process might have different offsets,

so the runtime system must set the kernel file pointer to the right place for the current

Cilk thread and perform the requested I/O operation as an atomic transaction. This

naive approach is exactly what the initial user-level wrappers implemented. Each

per-thread pointer was stored in a private variable, and each Cheerio request was

turned into a lock, a call to lseek, a call to read or write, and an unlock.

There are several problems with this approach. Primarily, each Cheerio request

balloons into two system calls as well as an explicit lock around them. Both types of

operations are expensive. Furthermore, private variables are not implemented on all

Cilk platforms, sol programs that use the parallel I/O facilities are not as portable as

those that do their own I/O multiplexing.

Fortunately, some properties of the Cilk scheduler can significantly reduce the

need for extra seeks and locks. Cilk does not preemptively switch between threads;

the Cilk scheduler is entirely cooperative, and control never returns to the scheduler

unless a processor exhausts its work queue. When that happens, and only then,

the scheduler steals the top frame from another processor. Consequently, a currently

running thread never stops running on its processor unless it explicitly spawns another

thread. This observation leads to the first optimization of the naive approach: there

is no need to lock around the seek and the following read or write, because a thread

can never be interrupted between those two operations.

Next, note that while we cannot completely dispense with saving a per-thread

pointer, there are many cases where the runtime system can use the in-kernel pointer

associated with the worker process’ native descriptor without first setting it using an

expensive seek operation. In fact, only a few situations require any synchronization

of the kernel pointer to a per-thread pointer. Imagine thread Tp with open local mode

Cheerio descriptor D spawns thread Tc, and Tc does not use D. As long as Tp is not

stolen while Tc executes, the kernel pointer on the worker processor remains untouched

during Tc’s execution, and thus it contains the proper value when Tp resumes. If Tc

uses D but Tp does not, then Tc begins with the correct pointer location. Finally, if

38

both Tp and Tc access D, then the semantics of local mode do not specify what pointer

location the two threads see, and the implementation can therefore do anything it

likes.

The only difficulty with this scheme arises on a steal. A thread can only be stolen

if it has spawned a child thread which is currently running. If Tc does not touch the

descriptor, then the runtime system is required to preserve Tp’s pointer location. But

here, all of the invariants work together in our favor. When Tp is stolen, the runtime

system unconditionally sets the thief’s pointer location to where the victim pointed,

opening a new OS descriptor on the fly if necessary. If Tc has not used the descriptor,

then Tp sees the correct value of the pointer after the steal, since it hasn’t changed

since the spawn of Tc. If Tc has touched the pointer, then Tp resumes execution with

some undefined pointer location. If Tp does not use that pointer, then there is no

concern. If it does, then we are in the case where both parent and child are using the

pointer, relieving the runtime system from the need for synchronization. The upshot

is that the runtime system can always use the OS descriptor pointer for reads and

writes with no explicit locking, and the only overhead on an already expensive steal

is a blind pointer copy per open Cheerio descriptor.

4.4 Portability and nonconformance

This section describes issues that come up when porting Cheerio to new Cilk plat-

forms, differences in behavior across platforms and architectures, and the sharing of

Cheerio files between different machines. It also discusses several areas where the

implementation of Cheerio under Cilk is not entirely conformant to the API specifi-

cation in Section 2.4. These nonconformances mirror typical operating system limits

on POSIX I/O, so they were not judged to be fatal.

Portability

Cheerio is designed to be portable to Cilk on different architectures and to different

threading libraries. Cheerio currently runs as a 32-bit library on Solaris and Linux.

39

It is entirely machine-independent code and uses Cilk primitives for locking and other

machine-dependent tasks, so porting to new architectures should be easy. Cheerio

has not been tested on any 64-bit architectures, but care has been taken to keep

the Cheerio data structures 64-bit clean. Each new operating system presents some

incompatibilities, but judging by the amount of work required to port Cheerio from

Linux to Solaris, the changes are minimal and straightforward. Luckily, POSIX I/O

behaves fairly consistently across vendor operating systems, which isn’t always true

of the rest of the POSIX APIs.

Porting to a different threading library is a far more comprehensive undertaking.

The design of Cheerio is compatible with other threading packages, but the implemen-

tation is closely tied to Cilk, mostly for performance reasons. The entire treatment

of Cheerio nodes under serial-append mode is particularly challenging, since it relies

on work stealing instead of spawns to maintain consistency. Maintaining metadata

during spawns is both more costly and requires more bookkeeping, so an efficient

implementation of Cheerio on a nonstealing (i.e., nearly any) threading library would

require some clever programming. Similarly, Cheerio currently only runs under the

Cilk process model. The Cilk runtime can also be built to use threads instead of pro-

cesses for its worker tasks, and some work would be required for Cheerio to support

such a configuration.

Another aspect of portability is ensuring Cheerio files are portable across various

architectures and threading platforms. The implementation of Cheerio described in

this thesis is written to be independent of word size and endianness. Cheerio has not

yet been run on a 64-bit machine, but care has been taken to maintain output file

compatibility regardless of the word size of the machine. Cheerio does run on both big

endian and little endian machines, and files written on one can be read by the other.

The endian-independence is only for the Cheerio metadata that maintains the serial

order of the data. The data itself is stored in whatever byte order the application

writes it in, so without any further care, an application writing word-sized data on a

big endian machine cannot read the same data correctly on a little endian machine.

This behavior is consistent with POSIX I/O; it it not the place of Cheerio to enforce

40

any natural byte order.

Nonconformance

Cheerio’s implementation under Cilk deviates from its specification in three areas.

• Cheerio currently relies on the operating system’s guarantee that writes of size

at most BUFSIZ occur atomically. The API makes the same guarantee, but it

could be argued that Cheerio should allow any sized write to occur atomically.

Implementing this property requires an extra locking operation in some cases,

as well as a test of the lock in all cases. Since it has not become an issue thus

far, the runtime system does not do the extra work to avoid interleaving of large

writes.

• As a simplifying assumption, Cheerio only allows a fixed number of open Cheerio

files at once. This number can be increased by recompiling the Cilk runtime

library with a greater limit. The default limit is 50.

• Because Cheerio uses a different native descriptor for each processor, closing a

Cheerio file does not immediately close all of the native descriptors. This can

cause unexpected behavior: residual open descriptors can prevent users from

umounting file systems and affect which data is left in the buffer cache. Cheerio

does not currently support the sync() call to force a flush of dirty pages to

disk, but this has not been an issue thus far.

41

Chapter 5

Implementation of Serial-Append

Mode

The most important contribution of this thesis is Cheerio’s serial-append mode. This

chapter details an efficient implementation of serial-append mode in the Cilk runtime

system. Section 5.1 begins with a formal definition of serial-append’s semantics and

a conceptual overview of how this appears to the programmer. Section 5.2 then

describes the runtime system’s basic algorithm for writing serial-append data with

minimal overhead. This section introduces the Cheerio file format: a file system

designed for efficient serial-append semantics, which is implemented on top of a file

that resides in the host operating system’s file system. Next, Section 5.3 presents

some optimizations on that basic algorithm which improve the efficiency of reading

data from a Cheerio file, and lastly Section 5.4 describes three options for reading

data back out of a Cheerio file.

5.1 Formal definition and conceptual solution

Formally, the Cheerio implementation must be able to reconstruct the serial-elision

order of writes from any parallel execution. At a low level, the challenge is that once

thread Tp spawns thread Tc, then both Tp and Tc may do I/O simultaneously, yet

all of Tc’s output must appear in the output file before any of Tp’s output after the

42

spawn. The runtime support must adhere to the following three constraints:

• The runtime system should allow both Tp and Tc to write to disk simultaneously,

maintaining sufficient information to reconstruct the correct serial order of the

output.

• The ordering metadata itself should be written to disk as soon as possible.

Being able to define a limit of how much memory is required for serial-append

overhead as a function of the number of processors and number of open files

would be nice. The limiting case of writing all of the metadata once the parallel

program exits is insufficient, since the space required for metadata alone may

grow unacceptably large under some pathological cases.

• The final output of a program must be in an format amenable to fast reading.

Conversion to a traditional flat file should be efficient, as well as directly reading

the file with Cheerio.

Implementing serial-append mode under these constraints is significantly more

difficult than implementing the global or local I/O modes. In addition to opening

files on multiple processors, the system must have a way to keep track of the correct

ordering of data. One possible way to accomplish serial ordering is to keep all of

the output of each thread in memory. Each thread’s output is appended to the

output file once all the threads that come before it in serial order have completed.

Although this approach certainly preserves the desired ordering of the output file, it

incurs the potentially high cost of keeping most of a program’s output in memory for

the duration of execution. Thus, this solution is unacceptable for programs of even

moderate size.

Conceptually, the correct solution that writes the data to disk immediately re-

quires an primitive insert operation. Figure 5-1 shows how a single process might

view an appending write. The shading region represents data that has been written,

and the file pointer indicates where the next write will begin. Figure 5-2 shows the

difficulty extending this to the case of two threads writing simultaneously. If T1 and

43

write pointer

Figure 5-1: A single process doing an appending file write. Gray represents data
that’s been written, and the file pointer indicates where the next write will go.

T_1 T_2

Figure 5-2: Two threads doing an appending file write. Gray represents data that’s
been written, and the file pointers indicate where each thread will write to. The issue
is how to avoid the hole between T1 and T2 regardless of how much T1 writes.

T2 are spawned in that order, then the serial-append output must have all of T1’s

data followed by all of T2’s data. The challenge is that the operating system does

not provide an insert operation, and so T2 must start its write at some fixed location.

Since there is no way to know at that time how much data T1 will eventually write,

it is impossible to pick the correct spot that avoids either a hole or an overlap in the

output file.

Since the underlying operating system does not provide the necessary interfaces

to allow the necessary type of insertion, there are two solutions. The first is to extend

the operating system interfaces to provide insert primitives. I chose not to go in

this direction because it ties the implementation to a single operating system, but

there are advantages to this approach which I cover in Chapter 7. The other option

is to build a user-level file system on top of the OS-provided file operations. The

user-level file system is contained within a single file, and it can be made OS and

machine independent. Thus, Cilk programs using serial append therefore output to

a file which is not in standard UNIX format. This strategy certainly has drawbacks,

but is not as limiting as it may initially seem. Section 5.4 contains a full discussion

of the tradeoffs.

44

5.2 Initial implementation

This section describes the basic implementation of serial-append in the Cilk runtime

system. It describes the Cheerio file format, a structured nonflat file format that

allows out-of-order writes but allows the file to be read as a flat serially-ordered file.

This moves into a discussion of Cheerio nodes, which are the basic unit of metadata

used to preserve the correct ordering of data in both in the runtime and in the Cheerio

file, an internal API used to manage them, and a locking protocol that ensures node

consistency in a parallel environment. Finally, I present the basic algoritm for serial-

append writes which uses the Cheerio node API and file format.

The Cheerio file format

Cilk writes serial-append files in the Cheerio file format, which is structured as a

sequence of blocks. Blocks contain either file data or metadata that describes the

correct ordering of the data blocks. The Cheerio format allows parallel applications

to continuously write data to disk as it is generated, and yet Cheerio maintains enough

information to efficiently regenerate the serial ordering of the data.

Each block in the Cheerio file is CIO BLOCKSIZE bytes long, set to 8 kilobytes in the

current implementation. A single counter in shared memory, protected by a mutex,

points to the next available block in the output file. The counter starts at 1 (leaving

the first block free for magic headers) and increments each time a thread requests a

new file block. A file data block occupies an entire Cheerio block. Metadata is stored

as Cheerio I/O nodes which are packed 8 to a block, similar to how inodes are packed

in FFS or LFS [SBMS97] file systems.

Because each thread allocates its own block when it needs space for output data,

any number of threads can write to their own private blocks without conflicting with

any other threads. Apart from resource contention on the next available block counter,

threads can lay down parallel data to disk without any Cilk-induced synchronization.

The file metadata, described in the remainder of this section, does require further

synchronization.

45

0 1 2 3 4 5 6

Figure 5-3: A simple Cheerio data file. Blocks 1, 3, and 4 contain file data, and blocks
5 and 6 are empty. Block 2 contains metadata nodes. The next metadata node will
go in the last available slot in block 2, and the next data block will occupy block 5.
Block 0 of every Cheerio file is reserved for magic headers.

child next

parent

Figure 5-4: A Cheerio I/O node contains three pointers: a pointer back to the node’s
parent, a pointer to a chain of children, and a pointer to the next node in the node’s
own chain. The rest of the node contains block metadata.

File metadata

Cheerio breaks the output of a parallel program into what are called Cheerio nodes.

Since all of the data assigned to a node appears sequentially in the final output file,

the problem is reduced to properly ordering the nodes. Figure 5.2 shows an empty

Cheerio node.

A program begins execution as one thread T1 running on one processor, say P1,

which has an associated Cheerio node N1. All of the program’s output at this point

goes into N1, which is a short way of saying that the data itself immediately goes

to the next available Cheerio file block, and the information about where that block

is located is written into N1. Nothing special needs to happen when T1 spawns T2.

Cilk is designed such that the spawn is little more than a function call, and so T1 is

effectively suspended while P1 runs T2. Since this execution corresponds exactly to

the serial elision execution, thread T2 can continue using the same Cheerio node N1

for its output. If T2 returns, thread T1 resumes execution at the point immediately

46

following the spawn, and continues to write data into N1. Indeed, when running on

one processor, Cheerio uses exactly one Cheerio node for the entire execution of the

program, incurring negligible overhead in the limiting case.

Complications arise when processor P2 steals work. Once thread T2 is spawned,

thread T1 can be stolen by another processor, leading to T1 and T2 running concur-

rently. To maintain the correct ordering of the file, Cheerio creates a new Cheerio

node N2 during the steal operation, associating it with the newly resumed T1 running

on P2. Now, T1 and T2 can concurrently write data into their private Cheerio nodes

without synchronizing against each other. The runtime system preserves the order by

adding N2 to the head of N1’s children chain. The serial order of the file is recovered

by reading data from N1 followed by data in N2. In general, whenever an idle proces-

sor steals a suspended thread, it creates a new Cheerio node, inserts it at the head of

the victim’s children chain, and then both threads proceed in parallel. Recovery of

serial order begins with reading data from a node, then reading data from the nodes

in the children chain (following the child pointer), then reading data from the nodes

in the parent’s own chain (following the next pointer). Figure 5.2 shows an example

of a Cheerio I/O node tree generated with these rules.

When a processor exhausts its work queue, it releases its active Cheerio node. The

exact sequence depend on the strategy. In some cases the node may be immediately

written to the Cheerio disk file. In other cases the node may be folded into another

node, or kept around in memory in hopes that it can be coalesced with another node

in the future. Sections 5.2 and 5.3 discusses the two strategies.

47

4

1

3

5

2

Figure 5-5: A simple example of a tree of Cheerio nodes. Node 1 was the initial node.
Nodes 2, 3, and 4 were created in succession each time a new processor stole work
from the processor running node 1. Node 5 was created when a processor stole work
from node 3’s processor. The correct serial ordering of the data is obtained from
reading the data in nodes 1, 4, 3, 5, and 2 in succession.

The Cheerio node is defined in the Cilk runtime library as follows:

struct cio_node_t {

struct cio_node_t *parent; /* my parent */

struct cio_node_t *child; /* my first child */

struct cio_node_t *next; /* my next sibling */

struct cio_buf_chain *data; /* my file data */

struct cio_buf_chain *curdata; /* my current chain */

int chain_offset; /* first free slot in current chain */

int child_number; /* which child i am of my parent */

int cur_block; /* my current file I/O block */

int cur_offset; /* my current offset in that block */

int len; /* my data size + data size of children */

};

Cheerio keeps track of data in disk blocks with cio buf chain structures:

#define CIO_BUF_CHAIN_LENGTH 124

struct cio_buf_chain_t {

struct cio_buf_chain_t *next;

int blockno[CIO_BUF_CHAIN_LENGTH];

};

48

Cheerio node API

The runtime system manipulates Cheerio nodes using the following internal API. Nei-

ther this API nor the Cheerio nodes it manipulates is exposed to the Cilk programmer.

The implementation of the node API forms a large part of the whole serial-append

implementation, and the enhancements of serial-append described in Section 5.3 of

this chapter come from changing pieces of this API’s implementation.

• create io node: Create a new Cheerio node.

When a worker steals, it creates a new Cheerio node for each open serial append

file descriptor. The node is created as the first child of a specified parent node,

and is inserted as the first entry in the parent’s child chain. Once created, a

worker can send output to this Cheerio node.

• remove io node: Delete a “useless” node from a node tree.

If a node is no longer in use (has been closed), contains no data buffers, and

contributes nothing to the structure of the node tree, then it can be removed

from the tree. If the node is a leaf, then deleting it is trivial. If it is in the

middle of a parent’s child chain, then the node is removed from the chain. If the

node is the first in the child chain, remove io node must reassign “first-child”

status to the new first child.

• close io node: Close an Cheerio node from further use.

Once a worker runs out of work to do, it closes its node. At a minimum, this

function just indicates to the runtime system that no further nodes will be

added to the child chain and no more data will be associated with this node.

Some strategies may choose to do more with the node at this point, including

sending it to disk or attempting to merge it with other nodes. Other strategies

may defer further processing of the node.

• commit io node: Commits Cheerio node to disk.

49

A closed Cheerio node can be committed to disk, which moves the node and its

buffer chains to the first free node slots in the output file. Disk nodes are not

allowed to point back into memory, but since in-core nodes can point to nodes

on disk, this procedure updates the committed node’s child, next, and parent

nodes to point to the specified node’s new disk location.

Node locking protocol

Since I/O nodes are accessed by multiple processors, there must be a locking protocol

that preserves the consistency of the node tree without introducing deadlocks. The

need for locking in this scenario is quite similar to the needs of several concurrent

B-tree implementations, discussed in [Wan91]. Cheerio uses a novel locking paradigm

which is provably correct and easy to implement.

We preserve consistency by stipulating that if a node’s pointer moves, then both

that node as well as the node being pointed to must be locked before updating the

pointer. This protocol ensures that the destination of the pointer hasn’t moved from

underneath the Cheerio runtime while the node is repointed. If a node itself is moving,

that requires its parent to repoint at it, so the node and its parent must both be locked.

Moreover, if the node has a valid child or next pointer, that pointer, and hence the

pointer’s destination, must also be locked.

To avoid deadlocks, we establish an ordering of the I/O nodes to avoid deadlocks.

Luckily, there is already an ordering to the nodes, namely, the order defined by the

correct serial-append order of the node’s data. Thus, the runtime system cannot

request a lock on a node if it already holds a lock on one of that node’s children.

Workers cannot deadlock against each other under this scheme, because there is one

serial ordering to any node tree.

Hence, the locking protocol for moving node to disk is as follows:

1. Follow node’s parent pointer, and lock node’s parent.

2. Lock node.

3. Write node to disk.

50

4. Change node’s parent to point to new on-disk location of node.

5. Unlock node’s parent.

6. Lock node’s child, update its parent pointer, unlock child.

7. Lock node’s next, update its parent pointer, unlock next.

The protocol for locking when inserting a node:

1. Lock the node.

2. Lock the child node.

3. Create a new node, and lock it.

4. Adjust the node’s child pointer, the new node’s next pointer, and the previous
child’s CIO FIRSTCHILD flag is cleared.

5. Unlock the nodes.

Writing the Cheerio file

The following is the first algorithm the runtime system uses to write Cheerio files

in serial-append mode. It uses the Cheerio I/O node API described above. It also

adheres to the constraints discussed previously. The key feature (or simplification) of

this algorithm is that when each node is closed it is immediately committed to disk.

Thus, nodes are never kept in memory once they have been closed, limiting the total

number of nodes in memory to the number of active processors. In order to minimize

critical path overhead, the Cheerio implementation has low amortized overhead on

I/O and does various tasks during steals. It has zero overhead on spawns. The events

that require processing are steals, I/O requests, and emptying of a processor’s work

queue.

This algorithm maintains a Cheerio I/O node tree for each open Cheerio descriptor

in serial-append mode. In this algorithm there is no advantage to maintaining sepa-

rate trees, since each open descriptor has an identical tree structure. More advanced

algorithms coalesce nodes together when possible. Which nodes can be combined

51

depends on the use of each descriptor in each thread, making it advantageous to

maintain a separate tree for each descriptor.

The algorithm is described in “event : action” style. For each of the events listed

with a bullet, the subsequent paragraph(s) describes the action of the algorithm.

• Processor P steals from processor Porig .

The worker running on processor P creates a new Cheerio node for each open

serial-append descriptor and saves a private pointer to each of them. Each new

node’s parent points back to the corresponding node for the same descriptor on

processor Porig , and each new node becomes its parent’s first child by inserting

itself at the head of the parent’s child chain, setting its CIO FIRSTCHILD flag,

and clearing CIO FIRSTCHILD from the node previously at the head of the child

chain. The create io node() API call performs most of this work.

• Processor P empties its work queue with issuing any writes.

In many cases a processor steals a thread from a victim but never performs any

I/O to a given seral-append descriptor before it finishes the thread and clears

its work queue. In this case, the Cilk runtime calls remove io node() to delete

the useless node from the tree. This optimization is so simple that it is included

in the basic algorithm. It also reduces the number of I/O nodes and hence the

size of the Cheerio output file. In fact, without this optimization it is trivial

to write pathological cases that write arbitrarily large output files containing 1

actual byte of output. Things are not quite so bad with normal programs, but

the savings can still be significant if many threads don’t actually write to the

file.

• Processor P makes its first write to the file.

If processor P has never written to the file, its Cheerio node has a null data

field, which normally points at a cio buf chain. The buffer chain holds a list

of blocks that contain data from writes. The first write to a node causes the

runtime system to allocate a new cio buf chain. Each buffer chain can hold

52

1024 buffers, each CIO BLKSIZE bytes big (8096 bytes in the current implemen-

tation). Therefore, on the first write, or on a write where the buffer chain is

full, the runtime system allocates a new buffer chain before it performs the write

itself (see next).

• Processor P writes to the file.

All data writes go to the disk block and offset held in the Cheerio node’s

cur block and cur offset fields. The cur block field mirrors the last filled-in

entry in the current cio buf chain table. If the requested write is too large to

fit entirely within the current block, then the runtime system fills the current

block with as much data from the write as can fit. It then requests a new block

for the rest of the data, updates cur block and cur offset, and adds the new

block entry to the node’s current buffer chain. If the chain itself is full, then

the runtime system attaches a new chain to the end of the chain, bumps the

curdata field in the I/O node to point at the new end of the buffer chain, and

resets cur block and cur offset.

• Processor P empties its work queue.

When a processor finishes its work queue, the runtime system closes all of

its open Cheerio nodes by calling close io node(), since nothing can add

more data to its I/O buffers. The simple algorithm then immediately calls

commit io node(), sending processor P ’s the node and its buffer chains to disk.

As part of the commit operation, any nodes in memory that point to P ’s node

are modified to point at the on-disk copy. The node’s parent is also modified

to repoint the appropriate child or next field to the node’s new location, even

if the parent is on disk. It is not necessary to modify parent pointers of on-disk

nodes, because the on-disk structure is always rooted with the first node and

can be fully traversed from that point.

The serial I/O of a node can be constructed by starting with the node’s own I/O,

followed by each child’s I/O, starting from the current child pointer and working

through the chain to the first allocated child.

53

5.3 Improved implementation

The improved implementation is based on the “collapsing” algorithm, which gets its

name from its attempt to write a smaller Cheerio node tree to the output file by

collapsing nodes together. All of the changes from the simple algorithm presented

above are in the stage corresponding to processor P emptying its work queue, which

is replaced with the following action.

• Processor P empties its work queue.

As in the simple algorithm, the Cilk runtime immediately closes all of processor

P ’s nodes by calling close io node(). Suppose the current node is designated

with N . Now, instead of just committing node N to disk, the runtime sys-

tem tries to merge N into its parent or sibling. The algorithm consists of the

following steps:

1. Examine each of N ’s children, beginning with the highest-numbered child.

The highest-numbered child is first in the child chain and corresponds

to the most recently stolen thread. If the child node (which we call Nc

is in memory and marked as closed, append its block list to N ’s block

list, prepend its child node chain to N ’s child node chain, and delete Nc.

Repeat with the next child node until the traversal reaches a node that is

not closed or has been written to disk.

This step is safe because if N is closed, no new data or children can be

added to its child chain. If Nc is also closed, then no new data or children

can be added there either, which means the two nodes can be combined.

If Nc has children itself, those can be inserted in N ’s child chain, because

this operation preserves the serial data ordering.

2. Follow N ’s parent pointer (call this node Np). If Np is open or if it is on

disk, stop here.

3. If node Np is closed and in memory, examine its cur child field. If

cur child points to N , then restart the merge algorithm on Np.

54

This step can merge N with its siblings, because they are all children of

Np. It is safe because it begins with a closed node, just as in Step 1.

4. If the total number of nodes in memory exceeds some threshold max in core nodes,

commit N to disk. The parameter max in core nodes is settable at com-

pile time.

The collapsing algorithm is guaranteed to terminate. Here is a simple proof. Each

step of the algorithm can cause one of three things to happen. It can merge two nodes,

thus decreasing the total number of nodes in the tree by 1; it can cause the algorithm

to terminate; or it can restart the algorithm at one level higher in the tree. Since

the tree has a finite number of nodes and has finite depth, eventually the algorithm

either exits, reaches a node with either an open parent or no parent, or collapses the

entire tree into one node.

The algorithm contains the adjustable parameter max in core nodes which indi-

cates when to commit nodes to disk. The limiting case of the collapsing algorithm has

no threshold. Thus, the entire metadata tree is kept in memory, and once all nodes

are closed, it provably collapses to a single node which gets written to the Cheerio

file. This strategy gives an efficient file from which to read, but at the unacceptable

cost of keeping metadata in memory for too long. Empirically, setting the threshold

to be 4 times nproc seems to work well. A topic of future research is characterizing a

more precise relationship between the chosen threshold and resulting output file size

and efficiency.

5.4 Reading the Cheerio file

The output from a serial-append Cheerio file is not in flat format; the file contains

out-of-order data, plus the necessary metadata to derive the serial order. The im-

plementation of Cheerio for Cilk attempts to write Cheerio files that can be read

efficiently, first by minimizing the number of nodes, and second by setting the length

field in each node. This section describes three ways to read the data from a Cheerio

55

file. Serial conversion is the simplest and most efficient procedure on a single-processor

machine. Parallel conversion can take advantage of multiple processors to generate

a flat serial file in less time than the serial algorithm. Lastly, the Cheerio API can

read Cheerio files directly, so any program that uses Cheerio for its I/O can transpar-

ently read serial-append files. This section then discusses the advantages of writing

a structured file instead of having Cheerio programs using serial-append write serial

data to flat files at runtime.

Serial file conversion

The simplest way to recover the serial order of data in a Cheerio file is to sequen-

tially walk through the Cheerio nodes. As explained above, the data is recovered

by appending the data belonging to a node to the output stream, then recursively

walking the node’s child chain, then recursively walking the node’s next chain. This

method is reasonably efficient: each segment in the Cheerio file is visited once, and

the overhead is determined by how many metadata nodes are in the file.

Parallel file conversion

The Cheerio file can also be converted into a flat serial file in parallel, using a conver-

sion program I wrote in Cilk. It is structured similarly to the serial converter, but it

uses the length field in the Cheerio node to allow parallel conversion. The runtime

system sets a node’s length to be the number of bytes contained in the node, plus

the lengths of all the node’s children. Consequently, a converter program can walk

the child chain and the next chain in parallel, because it knows precisely how much

data the child chain contains by consulting the length field. Figure 5-6 shows the

parallel walking algorithm. The parallel converter does not require any fewer disk

accesses, but if the Cheerio output file is still in the operating system’s buffer cache

or if the file resides on a RAID, then converting in parallel can be faster.

56

walk node(node, flat file offset)
{

int res;

res = output node(node, flat file offset); /* write node’s buffers to
output file */

/* write the children immediately after the data from this node.
/* use the supplied offset + the length just written. */

spawn walk node(node−>child, flat file offset + res);

/* simultaneously, start writing the next node */
/* skip the length that node + its children needs */

spawn walk node(node−>next, flat file offset + node−>len);

sync;
}

Figure 5-6: Parallel pseudo code for flattening Cheerio files.

Reading using Cheerio API

Finally, Cilk program can read data directly from a Cheerio file by using the normal

read() interface. The Cheerio implementation recognizes that it is reading from a

Cheerio file, and again uses the length field to walk down the node tree, find the

correct segment of data, and return it to the user.

Writing an intermediate Cheerio file format which is not flat is not as undesirable

as it may initially seem. In particular, writing a Cheerio file that isn’t flat reduces

program execution time, which can be beneficial in some cases. One such example is

a computer chess program, which might search millions of board positions in parallel.

Suppose the programmer wishes to keep a log of the evaluated board positions. She

uses Cheerio’s serial append mode, because she wants to have the search tree logically

ordered instead of in some random execution-dependent order. The log is not the

primary output of the program, though. During the execution, the only required

output is a single move, and in the case of a computer chess player, that output

should be produced as quickly as possible. Cheerio’s file system is well-suited for this

57

set of priorities, because it supports the fastest possible execution time while recording

enough information to efficiently recover the serial output order. An implementation

that writes a flat output file would necessarily require more execution cycles, which

might adversely affect the number of positions the chess program could search in a

give time.

58

Chapter 6

Benchmarks

This chapter presents some performance analysis and benchmark results. Section 6.1

discusses the sources of overhead in Cheerio operations. Table 6.1 summarizes the

results of this analysis, which shows that read and writes are low-overhead operations

and opens and closes carry higher overhead. Section 6.2 presents the performance

impact of Cheerio on a program that stresses I/O overhead. Table 6.2 contains the

results. Two items from this section are most important: the effect of each Cheerio

mode on the speedup of a sample application and the overhead Cheerio imposes in

the single processor case. Finally, Section 6.3 describes serial-append’s use in the

queens and compress programs.

6.1 Sources of overhead in Cheerio

The implementation of Cheerio in the Cilk runtime system is an added layer between

the program and the POSIX API calls, so Cheerio operations carry with them some

amount of overhead compared to the corresponding POSIX operations. This section

lists those overheads for each mode, pointing out how most of the overhead has been

pushed into the rarer operations, thereby keeping the frequent reads and writes fast.

All of the overhead in Cheerio occurs in one of three classes of operations. The

first are opens and closes, which we assume happen infrequently. The second are

reads, writes, and pointer seeks, which we assume can happen with great frequency.

59

The third are steals, whose frequency depends on the number of processors and the

structure of the program.

In all three modes, a Cheerio open() call translates into a POSIX open() call,

plus some additional time to set up shared data structures. All three modes require a

cio info t structure, and serial-append requires an initial Cheerio I/O node. There

is little overhead when opening a file, but more importantly, opens don’t occur very

often. Programs that open files before each write are already inefficient; the entire

model of POSIX I/O is based on the idea that an open() call is slow and need

only be done once per file. The same is true for close(), which frees some shared

structures and calls the native close(). In serial-append mode, close() also flushes

any remaining Cheerio nodes to disk. A compile-time constant limits the number of

Cheerio nodes that can stay in memory at any time, so there is a limit to the amount

of overhead incurred by a close().

Each mode has different overhead for reads and writes, but they all share the need

to reopen files on different worker processors. The reopen happens on demand during

the first read() or write() issued on the new processor. Reopening the file requires

a POSIX open() and lseek(), which entail significant overhead. On the other hand,

a file can only be reopened as many times as there are processors, so in the case where

the number of reads and writes is much larger than the number of processors, the

amortized overhead of the extra opens is small.

Global mode has the highest read and write overhead. Each read and write first

acquires a lock, sets the seek pointer if necessary (which requires an lseek() call,

then issues a POSIX read() or write() call, updates some internal state, and finally

releases the lock. If one processor is doing most of the operations on a file descriptor,

then the seek is typically not needed, since the runtime system remembers which

processor moved the pointer most recently and only adjusts it if it isn’t the same as

the processor issuing the current request. Even in the single processor case, though,

acquiring the lock incurs some amount of overhead.

Local mode is the opposite; it has near-zero overhead on reads and writes. Each

Cheerio call immediately translates into a POSIX read() or write() call followed

60

by an update of the private copy of the file pointer. Nothing more happens on reads

and writes. Local mode is intentionally as lightweight as possible.

Serial-append mode also does quite well on writes (serial-append does not support

reads). The structure of the Cheerio I/O nodes is not affected by individual writes,

so the only overhead is occasionally acquiring a new Cheerio file block (requiring a

shared lock), and periodically allocating new buffer chains (which is an entirely local

operation). Cheerio data blocks are 8192 bytes, so every 8KB of writes requires a

new file block. Amortized against the typical write size, the overhead is low. If an

application does much larger writes, it is possible to change the Cheerio block size to

something more appropriate, but the tools to read the Cheerio file do not yet support

dynamic block sizes.

The last relevant operation is the steal. Steals are not technically Cheerio opera-

tions, but Cheerio maintains some bookkeeping information across steals that leads to

added overhead. Importantly, steals are already high overhead operations in the Cilk

runtime. Cilk optimizes the more frequent spawn(), and in return slows down the

much rarer steal. Global mode requires almost no added overhead on the steal. Since

each read or write needs to update the pointer anyway, there’s no work to be done

while stealing, except to invalidate the “last processor” flag for each open descriptor.

Local mode requires a call to the internal function cio reload local pointers()

to copy the cached pointer from the victim to the stealing processor. This function

implements the semantics of preserving the pointer in either the parent or the child

of a spawn. It carries medium overhead, since for each descriptor it copies a value

and then issues an lseek() to bring the new processor’s descriptor in line with the

saved pointer location.

Serial-append has the highest and most variable overhead on steals. All of the

operations that affect the structure of the Cheerio tree take place during steals. At

the least, a steal requires closing the previous Cheerio node for the processor and

creating a new node. Some nodes may eventually be deleted, but every node that is

not deleted is eventually committed to the file. The commit itself may need to rewrite

up to two other nodes already committed on disk, so at worst a single commit writes

61

Mode Local Global Serial-append
read/write overhead very low high low
open/close overhead low low low

steal overhead high low high

Table 6.1: Summary of the overhead in Cheerio operations.

a node to the Cheerio file and writes two 16-byte values to other places in the file.

Since only a fixed number of nodes can remain in memory at any time, each spawn

on average creates one node and commits one node.

To summarize the above discussion, Table 6.1 summarizes the amount of overhead

for each operation of each mode.

6.2 Scaling with the number of processors

The first important performance measure is how well programs that use Cheerio

scale with the number of processors. This section describes the performance impact

of using each Cheerio mode by benchmarking dag-write, a program that stresses

the I/O overhead of a parallel system. It stresses the favorable scaling properties of

serial-append and local modes, and it examines the performance on a single processor.

I compare the speedups of three different versions of a program called dag-write,

which creates a deeply nested spawn tree where each leaf node performs some I/O.1

The first version is the normal program using Cheerio for its I/O. The second version

is the same, but with the Cheerio calls replaced with their corresponding POSIX calls.

Certainly the output of this program is no longer correct, but comparing it to the

normal program shows how much added overhead Cheerio entails. The third version

of the program is the same, but with all of the I/O calls stripped out entirely.

The added Cheerio overhead varies according to Cheerio mode, as would be ex-

pected. Local mode adds the least overhead. Global mode, because of its need to

acquire a lock and perform an extra seek on each I/O operation, has the greatest.

One interesting result is that the overhead does not seem to vary significantly across

1Although the program is named dag-write, it tests both read and write performance.

62

different programs. The lack of variation makes sense, because the Cheerio overhead

is contained two three events: opens, reads and writes, and steals.

A particularly important piece of this benchmark is the behavior when running

on one processor. Running on a single processor measures the overhead of Cheerio

where Cheerio’s added benefits are useless. Much as Cilk incurs near-zero overhead on

one processor, the Cheerio modes also incur near-zero overhead, with the exception

of global mode. It would be a simple matter to detect the single processor case

and not do the unnecessary locking and seeking, but that hides the fundamental

inefficiency of global mode. Indeed, given how poorly global mode performs, there

is little incentive to optimize certain cases of it, lest programmers use it when they

are better off restructuring their code to avoid global mode in the first place. As

expected, local mode scales well to one processor, since it has little runtime overhead

under any number of processors. Serial-append mode also scales well. When there is

only one worker process, there are never any steals, and so all writes go into a single

Cheerio I/O node that covers the entire file. The overhead for serial-append writes

is very low; nearly all of the work happens during a steal when a node is committed

and a new node created.

Table 6.2 lists the overhead of each mode as a percentage above the running time

of a program using normal POSIX I/O. This overhead measures the added work of

using Cheerio, not the time required to do actual disk I/O. Unlike other parallel file

I/O solutions, Cheerio makes no attempt to accelerate the actual writing of data to

disk. The program benchmarked here creates a deep spawn tree and performs I/O

at each leaf. It is intended to be a worst-case example of Cheerio, since there is little

work other than the I/O itself.

6.3 A closer look at serial-append mode

Serial-append mode is particularly suited for parallelizing applications. Because it

is so different from previously available paradigms for I/O, modifying programs to

use serial-append falls into two classes: either changing a parallel program to use

63

Number of
processors Global Local Serial-append

1 10 2.2 2.0
2 20 13 9.1
3 32 17 17
4 47 20 24
5 63 21 32
6 88 21 47
7 102 22 60
8 121 21 74

Table 6.2: The overhead for each Cheerio mode, expressed as a percentage increase
in time required to output using Cheerio instead of the raw POSIX calls.

serial-append, or using serial-append to help parallelize a serial program that needs

to preserve ordered output. This section describes porting two programs to serial-

append mode. The first adds logging to queens, an already parallelize program. The

second parallelizes compress, a serial program.

Adding serial-append to an already parallelized program

Adding serial-append to an already parallelized program is almost exclusively for

adding logging or tracing to a parallel program. Since there really aren’t any parallel

programs today that expect serial ordering of their output, any preexisting parallel

program does not contain serially ordered I/O operations. The program might be

buffering data or otherwise using some bizarre technique for ordering data, in which

case using Cheerio’s serial-append mode would require completely reworking that

aspect of the program. Alternatively, and more likely, the program will not be doing

any ordered I/O, so using serial-append would change the purpose of the program.

Consequently, it is most useful for adding logging or tracing to a program.

As an example of this technique, I added tracing to the queens program that

comes with the Cilk 5.2 distribution [cil98]. The queens program solves the classic

problem of placing n queens on an n× n board such that no two queens attack each

other. The version modified with Cheerio outputs a log of the visited board positions.

By opening the file in local mode, the output is a log of the positions in the order

64

they were searched. Changing the mode to serial-append yields a list of positions in

lexicographically sorted order, which is the order the program spawns threads.

Parallelizing a serial program with the aid of serial-append

The real strength of serial-append mode is that it allows applications that depend on

serially ordered data to be parallelized. My example of this is the UNIX compres-

sion program compress, which compresses normal files. This turned out to be an

appealing target for parallelization: the code is written with few globals that must

be restructured or mutexed, and file compression is done on independent chunks of

the file. Using serial-append mode means few changes were needed to the I/O calls.

Performance of compress scales well, with a speedup of 1.8 on 2 processors and 3.75

on four processors.

65

Chapter 7

Future Directions

Cheerio serves an important role in parallel programming. It allows programmers to

write efficient parallel programs that run under an environment similar to traditional

POSIX/UNIX operating systems rather than a specialized parallel environment that

can be more difficult to target. Cheerio’s serial-append mode is particularly inter-

esting, because it opens the door to parallelizing a host of applications that were

once “off-limits” due to their need for serially ordered output. This chapter discusses

several natural extensions to the work presented in the previous chapters.

7.1 Improvements to existing implementation

There are several improvements that could be made to the existing implementation

of Cheerio in the Cilk runtime library.

• Short write buffers in Cheerio nodes

Each Cheerio node is 1024 bytes, but most of this space is reserved for future

expansion. Some of it could be used to implement a “short write” buffer which

would hold the first, say, 512 bytes written to a Cheerio node. In some cases this

could eliminate the waste of an entire block plus an extra buffer chain, leading

to a smaller Cheerio file. Initial tests with this show a few percent reduction in

size when using the compress benchmark, but the system needs to be updated

66

to read these extended Cheerio files.

• Port Cheerio to a different threading environment.

As discussed before, Cheerio is intended to be portable to other parallel envi-

ronments. An implementation of Cheerio under some other environment would

verify that its design is sufficiently independent of Cilk’s design to be success-

ful as a generic API for parallel file I/O. The Pthreads standard, described in

[But97] and elsewhere, is a popular thread interface available on most UNIX op-

erating systems. Many popular programs like Apache and BIND can make use

of Pthreads as a lower-overhead way of achieving concurrency than by forking

multiple processes. It is unclear whether there is a user-space implementation

of serial-append mode under Pthreads that can be as efficient as the imple-

mentation for Cilk, because thread schedulers tend to mimic kernel schedulers

by preempting one thread and replacing the execution context with that of a

new thread. At a first glance, such a model loses some of the properties of the

Cilk environment that allow an efficient implementation, most importantly that

most spawns of new threads never actually cause any concurrency, and thus do

not require runtime overhead to maintain serial ordering.

7.2 Moving Cheerio into the operating system

One “threading” environment that is an obvious target for Cheerio is a UNIX kernel

itself. A kernel implementation of Cheerio has several important advantages. It

enables concurrency at the process and kernel thread level, which is still a very popular

mode for introducing concurrency in applications. It also moves the Cheerio file

metadata support in the kernel, where it can take advantage of the preexisting buffer

cache mechanism. There would also be no need to expose the Cheerio file format to

the user. Any application reading the file with read() would see the flat version; any

conversion from the hierarchical Cheerio format would happen transparently.

Some work has been done in this direction, but not in the context of parallel

67

file I/O. The Zodiac project [NCS97, CMNY98] has built a media file system that

supports efficient inserts.

7.3 Research of theoretical interest

In addition to the systems projects described above, there are three areas of theoretical

research that may prove fruitful.

Describing the Cheerio file format

The structure of the Cheerio file’s metadata is determined at runtime by the pattern

of steals. This can lead to different files corresponding to the same serial order. A

better understanding of the metadata tree’s depth, node count, and structure would

prove useful for making guarantees on how efficiently data at arbitrary offsets in the

file can be read. Similarly, there may exist better algorithms that can generate a

more consistent or efficient tree; the current algorithm is more heuristic-based than

one might like.

Fully distributed locking

Global and serial-append modes both require centralized locks on certain system

resources. It is difficult to imagine how one would eliminate locking in the global

case where every thread needs to share the same pointer, but in serial-append mode,

there may be alternative Cheerio file formats that do not require the central block

allocation lock. Eliminating contention on centralized locks can improve performance,

but further benchmarks are necessary to ascertain the potential performance benefit

from such a change.

Additional parallel modes

In addition to global, local, and serial-append modes, there may be other useful

semantics worth supporting in a general parallel API framework. Some of these may

68

mirror other APIs, such as MPI-IO’s support for structured (strided) I/O patterns.

Others may be yet different behaviors for the shared pointer besides those already

implemented. Even further out is the possibility of some paradigm vastly different

from the flat file with pointer approach that is so entrenched. Perhaps some sort of

record-based approach would mesh well with Cheerio’s hierarchical format.

69

Bibliography

[AA86] Kenneth Arnold and Elan Amir. Screen updating and cursor movement
optimization: A library package. In 4.4BSD Programmer’s Supplemen-
tary Documents, chapter 19. April 1986.

[But97] David R. Butenhof. Programming with POSIX threads. Addison-Wesley,
Reading, MA, USA, 1997.

[CF94] Peter F. Corbett and Dror G. Feitelson. Design and implementation of the
Vesta parallel file system. In Proceedings of the Scalable High-Performance
Computing Conference, pages 63–70, 1994.

[CFF+96] Peter Corbett, Dror Feitelson, Sam Fineberg, Yarsun Hsu, Bill Nitzberg,
Jean-Pierre Prost, Marc Snir, Bernard Traversat, and Parkson Wong.
Overview of the MPI-IO parallel I/O interface. In Ravi Jain, John Werth,
and James C. Browne, editors, Input/Output in Parallel and Distributed
Computer Systems, volume 362 of The Kluwer International Series in
Engineering and Computer Science, chapter 5, pages 127–146. Kluwer
Academic Publishers, 1996.

[cil98] Supercomputing Technology Group, Massachusetts Institute of Technol-
ogy, 545 Technology Square, Cambridge, Massachusetts 02139. Cilk-5.2
(Beta 1) Reference Manual, July 1998. Available on the World Wide Web
at http://supertech.lcs.mit.edu/cilk.

[CMNY98] Tzi-cker Chiueh, Tulika Mitra, Anindya Neogi, and Chuan-Kai Yang. Zo-
diac: A history-based interactive video authoring system. In Proceedings
of ACM Multimedia ’98, Bristol, England, September 1998.

[DJT96] Dannie Durand, Ravi Jain, and David Tseytlin. Improving the perfor-
mance of parallel I/O using distributed scheduling algorithms. In Ravi
Jain, John Werth, and James C. Browne, editors, Input/Output in Paral-
lel and Distributed Computer Systems, volume 362 of The Kluwer Inter-
national Series in Engineering and Computer Science, chapter 11, pages
245–270. Kluwer Academic Publishers, 1996.

[FLR98] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The imple-
mentation of the Cilk-5 multithreaded language. In ACM SIGPLAN

70

’98 Conference on Programming Language Design and Implementation
(PLDI), pages 212–223, Montreal, Canada, June 1998.

[Fri98] Matteo Frigo. The weakest reasonable memory model. Master’s thesis,
Department of Electrical Engineering and Computer Science, Massachu-
setts Institute of Technology, January 1998.

[GNU] GDBM: The GNU database manager. Available on the Internet from
http://www.gnu.org/software/gdbm/gdbm.html.

[HER+95] Jay Huber, Christopher L. Elford, Daniel A. Reed, Andrew A. Chien, and
David S. Blumenthal. PPFS: A high performance portable parallel file
system. In Proceedings of the 9th ACM Conference on Supercomputing,
pages 385–394, Barcelona, July 1995.

[JWB96] Ravi Jain, John Werth, and James C. Browne. Input/Output in Parallel
and Distributed Computer Systems. Kluwer Academic Publishers, 1996.

[MBKQ96] M. McKusick, K. Bostic, M. Karels, and J. Quarterman. The Design
and Implementation of the 4.4BSD Operating System. Addison-Wesley
Publishing Company, 1996.

[MPI97a] MPI-2: Extensions to the message-passing in-
terface, 1997. Available on the Internet from
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html.

[MPI97b] MPI: A message-passing interface standard, May 1997.

[MS94] Steven A. Moyer and V. S. Sunderam. PIOUS: A scalable parallel I/O
system for distributed computing environments. In Proceedings of the
Scalable High-Performance Computing Conference, pages 71–78, 1994.

[MS96] Steven A. Moyer and V. S. Sunderam. Scalable concurrency control for
parallel file systems. In Ravi Jain, John Werth, and James C. Browne,
editors, Input/Output in Parallel and Distributed Computer Systems, vol-
ume 362 of The Kluwer International Series in Engineering and Computer
Science, chapter 10, pages 225–244. Kluwer Academic Publishers, 1996.

[NCS97] T. N. Niranjan, Tzi-cker Chiueh, and Gerhard A. Schloss. Implementa-
tion and evaluation of a multimedia file system. In IEEE International
Conference on Multimedia Computing Systems, Ontario, Canada, July
1997.

[NK96] Nils Nieuwejaar and David Kotz. Low-level interfaces for high-level par-
allel I/O. In Ravi Jain, John Werth, and James C. Browne, editors,
Input/Output in Parallel and Distributed Computer Systems, volume 362
of The Kluwer International Series in Engineering and Computer Science,
chapter 9, pages 205–223. Kluwer Academic Publishers, 1996.

71

[PCGK89] D. A. Patterson, P. Chen, G. Gibson, and R. H. Katz. Introduction to
redundant arrays of inexpensive disks. Digest of Papers of COMPCON
Spring ’89, 1989. IEEE Computer Society Press.

[POS90] System Application Program Interface (API) [C Language]. Information
technology—Portable Operating System Interface (POSIX). IEEE Com-
puter Society, 345 E. 47th St, New York, NY 10017, USA, 1990.

[POS93] Portable Operating System Interface (POSIX)—Part 1: System Appli-
cation Programming Interface [C language] (Volume 1). Information
technology—Portable Operating System Interface (POSIX). IEEE Com-
puter Society, 345 E. 47th St, New York, NY 10017, USA, 1993.

[Ran98] Keith H. Randall. Cilk: Efficient Multithreaded Computing. PhD thesis,
Department of Electrical Engineering and Computer Science, Massachu-
setts Institute of Technology, May 1998.

[SBMS97] Margo Seltzer, Keith Bostic, Marshall Kirk McKusick, and Carl Staelin.
The design and implementation of the 4.4BSD log-structured file system.
In Proceedings of the 1993 Winter USENIX, San Diego, California, Jan-
uary 1997.

[SC00] National Science and Technology Council. High Performance Comput-
ing and Communications: Information Technology Frontiers for a New
Millenium. 2000.

[SSA+94] Craig B. Stunkel, Dennis G. Shea, Bülent Abali, Monty M. Dennean, Pe-
ter H. Hochschild, Douglas J. Joseph, Ben. J. Nathanson, Michael Tsao,
and Philip R. Varker. Architecture and implementation of Vulcan. In
International Parallel Processing Symposium, pages 268–274, April 1994.

[Wan91] Paul Wang. An in-depth analysis of concurrent B-tree algorithms. Mas-
ter’s thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, February 1991. Also available as
MIT Laboratory for Computer Science Technical Report MIT/LCS/TR-
496.

72

