
Deterministic Network Coding

by Matrix Completion

Nicholas J. A. Harvey∗ David R. Karger∗ Kazuo Murota†

Abstract

We present a new deterministic algorithm to construct
network codes for multicast problems, a particular class
of network information flow problems. Our algorithm
easily generalizes to several variants of multicast prob-
lems. Our approach is based on a new algorithm for
maximum-rank completion of mixed matrices—taking
a matrix whose entries are a mixture of numeric val-
ues and symbolic variables, and assigning values to the
variables so as to maximize the resulting matrix rank.
Our algorithm is faster than existing deterministic al-
gorithms and can operate over a smaller field.

1 Introduction

The network information flow problem concerns trans-
mission of information in a network from a set of source
nodes to a set of sink nodes. It has been shown that
allowing the internal nodes of the network to encode
and intermingle the transmitted information can result
in a greater bandwidth than can be achieved by sim-
ply routing the data. Figure 1 shows an example where
use of encoding effectively doubles the bandwidth. This
observation initiated the study of network codes, which
are schemes for encoding information at network nodes.
An important special case of the network information
flow problem is the multicast problem, in which the net-
work has a single source node and each sink desires all
information available at the source.

Koetter and Medard [13] explored cases in which
network codes are linear, with each node sending out
values which are linear functions of its incoming signals.
In this case, the values arriving at the sinks arise from
compositions of linear functions, and are thus linear
functions of the source nodes’ values. Koetter and
Medard show how these linear functions at each sink
can be explicitly described by a so-called transfer matrix
whose entries are determined by the linear functions
selected at each node. The problem of selecting a

∗MIT Computer Science and Artificial Intelligence Laboratory.

{nickh, karger}@mit.edu.
†Graduate School of Information Science and Technology, Uni-

versity of Tokyo; PRESTO JST. murota@mist.i.u-tokyo.ac.jp.

s t

(a)

b1 b2

b1�b2

b1�b2b1�b2

s t

(b)

Figure 1: Each edge has one bit capacity. (a) We wish to
send the bit b1 from node s to node t, and simultaneously
send the bit b2 from node t to node s. This appears
impossible since there does not exist a disjoint pair of s-
t and t-s paths. (b) If we allow the internal nodes of the
network to perform arithmetic operations on the bits, it is
possible to send the xor b1⊕b2 to both nodes simultaneously.
Node s already knows the value of b1 so it can recover the
value of b2 by computing b1 ⊕ (b1⊕b2). Node t can similarly
recover the value of b1.

network code thus reduces to choosing appropriate
entries in the transfer matrix. In the case of multicast,
the requirement that each sink can decode all the
source’s information is essentially a requirement that
the sink be able to invert its own transfer matrix, which
in turn is equivalent to demanding that the transfer
matrix have full rank. The challenge is to select entries
for the transfer matrices so that this full rank condition
holds at each sink simultaneously.

To solve this problem, we draw a connection to
mixed matrices. A mixed matrix is, roughly speaking,
a matrix in which each entry is either a number or
a distinct indeterminate. Mixed matrices are useful
tools for systems analysis and they have been applied
to problems in various fields, such as electrical and
chemical engineering [18].

We use the algebraic framework of Koetter and
Médard [13] to model multicast problems as matrices,
and then apply techniques from the theory of mixed ma-
trices to solve the multicast problems. In particular, we
develop an algorithm to simultaneously complete mul-
tiple matrices that share variables. By doing so, we
obtain an efficient deterministic algorithm to compute
network codes for multicast problems and several vari-
ants thereof.

1.1 Related Work The field of network information
flow was initiated by Ahlswede et al. [1]. Their work
established a surprising result: when transmitting in-
formation in a network, simply routing and duplicating
the information is not sufficient to achieve the network
capacity. Allowing the internal nodes of the network
to encode the data allows for a greater bandwidth than
can be achieved without encoding. Li et al. [16] showed
that multicast problems can achieve maximum band-
width even when restricted to linear network codes.

The complexity of various network information
flow problems is considered by Lehman and Lehman
[15]. Their classification distinguishes between multi-
cast problems and more general problems, where the
sinks may demand an arbitrary subset of the informa-
tion at the sources. For the general problem, they show
that finding a linear code is NP-hard and that there ex-
ist problems for which linear codes are not sufficient. In
contrast, solutions to multicast problems can be com-
puted in polynomial time: Jaggi et al. [12] present a
deterministic algorithm, and Ho et al. [11] give a ran-
domized algorithm. A brief description of the former
algorithm is as follows. First, it computes maximum
flows from the source to each sink. Next, it computes
a coding scheme such that for any source-sink cut, the
data sent by the flow across the cut can be used to re-
construct the original data. Fortunately, their algorithm
need not consider all exponentially many cuts; it suffices
to consider the cuts encountered during a breadth-first
search from the source towards the sinks.

A useful algebraic framework for multicast problems
was proposed by Ho et al. [10], building on the work of
Koetter and Médard [13]. One of their results is that
the determinant of the transfer matrix for each sink
can be obtained from another matrix, which we call the
expanded transfer matrix. This algebraic framework will
be introduced more formally in Section 2.1.

Formulating multicast problems using expanded
transfer matrices is very useful because matrices of inde-
terminates are well-studied combinatorial objects. For
example, let M be a square matrix of indeterminates
with row-set R and column-set C. Suppose we wish to
determine whether M is singular. Computing the deter-
minant symbolically is not an efficient approach for this
problem since the determinant could have exponentially
many terms. The classic work of Frobenius and Kőnig
shows that M is non-singular if and only if there is a
perfect matching in the corresponding bipartite graph

(1.1) G := (R ∪ C, {(i, j) : i ∈ R, j ∈ C,Mij 6= 0}).

An alternative approach to determine if M is singular
is to construct a completion: an assignment of numeric
values to the indeterminates. Lovász [17] shows that

choosing a completion at random from a sufficiently
large field does not affect the rank with high probability.
More recently, matrix completion has emerged as its
own field of research, addressing the problems of finding
completions with certain properties, such as maximum
rank, positive definiteness, a desired spectrum, etc.
Laurent [14] gives a recent survey of the field.

The Frobenius–Kőnig result does not directly imply
a method to compute the rank of mixed matrices, be-
cause it requires algebraic independence of the matrix
entries; this condition will typically not hold if some
entries are numeric. Informally, the determinant of a
mixed matrix might vanish due to “accidental cancela-
tion” among its terms, not due to the structure of the
matrix’s zero/non-zero entries. The result of Lovász
[17] however directly implies a randomized algorithm
for finding a max-rank completion of a mixed matrix.
The first efficient deterministic algorithm is an elegant
result due to Geelen [7]. A straightforward implementa-
tion of this algorithm requires O(n9) time, but some im-
provements can reduce this bound to O(n4) time [8, 2].
Both Geelen’s algorithm and the randomized algorithm
operate over a field of size Ω(n).

1.2 Our Contribution The main contribution of
this paper is a new algorithm for max-rank completions
of mixed matrices. More precisely, let A be a collection
of n×n mixed matrices over Fq where q > |A|. Let X be
the set of indeterminates appearing in A. Each indeter-
minate may appear only once in any particular matrix,
but may appear in multiple matrices. A simultaneous
max-rank completion of A is an assignment of values
from Fq to the indeterminates in X that preserves the
rank of all matrices in A. Our algorithm implies:

Theorem 1.1. A simultaneous max-rank completion
of A can be deterministically computed in time
O(|A| (n3 log n+|X |n2)). Completion of a single mixed
matrix requires only time O(n3 log n).

For a single matrix, our algorithm operates over smaller
fields than existing algorithms and is asymptotically
faster than existing deterministic algorithms.

We also give an application of our algorithm to
construct network codes for multicast problems. For
any solvable multicast problem, a simultaneous max-
rank completion of its expanded transfer matrices im-
mediately yields a valid network code. Although ex-
isting algorithms for multicast problems are somewhat
faster than ours [12], the generality of our approach al-
lows straightforward extensions to several variants of
the problem. For example, we can construct one code
that can be used unchanged regardless of which node is
the multicast source.

2 Application to Network Coding

2.1 Preliminaries We begin with additional motiva-
tion for the usefulness of network coding. The example
of Figure 1 shows that the use of network coding allows
for greater bandwidth than can be achieved otherwise.
This example may be generalized by considering an ar-
bitrary directed graph G with two distinguished nodes
s and t. As before, suppose that we wish to simultane-
ously send bit b1 from s to t and send bit b2 from t to s.
One approach to solve this problem might be to try to
find edge-disjoint s-t and t-s directed paths. Unfortu-
nately, such a pair of paths might not exist and moreover
finding such a pair of paths is an NP-complete problem
[4]. However, the use of network coding provides a sim-
ple solution. We first find s-t and t-s directed paths
without regard for disjointness. A straightforward use
of network coding along these paths allows both bits to
be transmitted simultaneously. Several other problems
where the use of network coding provides a significant
benefit are known [9, 12].

Formally, a network information flow problem is a
directed acyclic graph G = (V,E) with two subsets
S, T ⊆ V . The nodes in S are the sources and the nodes
in T are the sinks. The objective is to simultaneously
transmit a collection of messages M := {m1, . . . ,mr}
from the sources to the sinks. Each source may have
an arbitrary subset of the messages, and each sink
may demand an arbitrary subset of the messages. The
messages are transmitted along the edges of G and may
be duplicated or encoded by the intermediate nodes.
The edges leaving a node may transmit any function
of the messages available at that node or on the edges
inbound to that node. A network code is a set of
encoding functions for each node. A network code is
called feasible or a solution if it transmits the demanded
messages from the sources to the sinks. A network code
is called linear if the encoding function for each edge is
a linear combination of its inputs. A multicast problem
is a network information flow problem where there is a
single source s and each sink demands every message
in M. Li et al. [16] showed that a multicast problem
has a solution if and only if for every sink the minimum
cut separating the source from that sink has size at least
|M|. Moreover, they showed that any solvable multicast
problem has a linear solution.

Let m := |E| be the number of edges in the network,
let d := |T | be the number of sinks, and let r := |M|
be the number of messages to transmit. Let Γin(v)
and Γout(v) denote the inbound and outbound edges at
vertex v, and let y(e) denote the message transmitted by
edge e. The messages output at the sink t ∈ T are Z(t, i)
(1 ≤ i ≤ r). A linear network code is specified by the
coefficients ai,e, fe′,e, bt,i,e′ in the following equations:

Source s:

y(e) :=
∑

1≤i≤r

ai,e X(i) (for e ∈ Γout(s))

Internal node v ∈ V :

y(e) :=
∑

e′∈Γin(v)

fe′,e y(e′) (for e ∈ Γout(v))

Sink t ∈ T :

Z(t, i) :=
∑

e′∈Γin(t)

bt,i,e′ y(e′) (for 1 ≤ i ≤ r)

The coefficients may be collected into r×m matrices
A := (ai,e) and Bt := (bt,i,e′) (for each t ∈ T), and
the m × m matrix F := (fe′,e). The matrix Mt :=
A(I −F)−1BT

t is called the transfer matrix for the sink
t. Since the graph G is assumed to be acyclic, F may
be assumed to be strictly upper-triangular, and hence
(I − F) is non-singular.

Theorem 2.1. (Koetter and Médard [13]) A
multicast problem has a feasible solution if and only if
each transfer matrix Mt has non-zero determinant.

Define the expanded transfer matrix for a sink t to

be Nt :=
(

A 0
I−F BT

t

)

. We now give a simple proof of a

useful result that was observed by Ho et al. [10].

Lemma 2.2. det Mt = ±det Nt.

Proof. Block multiplication shows that

(

A 0
I − F BT

t

)

·

(

(I − F)−1BT

t (I − F)−1

−I 0

)

=

(

Mt A(I − F)−1

0 I

)

.

Taking the determinant of both sides shows that

±det Nt · det−I · det (I − F)−1 = det Mt · det I.

Since F is strictly upper-triangular, det (I − F) = 1,
implying that det Mt = ±det Nt, as required. This
lemma also follows immediately from a determinantal
identity of the Schur complement [18].

2.2 An Algorithm for Multicast Problems

We now use Theorem 1.1 to find solutions for multi-
cast problems. As shown above, a multicast problem
(G, s, T,M) can be represented as a collection of ex-
panded transfer matrices N := {N1, . . . , Nd}. Let X be
the set of all indeterminates ai,e, fe′,e, bt,i,e′ . The ma-
trices in N are mixed matrices in the indeterminates in

X . The indeterminates in each individual matrix are
distinct, but each ai,e and fe′,e appears in all of the
matrices. Theorem 2.1 and Lemma 2.2 show that the
multicast problem is solvable if and only if each matrix
Nt is non-singular. Moreover, an assignment of values
to the indeterminates in X that preserves the rank of
all matrices constitutes a feasible network code for the
multicast problem.

The algorithm of Theorem 1.1 can determine
whether the matrices in N are non-singular and, if so,
produce a max-rank completion in the field Fq, for any
q > d. This is the same bound on the required field size
that was given by Ho et al. [10] and Jaggi et al. [12]. The
runtime of this algorithm is O(|N | (n3 log n+ |X |n2)) =
O(m4d2) since n = m + r = Θ(m) and |X | = O(m2d).

The algorithm of Theorem 1.1 can be made much
more efficient when applied to multicast problems: its
runtime improves to O(dm3 log m). First, note that the
matrices in N are very similar — only the last r columns
(consisting of the BT

t submatrices) differ, and each in-
determinate bt,i,e′ only appears in one matrix. In Sec-
tion 4.3, we formalize this notion of similarity as column-
compatibility and show that, for such matrices, the algo-
rithm of Theorem 1.1 may be improved to require only
O(|A|(n3 log n + |X |n)) time. Furthermore, since each
bt,i,e′ appears only in one matrix, these indeterminates
do not even require simultaneous completion. Thus to
find a completion of N we proceed in two steps. First,
we remove the bt,i,e′ ’s from X and find a simultane-
ous completion for the remaining indeterminates. The
time required for this step is O(dm3 log m) since we now
have |X | = O(m2). Next, we complete {bt,i,e′} by find-
ing a completion of each matrix separately. The total
time required for this step is O(dm3 log m). Combin-
ing these two steps solves the multicast problem in time
O(dm3 log m). In comparison, the algorithm of Jaggi et
al. [12] requires O(mdr(r + d)) time, which is markedly
faster when r = o(m) and d = o(m). An advantage of
our matrix completion approach is its generality — the
matrix completion approach provides a straightforward
solution to several variants of the multicast problem.

One variant posed by Koetter and Médard [13]
is the problem of designing a robust network code.
Formally, define a link failure pattern to be a set
F ⊆ E such that every edge in F fails during the
operation of the network. A failure of an edge can
be modeled by having the failed edge transmit the 0
symbol instead of the function specified by the network
code. If the min-cut between the source and each sink
is still at least |M| after the edges in F have been
removed then the multicast problem on the remaining
network is still solvable. A network code that solves
both the original multicast problem and the multicast

problem on the remaining network is desirable since the
internal network nodes could then operate identically
regardless of whether the failure had occurred. More
generally, if F is a collection of link failure patterns
that preserve the min-cut between the source and each
sink, we desire a network code that solves the multicast
problem under any failure pattern in F . For any such
F of polynomial size, we can find the desired network
code in polynomial time using simultaneous matrix
completions. Define Nt,F to be the transfer matrix
for sink t where the coefficients fe′,e have been set to
zero in accordance with the link failure pattern F . Let
N := { Nt,F : t ∈ T, F ∈ F } be the collection of these
matrices. A simultaneous max-rank completion of N
yields a network code in Fq (q > d |F|) that is feasible
under any failure pattern in F .

As yet another variant of the multicast problem,
consider a directed acyclic graph G with a set of sources
S := {s1, s2, . . .} and a set of sinks T . Each source
si has a collection of values Bi := {bi,1, bi,2, . . .}. The
objective is for source s1 to transmit its values to the
sinks, then for source s2 to transmit its values, and
so on. We call this the anysource multicast problem.
Each sink desires all values from all sources, so while
source si is transmitting the problem is essentially a
multicast problem. However, rather than treating each
multicast problem separately, we desire a single network
code that is a solution to each individual multicast
problem. This allows the internal nodes of the network
to be oblivious to which source is transmitting. The
anysource multicast problem can also be solved with
a straightforward application of simultaneous matrix
completions. Define Nt,i to be the transfer matrix for
sink t when source si is transmitting and let N :=
{ Nt,i : t ∈ T, 1 ≤ i ≤ |S| } be the collection of these
matrices. Assuming that each Nt,i is non-singular, a
simultaneous max-rank completion of the matrices in
N yields a network code in Fq (q > d |S|) that solves
the anysource multicast problem.

3 Mixed Matrices

In this section we give a brief introduction to the
aspects of mixed matrices that are needed to develop
the algorithm of Theorem 1.1. For a more thorough
introduction, the reader is referred to the monograph
of Murota [18]. The present and following section
will involve a modest amount of matroid theory, but
to simplify the terminology we will assume that all
matroids are linear. Readers unfamiliar with matroid
theory may think of a matroid as a matrix with a more
abstract notion of independence: a matroid supplies a
function that specifies whether a subset of its columns
is to be considered independent.

3.1 Preliminaries

Definition 3.1. Let K be a subfield of a field F. A
matrix A over F is called a mixed matrix if A = Q + T
where Q is a matrix over K and T is a matrix over F

such that the set of T ’s non-zero entries is algebraically
independent over K.

For the purposes of this paper, we may think of K

as a finite field of numbers, and F as a field extension
obtained by introducing indeterminates. We may think
of each entry of T as being either zero or a single
indeterminate in F. Algorithmically, it is easier to deal
with the following restricted class of mixed matrices.

Definition 3.2. A layered mixed matrix (or LM-
matrix) is a mixed matrix A = Q+T where the non-zero
rows of Q and the non-zero rows of T are disjoint. That
is, A is an LM-matrix if it can be put in the form

(

Q
T

)

.

The class of mixed matrices is equivalent to the class
of LM-matrices in the following sense. Let A = Q + T
be an m × n mixed matrix. The system of equations
Ax = b is equivalent to the system of equations

(3.2)

(

Im Q
diag[z1, . . . , zm] T ′

)(

w
x

)

=

(

b
0

)

,

where w is a new auxiliary vector, z1, . . . , zm are new
indeterminates, and T ′

i,j = −ziTi,j . The zi’s are only
introduced so that the lower half contains no numbers.
The stated equivalence holds since (3.2) forces that
w+Qx = b and (after canceling the zi’s) w−Tx = 0, so
(Q+T)x = b. The non-zero entries of T ′ are of the form
−zixa but for notational simplicity we will assume that
they are of the form xa. This notational substitution
does not affect algebraic independence of the entries.

Definition 3.3. If A is a mixed matrix, let Ã be the
transformation of A used in equation (3.2). We refer to
Ã as the LM-matrix associated with A.

The matrices A and Ã satisfy the relation rank Ã =
rankA+m, since the kernels of A and Ã have the same
dimension. Thus, finding the rank of a mixed matrix
reduces to finding the rank of the associated LM-matrix.
The following theorem is crucial for finding the rank of
an LM-matrix.

Theorem 3.4. (Murota [18]) Let A =
(

Q
T

)

be an
LM-matrix. Let C be the set of columns, RQ be the
rows of submatrix Q, and RT be the rows of submatrix
T . Let A[I, J] denote the submatrix of A with row-set I
and column-set J . Then,

(3.3) rankA = max
J⊆C

rank Q[RQ, J]+rank T [RT , C \J].

To find the maximum value in (3.3), we associate
matroids MQ and MT with Q and T and then use
a matroid-theoretic algorithm. The matroid MQ is
the so-called linear matroid over K given by Q. In
other words, MQ is just the matrix Q and a set
of columns is considered independent if it is linearly
independent in the usual sense. Dealing with the
matrix T requires more care. To determine if a set
of columns JT is independent in T one could simply
use Gaussian elimination, but the resulting entries
would be polynomials of potentially exponential length.
Fortunately, the Frobenius–Kőnig result shows that JT

is independent iff there is a matching (i.e., a one-to-
one map) π : JT → RT such that Tπ(i),i 6= 0 for all
i. In other words, the matroid MT is the transversal
matroid induced by the bipartite graph corresponding
to T (see (1.1)). With this matroidal formulation,
equation (3.3) seeks disjoint sets JQ, JT ⊆ C such that
JQ is an independent set for MQ, JT is an independent
set for MT , and |JQ|+ |JT | is maximum. This is known
as the matroid union problem. Thus, the rank of an
LM-matrix A =

(

Q
T

)

can be computed in polynomial
time using a standard algorithm for matroid union
[19], as this standard algorithm relies only on a black-
box independence test for each matroid. Gaussian
elimination can be used to test independence in MQ

and any bipartite matching algorithm can used to test
independence in MT . The next section presents a
refinement of this approach due to Murota [18].

3.2 Computing the Rank of an LM-matrix

We now formulate the rank computation problem as
another matroid-theoretic problem known as the (bi-
partite) independent matching problem. This problem
is equivalent to the matroid union and matroid inter-
section problems [5]. An instance of this problem is a
bipartite graph G = (V +∪V −, E), a matroid M+ whose
columns are indexed by V +, and a matroid M− whose
columns are indexed by V −. If M is a matching for G,
define ∂+M to be the vertices in V + covered by M , and
define ∂−M analogously. The problem is to find a maxi-
mum cardinality matching M such ∂+M is independent
in M+, and ∂−M is independent in M−. We remark
that the ordinary bipartite matching problem can be
recast as an independent matching problem where the
matroids M+ and M− are free matroids, i.e., the in-
dependence requirement is ignored altogether. We now
describe a reduction from the matroid union problem
to the independent matching problem that is specific to
computing the rank of an LM-matrix A =

(

Q
T

)

.
As before, let MQ and MT be the matroids asso-

ciated with Q and T , let C be the columns of A, and
let RQ and RT be the rows of Q and T . Define CQ

1
1

1

z1
z2

z3

1 1
1

1

x1 x2
x3

CQ

C
RT

Q

T

(a)

EQ

ET

CQ

C
RT

(b)

Figure 2: (a) An LM-matrix A =
(

Q
T

)

and the vertices
of the corresponding independent matching problem. (b)
The bipartite graph for the independent matching problem.
Note that the edges ET correspond to the non-zero entries
of T . The bold edges are an independent matching because
columns 2, 3, and 4 of Q are linearly independent.

to be a copy of C where each jQ ∈ CQ corresponds to
j ∈ C. The independent matching problem instance is
based on the bipartite graph G := (V +∪V −, ET ∪EQ),
where

V + := RT ∪ CQ,
V − := C,
ET := { (i, j) : i ∈ RT , j ∈ C, Tij 6= 0 } ,
EQ := { (jQ, j) : j ∈ C } .

Here, ET embodies the matching problem associated
with T and EQ connects corresponding columns in C
and CQ. The independence of columns in MT is already
captured by ET so the matroid on the vertex set RT is
simply defined to be the free matroid MRT

. In other
words, we ignore the independence constraint for any
matching edges incident with RT . The edges EQ do not
capture independence in Q so we define the matroid on
the vertex set CQ to be MQ. We define M+ to be the
direct sum MRT

⊕MQ and M− to be the free matroid
on C. In other words, a matching M in this graph must
only meet the requirement that subset of CQ covered by
M is an independent set of columns in MQ. An example
independent matching problem is shown in Figure 2.

A maximum independent matching can be found by
a variant of the standard augmenting-path algorithm for
matroid intersection [19]. The algorithm starts with an
empty matching M and repeatedly finds augmenting
paths to increase the size of M . At the completion of
the algorithm, let IQ ⊆ C be the set of columns that
are matched with columns in CQ, and let IT ⊆ C be the
set of columns that are matched with rows in RT . The
set IQ must be independent in Q (by definition of M+)
and the set IT must be independent in T (by definition
of ET). Since IQ and IT are disjoint, we see by (3.3)
that rank A ≥ |M |. In fact, rankA = |M | will hold [18].
We refer to this algorithm as Algorithm A.1. Using
the analysis of Cunningham [3], it can be shown that

this algorithm requires only O(n3 log n) time. There
is a variant of this algorithm, due to Gabow and Xu
[6], that achieves a runtime of O(n2.62) through the use
of fast matrix multiplication. We will disregard this
result for the remainder of this paper and assume that
Algorithm A.1 requires O(n3 log n) time.

4 Max-Rank Matrix Completion

The previous section discussed how to compute the rank
of a mixed matrix. We now consider how to assign
values to the indeterminates without changing the rank.

4.1 Completion of a Single Mixed Matrix

Let A be a mixed matrix. We assume for simplicity
that A has size n × n and full rank, but our discussion
easily extends to non-square or singular matrices. We
also assume that A is over F2 but the results hold for
any larger field. Let X := {x1, x2, . . .} be the set of
indeterminates appearing in matrix A. Then det A is
a multivariate polynomial in the variables in X , but it
is linear in each variable xi since each indeterminate
appears in exactly one entry of A. Our objective is
to find values for the indeterminates such that det A
is non-zero. We use the following simple lemma, which
provides a stronger bound on the required field size than
the Schwartz-Zippel lemma does.

Lemma 4.1. Let P (x1, . . . , xt) be a multivariate, non-
zero polynomial such that the maximum exponent of any
variable is at most d. For any prime power q > d, there
exists a point x ∈ F

t
q such that P (x) 6= 0.

Proof. By induction on t, the case t = 0 being trivial.
For t ≥ 1, we may write

P (x1, . . . , xt) =
d

∑

i=0

Pi(x1, . . . , xt−1)xi
t,

where at least one of the polynomials Pk must be non-
zero. By induction, there is a point x′ ∈ F

t−1
q such

that Pk(x′) 6= 0. Substituting x′ for (x1, . . . , xt−1), P
becomes a non-zero polynomial in xt of degree at most
d. Since this polynomial can have at most d roots over
Fq and q > d, we may choose a value xt ∈ Fq that is
not a root. Thus P (x′, xt) 6= 0.

This lemma implies a simple self-reducibility ap-
proach for computing a max-rank completion of A.
First, compute the rank of A by constructing the associ-
ated LM-matrix (see Definition 3.3) and then applying
Algorithm A.1. Next, substitute the value 0 for some
indeterminate xi and compute the rank of the result-
ing mixed matrix. If the rank has decreased, substitute
the value 1 for xi instead. Applying Lemma 4.1 with

d = 1, we see that a max-rank completion must exist
over F2, so at least one of these substituted values does
not decrease the rank. Repeating this process until all
indeterminates have been assigned a value yields a max-
rank completion of A.

The remainder of this section presents an improved
algorithm that requires executing Algorithm A.1 only
once. The idea is to use the independent matching M
produced by Algorithm A.1 to decide which indetermi-
nates are “important” and which are not. The unim-
portant indeterminates may simply be set to zero, but
the important ones require more care. More formally,
let A be an n × n mixed matrix, and let Ã =

(

B Q
Z T

)

be the 2n × 2n LM-matrix corresponding to A, where
B is the n×n identity matrix and Z = diag[z1, . . . , zn].
Recall that the indeterminates in X correspond to edges
in the graph G. The important indeterminates are the
ones corresponding to edges used by M , namely the set
XM := { x ∈ X : Ti,j = x for some (i, j) ∈ M }. Note
that Ai,j = Qi,j + Tn+i,j , where Qi,j is numeric and
Tn+i,j is either an indeterminate or zero. If Tn+i,j = x
then assigning x the value v amounts to incrementing
Qi,j by v and setting Tn+i,j := 0. To update the inde-
pendent matching problem accordingly we must remove
the edge (n+i, j) from ET .

Lemma 4.2. If x ∈ X \ XM then assigning x the value
0 does not decrease the rank of Ã.

Proof. Suppose Ti,j = x. Assigning x the value 0 does
not affect the submatrix (B Q), so the independence
of its columns is unaffected. Setting Ti,j = 0 removes
the edge (i, j), but this is not a matching edge so
M is still an independent matching. The rank of Ã
is at least the rank of any independent matching, so
rank Ã ≥ |M | = 2n. Thus Ã still has full rank.

To see why the indeterminates in XM require more
care, consider the matrix A :=

(

x1 1
1 x2

)

. The corre-
sponding LM-matrix is

Ã =









1 0 0 1
0 1 1 0
z1 0 x1 0
0 z2 0 x2









.

An independent matching yields two disjoint sets of
columns that are independent for the top half and the
bottom half respectively. In this example, we may have
{(1

0) , (0
1)} (the first two columns) as the columns for

the top half and
{

(x1

0) ,
(

0
x2

)}

as the columns for the
bottom half. Setting both x1 and x2 to 1 is disastrous
since the original matrix A becomes (1 1

1 1), so the rank
has decreased. Setting both x1 and x2 to 0 is a good

choice for this example, but would be disastrous if the
original matrix A were

(

x1 0
0 x2

)

instead of
(

x1 1
1 x2

)

.
In order to explain how to deal with XM , we need

a few definitions and facts. Let the column indices of Ã
be {c1, . . . , c2n} and let {r1, . . . , r2n} be the row indices.
Define C1 := {c1, . . . , cn}, C2 := {cn+1, . . . , c2n}, RQ :=
{r1, . . . , rn}, and RT := {rn+1, . . . , r2n}. The notation
Ti,j refers to the entry of T in row ri and column cj . The
matching M yields the following sets of column indices:

IB := { c ∈ C1 : (cQ, c) ∈ M } ,

IQ := { c ∈ C2 : (cQ, c) ∈ M } ,

IZ := { c ∈ C1 : (r, c) ∈ M for some r ∈ RT } ,

IT := { c ∈ C2 : (r, c) ∈ M for some r ∈ RT } .

By construction, the columns in IB∪IQ are independent
for the top submatrix (B Q) and the columns in IZ ∪IT

are independent for the bottom submatrix (Z T). Since
Ã is assumed to have full rank, we must have C1 = IB ∪
IZ , C2 = IQ ∪ IT , |IB ∪ IQ| = n and |IZ ∪ IT | = n. The
rows related to IB and IT are RIB

:= { ri : ci ∈ IB }
and RIT

:= { ri : (ri, cj) ∈ M for some cj ∈ IT } re-
spectively.

Lemma 4.3. ri ∈ RIB
⇐⇒ rn+i ∈ RIT

.

Proof. Suppose that rn+i ∈ RIT
, where 1 ≤ i ≤ n.

Then (rn+i, cj) ∈ M for some cj ∈ IT , where n + 1 ≤
j ≤ 2n. This implies that (rn+i, ci) 6∈ M since the
vertex rn+i can have only one incident matching edge.
But the only non-zero entry in column ci of Z is in row
rn+i, so ci 6∈ IZ . Since C1 = IB ∪ IZ , we must have
ci ∈ IB , implying that ri ∈ RIB

. The other direction
follows by a similar argument.

Lemma 4.4. Q[RQ \ RIB
, IQ] is non-singular.

Proof. The columns in IB ∪ IQ are independent for
(B Q). Adding to a column any linear combination
of the other columns does not affect independence.
Since the columns in IB are elementary vectors, this
shows that the columns in IQ may be set to zero in
the rows RIB

without affecting independence. Thus,
Q[RQ \ RIB

, IQ] must be non-singular.

Theorem 4.5. There exists an assignment of values
from F2 to the indeterminates in X such that (1) every
x ∈ X \XM is assigned the value 0, and (2) these values
cause Q to become non-singular. Such an assignment
can be found in O(n3 log n) time.

Proof. For x ∈ X \XM , Lemma 4.2 shows that assigning
x := 0 does not affect the rank of Ã. Now consider
some x ∈ XM and let Tn+i,j be the entry that contains

x. We have cj 6∈ IB ∪ IQ, but Lemma 4.3 shows that
ci ∈ IB . Let ui and uj be the column vectors in (B Q)
corresponding to indices ci and cj and let U the set of
column vectors corresponding to indices IB ∪ IQ. Note
that ui ∈ U and ui is the ith elementary vector since B
is the identity.

Assigning x the value v effectively adds vui to
uj . We claim that for some value v ∈ F2, the set
U − ui + (uj + vui) is independent1. To see this, let
N be a square matrix obtained by ordering the vectors
U − ui + (uj + vui) arbitrarily. Then det N is a linear
function in v of the form αv + β where α 6= 0. It
follows that there is a unique value of v such that N
is singular. Choosing v to be any other value ensures
that U−ui+(uj +vui) is independent. Thus we may set
uj := uj +vui (i.e., assign x the value v), remove ci from
IB , then add cj to IQ and the resulting set IB ∪ IQ will
still be independent. We then repeat this argument for
the remaining indeterminates in XM . After assigning
all indeterminates a value, IQ is an independent set for
Q of size n, hence Q has become non-singular.

An efficient algorithm for finding a max-rank com-
pletion may be obtained from the preceding discus-
sion through the use of pivot operations to help de-
termine independence. Pseudocode for this algorithm
is given in Algorithm A.2. The runtime of this al-
gorithm is straightforward to analyze. Step 1 invokes
Algorithm A.1 and therefore requires O(n3 log n) time.
The work in Step 2 and Step 3 can be performed in
O(n2) time. All the remaining work is dominated by
the pivoting steps. Since we pivot exactly n times, the
total pivoting work is O(n3). This algorithm therefore
requires only O(n3 log n) time to compute a max-rank
completion.

Existing algorithms for finding max-rank comple-
tions are the randomized approach of Lovász [17] and
the deterministic approach of Geelen [7]. The random-
ized algorithm requires O(n3) time to verify the rank of
the resulting matrix and, in order to have a reasonable
probability of success, operates over a field of size Ω(n).
Geelen’s algorithm can be implemented in O(n4) time
[2] and also operates over a field of size Ω(n). In com-
parison, our Algorithm A.2 is only a logarithmic factor
slower than the randomized algorithm, completes suc-
cessfully with certainty, and can operate over F2. A
slight difference between Geelen’s algorithm and ours is
that Geelen’s does not allow indeterminates to be as-
signed the value zero. Our algorithm can be adapted to
include this requirement by operating over F3; details
are provided in the following section.

1Here we use the shorthand notation U − ui + (uj + vui) to

denote the set U \ {ui} ∪ {uj + vui}.

We now briefly describe an alternative algorithm
for finding a completion of a single mixed matrix A.
Details are postponed to the full version of the paper.
Let Ã =

(

B Q
Z T

)

be the corresponding LM-matrix. Let
M be a matching for the corresponding independent
matching problem that minimizes the cardinality of XM .

Theorem 4.6. A max-rank completion of A can be
obtained by setting x to 1 if x ∈ XM and 0 otherwise.

4.2 Simultaneous Max-Rank Completion

Let A := {A1, . . . , Ad} be a collection of mixed matrices,
where each indeterminate x may appear in several
matrices, but at most once in any particular matrix.
Let X be the set of all indeterminates appearing in the
matrices in A. In this section, we consider the problem
of finding a simultaneous max-rank completion for the
matrices in A. That is, we seek an assignment of values
to the indeterminates in X from some field Fq that
preserves the rank of all matrices in A.

As before, we assume that all matrices in A are
square of size n × n and have full rank, but these
assumptions could easily be eliminated. The function
P :=

∏d

a=1 det Aa is a multivariate polynomial in the
variables in X where the maximum exponent of each
variable is d. Lemma 4.1 then shows that for any
q > d, there is a point x ∈ F

t
q such that P (x) 6= 0.

That is, there exists an assignment of values from Fq

to the indeterminates in X that preserves the rank
of all matrices in A. The self-reducibility approach
for finding a completion of a single matrix extends
straightforwardly to finding a simultaneous completion:
repeatedly try substituting values from Fq and verify
that all matrices still have full rank.

We now derive an improved algorithm by extending
Algorithm A.2 to handle multiple matrices. The intu-
itive idea is, rather than blindly guessing values for an
indeterminate, maintain pivoted forms of each matrix
that can be used to determine a value which will not
decrease any matrix’s rank. The first step is to con-

struct the LM-matrix Ãa =
(

Ba Qa

Za Ta

)

associated with

Aa (1 ≤ a ≤ d), where Ba and Za are as defined in
the previous section. For simplicity of notation, we will
now focus on a single matrix Ã and drop the subscript
a. Suppose we execute Algorithm A.1 on Ã and obtain
an independent matching M . Let IB , IQ, RIB

and XM

be as defined in the previous section.

Lemma 4.7. Let x be an arbitrary indeterminate in X .
There is at most one v ∈ Fq such that assigning x the

value v decreases the rank of Ã.

Proof. If x does not appear in Ã then there is nothing
to prove, so assume that some entry Tn+i,j contains x.

Let ui, uj and U be as defined in Theorem 4.5. Then
assigning x the value v amounts to setting uj := uj+vui.

Case 1: x ∈ XM . As argued in Theorem 4.5, there is a
unique choice for v such that U − ui + (uj +vui) is
not independent.

Case 2: j ∈ IQ. An similar argument shows that there
is at most one choice for v such that uj + vui

becomes a linear combination of vectors in U − uj .
For all other values of v, U remains independent.

Case 3: j 6∈ IQ and x 6∈ XM . As in Lemma 4.2,
assigning a value to x does not affect independence
of U , nor does it destroy any edges used by the
matching. Thus the rank of Ã is unaffected.

Lemma 4.7 implies the following approach for find-
ing a simultaneous completion. Pick an indeterminate x
and determine the forbidden value of x for each matrix,
as in the proof of the lemma. Assigning a non-forbidden
value to x preserves the rank of all matrices. Since we
operate over Fq and q > d, a non-forbidden value must
exist. Pseudocode for this simultaneous completion al-
gorithm is given in Algorithm A.3. The time required
for Steps 1–3 is O(dn3 log n). The time required for
Steps 4–11 is O(|X | dn2). Thus the total runtime of
this algorithm is O(d(n3 log n + |X |n2)). This discus-
sion completes the proof of Theorem 1.1.

4.3 Column Compatibility The performance of
this algorithm may be slightly improved for collections
of matrices satisfying a certain property. The general
approach is to reduce the number of pivoting opera-
tions by taking advantage of indeterminates that ap-
pear together in the same column in each matrix. Such
indeterminates may all be assigned a value simultane-
ously before performing any pivoting work. Formally,
define an equivalence relation by (the transitive closure
of) xi ∼ xj if xi and xj appear in the same column in
some matrix in A. The collection A is called column-
compatible if, for every matrix Aa and equivalence class
[x], at most one column of Aa contains indeterminates
in [x]. For column-compatible collections of matrices,
Steps 4–11 of Algorithm A.3 may be modified as fol-
lows: repeatedly choose an equivalence class [x], find
values for each indeterminate in that class that pre-
serve the rank of all matrices, then, for each matrix,
pivot on the column (if any) that contained indetermi-
nates in [x]. This approach improves the time required
for Steps 4–11 to O(|X | dn + dn3), so the total runtime
of the algorithm becomes O(d(n3 log n + |X |n)).

As mentioned in the previous section, Geelen’s
algorithm for finding a completion of a single matrix
does not allow indeterminates to be assigned the value
zero. Such a completion can be found by a slight

modification of Algorithm A.3. The key change is to
forbid the value 0 by initializing H := {0} rather than
H := ∅ in Step 5. This algorithm may operate over F3

or any larger field, and the time required is O(n3 log n)
since a single matrix is trivially column-compatible.

Acknowledgements

We thank Muriel Médard for many helpful discussions
and for reviewing a draft of this paper.

References

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Net-
work information flow. IEEE Transactions on Information
Theory, 46(4):1204–1216, 2000.

[2] M. Berdan. A matrix rank problem. Unpublished
manuscript, 2003.

[3] W. H. Cunningham. Improved bounds for matroid partition
and intersection algorithms. SIAM Journal on Computing,
15(4):948–957, Nov 1986.

[4] S. Fortune, J. Hopcroft, and J. Wyllie. The directed
subgraph homeomorphism problem. Theoretical Computer
Science, 10:111–121, 1980.

[5] S. Fujishige. Submodular Functions and Optimization,
volume 47 of Annals of Discrete Mathematics. North-
Holland, 1991.

[6] H. N. Gabow and Y. Xu. Efficient theoretic and practical al-
gorithms for linear matroid intersection problems. Journal
of Computer and System Sciences, 53(1):129–147, 1996.

[7] J. F. Geelen. Maximum rank matrix completion. Linear
Algebra and its Applications, 288:211–217, 1999.

[8] J. F. Geelen. Matching theory. Unpublished manuscript,
2001.

[9] N. J. A. Harvey, R. D. Kleinberg, and A. R. Lehman.
Comparing network coding with multicommodity flow for
the k-pairs communication problem. Technical Report
MIT-LCS-TR-964, Massachusetts Institute of Technology,
Sept. 2004.

[10] T. Ho, D. R. Karger, M. Médard, and R. Koetter. Network
coding from a network flow perspective. In Proceedings of
the IEEE International Symposium on Information Theory,
2003.

[11] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros.
The benefits of coding over routing in a randomized setting.
In Proceedings of the IEEE International Symposium on
Information Theory, 2003.

[12] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner,
K. Jain, and L. Tolhuizen. Polynomial time algorithms for
multicast network code construction. IEEE Transactions
on Information Theory. Submitted July 2003.

[13] R. Koetter and M. Médard. An algebraic approach to
network coding. IEEE/ACM Transactions on Networking.
To appear.

[14] M. Laurent. Matrix completion problems. In C. Floudas
and P. Pardalos, editors, The Encyclopedia of Optimization,
volume III, pages 221–229. Kluwer, 2001.

[15] A. R. Lehman and E. Lehman. Complexity classification of
network information flow problems. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms, Jan 2004.

[16] S.-Y. R. Li, R. Yeung, and N. Cai. Linear network coding.
IEEE Transactions on Information Theory, 49(2), 2003.

[17] L. Lovász. On determinants, matchings and random algo-
rithms. In L. Budach, editor, Fundamentals of Computa-
tion Theory, FCT ’79. Akademie-Verlag, Berlin, 1979.

[18] K. Murota. Matrices and Matroids for Systems Analysis.
Springer-Verlag, 2000.

[19] A. Schrijver. Combinatorial Optimization: Polyhedra and
Efficiency. Springer-Verlag, 2003.

A Pseudocode

Algorithm A.1. Algorithm for computing the rank of
an LM-matrix Ã.

Step 1: Construct the independent matching problem
G corresponding to Ã, as described in Section 3.2.
The initial matching is M := ∅.

Step 2: Repeatedly search for augmenting paths in G
and use them to increase the size of M . If no
augmenting path is found, the rank of Ã is |M |.

Algorithm A.2. Algorithm for computing a max-
rank completion of a mixed matrix A.

Step 1: Construct the LM-matrix Ã =
(

B Q
Z T

)

associ-
ated with A. Use Algorithm A.1 to compute a max-
imum independent matching M .

Step 2: Define XM , IQ and RIB
as in Section 4.1.

Assign each x ∈ X \ XM the value 0. We maintain
a matrix P that is a transformation of Q obtained
by column-clearing (Gauss-Jordan) pivots on the
columns in IQ. That is, P [RP , IQ] has exactly one
non-zero entry in each column. Let φ : IQ → RP

be the one-to-one map such that Pφ(i),i 6= 0 for all
i ∈ IQ and let Rφ := { φ(i) : i ∈ IQ }. For j 6∈ IQ,
IQ+j is independent iff Pr,j 6= 0 for some r 6∈ Rφ. To
keep track of the pivot operations, the algorithm also
maintains a matrix S satisfying SQ = P . Initially
let P := Q and let S be the identity.

Step 3: For each j ∈ IQ, find an i 6∈ RIB
such that

Pi,j 6= 0 and pivot on Pi,j . Lemma 4.4 shows that
such an i must always exist.

Step 4: For each x ∈ XM

Step 5: Let Tn+i,j be the entry containing x. Set-
ting x to the value v amounts to setting Tn+i,j :=
0, Qi,j := Qi,j + v, and Pr,j := Pr,j + vSr,i for
all r. If we choose a value v such that Pi,j 6= 0,
then IQ +j will be an independent set of columns
for Q. Since we have not yet pivoted on row i,
the ith column of S is the ith elementary vector.
Thus setting x to v increments Pi,j by v. We
set v := 1 − Pi,j , pivot on Pi,j , and update S
accordingly.

Algorithm A.3. Algorithm for finding a simultaneous
max-rank completion of the matrices in the set A.

Step 1: For a from 1 to d,

Step 2: Consider A = Aa. Construct the LM-
matrix Ã associated with A. Compute a max-
imum independent matching M using Algo-
rithm A.1. We will maintain a matrix P ob-
tained from Q by pivots, and a matrix S such
that P = SQ. Initially let P := Q and let S be
the identity matrix.

Step 3: Define XM , IQ and RIB
as in Section 4.1.

For each j ∈ IQ, find an i 6∈ RIB
such that

Pi,j 6= 0 and pivot on Pi,j . (This is possible by
Lemma 4.4).

Step 4: For each x ∈ X ,

Step 5: Let Tn+i,j be the entry containing x. The
set of forbidden values for x is initially H := ∅.

Step 6: For a from 1 to d,

Step 7: Consider A = Aa. If x ∈ XM then,
as in Algorithm A.2, the ith column of S
is the ith elementary vector. Setting x to
the value v amounts to setting Tn+i,j := 0,
Qi,j := Qi,j +v, and Pi,j := Pi,j +v. Thus we
add the forbidden value −Pi,j to H.

Step 8: Otherwise, if j ∈ IQ then let i′ be the
row such that Pi′,j = 1. Store this value of
i′ for use in Step 11. Assigning x the value v
amounts to increasing Pi′,j by vSi′,i. If Si′,i 6=
0 then the value −Pi′,j/Si′,i is forbidden so
add this value to H.

Step 9: Choose a value v from Fq that is not in H.
Assign the value v to x.

Step 10: For a from 1 to d,

Step 11: Consider A = Aa. Update T , Q and P
according to the value v for x. If j ∈ IQ, pivot
on entry Pi′,j .

