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ABSTRACT

This thesis studies how to perform dynamic data-race detection in programs using “transactions
everywhere”, a new methodology for shared-memory parallel programming. Since the conventional
definition of a data race does not make sense in the transactions-everywhere methodology, this
thesis develops a new definition based on a weak assumption about the correctness of the target
program’s parallel-control flow, which is made in the same spirit as the assumption underlying the
conventional definition.

This thesis proves, via a reduction from the problem of 3cnf-formula satisfiability, that data-race
detection in the transactions-everywhere methodology is an NP-complete problem. In view of this
result, it presents an algorithm that approximately detects data races. The algorithm never reports
false negatives. When a possible data race is detected, the algorithm outputs simple information
that allows the programmer to efficiently resolve the root of the problem. The algorithm requires
running time that is worst-case quadratic in the size of a graph representing all the scheduling
constraints in the target program.
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Chapter 1

Introduction

This thesis considers the problem of data-race detection in parallel programs using “transactions
everywhere”, a new methodology for shared-memory parallel programming suggested by Charles E.
Leiserson [26]. Transactions everywhere reduces the amount of thinking required of the programmer
concerning concurrent shared-memory accesses. This type of thinking is often unintuitive and
error-prone, and represents a main obstacle to the widespread adoption of shared-memory parallel
programming.

This introduction first describes Cilk, the parallel-programming language in which we conduct
our study. Then, it presents transactions as an alternative system to conventional locks for creat-
ing atomic sections and eliminating data races. Finally, it describes the transactions-everywhere
methodology for parallel programming with transactions.

The Cilk Language. The results in this thesis apply to parallel programming using transactions
everywhere, irrespective of the implementation language. For concreteness, however, we conduct
our study in the context of Cilk [2, 3, 22, 13, 39], a shared-memory parallel-programming language
developed by Charles E. Leiserson’s research group. Cilk is faithful extension of C, which means that
if all Cilk keywords are elided from a Cilk program, then a semantically correct serial C program,
called the serial elision, is obtained. The three most basic Cilk keywords are cilk, spawn, and
sync. This thesis considers programs that contain only these three extensions.

We illustrate the usage of the three Cilk keywords by an example, which we shall reuse through-
out this introduction. Consider the common scenario of concurrent linked-list update, such as might
arise from insertions into a shared hash table that resolves collisions using linked lists. The fol-
lowing is a Cilk function for inserting new data at the head of a shared singly linked list. The
keyword cilk is placed before a function declaration or definition (in this case the definition of
list_insert) to indicate a Cilk function. The shared variable head points to the head of the list,
and each node of type Node has a data field and a next pointer.

cilk void list_insert( double new_data )

{

Node *pnode = malloc( sizeof(Node) );

pnode->data = process(new_data);

pnode->next = head;

head = pnode;

}

Cilk functions must be called by using the keyword spawn immediately before the function
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name. A Cilk function call spawns a new thread of computation to execute the new function
instance, while the parent function instance continues to execute in parallel. The keyword sync

is used as a standalone statement to synchronize all the threads spawned by a Cilk function. All
Cilk function instances that have been previously spawned by the current function are guaranteed
to have returned before execution continues on to the statement after the sync. The following
segment of code demonstrates spawn and sync. It inserts two pieces of data into the shared linked
list in parallel, and then prints the length of the list.

...

spawn list_insert(23.118);

spawn list_insert(23.170);

sync;

printf( "The list has length %d.", list_length() );
...

The sync statement guarantees that the printf statement only executes after both spawn calls
have returned. Without the sync statement, the action of list_length would be unpredictably
intertwined with the actions of the two calls to list_insert, thus causing an error. Note that the
function list_length for counting the length of the list is a regular C function.

Cilk functions may call other Cilk functions or C functions, but C functions cannot call Cilk
functions. Thus, the function main in a Cilk program must be a Cilk function. Also, all Cilk
functions implicitly sync1 their spawned children before returning.

In an execution of a Cilk program, a Cilk thread is defined as a maximal sequence of instruc-
tions without any parallel-control constructs, which in our case are spawn and sync. Thus, the
segment of code above is divided into four serially ordered Cilk threads by the three parallel con-
trol constructs (two spawns and a sync). Also, each spawned instance of list_insert comprises
a thread that executes in parallel with some of the threads in the parent function instance. Figure
1.1 is a graphical view of the serial relationships among these threads.

before
1st spawn

between
sspawn

after
sync

between 2nd
andspawn sync   

list_insert 2nd instance

list_insert 1st instance

Figure 1.1: A graphical view of the threads in our code segment.

1We use “sync” instead of “synch” because this is the spelling of the keyword in Cilk.
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Chapter 2 gives formal terminology and notation for these serial relationships, so that we can
work with them mathematically. Henceforth in this thesis, when we talk about programs, functions,
and threads, we shall mean Cilk programs, Cilk functions, and Cilk threads, respectively.

Now, a note about the programs and graphs that we study in this thesis is in order. First,
since different inputs to a program can cause the program to behave differently in its execution, we
consider detecting data races in programs that are run on fixed given inputs. This assumption is
common in dynamic data-race detection. Furthermore, we assume that the control flow of a program
stays the same even though its threads and transactions may be scheduled nondeterministically,
because it has been proven by Robert H. B. Netzer and Barton P. Miller [32] that it is otherwise
NP-hard to determine all possible executions of a parallel program. This assumption means that
although a data-race detector can only build a graph from a particular execution trace, we may
assume that such a graph is representative of all possible executions with respect to its control flow.
Also, we are allowed to define and analyze graphs that represent programs in addition to graphs
that represent executions.

Transactions versus Conventional Locks. The function list_insert is not correct as defined
above. It contains a data race on the variable head. Between the two accesses to head made by a
given instance of list_insert, the value of head could be changed by a concurrent thread (possibly
another instance of list_insert).

The conventional solution for eliminating data-race errors is to use locks. (Throughout this
thesis, we shall use the word “conventional” only to describe items related to programming using
locks.) In the Cilk library, the functions for acquiring and releasing a lock are Cilk_lock and
Cilk_unlock, respectively. If we use a lock list_lock to protect the shared linked list, then the
following code is a correct version of list_insert using conventional locks.

cilk void list_insert( double new_data )

{

Node *pnode = malloc( sizeof(Node) );

pnode->data = process(new_data);

Cilk_lock(list_lock);

pnode->next = head;

head = pnode;

Cilk_unlock(list_lock);

}

The holding of list_lock during the two accesses to head guarantees that no other thread can
concurrently access head while holding list_lock. Thus, if all parallel threads follow a common
contract of only accessing head while holding list_lock, then the data race is eliminated.

For parallel programmers, keeping track of all the locks in use and deciding which locks should be
held at any one time often becomes confusing and error-prone as the size of the program increases.
This reasoning about concurrency may be simplified if a programmer uses a single global lock to
protect all shared data, but programmers typically cannot just use one lock because of efficiency
concerns. Locks are a preventive measure against data races, and as such, only one thread can hold
a lock at any one time, while other concurrent threads that need the lock wait idly.

The concept of transactional memory [19] enables parallel programming under the logic of
using a single global lock, but without a debilitating loss of efficiency. A transaction is a section of
code that must be executed atomically within a single thread of computation, meaning that there
can be no intervening shared-memory accesses by concurrent threads during the execution of the
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transaction. Transactional-memory support guarantees that the result of running a program looks
as if all transactions happened atomically. For example, if we assume that the keyword atomic is
used to indicate an atomic block to be implemented by a transaction, then the following code is a
correct version of list_insert using transactions.

cilk void list_insert( double new_data )

{

Node *pnode = malloc( sizeof(Node) );

pnode->data = process(new_data);

atomic {

pnode->next = head;

head = pnode;

}

}

Transactional-memory support can be provided in the form of new machine instructions for
defining transactions, which would minimally include transaction_begin and transaction_end

for defining the beginning and end of a transaction. This support can be provided in hardware
or simulated by software. Hardware transactional memory [19, 20] can be implemented on top of
cache-consistency mechanisms already used in shared-memory computers. The rough idea is that
each processor uses its own cache to store changes from transactional writes, and those changes
are propagated to main memory when the transaction ends and successfully commits. Multiple
processors can be attempting different transactions at the same time, and if there are no memory
conflicts, then all the transactions should successfully commit. If two concurrent transactions
experience a memory conflict (they both access the same shared-memory location, and at least one
of the accesses is a write), then one of the transactions is aborted and retried at some later time.
Software transactional memory [36, 18] simulates this mechanism in software, but the overhead per
transaction is higher, making it less practical for high-performance applications.

From the programmer’s point of view, using transactions is logically equivalent to using a single
global lock, because all shared-memory accesses within a transaction happen without interruption
from other concurrent transactions. This property eliminates many problems that arise when
using multiple locks, such as priority inversion and deadlock. At the same time, transactional
memory avoids the debilitating loss of efficiency that comes with using a single global lock, because
the strategy of transactional memory is to greedily attempt to process multiple atomic sections
concurrently, only aborting a transaction when an actual memory conflict occurs.

Transactions Everywhere. As its name suggests, transactions everywhere [26] is a method-
ology for parallel programming in which every instruction becomes part of a transaction. A working
assumption is that hardware transactional memory provides low enough overhead per transaction
to make this strategy a viable option.

Let us define some terminology for the transactions-everywhere methodology. The division
points between transactions in the same thread are called cutpoints. Cutpoints can be manually
inserted by the programmer or automatically inserted by the compiler. To atomize a program
is to divide a program up into transactions everywhere by inserting cutpoints, resulting in an
atomized program, also known as an atomization of the program. An atomization strategy

is a method that defines where to insert cutpoints into a program, such as that used by a compiler
to automatically generate transactions everywhere.
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We first go over the process when transactions everywhere are defined manually by the program-
mer. In this case, the starting point is the original program with no cutpoints. This starting point
is in fact a valid atomization of the program itself, with each thread consisting of one transaction
that spans the whole thread. Since each thread is an atomic section, we call this most conservative
atomization the atomic-threads atomization of the original program.

From the atomic-threads starting point, the programmer looks to reduce potential inefficiency by
cutting up large transactions, but only if doing so does not compromise correctness. For example,
the function list_insert remains correct as long as the two accesses to head are in the same
transaction. Since list_insert is a small function, the programmer may choose to leave it as one
transaction. On the other hand, if the call to process takes a long time, then potential inefficiency
exists because one instance of list_insert may make both of its accesses to head while another
instance is calling process. This situation does not produce an error, but is nevertheless disallowed
by the atomic-threads atomization. Thus, if the call to process takes a long time, the programmer
may choose to add a cutpoint after this call to reduce inefficiency. If we assume that the keyword
cut is used to indicate a cutpoint, then the following code is a more efficient form of list_insert
using transactions everywhere.

cilk void list_insert( double new_data )

{

Node *pnode = malloc( sizeof(Node) );

pnode->data = process(new_data);

cut;

pnode->next = head;

head = pnode;

}

To illustrate this atomization, we redraw Figure 1.1 with transactions instead of threads as
vertices. This new graph is shown in Figure 1.2. We use dashed lines for the edges connecting
consecutive transactions within the same thread.

before
1st spawn

between
sspawn

after
sync

between 2nd
and

 
   spawn sync

before cut 

before cut  after cut 

after cut 

Figure 1.2: A revised version of Figure 1.1 with transactions as vertices.

Chapter 2 gives formal terminology and notation for these serial relationships, so that we can
work with them mathematically.
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We now consider the process when transactions everywhere are generated automatically by the
compiler. In this case, the compiler uses an atomization strategy that consists of a set of heuristic
rules describing where to insert cutpoints. For example, Clément Ménier has experimented with one
such set of heuristic rules [28], which we shall call the Ménier atomization strategy. This strategy
produces cutpoints at the following places:

• Parallel-programming constructs (spawn, sync).
• Calling and returning from a C function.
• The end of a loop iteration (for, while, do loops).
• Some other language constructs (label, goto, break, continue, case, default).

If the cutpoints inserted by the compiler produce a correct atomization (see Chapter 3 for a
rigorous definition), then the programmer is spared from much thinking about concurrency issues.
Thus, parallel programming becomes easier and more accessible from the average programmer’s
point of view. For example, applying the Ménier atomization strategy to list_insert produces
cutpoints at the following places, marked by comments beginning with the symbol “B”.

cilk void list_insert( double new_data )

{

B cutpoint: C function call
Node *pnode = malloc( sizeof(Node) );

B cutpoint: C function return

B cutpoint: C function call
pnode->data = process(new_data);

B cutpoint: C function return

pnode->next = head;

head = pnode;

}

This atomization is correct because the two accesses to head appear in the same transaction.
In general, we expect that good heuristic rules should produce correct atomizations for most

functions. In some cases, however, the granularity of the automatically generated transactions is too
fine to preclude all data races. For example, if list_insert were rewritten so that the statement
that sets pnode->next precedes the statement that sets pnode->data, then applying the Ménier
atomization strategy produces cutpoints at the following places, once again marked by comments
beginning with the symbol “B”.

cilk void list_insert( double new_data )

{

B cutpoint: C function call
Node *pnode = malloc( sizeof(Node) );

B cutpoint: C function return

pnode->next = head;

B cutpoint: C function call
pnode->data = process(new_data);

B cutpoint: C function return

head = pnode;

}
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This atomization is incorrect because the call to process causes the two accesses to head to be
placed in different transactions, thus resulting in a data-race error.

The above example shows that when the compiler automatically generates transactions every-
where, the atomization strategy used may be inaccurate for the particular situation. Likewise, when
the programmer manually defines transactions everywhere, human error can lead to an incorrect
atomization. In both cases, the programmer needs to use a data-race detector to find possible error
locations, and then to adjust the transaction cutpoints if necessary. This thesis studies how to
perform this task of detecting data races.
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Chapter 2

Constraints in Transaction Scheduling

This chapter introduces some terminology for discussing the constraints that define the “schedules”
(i.e. legal executions) of an atomized program. It also proves some preparatory lemmas about these
constraints. This background material allows us in Chapters 3–4 to develop a definition for a data
race in the transactions-everywhere setting, and to prove properties about data-race detection.

Section 2.1 lists the “thread constraints” and “transaction constraints” on program scheduling
imposed by the serial control flow of the program, and formally defines a schedule of an atomized
program. Section 2.2 gives a notion of equivalence for schedules, and defines “access constraints”,
which determine whether two schedules are equivalent. Section 2.3 then defines “access interactions”
for atomized programs, which are the counterpart to access constraints for schedules, and “access
assignments”, which are the links between access constraints and access interactions.

Throughout our analysis of data-race detection, we shall use P to denote a Cilk program that
has not yet been atomized, Q to denote an atomized program, and R to denote a schedule of an
atomized program. Also, we shall use e to denote a thread and t to denote a transaction.

2.1 Serialization Constraints

This section formally defines the “thread constraints” and “transaction constraints” on the legal
schedules of an atomized program, which are imposed by the serial control flow of the program. It
also defines a “serialization graph” for visualizing these constraints. Finally, the formal definition
of a schedule is derived in terms of these constraints.

Consider an atomized program Q. Since Q has a fixed control flow, we can view it as being
composed of a set of n transactions, with certain serialization constraints between them. These
constraints are determined by the serial order of transactions in the same thread, the serial order
of threads in the same function instance, and the spawn and sync parallelization structure of the
control flow. We now give names to these constraints.

A “thread constraint” of an atomized program Q is a constraint on schedules R of Q imposed
by a serial relationship between two threads in the control flow of Q.

Definition 1. In an atomized program Q, a thread constraint exists from transaction t1 to

transaction t2, denoted t1
E

→ t2, if

1. t1 is the last transaction of a thread e1 and t2 is the first transaction of a thread e2, and
2. the relationship between e1 and e2 is one of the following:

a. e1 immediately precedes e2 in the same function instance, or
b. e1 directly precedes the spawn point of the function instance whose first thread is e2, or
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c. e2 directly follows the sync point of the function instance whose final thread is e1.

A “transaction constraint” of an atomized program Q is a constraint on schedules R of Q

imposed by a serial relationship between two transactions in the control flow of Q.

Definition 2. In an atomized program Q, a transaction constraint exists from transaction t1

to transaction t2, denoted t1
T

→ t2, if t1 immediately precedes t2 in the same thread.

We can view these serialization constraints as edges in a graph with transactions as vertices.

Definition 3. The serialization graph of an atomized program Q is the graph G = (V, EE, ET),

where V is the set of transactions, and the two types of edges are thread edges EE = {(t1, t2) | t1
E
→

t2} and transaction edges ET = {(t1, t2) | t1
T
→ t2}.

Example. The following example program will be used throughout Chapters 2–3 to illustrate our
definitions. The symbol “B” denotes a comment.

int x1, B location `1

x2; B location `2

cilk void fun1()

{

int a;

B t1
...
x1 = a; B write `1
...

B cutpoint
B t2
...

B cutpoint
B t3
...
a = x2; B read `2
...

}

cilk void fun2()

{

int a;

B t6
...
x2 = a; B write `2
...

}

cilk int main()

{

int a;

B t0
...

spawn fun1();

B t4
...
a = x1; B read `1
...

B cutpoint
B t5
...
a = x2; B read `2
...

spawn fun2();

B t7
...

B cutpoint
B t8
...
x1 = a; B write `1
...

sync;

B t9
...
return 0;

}
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This program uses two shared variables x1 and x2, whose values are stored in shared-memory
locations `1 and `2, respectively. The main function spawns two function instances (the first is an
instance of fun1, and the second is an instance of fun2), and then syncs them at a later point. The
cutpoints in this program are marked by comments, because they could very well be automatically
generated. The transactions are t0, . . . , t9, also marked by comments.

Figure 2.1 shows the serialization graph of our example program. The solid lines are thread
edges and the dashed lines are transaction edges. The vertices of this graph are the transactions
t0, . . . , t9. This diagram only labels the vertices with their transaction subscripts, for ease of reading.
We shall maintain this practice throughout the remainder of this thesis.

0

1 2 3

4 5 7

6

8 9

Figure 2.1: The serialization graph of our example program.

Our example program generates this runtime graph as follows. For now, ignore the accesses
to shared-memory locations. The three function instances are represented by the three rows of
vertices (the middle row has only one transaction). The top row is the program’s main function. It
first spawns function fun1 consisting of transactions t1, t2, and t3, and then spawns function fun2

consisting of the single transaction t6. The spawned functions are synced before transaction t9. ♦

Now that we have specified the constraints in scheduling the transactions of Q, we can formalize
our understanding of a schedule.

Definition 4. A schedule R of an atomized program Q is a total (linear) ordering ≺R on the
transactions of Q that satisfies all the thread and transaction constraints of Q. That is, for any
two transactions t1 and t2, if t1

E
→ t2 or t1

T
→ t2, then t1 ≺R t2.

Example. Figure 2.2 shows one possible schedule Rex of our example program from Figure 2.1.
The diagram is drawn with time moving from left to right (earlier transactions appear to the left of
later transactions). Once again, this diagram labels the vertices with their transaction subscripts.
The ordering of the transactions in this schedule is t0 ≺Rex

t1 ≺Rex
t4 ≺Rex

t2 ≺Rex
t5 ≺Rex

t7 ≺Rex

t8 ≺Rex
t6 ≺Rex

t3 ≺Rex
t9. ♦

2.2 Access Constraints

This section addresses the question of which schedules of an atomized program are equivalent in
the sense of exhibiting the same behavior. We first define a notion of equivalence for schedules
derived from the same program. This definition suggests a new type of constraint, called an
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4 5 7

6

8 9

Figure 2.2: One possible schedule of our example program.

“access constraint”. We prove that access constraints accurately determine when two schedules are
equivalent. Finally, we define a “schedule graph” for visualizing all the constraints in a schedule.

Our first step is to define a precise notion of equivalence.

Definition 5. Let Q and Q′ be (possibly identical) atomizations of a program P , and let R and
R′ be schedules of Q and Q′, respectively. We say that R and R′ are equivalent if for each
shared-memory location `,

1. corresponding writes of ` in R and R′ occur in the same order, and
2. corresponding reads of ` in R and R′ receive values written by corresponding writes.

We should note two subtleties of Definition 5. One point is that it is not enough for corre-
sponding reads to receive the same value; they must in fact receive the value written by the same
corresponding writes. The other point is that whole sets of accesses consisting of a write and all
its subsequent reads cannot be reordered. These subtleties exist because we want a definition of
equivalence that facilitates dynamic data-race detection.

The following theorem shows that our notion of equivalence gives strong guarantees for identical
behavior between two equivalent schedules.

Theorem 1. Let Q and Q′ be (possibly identical) atomizations of a program P , and let R and R′

be schedules of Q and Q′, respectively. If R and R′ are equivalent, then for each instruction I in
P , the following invariants hold: Before and after the corresponding executions of I in R and R′,

1. all local variables whose scopes include I have the same values in R and R′, and
2. all shared-memory locations accessed by I (if any) have the same values in R and R′.

Proof. Let 〈I0, . . . , Ik−1〉 be the instructions of P in the order that they occur in R. We shall prove
the invariants by strong induction on this ordering of the instructions.

First, observe that if the invariants are met before an instruction I executes, then they continue
to hold true after I executes. Consequently, we only need to concentrate on proving that the
invariants hold before an instruction executes.

For the base case, we note that the first instruction in any schedule must necessarily be the first
instruction of the main function instance of P . Therefore, I0 is the first instruction in both R and
R′. Before I0 executes, all the local variables and shared-memory locations are identical, since no
instructions have been executed yet.

For the inductive step, assume that the invariants hold for all instructions before some instruc-
tion Ii in R. The value of a local variable created before Ii was written by the same previous
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instruction I that serially precedes Ii in both schedules, because the serial control flow is deter-
mined by P and is identical in both schedules. By the inductive hypothesis, we know that the value
of this local variable is the same in R and R′ after I executes.

Now, consider the value of a shared-memory location ` accessed by Ii. If Ii writes `, then
condition 1 in Definition 5 dictates that the previous instruction I to write ` must be the same in
both schedules. Similarly, if Ii reads `, then condition 2 in Definition 5 guarantees that the previous
instruction I to write ` is the same in both schedules. Applying the inductive hypothesis to I tells
us that the value in ` was the same in both R and R′ after I executed.

We now introduce a third type of constraint called an “access constraint”, which is imposed
by parallel accesses to shared memory. Access constraints determine how a schedule R may be
reordered into an equivalent schedule R′, or alternatively, whether two schedules R and R′ are
equivalent. Unlike thread and transaction constraints, access constraints are defined for a particular
schedule R as opposed to an atomized program Q.

Definition 6. In a schedule R of an atomized program Q, an access constraint exists from

transaction t1 to transaction t2, denoted t1
A

→ t2, if
1. t1 and t2 are in parallel in the control flow of Q,
2. there exists a shared-memory location ` such that t1 and t2 both access `, and at least one
of them writes `, and

3. t1 appears before t2 in R (i.e. t1 ≺R t2).

We can think about the constraints on how a schedule R can be reordered in terms of a graph
with transactions as vertices and constraints as edges.

Definition 7. The schedule graph of a schedule R of an atomized program Q is the graph
G = (V, EE, ET, EA), where V is the set of transactions, and the three types of edges are thread

edges EE = {(t1, t2) | t1
E
→ t2}, transaction edges ET = {(t1, t2) | t1

T
→ t2}, and access constraint

edges EA = {(t1, t2) | t1
A
→ t2}.

Example. Figure 2.3 shows the schedule graph of our example schedule from Figure 2.2. The access
constraint edges are drawn with dotted lines.

0

1 2 3

4 5 7

6

8 9

Figure 2.3: The schedule graph of our example schedule from Figure 2.2.

The shared-memory accesses in our example program are as follows:
• location `1 is written by transactions t1 and t8, and read by transaction t4;
• location `2 is written by transaction t6, and read by transactions t3 and t5.
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The accesses to `1 generate the two access constraints t1
A
→ t4 and t1

A
→ t8. There is no access

constraint from t4 to t8 even though they both access `1, because they are not in parallel in the
control flow of our example program. The multiple accesses to `2 only generate the single access
constraint t6

A
→ t3. There is no access constraint from t5 to t6 even though they both access `2,

because they are not in parallel, and there is no access constraint from t5 to t3 even though they
both access `2, because neither of them writes `2. ♦

The following lemma proves that access constraints accurately determine equivalence.

Lemma 2. Two schedules R and R′ of an atomized program Q are equivalent if and only if they
have the same set of access constraints.

Proof. Forward direction. Let t1
A
→ t2 be an arbitrary access constraint of R. We shall show that R′

also has this access constraint. Conditions 1 and 2 in Definition 6 do not depend on the particular
schedule, so they apply to R′ as well. All that remains to be shown is condition 3, which requires
that t1 ≺R′ t2. We consider three cases.

Case 1: t1 and t2 both write `. Since t1 and t2 both write `, condition 1 in Definition 5 dictates
that if t1 ≺R t2, then it must be that t1 ≺R′ t2 as well.

Case 2: t1 writes ` and t2 only reads `. Let t3 be the last transaction before t2 to write `. It must
be the same transaction in both R and R′ because they are equivalent. If t1 = t3, then certainly
t1 ≺R′ t2. If t1 6= t3, then t1 ≺R t3, since t1 also writes ` but is not the last transaction to do
so before t2. Thus, the ordering of the three transactions in R is t1 ≺R t3 ≺R t2. Condition 1 in
Definition 5 dictates that t1 ≺R′ t3 as well, and condition 2 dictates that t3 ≺R′ t2 as well, so we
conclude that t1 ≺R′ t2.

Case 3: t1 only reads ` and t2 writes `. Let t3 be the last transaction before t1 that writes `. It
must be the same transaction in both R and R′ because they are equivalent. Thus, the ordering of
the three transactions in R is t3 ≺R t1 ≺R t2. Now, if t2 ≺R′ t1, then we must also have t2 ≺R′ t3,
because t3 is the last transaction to write ` before t1. But, having t2 ≺R′ t3 contradicts condition
1 in Definition 5, so we conclude that t1 ≺R′ t2.

Since the preceding arguments apply to any access constraint t1
A
→ t2 of R, we see that R′ has

all the access constraints of R. By a symmetrical argument, R also has all the access constraints
of R′. Thus, R and R′ must have the same set of access constraints.

Backward direction. We shall prove the contrapositive, which says that if R and R′ are not equiv-
alent, then they do not have the same set of access constraints.

If R and R′ are not equivalent due to condition 1 in Definition 5 not being satisfied, then let
t1 and t2 be transactions that both write a shared-memory location `, and such that t1 ≺R t2 and
t2 ≺R′ t1. Then, the access constraint t1

A
→ t2 exists for R but not for R′, so R and R′ do not have

the same set of access constraints.
If R and R′ are not equivalent due to condition 2 in Definition 5 not being satisfied, then let t1

be a transaction that reads a shared-memory location `, but for which the previous transaction to
write ` was t2 in R and t3 in R′. We consider three possibilities. First, if t1 ≺R t3, then the access
constraint t1

A
→ t3 exists for R but not for R′. Second, if t1 ≺R′ t2, then the access constraint

t1
A
→ t2 exists for R′ but not for R. Finally, if both t2 and t3 appear before t1 in both R and R′,

then the ordering of the three transactions in R must be t3 ≺R t2 ≺R t1 (because t2 is the last
transaction to write ` before t1), while the ordering in R′ must be t2 ≺R′ t3 ≺R′ t1. But then,

t3
A
→ t2 is an access constraint that exists for R but not for R′. Thus, in all cases, R and R′ do not

have the same set of access constraints.

20



2.3 Access Interactions and Access Assignments

Ultimately, we wish to prove properties about atomized programs as a whole, and not just particular
schedules. In preparation for doing so, this section defines “access interactions”, which are the
counterpart for an atomized program Q to what access constraints are for a schedule of Q, and the
“interaction graph”, which is the counterpart to the schedule graph. Finally, this section answers
the question of which subsets of all possible access constraints of an atomized program Q can be
extended to a scheduling of Q. In doing so, it introduces “access assignments”, which represent the
link between access interactions and access constraints.

An “access interaction” of an atomized program Q is a bidirectional (symmetric) relation be-
tween two transactions of Q that share an access constraint in any schedule.

Definition 8. In an atomized program Q, an access interaction exists between transaction t1

and transaction t2, denoted t1
A

↔ t2 (or t2
A

↔ t1), if
1. t1 and t2 are in parallel in the control flow of Q, and
2. there exists a shared-memory location ` such that t1 and t2 both access `, and at least one
of them writes `.

Conditions 1 and 2 in Definition 8 are the same as conditions 1 and 2 in Definition 6. If there is
an access interaction between two transactions t1 and t2, then in any schedule R of Q, there is an
access constraint of either t1

A
→ t2 or t2

A
→ t1, depending on how t1 and t2 are ordered with respect

to each other in R.
We can view all the serialization constraints and access interactions of Q in one graph.

Definition 9. The interaction graph of an atomized program Q is the graph G = (V, EE, ET, EA),
where V is the set of transactions of Q, and the three types of edges are thread edges EE =
{(t1, t2) | t1

E
→ t2}, transaction edges ET = {(t1, t2) | t1

T
→ t2}, and access interaction edges

EA = {{t1, t2} | t1
A
↔ t2}.

In this thesis, we shall sometimes refer simply to an “access edge” when it is clear by context
whether we mean an access constraint edge or an access interaction edge.

Example. Figure 2.4 shows the interaction graph of our example program.
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Figure 2.4: The interaction graph of our example program.

The access interaction edges t1
A
↔ t4, t1

A
↔ t8, and t3

A
↔ t6 are drawn as dotted lines without arrow

heads. The reader should refer to the text following Figure 2.3 for a discussion of the shared-memory
accesses in our example program, and why certain pairs generate access edges.
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Comparing this diagram with Figure 2.3, even though the transactions are named and positioned
differently, we can see that the access constraints in Figure 2.3 are simply the access interactions
in this diagram with directions selected based on the particular schedule. ♦

Although each bidirectional access interaction of Q corresponds to an access constraint in one
direction or the other in a schedule R, not every assignment of directions to access interactions
(thus turning them into access constraints) produces a legal schedule. The final question we address
in this section is that of which subsets of all the possible access constraints can be extended to a
schedule.

Definition 10. An access assignment A of an atomized program Q is a subset of all the possible
access constraints, as indicated by the access interactions of Q. For example, if Q has an access
interaction t1

A
↔ t2, then A may contain neither, either, or both of the access constraints t1

A
→ t2

and t2
A
→ t1. We say that an access assignment A is realizable if there exists a schedule R of Q

such that A is a subset of the access constraints of R. In such a case, we say that R realizes A.

We can view an access assignment A of an atomized program Q, along with the serialization
constraints of Q, as a graph.

Definition 11. The assignment graph of an access assignment A of an atomized program Q

is the graph G = (V, EE, ET, A), where V is the set of transactions, and the three types of edges

are thread edges EE = {(t1, t2) | t1
E
→ t2}, transaction edges ET = {(t1, t2) | t1

T
→ t2}, and access

interaction edges from A.

Example. According to Figure 2.4, the set of all possible access constraints for our example pro-
gram is {(t1, t4), (t4, t1), (t1, t8), (t8, t1), (t3, t6), (t6, t3)}. Any subset of this set constitutes an access
assignment of our example program. One particular access assignment is {(t1, t4), (t6, t3)}. Its
assignment graph is shown in Figure 2.5. ♦
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Figure 2.5: The assignment graph of one particular access assignment.

Now we may answer the question of which access assignments are realizable.

Lemma 3. An access assignment A of an atomized program Q is realizable if and only if its
assignment graph G does not contain any cycles.

Proof. Forward direction. We shall prove the contrapositive, which says that if G contains a
cycle, then A is not realizable. Let the cycle in G be t0

?
→ t1

?
→ · · ·

?
→ tk−1

?
→ t0, where each
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pair of consecutive transactions has a constraint between them of one of the three types (thread,
transaction, access). Since G is a subgraph of the schedule graph of any schedule R that realizes
A, any such schedule R must also satisfy all the constraints in the cycle. In particular, we must
have t0 ≺R t1 ≺R · · · ≺R tk−1 ≺R t0, which is impossible since t0 cannot precede itself in R.

Backward direction. If G does not contain any cycles, then we can construct a schedule R that
realizes A using a topological-sort algorithm (for example, see [6], pages 549–551).
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Chapter 3

The Definition of a Data Race

This chapter defines a data race in the transactions-everywhere environment and proves conditions
for the existence of a data race. Section 3.1 first discusses the difference between data-race detection
in the transactions-everywhere setting and in the conventional locks setting. This discussion leads
us to the definition of a data race in the transactions-everywhere methodology. The definition is
based on the basic assumption of “correct parallelization”, which informally says that the target
program’s spawn-and-sync structure is correct. This assumption is made in the same spirit as
the assumption that underlies the conventional definition of a data race. Section 3.2 proceeds
to determine necessary and sufficient conditions (collectively called a “race assignment”) for an
atomized program to contain a data race. These conditions are easier to work with than the
primitive definition of a data race, and they find their application in Chapters 4–5.

3.1 Discussion and Definition

This section establishes the definition of a data race in the transactions-everywhere methodology.
We begin by discussing why the conventional definition of a data race does not make sense when
using transactions everywhere, especially when the transactions are automatically generated. We
then explore the primary assumption behind the conventional definition, and develop an assump-
tion, called “correct parallelization”, that can be made in the same spirit (albeit weaker) when
using transactions everywhere. It turns out that this assumption is difficult to apply directly, so
this section uses it to prove that the atomic-threads atomization of the target program is guaranteed
to be correct. This last fact serves as the basis for the definition of a data race.

Detecting data races in the transactions-everywhere setting is much different than the corre-
sponding task in the conventional locks setting. Conventional data-race detectors find places in a
parallel program where two concurrent threads access the same memory location without holding
a common lock, and at least one of the accesses is a write. If the same algorithm were used on an
atomized program, it would report no data races. The reason is that using transactions is logically
equivalent to using a single global lock, and using transactions everywhere is analogous to executing
all instructions, in particular all memory accesses, while holding the common global lock.

The absence of conventional data races does not ensure that an atomization is guaranteed to
be accurate. From the point of view of data-race detection, the key difference between locks and
transactions everywhere is that locks carry the programmer’s certification of correctness. Locks do
not actually eliminate data races, because the locked sections can still be scheduled in different ways
that lead to different answers. Rather, locks carry the assertion that the programmer has thought
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about all the possible orderings of the sections protected by the same lock, and has concluded that
there is no error, even though the possibility for nondeterminism exists.

Since transactions everywhere do not carry any certification by the programmer (especially
when they are automatically generated), it would seem that all potential data-race errors must
still be reported, leading to the same amount of thinking required of the programmer as when
using locks. This reasoning is incorrect, however. If we make just one basic assumption about
the programmer’s understanding of the program, then we can avoid reporting many data races,
because they most likely do not lead to errors.

The basic assumption we make is that the program has “correct parallelization”, which infor-
mally says that the program’s spawn-and-sync structure, as the programmer has written it, does
not need to be changed to make the program correct. The only thing that may need to be adjusted
is the atomization.

Definition 12. We say a program has correct parallelization if there exists some atomization
of the program such that all of its possible schedules exhibit correct behavior, as determined by
the programmer’s intent.

Because our definition is based on the programmer’s intent, it does not require the atomized
program to behave deterministically, either internally or externally (see [33] for definitions of these
terms). However, we do restrict the meaning of correct behavior to eliminate efficiency concerns
due to differences in atomization or schedule.

The assumption that a program has correct parallelization is made in the same spirit as the
assumption made by conventional data-race detectors that concurrent memory accesses with a com-
mon lock are safe. In the locks environment, the assumption is that the programmer thought about
correctness when he or she used the functions Cilk_lock and Cilk_unlock. In the transactions-
everywhere environment, the assumption is that the programmer thought about correctness when
he or she used the keywords spawn and sync.

The assumption of correct parallelization is difficult to use directly, because while it promises
the existence of a correct atomization, it gives us no information about what that atomization
may be. In order to check whether a given atomization is correct, we wish to be able to compare
it against something concrete that we know to be correct. Such a standard is provided by the
following theorem.

Theorem 4. If a program P has correct parallelization, then the atomic-threads atomization Q∗ of
P is guaranteed to be correct.

Proof. Since P has correct parallelization, there exists some atomized version Q of P such that
all schedules of Q exhibit correct behavior. It suffices for us to show that every schedule of Q∗ is
equivalent to some schedule of Q, because then the possible behaviors of Q∗ would be a subset of
the possible behaviors of Q, all of which we know to be correct.

We map a schedule R∗ of Q∗ into an equivalent schedule R of Q simply by dividing each thread
in R∗ into its constituent transactions in Q, while keeping all the instructions in their original
order. Since R∗ and R represent executions of the same instructions in the same order, they are
equivalent. We also need to check that R is a legal schedule of Q. Since R∗ is a legal schedule of Q∗,
it satisfies all the thread constraints of Q∗, which are the same as those of Q, so R satisfies the thread
constraints of Q. Also, since each thread of R∗ is divided into transactions of Q without changing
the order of those constituent transactions in Q, we see that R also satisfies all the transaction
constraints of Q.
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Theorem 4 gives us an important tool with which to build a race detector. Given a program
with correct parallelization, we always know of one concrete atomization that is guaranteed to be
correct (albeit possibly inefficient). Our strategy shall be to have the data-race detector check
whether all the possible behaviors of a given atomization of a program are also possible behaviors
of the atomic-threads atomization of the same program.

Definition 13. In the transactions-everywhere methodology, let P be a program with correct
parallelization, let Q be an atomized program derived from P , and let Q∗ be the atomic-threads
atomization of P . We say Q contains a data race if there exists a schedule of Q that is not
equivalent to any schedule of Q∗.

Just as data races in the conventional locks setting are not necessarily errors, data races in the
transactions-everywhere setting are also not always errors. Instead, we can consider Definition 13
to be a good heuristic for when to report a possible data-race error.

3.2 Race Assignments

This section identifies conditions under which an atomized program contains a data race, in hopes
of developing efficient algorithms to search for these conditions. We first determine conditions
(collectively named a “thread cycle”) for when a particular schedule of an atomized program causes
a data race. Then, we extend this result to find conditions (collectively named a “race assignment”)
for when an atomized program contains a data race.

Our first step is to determine conditions for when a particular schedule causes a data race.
Consider a schedule R of an atomization Q of a program P , whose atomic-threads atomization is
Q∗. Since we want to know whether R is equivalent to some schedule of Q∗, we can think of the
access constraints of R as inducing an access assignment A on Q∗. Remember that the transactions
of Q∗ are just the threads of P .

Definition 14. The induced access assignment by R on Q∗ is the access assignment A of Q∗

that contains an access constraint e1
A
→ e2 whenever there exists an access constraint t1

A
→ t2 in R

from some transaction t1 in thread e1 to some transaction t2 in thread e2.

Example. Recall our example schedule from the Figure 2.2 and its schedule graph from Figure
2.3. The induced access assignment by this schedule on the atomic-threads version of our example
program is shown in Figure 3.1.

1-2-3

0

6

94-5 7-8

Figure 3.1: The induced access assignment by our example schedule from Figure 2.2.
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The transactions of the atomic-threads atomization are simply the threads of the program. Each
access constraint edge between two transactions in Figure 2.3 translates into an access constraint
edge between those transactions’ respective threads in Figure 3.1. Although our example does not
show it, the reader should note that if a schedule graph were to contain multiple access constraint
edges from transactions belonging to one thread to transactions belonging to another thread, then
all those access constraint edges would collapse into one access constraint edge between the two
threads in the assignment graph of the induced access assignment. ♦

The following lemma ties the concept of the induced access assignment to our problem. In the
following proof, we extend our “≺R” notation for transaction precedence in a schedule R in the
natural way to denote instruction precedence in R as well.

Lemma 5. Let R be a schedule of an atomization Q of a program P , whose atomic-threads at-
omization is Q∗. Then, R is equivalent to some schedule of Q∗ if and only if the induced access
assignment A by R on Q∗ is realizable.

Proof. Forward direction. Let R∗ be a schedule of Q∗ that is equivalent to R. We shall prove that
R∗ realizes A. Let e1

A
→ e2 be any access constraint in A. We need to show that e1 ≺R∗ e2, so

that R∗ also has e1
A
→ e2 as an access constraint. Definition 14 implies that an access constraint

t1
A
→ t2 exists in R from some transaction t1 in thread e1 to some transaction t2 in thread e2.

Then, Definition 6 implies that t1 and t2 both access a shared-memory location `, and at least one
of them writes `. We consider three cases.

Case 1: t1 and t2 both write `. Let I1 and I2 be instructions in t1 and t2, respectively, that write
`. We know that I1 ≺R I2. Now, if e2 ≺R∗ e1, then we would have I2 ≺R∗ I1, causing R and R∗

not to be equivalent, which is a contradiction. Thus, we must have e1 ≺R∗ e2.

Case 2: t1 writes ` and t2 only reads `. Let I1 be an instruction in t1 that writes `, and let I2 be
an instruction in t2 that reads `. Furthermore, let I be the last instruction before I2 that writes `.
We know that I1 ≺R I because I1 also writes ` but is not the last instruction before I2 to do so.
Now, if e2 ≺R∗ e1, then we would have I ≺R∗ I1, causing R and R∗ not to be equivalent, which is
a contradiction. Thus, we must have e1 ≺R∗ e2.

Case 3: t1 only reads ` and t2 writes `. Let I1 be an instruction in t1 that reads `, and let I2 be
an instruction in t2 that writes `. Furthermore, let I be the last instruction before I1 that writes
`. We know that I ≺R I2 because I ≺R I1 and I1 ≺R I2. Now, if e2 ≺R∗ e1, then we would have
I2 ≺R∗ I, causing R and R∗ not to be equivalent, which is a contradiction. Thus, we must have
e1 ≺R∗ e2.

Since the preceding arguments apply to any access constraint t1
A
→ t2 in A, we conclude that

R∗ has all the access constraints of A, which proves that R∗ indeed realizes A.

Backward direction. Let R∗ be a schedule of Q∗ that realizes A. We shall prove that R is equivalent
to R∗. First, construct a schedule R′ of Q by dividing up the threads of R∗ into their constituent
transactions in Q, while maintaining the same order for all the instructions. Then, R′ satisfies the
thread constraints of Q because they are the same as those for Q∗, and R′ satisfies the transaction
constraints of Q because the threads in R∗ are divided up without any reordering of the transactions.
Thus, R′ is a legal schedule of Q.

Now, we show that R is equivalent to R′, which in turn is equivalent to R∗. That R′ and R∗

are equivalent follows from the fact that both represent executions of the same instructions in the
same order. To show that R and R′ are equivalent, consider any access constraint t1

A
→ t2 of R. Let

t1 belong to thread e1 and t2 belong to thread e2. By Definition 14, R∗ must have e1
A
→ e2 as an
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access constraint, which means that we must have e1 ≺R∗ e2. Then, because R′ is derived from R∗

without any reordering of instructions, it must be true that in R′, all the transactions of e1 appear
consecutively before all the transactions of e2 appear consecutively. In particular, t1 ≺R′ t2, so that
R′ also has t1

A
→ t2 as an access constraint. Since this reasoning applies to any access constraint of

R, we see that R′ must have all the access constraints of R. In addition, R′ cannot have any other
access constraints, because the number of access constraints for a schedule of Q is constant (equal
to the number of access interactions of Q). Thus, R and R′ have the same set of access constraints,
and by Lemma 2, they must therefore be equivalent.

The following definition and lemma restate the result in Lemma 5 without reference to the
induced access assignment.

Definition 15. A thread cycle in a schedule graph, interaction graph, or assignment graph is a
series of pairs of transactions

〈

(t0, t
′

1), (t1, t
′

2), . . . , (tk−2, t
′

k−1), (tk−1, t
′

0)
〉

such that

1. for each i ∈ {0, . . . , k − 1}, there is a thread or access edge from ti to t′i+1, where index
arithmetic is performed modulo k, and

2. for each i ∈ {0, . . . , k − 1}, t′i and ti belong to the same thread (and may be the same
transaction).

Example. Recall the example access assignment {(t1, t4), (t6, t3)} of our example program, and its
assignment graph from Figure 2.5. This assignment graph contains the thread cycle 〈(t1, t4), (t5, t6),
(t6, t3)〉, which is shown in Figure 3.2. Note that each pair of transactions in the thread cycle

represents either a thread or access constraint edge (t1
A
→ t4, t5

E
→ t6, t6

A
→ t3). Also, note that

the second transaction of one pair and the first transaction of the next pair are in the same thread
(t4 and t5, t6 and t6, t3 and t1). ♦
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Figure 3.2: A thread cycle in the assignment graph from Figure 2.5.

Lemma 6. Let G be the schedule graph of a schedule R of an atomization Q of a program P . Then,
R is equivalent to some schedule of the atomic-threads atomization of P if and only if G does not
contain any thread cycles.

Proof. Let Q∗ be the atomic-threads atomization of P . Lemma 5 tells us that R is equivalent
to some schedule of Q∗ if and only if the induced access assignment A by R on Q∗ is realizable.
Furthermore, by Lemma 3, we know that A is realizable if and only if its assignment graph GA

does not contain any cycles. Thus, all we need to prove is that GA does not contain any cycles if
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and only if G does not contain any thread cycles, or equivalently, that GA contains a cycle if and
only if G contains a thread cycle.

Below, we prove that GA contains a cycle if and only if G contains a thread cycle.

Forward direction. If GA contains a cycle c, then c is of the form e0
?
→ e1

?
→ · · ·

?
→ ek−1

?
→ e0, where

any two consecutive threads are connected by either a thread constraint or an access constraint
(there are no transaction constraints in the atomic-threads atomization). For every thread edge

ei
E
→ ei+1 in c, there is a corresponding thread edge ti

E
→ t′i+1 in G, where ti is the last transaction

of ei and t′i+1 is the first transaction of ei+1. The reason is that Q and Q∗, both being atomizations
of the same program P , have the same thread constraints. Also, for every access constraint edge
ei

A
→ ei+1 in c, Definition 14 guarantees the existence of an access constraint edge ti

A
→ t′i+1

in G such that ti belongs to ei and t′i+1 belongs to ei+1. Thus, G contains the thread cycle
C =

〈

(t0, t
′

1), (t1, t
′

2), . . . , (tk−2, t
′

k−1), (tk−1, t
′

0)
〉

.

Backward direction. If G contains a thread cycle C, then let C = 〈(t0, t
′

1), (t1, t
′

2), . . . , (tk−2, t
′

k−1),
(tk−1, t

′

0)〉, and furthermore, let ei denote the thread containing t′i and ti for each i. For every

thread edge ti
E
→ t′i+1 in c, there is a corresponding thread edge ei

E
→ ei+1 in GA. The reason is

that Q and Q∗, both being atomizations of the same program P , have the same thread constraints.
Also, for every access constraint edge ti

A
→ t′i+1 in C, Definition 14 tells us that there is a resulting

access constraint edge ei
A
→ ei+1 in GA. Thus, GA contains a cycle c of the form e0

?
→ e1

?
→ · · ·

?
→

ek−1
?
→ e0, where any two consecutive threads are connected by either a thread constraint or an

access constraint.

With Lemma 6, we are ready to extend our analysis from schedules to atomized programs. We
can now derive exact conditions for when an atomized program contains a data race.

Definition 16. A race assignment A of an atomized program Q is an access assignment of Q

whose assignment graph contains a thread cycle but does not contain any cycles.

Example. Once again, recall the example access assignment {(t1, t4), (t6, t3)} of our example pro-
gram, and its assignment graph from Figure 2.5. The previous example showed that this assignment
graph contains a thread cycle. When we examine Figure 2.5, however, we find that it does not
contain any cycles. Therefore, the example access assignment {(t1, t4), (t6, t3)} is in fact a race
assignment of our example program. ♦

The following theorem shows that the existence of a race assignment is a necessary and sufficient
condition for the existence of a data race in an atomized program.

Theorem 7. An atomized program contains a data race if and only if it has a race assignment.

Proof. Throughout this proof, let Q be the atomized program referred to by the theorem, and let
Q∗ be the atomic-threads atomization of the program that Q is derived from.

Forward direction. If Q contains a data race, then by Definition 13, there exists a schedule R of Q

that is not equivalent to any schedule of Q∗. Then by Lemma 6, the schedule graph G of R must
contain a thread cycle. Let A be the set of access constraint edges appearing in one thread cycle. I
claim that A is a race assignment of Q. The condition that the assignment graph GA of A contain
a thread cycle is satisfied by construction (we picked the elements of A to make the cycle). Also,
we know that A is realizable (by R), which by Lemma 3 tells us that GA does not contain any
cycles, so this condition is satisfied as well.
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Backward direction. Let A be a race assignment of Q, and let GA be its assignment graph. Since
A does not contain any cycles, we know by Lemma 3 that it is realizable. Let R be a schedule of
Q that realizes A, and let G be the schedule graph of R. Since R realizes A, we know that G is a
supergraph of GA, which implies that G also contains the thread cycle that exists in GA. Finally,
by Lemma 6, we deduce that R is not equivalent to any schedule of Q∗, from which we conclude
that Q contains a data race.
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Chapter 4

NP-Completeness of Data-Race

Detection

This chapter gives strong evidence that dynamic data-race detection in the transactions-everywhere
methodology is intractable in general. It proves that even given the interaction graph of the target
atomized program, searching for data races is an NP-complete problem in general1. In particular,
the NP-hardness of data-race detection is proved via a polynomial-time reduction from the problem
of 3cnf-formula satisfiability (3SAT ) to the problem of data-race detection.

Since the proof is long, it is divided up into four sections. The presentation follows a top-down
approach. Section 4.1 is an outline of the complete proof. It references definitions and lemmas in
Sections 4.2–4.4 to fill in major parts of the proof.

In order to understand this chapter, the reader should be familiar with the theory of NP-
completeness and the problem of 3cnf-formula satisfiability. For a good treatment of these topics,
see [37], Sections 7.1–7.4 (pages 225–260).

4.1 Proof Outline

There are two parts to proving the NP-completeness of data-race detection. The first part, proving
that the problem of data-race detection belongs in NP, is done in this section. The second part,
proving that all problems in NP are polynomial-time reducible to the problem of data-race detection,
is outlined in this section, with the bulk of the work to be filled in by Sections 4.2–4.4.

Following standard practice, we first state our problem as a “language” in the computability
and complexity sense. The language for our problem is

DATARACE = {G | G is the interaction graph of an atomized

program Q that contains a data race.}

We do not worry about the exact details of how G is encoded, as any reasonable encoding (having
length polynomial in the number of vertices and edges of G) suffices for the purpose of proving
NP-completeness.

Here is the main theorem of this chapter and its proof outline.

1This chapter does not discuss the obvious problem of a given target program never halting, and thus the dynamic
data-race detector never halting. This problem is shared by all data-race detectors that need to run the target
program to completion. It is a well documented fact that the halting problem is undecidable (for example, see [37],
pages 172–173), and so dynamic data-race detection is indeed intractable in this sense.
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Theorem 8. DATARACE is NP-complete.

Proof. First, we apply Theorem 7 from the previous chapter to redescribe the set DATARACE in
a form that is easier to work with. Theorem 7 tells us that an atomized program Q contains a data
race if and only if it has a race assignment. Consequently, we can write

DATARACE = {G | G is the interaction graph of an atomized

program Q that has a race assignment.}

Recall that a race assignment A is an access assignment whose assignment graph GA (which is a
subgraph of G) contains a thread cycle but does not contain any cycles. We shall use this definition
of DATARACE for the remainder of this proof. We shall talk in terms of the existence of a race
assignment instead of the existence of a data race.

Now, there are two required conditions for DATARACE to be NP-complete.

Part 1: DATARACE ∈ NP.

We shall describe a verifier V for checking that a given graph G belongs in DATARACE . If
G ∈ DATARACE , then its program Q has a race assignment. Let A be a minimal race assignment
of Q, by which we mean that no proper subset of A constitutes a race assignment. Furthermore,
let the assignment graph of A be GA. By Definition 16, GA must contain a thread cycle. Let C

be a shortest thread cycle in GA. We shall use this thread cycle C as the certificate for G in the
input to V . Note that if A is minimal, then any thread cycle in the assignment graph of A must
contain all the elements of A as access constraint edges, for otherwise, only those access constraint
edges that appear in one thread cycle would constitute a race assignment smaller than A. Thus,
A is simply the set of all access constraint edges in C, meaning that when we provide C to V , we
are also implicitly providing A to V .

The thread cycle C cannot visit the same thread twice, because if it did visit some thread
e twice, then we can obtain a shorter thread cycle by removing the portion of C from the first
occurrence of e to the last occurrence of e, which would contradict the fact that C is a shortest
thread cycle in GA. Consequently, the size of our certificate C is polynomial (in fact at most linear)
in the size of G.

The verifier V checks whether G ∈ DATARACE using the following steps2:

1. Extract A from C by selecting all the access constraint edges.
2. Check that A is a subset of the possible access constraint edges, as defined by the access
interaction edges in G.

3. Combine A and G to compute GA.
4. Check that all the edges of C are contained in GA.
5. Check that C is a thread cycle.
6. Check that GA does not contain any cycles (for example, by running a depth-first search
from the first vertex of GA).

If all the checks pass, then V declares G ∈ DATARACE . Note that each of these steps can be
completed in polynomial time in the sizes of G and C.

If the interaction graph G of an atomized program Q indeed belongs in DATARACE , then by
the reasoning in the first paragraph, we see that there exists a certificate C which would prove to
V that G ∈ DATARACE . On the other hand, if V accepts an input G and C, then there must

2In our problem context, the verifier V does not need to check that G is a valid interaction graph (although this
can be done in polynomial time if desired), because we are only concerned with graphs G that are generated from
the completed execution of some atomized program Q.
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exist a race assignment A of Q (V actually computes it and checks that it meets the conditions for
a race assignment), and so G ∈ DATARACE . This reasoning shows that V is a valid verifier for
DATARACE .

Since there exists a verifier that checks membership in DATARACE in polynomial time using
a polynomial-size certificate, we conclude that DATARACE ∈ NP.

Part 2: All languages in NP are polynomial-time reducible to DATARACE.
We shall exhibit a polynomial-time reduction from 3SAT to DATARACE . Such a reduction

suffices to prove that all languages in NP are polynomial-time reducible to DATARACE because
it is already known that the same fact is true for 3SAT .

The mapping reduction that we use is the function F to be defined in Section 4.2. This function
can be computed in polynomial time in the size of the input using the steps laid out in Section 4.2.
Now let φ be any 3cnf boolean formula, let G = F (φ), and let Q be any atomized program having
G as its interaction graph. In order to show that F is a mapping reduction, we need to prove that
φ has a satisfying assignment if and only if Q has a race assignment.

Forward direction. This direction is proved by Theorem 9 of Section 4.3.

Backward direction. This direction is proved by Theorem 13 of Section 4.4.

4.2 Reduction Function

This section defines a function F from the set of 3cnf boolean formulas to the set of interaction
graphs of atomized programs. We define F by describing a procedure for taking a 3cnf formula φ

and constructing the corresponding interaction graph G = F (φ).
At various points in our construction, we shall be spawning an arbitrary number of paths

(function instances) from a single vertex (transaction), as illustrated in Figure 4.1(a), where a
parent vertex labeled “P” spawns multiple child vertices labeled “C”.

(a) (b)

P

C

C

C

C

P C

C

C

C

Figure 4.1: The meaning of having one parent vertex spawn multiple child vertices.

However, Cilk allows only one function instance to be spawned at a time. Thus, when our
construction calls for the behavior in Figure 4.1(a), what we shall mean is that a loop is used
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to spawn off one child in each iteration. The resulting graph (including the vertices that would
otherwise be hidden) is shown in Figure 4.1(b).

Now we are ready to discuss the process for constructing the interaction graph G = F (φ) from
the 3cnf boolean formula φ.

Step 1. Before looking at the formula φ, we first begin the construction of the graph G with a
base configuration of five vertices, as shown in Figure 4.2. (We continue our practice from previous
chapters of labeling vertices with their transaction subscripts.) The base configuration includes the
first transaction tf and last transaction tg of G. There are also two paths from tf to tg, one going
through a thread with two transactions tp followed by tr, and the other going through a thread
with one transaction tq.

q

g

rp

f

Figure 4.2: The base configuration.

Later in the construction, we shall add more vertices to G in other paths going from tf to tg.
However, the thread containing tp and tr shall remain the only thread in G that consists of more
than one transaction.

Step 2. Now, we look at the formula φ. Let the variables of φ be x1, . . . , xm. For each variable
xi, we add a pair of “variable vertices” txi

and txi
to G, representing the two literals of xi.

Let the clauses of φ be y1, . . . , yn. We shall refer to the literal positions within φ by the clause
number followed by one of the letters a (first), b (second), or c (third). For example, literal position
2c refers to the third literal position in clause y2. For each clause yj , we add three “clause vertices”
tja, tjb, and tjc to G, representing the three literal positions in yj .

Example. Consider the example 3cnf formula

φex = (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x3).

Since its variables are x1, x2, and x3, the variable vertices added to Gex = F (φex ) are tx1
, tx1

, tx2
,

tx2
, tx3

, and tx3
. Since it has three clauses, the clause vertices added to Gex are t1a, t1b, t1c, t2a,

t2b, t2c, t3a, t3b, and t3c. We shall continue to use this example throughout the remainder of our
construction. ♦

Step 3. For each literal xi (or xi), we use a “gadget” to connect together the variable vertex txi
(or

txi
) with the clause vertices that represent the literal positions in φ that hold xi (or xi). The goal

is to make sure that all the clause vertices appear in parallel, and that they are all direct ancestors
of txi

(or txi
). We consider three cases.

In the general case, if a literal xi (or xi) appears in two or more literal positions in φ, then the
gadget we use consists of a helper vertex, the variable vertex txi

(or txi
), and all the clause vertices
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that represent literal positions that hold xi (or xi). The connections are simple. The helper vertex
spawns off all the clause vertices in parallel, and then they are all synced at txi

(or txi
).

Example. Figure 4.3 shows the gadget for the literal x2 in our example formula φex . This literal
appears in literal positions 1b, 1c, and 2b. Therefore, in the gadget for x2, a helper vertex (unlabeled)
spawns the clause vertices t1b, t1c, and t2b in parallel, and then these three vertices are subsequently
synced at tx2

. ♦

x 2

1b

1c

2b

Figure 4.3: The gadget for x2, which demonstrates the general case.

There are two special cases for our gadget. If a literal xi (or xi) only appears in one literal
position in φ, then we cannot simply have a helper vertex that spawns the single clause vertex,
because each spawn must create at least two children. Instead, we let a helper vertex spawn the
clause vertex and a dummy vertex, which are then synced together at txi

(or txi
). Finally, if a

literal xi (or xi) does not appear in φ at all, then no helper vertex is needed, and the whole gadget
for xi (or xi) consists only of the single vertex txi

(or txi
).

Example. Figure 4.4(a) shows the gadget for the literal x1 in our example formula φex , which only
appears in literal position 2a. Since the literal appears in only one literal position, a dummy vertex
is placed in parallel with the single clause vertex. The helper and dummy vertices are unlabeled.
Figure 4.4(b) shows the gadget for the literal x2 in φex , which does not appear in any literal
positions. ♦

(a) (b)

x 2x 1

2a

Figure 4.4: The gadgets for x1 and x2, which demonstrate the special cases.

Step 4. Next, we connect the gadgets for each of the literals to the base configuration from Step
1. The connections are simple. Each gadget receives its own path from the first vertex tf to the
last vertex tg. Thus, all the gadgets appear in parallel in G. This step completes the serialization
subgraph of G.

Example. Figure 4.5 shows the serialization subgraph of Gex = F (φex ). In addition to the two
paths from the base configuration, there is a path from tf to tg for each of the six gadgets. ♦
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1a

2a
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x 2

x 1

3a

1b

x 3

1c

3c

2c

q

x 2

x 1

x 3

2b

3b

Figure 4.5: The serialization subgraph of Gex .
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Step 5. Finally, we add to G the following access interaction edges:

1. tp is connected to both of tx1
and tx1

.
2. For each i ∈ {1, . . . , m − 1}, both of txi

and txi
are connected to both of txi+1

and txi+1
.

3. tq is connected to both of txm
and txm

.
4. tq is connected to all three of tna, tnb, and tnc.
5. For each j ∈ {1, . . . , n − 1}, all three of tja, tjb, and tjc are connected to all three of t(j+1)a,

t(j+1)b, and t(j+1)c.
6. tr is connected to all three of t1a, t1b, and t1c.

This completes the construction of G.

Example. Figure 4.6 shows the access interaction edges3 in Gex = F (φex ). Following the rules laid
out in Step 5, tp is connected to both of tx1

and tx1
, both of which are connected to both of tx2

and
tx2

, both of which are connected to both of tx3
and tx3

, both of which are connected to tq, which
is connected to all three of t3a, t3b, and t3c, all of which are connected to all three of t2a, t2b, and
t2c, all of which are connected to all three of t1a, t1b, and t1c, all of which are connected to tr. ♦

p r

3a 3b 3c x 1 x 1

x 2x 22c2b2a

q

1a 1b 1c x 3x 3

Figure 4.6: The access interaction edges in Gex .

3For clarity in this diagram, we omit the serialization edges.
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4.3 Forward Direction

This section proves the forward direction in our reduction from 3SAT to DATARACE .
In this section, let F be the function defined in Section 4.2, let φ be any 3cnf boolean formula,

let G = F (φ), and let Q be any atomized program having G as its interaction graph.

Theorem 9. If φ has a satisfying assignment, then Q has a race assignment.

Proof. If φ has a satisfying assignment, then let α be such an assignment. We shall construct a
race assignment A for Q. The set A consists of all the edges in a thread cycle C (comprising only
access constraint edges) selected from G according to the race assignment α.

Let the variables of φ be x1, . . . , xm, and let its clauses be y1, . . . , yn. Without reference to α,
the form of C is as follows. It begins at tp, then goes to either tx1

or tx1
, then goes to either tx2

or
tx2

, then continues on in this fashion until it reaches either txm
or txm

, then goes to tq, then goes
to one of tna, tnb, or tnc, then goes to one of t(n−1)a, t(n−1)b, or t(n−1)c, then continues on in this
fashion until it reaches one of t1a, t1b, or t1c, then finishes by going to tr.

Notice that for each variable xi, C goes through exactly one of txi
or txi

. We select which one
according to α as follows. If xi = false in α, then we let C go through txi

; otherwise (xi = true),
we let C go through txi

.
Similarly, notice that for each clause yj , C goes through exactly one of tja, tjb, or tjc. We select

which one according to α as follows. Since α is a satisfying assignment, every clause in φ must be
satisfied under α. In particular, for clause yj , at least one of the three literals in positions ja, jb,
and jc must be true. We let C go through a clause vertex that corresponds to a literal position
whose literal is true in α. If more than one literal position meets this condition, then we select
arbitrarily among them. This completes the selection of C.

Recall that A is simply the set of all edges in C. We shall now prove that A is indeed a race
assignment of Q. Certainly the assignment graph GA of A contains a thread cycle, because by
construction it contains the thread cycle C. All that remains is to prove that GA does not contain
any cycles.

q

g

rp

f

Vd

Vh VvVc

Figure 4.7: The abstracted structure of GA.

Let Vv, Vc, Vh, and Vd be the sets of variable vertices, clause vertices, helper vertices, and
dummy vertices in GA, respectively. Figure 4.7 shows the abstracted structure of GA, with these
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four sets drawn as larger circles. An edge is drawn from one set to another if that type of edge
exists from some member of the first set to some member of the second set. We shall use Figure
4.7 to aid in proving that GA does not contain any cycles.

We shall exhaustively eliminate all possibilities for the existence of a cycle in GA. First, consider
the possibility of a cycle that resides completely within Vv. We note that the vertices in Vv are
connected only by the access constraint edges in A. Furthermore, according to the form of C, the
access constraint edges in Vv form a path going from either tx1

or tx1
to either txm

or txm
that never

revisits a vertex. Thus, a cycle cannot exist that resides completely in Vv. A similar argument
shows that a cycle cannot exist that resides completely in Vc. Also, a cycle cannot exist that resides
completely within Vh or Vd, because there are no edges connecting two members of either of these
two sets.

We now know that if there is a cycle in GA, then it must traverse the edges shown in Figure
4.7. In this graph, the only nontrivial strongly connected component is the subgraph containing
Vc, Vv, and tq, shown in Figure 4.8. Thus, this subgraph is the only possible form of a cycle in GA.

q

VvVc

Figure 4.8: The only possible form of a cycle in GA.

For the purpose of deriving a contradiction, assume that a cycle does exist in the form of Figure
4.8. Then, this cycle must contain a thread edge from a vertex tja, tjb, or tjc in Vc to a vertex txi

or txi
in Vv. Without loss of generality, assume that the edge is from a vertex tja to a vertex txi

(the argument is the same for the other cases).

First, note that for tja and txi
to be part of the cycle, they both must also be incident on access

constraint edges in GA, which means that they both must have been vertices that we selected for
inclusion in C. Since we selected tja for inclusion in C, the literal in position ja in φ must be true

in α. Moreover, since a thread edge exists from tja to txi
, we know from the definition of F that xi

is in fact the literal in position ja, and so we find that xi = true in α. On the other hand, since
we selected txi

for inclusion in C, we know that xi = false in α. This contradiction means that a
cycle cannot exist in the form of Figure 4.8.

We have now eliminated all possibilities for a cycle in GA. Since GA contains the thread cycle
C but does not contain any cycles, we conclude that A is indeed a race assignment for Q.

4.4 Backward Direction

This section proves the backward direction in our reduction from 3SAT to DATARACE .

In this section, let F be the function defined in Section 4.2, let φ be any 3cnf boolean formula,
let G = F (φ), and let Q be any atomized program having G as its interaction graph.
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Lemma 10. If Q has a race assignment A with assignment graph GA, then any thread cycle C

in GA must be of the form
〈

. . . , (ti−1, tr), (tp, t
′

i+1), . . .
〉

. That is, C must go through the thread
containing tp and tr, and furthermore it must be that tr is the end of one edge in C and tp is the
start of the next edge in C.

Proof. Let epr be the thread containing tp and tr. By the definition of F , every thread other than
epr in GA consists of only a single transaction. If C does not go through epr, or if C uses only one
of the two transactions tp and tr whenever it visits epr, then the edges of C form a (transaction)
cycle in GA, which contradicts the fact that A is a race assignment. Thus, C must go through epr,
and must use both transactions tp and tr. Furthermore, suppose that when C goes through epr,
it is always the case that tp is the end of one edge in C and tr is the start of the next edge in C.

Then, the edges of C combined with the transaction edge tp
T
→ tr form a cycle in GA, which again

contradicts the fact that A is a race assignment. Thus, when C goes through epr, it must be that
tr is the end of one edge in C and tp is the start of the next edge in C.

Using what we learned from Lemma 10, and because thread cycles can be written down with
any edge as the starting point, we shall from now on consider any thread cycle contained in the
assignment graph of a race assignment of Q to have the form 〈(tp, t

′

1), . . . , (tk−1, tr)〉. That is, we
shall consider any such thread cycle to start at tp and end at tr.

Also, from now on, let Vv, Vc, Vh, and Vd denote the sets of variable vertices, clause vertices,
helper vertices, and dummy vertices in G, respectively. Figure 4.9 shows the abstracted structure
of the thread and access edges in G, with these four sets drawn as larger circles. An edge is drawn
from one set to another if that type of edge exists from some member of the first set to some
member of the second set. We shall use Figure 4.9 to aid in the following proofs.

q
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f

Vd

Vh VvVc

Figure 4.9: The abstracted structure of the thread and access edges in G.

Lemma 11. If Q has a race assignment A with assignment graph GA, then any shortest thread
cycle C in GA must start at tp, then go to Vv, then go to tq, then go to Vc, then end at tr.

Proof. We make two initial observations. The first observation is that C cannot visit the same
thread twice. The reason is that if it did visit some thread e twice, then we could obtain a shorter
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thread cycle by removing the portion of C between the first and last visits to e, which would
contradict the fact that C is a shortest thread cycle in GA.

The second observation is that, if at any point C visits a vertex in Vv, then it must visit tq at
a later point. We can see this by examining Figure 4.9, which shows the abstracted structure of
the thread and access edges in G. These are all the edges in G that can appear in a thread cycle.
As can be seen from this diagram, the only vertices that can be reached from Vv, without going
through tq, are tp and tg. However, we know by Lemma 10 (and the ensuing paragraph) that C

must end at tr, so C must go through tq at a later point in order to reach tr.
With these two observations, we are now ready to prove that C does take the path claimed.

Please refer to Figure 4.9 while reading the following steps of reasoning:
1. First, by Lemma 10 (and the ensuing paragraph), we know that C starts at tp.
2. From tp, C can only go to Vv.
3. From Vv, C can go to tp, tg, or tq.

a. If C goes to tp, then it visits tp twice, which is illegal by our first observation.
b. If C goes to tg, then it hits a dead end.
c. Thus, C must go to tq.

4. From tq, C can go to tg, Vv, or Vc.
a. If C goes to tg, then it hits a dead end.
b. If C goes to Vv, then by our second observation, it must later visit tq for a second time,

which is illegal by our first observation.
c. Thus, C must go to Vc.

5. From Vc, C can go to tq, Vv, or tr.
a. If C goes to tq, then it visits tq twice, which is illegal by our first observation.
b. If C goes to Vv, then by our second observation, it must later visit tq for a second time,

which is illegal by our first observation.
c. Thus, C must go to tr.

6. At tr, C can continue on or C can end.
a. If C continues on, then at the end it must return to tr for a second time, which is illegal

by our first observation.
b. Thus, C must end.

This proves that C must start at tp, then go to Vv, then go to tq, then go to Vc, then end at tr.

In the following lemma, we draw some corollaries from Lemma 11.

Lemma 12. If Q has a race assignment A with assignment graph GA, then for any shortest thread
cycle C in GA, the following properties hold:

1. C is composed entirely of access constraint edges,
2. for each variable xi, C goes through at least one of txi

or txi
, and

3. for each clause yj, C goes through at least one of tja, tjb, or tjc.

Proof. For the first property, we know from Lemma 11 that C must be of the form tp → Vv →
tq → Vc → tr. By the definition of F , there can only be access edges from tp to Vv, within Vv, from
Vv to tq, from tq to Vc, within Vc, and from Vc to tr.

For the second property, since C enters Vv from tp and exits to tq using only access edges, we
can deduce from Step 5 in the definition of F (see Figure 4.6) that C must go through at least one
of txi

or txi
for each xi.

Similarly, for the third property, since C enters Vc from tq and exits to tr using only access
edges, we can deduce from Step 5 in the definition of F that C must go through at least one of tja,
tjb, or tjc for each yj .
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Finally, we are ready to prove the backward direction in our reduction.

Theorem 13. If Q has a race assignment, then φ has a satisfying assignment.

Proof. If Q has a race assignment, then let A be such an assignment, let GA be the assignment
graph of A, and let C be a shortest thread cycle in GA. We shall construct a satisfying assignment
α for φ using C.

By Lemma 12, we know that for each variable xi, C must go through at least one of txi
or txi

.
If C goes through only txi

, then we set xi = false in α. If C goes through only txi
, then we set

xi = true in α. Finally, if C goes through both txi
and txi

, then we choose arbitrarily whether
xi = true or xi = false. As a result of our construction of α, if a literal xi (or xi) is false in α,
then C must go through txi

(or txi
). We shall use this key observation later.

We need to prove that this assignment α indeed satisfies φ. By Lemma 12, we know that for
each clause yj , C goes through at least one of tja, tjb, or tjc. I claim this clause vertex that C

goes through (if more than one, then select one arbitrarily) corresponds to a literal position that
holds a literal that is true in α, and thus clause yj is satisfied under α. If this claim is true, then
the theorem follows, since every clause yj would then be satisfied under α, showing that α is a
satisfying assignment for φ.

We now prove the claim. Without loss of generality, say that C goes through tja (the argument
is the same for tjb or tjc). Also without loss of generality, say that literal position ja happens
to hold a literal xi (the argument is the same for xi). For the sake of deriving a contradiction,
assume that xi = false in α. Then, by the key observation above, C must go through txi

. Thus,
we know that C goes through both txi

and tja. Combining this knowledge with Lemma 11, which
tells us that the form of C must be tp → Vv → tq → Vc → tr, we find that a portion of C must
be a (transaction) path from txi

to tja. Finally, since literal position ja holds xi, we know by the

definition of F that there is a thread edge tja
E
→ txi

. But this edge combined with the portion of
C that goes from txi

to tja forms a cycle in GA, contradicting the fact that A is a race assignment.
Thus, our assumption that xi = false in α must be incorrect. We conclude that xi = true in α

and that clause yj is indeed satisfied under α by literal xi in position ja.
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Chapter 5

An Algorithm for Approximately

Detecting Data Races

We learned in Chapter 4 that detecting data races in atomized programs is an NP-complete problem
in general. This fact leads us to search for efficient algorithms that approximately detect data races.
This chapter presents one such algorithm.

Since the complete algorithm is long, it is broken into three parts A, B, and C. Part A,
presented in Section 5.1, involves instrumentation of the target atomized program for recording its
serialization structure and shared-memory accesses. Part B, presented in Section 5.2, computes the
least common ancestors (LCA) structure [1, 35, 21] of the threads and finds the access interactions.
Part C, presented in Section 5.3, uses the information prepared in the first two parts to search for
a possible data race.

Section 5.4 states and proves an exact set of conditions under which part C of the algorithm
reports a data race, and also proves that the algorithm never reports any false negatives. Then,
it gives an intuitive explanation of the algorithm and discuss how the programmer should use the
reported information about a possible data race. Finally, it combines the analyses from Sections
5.1–5.3 to show that the total running time of the algorithm is worst-case quadratic in the size of
the target program’s interaction graph.

5.1 Part A : Serialization Structure and Shared-Memory Accesses

Part A of the algorithm involves instrumentation of the target atomized program for recording
its serialization structure and shared-memory accesses. This section first describes the variables
used in this part of the algorithm. Next, it provides pseudocode with text explanations. For ease
of understanding, the pseudocode shown is slightly inaccurate, with corrections noted afterward.
Then, this section analyzes the running time of this part of the algorithm. Finally, it gives brief
arguments about correctness.

Variables. Below is a list of all the variables used in part A, excluding local variables that are
only defined for a very small section of code. The variables are categorized into input, output,
and local variables. Within each category, the variables are further divided according to the data
they contain. Each variable in the list is accompanied by a short text description. A description
in paragraph form follows the list.

In the array lengths below, p denotes the number of function instances in the target program,
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m the number of threads, n the number of transactions, and L the number of shared-memory
locations. Correspondingly, in the algorithm, function instances are numbered 0 to p − 1, threads
numbered 0 to m− 1, transactions numbered 0 to n− 1, and shared-memory locations numbered 0
to L − 1. These letters shall denote the same quantities throughout the remainder of this chapter.
Also, the constants true, false, and none are used throughout the algorithm. Since everything is
numbered starting from 0, the constant none is defined as −1. In many situations, this definition
eliminates the need to check for none as a special case.

F Input variables: Not applicable.

F Output variables:

• information about threads:
m B number of threads
edge-e1 [ 0 .. m − 1 ] B first thread constraint
edge-e2 [ 0 .. m − 1 ] B second thread constraint

• information about transactions:
n B number of transactions
thr [ 0 .. n − 1 ] B enclosing thread
reads[ 0 .. n − 1 ] B list of memory locations read
writes[ 0 .. n − 1 ] B list of memory locations written

• information about shared-memory locations:
readers[ 0 .. L − 1 ] B list of transactions that read a location
writers[ 0 .. L − 1 ] B list of transactions that write a location

F Local variables:

• information about function instances:
pnew B next unused function instance index
parent [ 0 .. p − 1 ] B parent function instance
spawned [ 0 .. p − 1 ] B list of spawned function instances
next-tran[ 0 .. p − 1 ] B next transaction to be executed (defined when executing a

B spawned child to remember where to return to)
final-thr [ 0 .. p − 1 ] B final thread (only defined when done)

• information about threads:
mnew B next unused thread index

• information about transactions:
nnew B next unused transaction index
fun[ 0 .. n − 1 ] B enclosing function instance

• information about the current transaction:
tcurr B currently executing transaction
is-new-thread B true if current transaction is start of a new thread
reads-temp B list of memory locations read by tcurr (repeats allowed)
writes-temp B list of memory locations written by tcurr (repeats allowed)
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Since part A is the first part of the algorithm, there are no input variables from earlier parts.
The output variables that are recorded by part A for use in parts B and C are as follows.

First, part A keeps counts of the number of threads and the number of transactions in the
program, and outputs them in the variables m and n, respectively. An array thr records transaction
membership in threads, so that for each transaction t, thr [t] is the index of the thread that t belongs
to. Note that t denotes the transaction index.

The serialization graph is recorded as follows. The outgoing thread edges are stored in two
arrays edge-e1 and edge-e2 . Two arrays suffice because any thread can have at most two outgoing
thread edges. For example, if a thread e has exactly one outgoing thread edge to thread e1, then
edge-e1 [e] = e1 and edge-e2 [e] = none. The transaction edges are stored implicitly. By the
algorithm’s method of numbering transactions, an earlier transaction t1 in a thread always receives
a smaller index than a later transaction t2 in the same thread. Thus, we know there is a path
from t1 to t2 consisting of transaction edges if the transactions belong to the same thread (i.e.
thr [t1] = thr [t2]) and t1 < t2.

Two arrays readers and writers are kept for recording which transactions read or write a loca-
tion. Each element writers[`] is the head of a linked list of indices of transactions that write `. The
array readers is similarly defined, except that if a transaction both reads and writes a location `,
then the transaction is only recorded in writers[`].

The arrays reads and writes are the dual of the arrays readers and writers. Each element
writes[t] is the head of a linked list of shared-memory locations that are written by transaction
t. The array reads is similarly defined, except that if a transaction t both reads and writes a
shared-memory location, then the location is only recorded in writes[t].

The variables local to part A are as follows.

Three counters pnew , mnew , and nnew are employed to keep track of the next unused function
instance index, thread index, and transaction index, respectively, for the purpose of allocating new
indices. Variables mnew and nnew also serve the additional purpose of counting the numbers of
threads and transactions, respectively, so that these counts can be output in variables m and n.
An array fun records transaction membership in function instances, so that for each transaction t,
fun[t] is the index of the function instance that t belongs to.

For each function instance f , we keep track of the following information. The value parent [f ]
is the index of the parent function instance that spawned f , with parent [f ] = none if f is the
main function instance. The value spawned [f ] is the head of a linked list of function instances that
were spawned by f and have not yet been synced. The value next-tran[f ] is used to remember the
index of the next transaction to be executed after a spawn point in f , during the execution of that
spawned function instance (and its descendants). Finally, when f returns, final-thr [f ] records the
index of the final thread in f .

Throughout part A of the algorithm, tcurr is always set to the index of the currently executing
transaction. The boolean variable is-new-thread is used to indicate whether the current transaction
is the first transaction in a new thread. The linked lists reads-temp and writes-temp record the
shared-memory locations that have been read and written by tcurr so far, with repeats allowed.
Thus, each time that a shared-memory location ` is read or written by tcurr , ` is inserted into
reads-temp or writes-temp, respectively.

Pseudocode and Explanation. In the instrumentation of the target program, we need to add
code that runs during the start of the program, during function spawn, return, and sync points,
during transaction begin points, during accesses to shared-memory locations, and during transac-
tion end points. The pseudocode for each situation is provided below. Although the pseudocode is
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reasonably self-explanatory, a text explanation follows each piece of pseudocode for completeness.

The instrumented program is to be run in serial fashion on one processor, so that the transactions
and threads are executed in the order that they would appear in the serial elision of the target
program. Specifically, whenever a function instance fparent spawns a function instance fchild , the
spawned instance fchild always executes first. Only when fchild is completely finished and has
returned does the next transaction after the spawn point in fparent execute.

Program Start:

1 pnew ← 0
2 mnew ← 0
3 nnew ← 0

4 for ` ← 0 to L − 1
5 List-Empty( readers[`] )
6 List-Empty(writers[`] )

7 tcurr ← nnew++

8 thr [tcurr ] ← mnew++

9 fun[tcurr ] ← pnew++

10 List-Empty( spawned [ fun[tcurr ] ] )

11 parent [ fun[tcurr ] ] ← none

12 is-new-thread ← true

The above code is executed at the start of the target program. Lines 1–3 initialize the counters
pnew , mnew , and nnew . Lines 4–6 initialize the arrays readers and writers, so that all the lists are
initially empty. Lines 7–9 allocate indices for the current (first) transaction tcurr and its associated
thread and function instance. (For any variable v, the notation v++ is used to indicate that v is
to be incremented at the end of the current statement.) Line 10 initializes the spawned list of the
current function instance fun[tcurr ], which is something that needs to be done at the start of every
new function instance. Line 11 sets the parent of the current function instance fun[tcurr ] to none,
because fun[tcurr ] is the main function instance of the program. Finally, line 12 sets is-new-thread
to true because a new thread is starting.

Function Spawn:

1 tnext ← nnew++

2 thr [tnext ] ← mnew++

3 fun[tnext ] ← fun[tcurr ]

4 tchild ← nnew++

5 thr [tchild ] ← mnew++

6 fun[tchild ] ← pnew++

7 List-Empty( spawned [ fun[tchild ] ] )

8 edge-e1 [ thr [tcurr ] ] ← thr [tnext ]
9 edge-e2 [ thr [tcurr ] ] ← thr [tchild ]
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10 parent [ fun[tchild ] ] ← fun[tcurr ]
11 List-Insert( spawned [ fun[tcurr ] ], fun[tchild ] )

12 next-tran[ fun[tcurr ] ] ← tnext

13 tcurr ← tchild
14 is-new-thread ← true

The above code is executed at function spawn points. Lines 1–3 create the next transaction
tnext following the spawn point and its associated thread. The function instance of tnext is the same
as the current function instance fun[tcurr ]. Lines 4–6 create the first transaction tchild of the child
function instance, and also its associated thread and function instance. Since the child function
instance fun[tchild ] is new, line 7 initializes its spawned list. Lines 8–9 record the thread edges from
the current thread thr [tcurr ] (before the spawn point) to the two new threads created, one being the
next thread thr [tnext ] in the current function instance and the other being the first thread thr [tchild ]
of the child function instance. Line 10 sets the current function instance fun[tcurr ] to be the parent
of the child function instance fun[tchild ], and line 11 reciprocally adds the child function instance to
the spawned list of the current function instance. Line 12 saves the index of the next transaction
tnext to be executed in the current function instance, so that we know where to return to when the
child function instance is finished. Finally, line 13 changes the value of tcurr to the index of the
first transaction tchild in the child function instance, in preparation for its execution. Line 14 notes
that we are beginning a new thread.

Function Return:

1 final-thr [ fun[tcurr ] ] ← thr [tcurr ]

2 if parent [ fun[tcurr ] ] = none

3 edge-e1 [ thr [tcurr ] ] ← none

4 edge-e2 [ thr [tcurr ] ] ← none

5 m ← mnew

6 n ← nnew

7 else

8 tcurr ← next-tran[ parent [ fun[tcurr ] ] ]
9 is-new-thread ← true

The above code is executed when a function instance returns. Since we are at the end of the
current function instance, line 1 records the final thread of the current function instance fun[tcurr ]
to be the current thread thr [tcurr ]. Line 2 tests to see if the current function instance is the main

function instance of the program (only the main function instance has its parent equal to none).
If so, then we are finished running the target program. To wrap up, lines 3–4 set the outgoing
thread edges of the current thread thr [tcurr ] (which is the last thread of the program) to none,
and lines 5–6 set the output variables m and n to the final values of the counters mnew and nnew ,
respectively. Else, if we are not at the end of the main function instance, then line 8 changes the
value of tcurr to the index of the next transaction in the parent function instance parent [ fun[tcurr ] ],
in preparation for its execution. Recall that the setup operations for the next transaction in the
parent function instance were done when the current function instance was spawned. Finally, line
9 notes that we are beginning a new thread.
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Function Sync:

1 tnext ← nnew++

2 thr [tnext ] ← mnew++

3 fun[tnext ] ← fun[tcurr ]

4 edge-e1 [ thr [tcurr ] ] ← thr [tnext ]
5 edge-e2 [ thr [tcurr ] ] ← none

6 for each fchild ∈ spawned [ fun[tcurr ] ]
7 edge-e1 [final-thr [fchild ] ] ← thr [tnext ]
8 edge-e2 [final-thr [fchild ] ] ← none

9 List-Empty( spawned [ fun[tcurr ] ] )

10 tcurr ← tnext

11 is-new-thread ← true

The above code is executed at function sync points. Lines 1–3 create the next transaction tnext

following the sync point and its associated thread. The function instance of tnext is the same as
the current function instance fun[tcurr ]. Then, the task is to record thread edges for all the threads
that end at this sync point. These include the current thread, as well as the final threads of all
the child function instances that were previously spawned by the current function instance, but
which have not yet been synced. Line 4 records the outgoing thread edge from the current thread
thr [tcurr ] to the next thread thr [tnext ], and line 5 notes that the current thread does not have a
second outgoing thread edge. Lines 6–8 do the same for the final threads final-thr [fchild ] of each
previously spawned child function instance fchild . Line 9 empties the spawned list of the current
function instance fun[tcurr ], because all previously spawned child function instances have now been
synced. Finally, line 10 changes the value of tcurr to the index of the next transaction tnext in
preparation for its execution, and line 11 notes that we are beginning a new thread.

Transaction Begin:

1 if is-new-thread = true

2 is-new-thread ← false

3 else

4 tprev ← tcurr
5 tcurr ← nnew++

6 thr [tcurr ] ← thr [tprev ]
7 fun[tcurr ] ← fun[tprev ]

8 List-Empty( reads-temp )
9 List-Empty(writes-temp )

The above code is executed at the beginning of a transaction. Line 1 checks to see if the current
transaction is the start of a new thread. If so, then the setup operations for creating the current
transaction have already been done, in which case line 2 resets is-new-thread to false. Else, if the
current transaction is not the start of a new thread, then the current transaction has not yet been
created, and tcurr actually holds the index of the previous transaction. In this case, line 4 saves
the index of the previous transaction as tprev , and lines 5–7 create the current transaction tcurr
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and set its thread and function instance to be the same as those of tprev . Lines 8–9 empty the lists
reads-temp and writes-temp in preparation for recording the shared-memory accesses made by the
current transaction tcurr .

Read Location `:

1 List-Insert( reads-temp, ` )

Write Location `:

1 List-Insert(writes-temp, ` )

One of the two lines of code above is executed when a shared-memory location is read or written
by the current transaction, to record the access in reads-temp or writes-temp, respectively. Recall
that repeats are allowed in reads-temp and writes-temp.

Transaction End:

1 List-Empty( reads[tcurr ] )
2 List-Empty(writes[tcurr ] )

3 for ` ← 0 to L − 1
4 processed [`] ← false

5 for each ` ∈ writes-temp
6 if processed [`] = false

7 List-Insert(writes[tcurr ], ` )
8 List-Insert(writers[`], tcurr )
9 processed [`] ← true

10 for each ` ∈ reads-temp
11 if processed [`] = false

12 List-Insert( reads[tcurr ], ` )
13 List-Insert( readers[`], tcurr )
14 processed [`] ← true

The above code is executed when a transaction ends. Lines 1–2 initialize the reads and writes
lists for the current transaction. Lines 3–4 initialize a temporary array processed [ 0 .. L − 1 ] of
boolean values, which are used to keep track of which shared-memory locations ` have already
had accesses transferred from reads-temp and writes-temp (which allow repeats) to reads, writes,
readers, and writers (which do not allow repeats). Line 5 iterates through writes-temp, which
stores all the writes to shared memory that were made by the current transaction tcurr , and if a
location ` has not yet been processed, then lines 7–8 insert ` into the writes list of tcurr , and also
insert tcurr into the writers list of `. Lines 10–14 accomplish the same task as lines 5–9, but for the
current transaction’s reads to shared memory. Note that the array processed is not cleared between
lines 5–9 and lines 10–14, so that if the current transaction both reads and writes a shared-memory
location `, then only a write would be recorded.

Notes. Now some notes are in order. The pseudocode presented above for part A of the algorithm
is actually not completely accurate. It was presented in the above form for ease of explanation
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and understanding. Two changes need to be made, however, in order to make part A correct and
efficient.

First, note that the values p, m, and n are not available at the beginning of the algorithm, so
arrays with these sizes cannot actually be allocated. There are two simple solutions to this dilemma.
One solution is to run the target program once for the purpose of determining these values, and
then to allocate the arrays and run the instrumented program again as described above. The other
solution is simply to use dynamic arrays (for example, see [6], pages 416–425).

Second, note that the number of shared-memory locations L is likely a large number, possibly
much larger than the number of shared-memory locations that are actually used. In order not to
have the running time and space usage depend on L, we can implement the arrays readers, writers,
and processed as dynamic perfect hash tables [7]. This change replaces lines 4–6 in the pseudocode
for “Program Start” and lines 3–4 in the pseudocode for “Transaction End” with constant-
time hash table initialization statements. This change also makes the running time both amortized
and expected.

Running Time. Let us analyze the running time for each piece of pseudocode in turn, and
then combine the results. Recall that p is the number of function instances, m is the number of
threads, and n is the number of transactions. Also, let us define α to be the number of accesses to
shared-memory locations.

• Program Start — This piece of code executes only once. If readers and writers are
implemented as dynamic perfect hash tables, as mentioned in the notes above, then all the
operations in this piece of code take constant time. Thus, this code uses a total of Θ(1) time.

• Function Spawn — This piece of code executes a total of Θ(p) times. The operations in
this piece of code all take constant time. Thus, this piece of code uses a total of Θ(p) time.

• Function Return — This piece of code executes a total of Θ(p) times. The operations in
this piece of code all take constant time. Thus, this piece of code uses a total of Θ(p) time.

• Function Sync — Note that there is no requirement for each function sync be associated
with one or more function spawns1. As a result, we can only say that this piece of code
executes O(m) times. The only portion of this code that does not take constant time is the
for loop at line 6. Over all the times that this piece of code executes, the for loop at line 6
iterates a total of Θ(p) times, since each spawned function instance is synced exactly once.
The code inside the for loop takes constant time, so all the iterations take a total of Θ(p)
time. Thus, this piece of code uses a total of O(m) + Θ(p) = O(m) time.

• Transaction Begin — This piece of code executes Θ(n) times. The operations in this piece
of code all take constant time. Thus, this piece of code uses a total of Θ(n) time.

• Read Location and Write Location — One of these two pieces of code is executed for
each shared-memory access. Thus, these pieces of code use a total of Θ(α) time.

• Transaction End — This piece of code executes Θ(n) times. Over all the times that this
piece of code executes, the for loops at lines 5 and 10 iterate a total of Θ(α) times, since
reads-temp and writes-temp simply record all the accesses to shared-memory locations. All
the operations outside and inside the for loops take constant time (remember that lines 3–4
now take constant time since processed is implemented as a dynamic perfect hash table).
Thus, this piece of code uses a total of Θ(n + α) time.

Finally, we must not forget that in addition to the execution of our code, the original target program
must also execute. Let τ be the running time of the uninstrumented target program. Since p, m,

1If every sync were to be associated with at least one spawn, then it would be straightforward to prove that
p ≤ m < 3p, which would imply that m = Θ(p). However, we do not make this assumption.
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n, and α are all O(τ), the total running time for all the code inserted by part A is O(τ). Thus, the
total running time for part A of the algorithm is simply O(τ) + τ = Θ(τ).

Correctness. We shall argue that all the output variables in part A have correct values. We
shall be brief, because the pseudocode in this part of the algorithm is fairly self-explanatory.

First, mnew and nnew are initialized to 0 and incremented each time a new thread or transaction
is created, respectively, so they are correct counts for the numbers of threads and transactions,
respectively. At the end, their values are copied into m and n, so m and n are correct.

The values in thr are correct because whenever the current transaction tcurr is the start of a
new thread, we allocate a new thread index for thr [tcurr ], and whenever the current transaction is
a new transaction within the same thread, then we simply copy the thr value from the previous
transaction (line 6 in the code for “Transaction Begin”).

For edge-e1 and edge-e2 , we consider four exhaustive cases. A thread e can only end at a spawn
point, a sync point, the return point of a spawned function instance, or the return point of the
main function instance. If e ends at a spawn point, then lines 8–9 in the code for “Function

Spawn” correctly set edge-e1 [e] and edge-e2 [e]. If e ends at a sync point, then lines 4–5 in the
code for “Function Sync” correctly set edge-e1 [e] and edge-e2 [e]. If e ends at the return point
of a spawned function instance, then that function instance must have an associated sync point
in its parent function instance. Thus, lines 7–8 in the code for “Function Sync” correctly set
edge-e1 [e] and edge-e2 [e]. Finally, if e ends at the return point of the main function instance, then
lines 3–4 in the code for “Function Return” correctly set edge-e1 [e] and edge-e2 [e].

Whenever an access is made to shared memory, it is recorded into reads-temp or writes-temp by
the code for “Read Location” and “Write Location”. Then, at the end of a transaction, this
information is transferred to reads, writes, readers, and writers, with no repeats because of the use
of processed (lines 5–14 in the code for “Transaction End”). Also, reads-temp and writes-temp
are cleared at the beginning of every transaction (lines 8–9 in the code for “Transaction Begin”),
so accesses in one transaction do not get mixed with accesses in other transactions. Thus, the arrays
reads, writes, readers, and writers hold the correct data at the end of part A of the algorithm.

5.2 Part B : LCA and Access Interactions

Part B of the algorithm uses the information recorded in part A to compute the least common
ancestors (LCA) structure of the target program and the access interaction edges. Following the
same presentation plan as the previous section, this section first describes the variables used in
this part of the algorithm. Next, it provides pseudocode followed by a text explanation. Then, it
analyzes the running time. Finally, it gives brief arguments about correctness.

Variables. Below are the variables used in part B of the algorithm, excluding local dummy
variables. A description in paragraph form follows.

F Input variables:

• information about threads:
m B number of threads
edge-e1 [ 0 .. m − 1 ] B first thread constraint
edge-e2 [ 0 .. m − 1 ] B second thread constraint
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• information about transactions:
n B number of transactions
thr [ 0 .. n − 1 ] B enclosing thread
reads[ 0 .. n − 1 ] B list of memory locations read
writes[ 0 .. n − 1 ] B list of memory locations written

• information about shared-memory locations:
readers[ 0 .. L − 1 ] B list of transactions that read a location
writers[ 0 .. L − 1 ] B list of transactions that write a location

F Output variables:

• information about threads:
LCA data structure B data structure used by the LCA algorithm
thr-edges-a[ 0 .. m − 1 ] B adjacency list of threads with which this thread has an

B access interaction; the value is the last transaction in a
B give thread with which some transaction in this thread
B has an access interaction

• information about transactions:
tran-edges-a[ 0 .. n − 1 ] B adjacency list of threads with whose transactions this

B transaction has an access interaction

F Local variables:

• information about threads:
thr-edges-a-table[ 0 .. m − 1 ][ 0 .. m − 1 ] B adjacency matrix of access interactions;

B the value is the last transaction in the
B second thread that shares an access
B interaction with the first thread

• information about transactions:
tran-edges-a-table[ 0 .. n − 1 ][ 0 .. m − 1 ] B adjacency matrix of access interactions;

B the value is true if the first transaction
B has an access interaction with some
B transaction in the second thread

The input variables to part B of the algorithm are simply all the output variables from part A,
which have already been described in the previous section. The output variables of part B are as
follows.

One output item is a data structure containing the LCA information for the threads in the
target program. Many algorithms have been devised that use linear time to precompute an LCA
data structure which allows finding the LCA of any two vertices in constant time [1, 35, 21]. For
concreteness, we shall assume that we are using the algorithm in [1].

Also, we output two arrays of adjacency lists of access interaction edges, in forms that are the
most convenient for part C of the algorithm. The array tran-edges-a holds adjacency lists from
transactions to threads. For each transaction t, tran-edges-a[t] is a linked list of all the threads
with which t has access interactions. That is, a thread e1 ∈ tran-edges-a[t] if and only if e1 contains

a transaction t1 such that t
A
↔ t1.

54



The array thr-edges-a holds adjacency lists from threads to threads, but with a slight twist.
For any two threads e and e1, if there is an access interaction between some transaction in e and
some transaction in e1, then the last transaction in e1 that has an access interaction with some
transaction in e appears in thr-edges-a[e]. In other words, let t1 be a transaction in e1; then
t1 ∈ thr-edges-a[e] if and only if t1 has an access interaction with some transaction in e, but no
later transaction in e1 has an access interaction with any transaction in e.

Finally, the local variables tran-edges-a-table and thr-edges-a-table are adjacency matrices with
the same information as in tran-edges-a and thr-edges-a, respectively. Part B of the algorithm uses
these local variables as intermediate steps in computing tran-edges-a and thr-edges-a.

Pseudocode and Explanation. In part B of the algorithm, we first precompute the LCA
data structure. Then, we find the access interactions and store them into the adjacency matrices
tran-edges-a-table and thr-edges-a-table. Finally, we convert the information in tran-edges-a-table
and thr-edges-a-table into the arrays tran-edges-a and thr-edges-a of adjacency lists. The pseu-
docode is provided below, and the text explanation follows.

Compute-LCA-and-Edges-a():

1 LCA-Precompute( edge-e1 , edge-e2 , m )

2 for ti ← 0 to n − 1
3 for ej ← 0 to m − 1
4 tran-edges-a-table[ti][ej ] ← false

5 for ei ← 0 to m − 1
6 for ej ← 0 to m − 1
7 thr-edges-a-table[ei][ej ] ← none

8 for ti ← 0 to n − 1
9 for each ` ∈ writes[ti]

10 for each tj ∈ writers[`]
11 Check-For-Edge-a( ti, tj )
12 for each tj ∈ readers[`]
13 Check-For-Edge-a( ti, tj )
14 for each ` ∈ reads[ti]
15 for each tj ∈ writers[`]
16 Check-For-Edge-a( ti, tj )

17 for ti ← 0 to n − 1
18 List-Empty( tran-edges-a[ti] )
19 for ej ← 0 to m − 1
20 if tran-edges-a-table[ti][ej ] = true

21 List-Insert( tran-edges-a[ti], ej )

22 for ei ← 0 to m − 1
23 List-Empty( thr-edges-a[ei] )
24 for ej ← 0 to m − 1
25 if thr-edges-a-table[ei][ej ] 6= none

26 List-Insert( thr-edges-a[ei], thr-edges-a-table[ei][ej ] )
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Check-For-Edge-a( ti, tj ):

1 if ti < tj and LCA-Find( thr [ti], thr [tj ] ) 6∈ {thr [ti], thr [tj ]}

2 tran-edges-a-table[ti][ thr [tj ] ] ← true

3 tran-edges-a-table[tj ][ thr [ti] ] ← true

4 if thr-edges-a-table[ thr [ti] ][ thr [tj ] ] < tj
5 thr-edges-a-table[ thr [ti] ][ thr [tj ] ] ← tj
6 if thr-edges-a-table[ thr [tj ] ][ thr [ti] ] < ti
7 thr-edges-a-table[ thr [tj ] ][ thr [ti] ] ← ti

In the above pseudocode, Compute-LCA-and-Edges-a is the main function, and the sub-
routine Check-For-Edge-a has been abstracted out simply because it needs to be done in
three places. In the main code, line 1 precomputes the LCA data structure. Lines 2–4 initial-
ize tran-edges-a-table and lines 5–7 initialize thr-edges-a-table.

Lines 8–16 perform the task of finding the access interactions and putting this information into
tran-edges-a-table and thr-edges-a-table. Line 8 iterates through all the transactions ti. For each
ti, we need to find all the transactions tj with which ti has an access interaction. Transactions ti
and tj only share an access interaction if ti writes a location ` (line 9) and tj either writes ` (line
10) or reads ` (line 12), or else if ti reads a location ` (line 14) and tj writes ` (line 15). In each of
these cases, we call the subroutine Check-For-Edge-a to make two additional checks.

In the subroutine, line 1 checks that ti < tj , which eliminates redundancy, and line 1 also checks
that the LCA of the threads to which ti and tj belong is not equal to either of those threads, which
makes sure that ti and tj appear in parallel in the serial control flow of the target program. If these
checks pass, then there is an access interaction between ti and tj , so lines 2–3 record this information
into tran-edges-a-table, and lines 4–7 record this information into thr-edges-a-table. Note that the
checks in lines 4 and 6 ensure that when all the access interactions have been processed, only the
latest transactions that represent the end of an access interaction between two threads are recorded
into thr-edges-a-table.

Back in Compute-LCA-and-Edges-a, lines 17–21 move information from tran-edges-a-table
to tran-edges-a. Line 17 iterates through all the transactions ti. For each ti, line 18 initializes its
adjacency list tran-edges-a[ti], and lines 19–21 iterate through all the threads and insert the appro-
priate threads into tran-edges-a[ti]. Similarly, lines 22–26 move information from thr-edges-a-table
to thr-edges-a. Line 22 iterates through all the threads ei. For each ei, line 23 initializes its adja-
cency list thr-edges-a[ei], and lines 24–26 iterate through all the threads and insert the appropriate
transactions in the appropriate threads into thr-edges-a[ei].

Running Time. In Compute-LCA-and-Edges-a, line 1 requires Θ(m) time using the algo-
rithm in [1]. Lines 2–4 use Θ(nm) time and lines 5–7 use Θ(m2) time. Now we consider lines 8–16.
Since the reads and writes lists do no have any repeats, every time either of the for loops at lines 9
and 14 iterates, it must be with a different value of ti or `. This shows that these two for loops iter-
ate a total of O(α) times (recall that α is the total number of accesses to shared-memory locations).
Within each iteration of the loop at line 9, we know that the readers and writers lists do not have
any repeats, so that the for loops at lines 10 and 12 iterate a total of O(n) times. Similarly, within
each iteration of the loop at line 14, the for loop at line 15 iterates a total of O(n) times. Together,
we find that the subroutine Check-For-Edge-a is called a grand total of O(α) · O(n) = O(nα)
times. The operations in the subroutine all take constant time per call, so the total time required
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for lines 8–16 (remembering that line 8 must iterate Θ(n) times) is Θ(n)+O(nα) = O(nα). Finally,
lines 17–21 use Θ(nm) time and lines 22–26 use Θ(m2) time.

Adding up all the sections of code, we find that part B of the algorithm uses a total running
time of Θ(m) + Θ(nm) + Θ(m2) + O(nα) + Θ(nm) + Θ(m2) = O(nα + nm).

Correctness. We shall argue briefly that the output variables for part B of the algorithm have
correct values at the end of part B. The LCA data structure we use comes from [1], and its
correctness is proved in that paper.

For tran-edges-a, assume t1 belongs to e1 and t
A
↔ t1. We shall show that e1 ∈ tran-edges-a[t].

First, we examine what happens in lines 8–16 of Compute-LCA-and-Edges-a. By Definition 8,
t and t1 are in parallel, and both t and t1 access some shared-memory location `∗, with at least
one of them writing `∗. In each of the three cases determined by which of t and t1 write `∗, it is
clear that the subroutine Check-For-Edge-a is called in one of lines 11, 13, or 16 with ti and
tj equal to the smaller and larger, respectively, of t and t1. Within the subroutine, the checks in
line 1 pass, and one of lines 2 or 3 sets tran-edges-a-table[t][e1] to true. Later, in lines 17–21 of
Compute-LCA-and-Edges-a, there is an iteration of the inner loop with ti and ej equal t and
e1, at which point the check in line 20 passes and line 21 adds e1 to tran-edges-a[t], as desired.

In the reverse direction, assume that at the end of part B, e1 ∈ tran-edges-a[t]. Then e1 could
only have been added to tran-edges-a[t] in line 21 of Compute-LCA-and-Edges-a, which means
the check in line 20 must have passed, so that tran-edges-a-table[t][e1] = true. This, in turn, could
only have been set by one of lines 2 or 3 in the subroutine Check-For-Edge-a. This subroutine
was called in one of lines 11, 13, or 16 of Compute-LCA-and-Edges-a, and in each case, there
must exist some t1 such that thr [t1] = e1, t and t1 are in parallel, and both t and t1 access the
same memory location `∗, with at least one of them writing `∗. Thus, the conditions are satisfied
for the existence of an access interaction t

A
↔ t1 between t and some transaction in e1.

The argument for the correctness of thr-edges-a is almost the same as that for tran-edges-a, so
we shall not write it out. We only note the single major difference. For threads e and e1, lines
4–7 in the subroutine Check-For-Edge-a may be executed many times, once for each access
interaction edge between some transaction in e and some transaction in e1. The checks in lines 4
and 6 of the subroutine ensure that, at the end of part B, thr-edges-a-table[e][e1] contains the last
transaction in e1 that shares an access interaction with some transaction in e.

5.3 Part C : Searching for a Possible Data Race

Part C of the algorithm uses the data gathered and computed in the first two parts to search
for a possible data race. Following the same presentation plan as the previous two sections, this
section first describes the variables used in this part of the algorithm. Then, it provides pseudocode
followed by a text explanation. Finally, it analyzes the running time. Arguments about correctness
are given in Section 5.4.

Variables. Below are the variables used in part C of the algorithm, excluding local dummy
variables. A description in paragraph form follows.

F Input variables:

• information about threads:
m B number of threads
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LCA data structure B data structure used by the LCA algorithm
edge-e1 [ 0 .. m − 1 ] B first thread constraint
edge-e2 [ 0 .. m − 1 ] B second thread constraint
thr-edges-a[ 0 .. m − 1 ] B adjacency list of threads with which this thread has an

B access interaction; the value is the last transaction in a
B give thread with which some transaction in this thread
B has an access interaction

• information about transactions:
n B number of transactions
thr [ 0 .. n − 1 ] B enclosing thread
tran-edges-a[ 0 .. n − 1 ] B adjacency list of threads with whose transactions this

B transaction has an access interaction

F Output variables: Not applicable.

F Local variables:

• information for breadth-first search:
need-visit B queue of threads that need visiting
discovered [ 0 .. m − 1 ] B keeps track of threads that have already been discovered

The input variables to part C of the algorithm are output variables from parts A and B, so they
have already been described in the previous two sections. There are no output variables since this
is the final part of the algorithm.

The local variable need-visit is a queue used to keep track of threads that have been discovered
but not yet visited in a breadth-first search of the threads in the interaction graph. The array
discovered is used to record which threads have previously been discovered and enqueued into
need-visit , so as to prevent visiting the same thread multiple times during the search.

Also, as shown below, part C of the algorithm returns a pair (ti, tj) of transactions when it finds
a possible data race. Thus, we define a new constant no-race-found = (none,none) for the
return value when no possible data race is found.

Pseudocode and Explanation. Part C of the algorithm runs n breath-first searches on the
threads of the target program, starting from each of the n transactions. In each breadth-first
search, the goal is to start from a transaction ts and find a thread cycle that leads back to a later
transaction tj in the same thread as ts. Moreover, the threads in the cycle must all be in parallel
with the starting thread. The pseudocode is provided below, and the text explanation follows.

Find-Possible-Data-Race():

1 for ts ← 0 to n − 1

2 for ei ← 0 to m − 1
3 discovered [ei] ← false

4 discovered [ thr [ts] ] ← true
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5 Queue-Empty(need-visit )
6 for each ei ∈ tran-edges-a[ts]
7 discovered [ei] ← true

8 Queue-Enq(need-visit , ei )

9 while Queue-Is-Empty(need-visit ) = false

10 ei ← Queue-Deq(need-visit )
11 if LCA-Find( ei, thr [ts] ) 6∈ {ei, thr [ts]}

12 for each tj ∈ thr-edges-a[ei]
13 if thr [ts] = thr [tj ] and ts < tj
14 return (ts, tj)
15 if discovered [ thr [tj ] ] = false

16 discovered [ thr [tj ] ] ← true

17 Queue-Enq(need-visit , thr [tj ] )

18 for each ej ∈ {edge-e1 [ei], edge-e2 [ei]}
19 if discovered [ej ] = false

20 discovered [ej ] ← true

21 Queue-Enq(need-visit , ej )

22 return no-race-found

The above pseudocode works as follows. The loop at line 1 iterates through all transactions
ts. Within the loop, in lines 2–21, ts becomes the starting point for a breadth-first search on the
threads of the target program. Lines 2–3 initialize the array discovered used to keep track of which
threads have been discovered in the search, and line 4 marks the thread thr [ts] of the starting
transaction as having been discovered. Line 5 initializes the queue need-visit used to keep track of
threads that have been discovered but not yet visited. Lines 6–8 mark all the threads ei that can
be reached from the starting transaction ts via access interaction edges as having been discovered
and enqueues them into need-visit to be processed during the search. (We do not worry about
thread edges here because we want all the threads that we search through to be in parallel with
the starting thread.)

The setup for the breath-first search is now complete. Lines 9–21 repeatedly take threads off
the queue and process them. The while loop at line 9 checks if there are still threads that need
visiting. If so, then line 10 dequeues the next thread ei to be processed. Line 11 checks to make
sure that ei is in parallel with the starting thread thr [ts].

At this point, lines 12–17 expand the breath-first search along the access interaction edges
adjacent to ei, while lines 18–21 expand the search along thread edges outgoing from ei. The for

loop at line 12 iterates through all the threads that can be reached from ei via access constraint
edges. For each such thread thr [tj ], line 13 checks to see if it is the starting thread thr [ts], and if so,
whether a thread cycle can be completed that ends at a transaction tj which appears later in the
starting thread than the starting transaction ts. If such a thread cycle can be made, then a possible
data race is reported, in the form of the pair of transactions (ts, tj). Also for each thread thr [tj ],
line 15 checks whether it has previously been discovered, and if not, lines 16–18 mark it as having
been discovered and enqueue it into need-visit for future processing. Line 18 iterates through the
threads ej that can be reached from ei via thread edges (there can be at most two), and for each
such thread, lines 19–21 perform the same thread discovery procedure as lines 15–17.
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Finally, if all n breadth-first searches beginning from the n transactions do not find a possible
data race, then line 22 indicates this by returning no-race-found.

Running Time. The main for loop at line 1 iterates Θ(n) times. Within each iteration of this
main loop is a breadth-first search of the threads. This breadth-first search is different in two ways
from a regular breadth-first search of the threads. One difference is that it starts from a transaction
(not a thread), and as the first step only considers threads that are reachable from the starting
transaction via access interaction edges (not also thread edges). The other difference is that the
search does not expand when it visits a thread that is not in parallel with the starting thread. Note
that both of these differences can only cut down on the time required for a breadth-first search,
but never increase it. Thus, we can bound the time required for our breadth-first search by the
time required for a regular breadth-first search of the threads. If we let µ denote the number of
pairs of threads that have access interactions between some of their transactions, then the time
required for a regular breadth-first search of the threads is O(m + µ). Thus, the time required for
our breadth-first search is O(m + µ) as well. Then, over all the iterations of the main loop, the
total time required for part C of the algorithm is Θ(n) · O(m + µ) = O(nm + nµ).

5.4 Correctness and Analysis

This section first states and proves exact conditions under which part C of the algorithm reports a
data race. Next, it proves that the algorithm never reports any false negatives. Then, it gives an
intuitive explanation of the algorithm and discusses how the programmer should use the reported
information about a possible data race. Finally, it combines the analyses from Sections 5.1–5.3 to
show that the total running time of the algorithm is worst-case quadratic in the size of the target
program’s interaction graph.

The following theorem gives the conditions under which a possible data race is reported.

Theorem 14. Part C of the algorithm reports a possible data race if and only if the target program’s
interaction graph contains a thread cycle C = 〈(t0, t

′

1), . . . , (tk−1, t
′

0)〉 such that
1. every thread in the cycle is in parallel with the thread containing t0 (and t′0), and
2. the starting transaction t0 appears before the ending transaction t′0 in their common thread.

Proof. Forward direction. Say that part C of the algorithm reports a possible data race in the pair
of transactions (t, t′). Looking at the pseudocode for Find-Possible-Data-Race, this must have
happened during the iteration of the main for loop (line 1) in which ts = t. During this iteration,
a breadth-first search is performed with t as the starting point.

Note that all threads visited during the breadth-first search are reachable from t via some thread
path. Furthermore, due to the check in line 11, only threads that are in parallel with the thread
containing t are expanded during the search.

Now consider the iteration of the while loop at line 9, and within it the iteration of the for

loop at line 12, during which (t, t′) is returned. Note that tj = t′ during this iteration. From the
previous paragraph, we know that the value of ei is some thread that can be reached from t via a
thread path consisting of threads that are all in parallel with the thread containing t. From line 12,
we know that there is an access edge connecting ei to t′. Finally, from line 13, we know that t and
t′ belong to the same thread and that t appears before t′ in their common thread. Thus, the thread
path from t to ei combined with the access edge between ei and t′ forms a thread cycle C (starting
at t and ending at t′) in the target program’s interaction graph that satisfies both conditions in the
theorem statement.
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Backward direction. Say that the interaction graph of the target program contains a thread cycle
C = 〈(t0, t

′

1), . . . , (tk−1, t
′

0)〉 that meets the two conditions in the theorem statement. Furthermore,
let us assume that t′0 is the last transaction in its thread to share an access edge with any transaction
in the thread containing tk−1, because otherwise we could change the last edge in C to make a
different thread cycle that does meet this criterion.

If part C of the algorithm reports a possible data race that is different from (t0, t
′

0), then we are
done. However, if part C does not report any other data race, then we shall prove that part C must
report a possible data race in the pair of transactions (t0, t

′

0).
At some point in the main for loop at line 1, we have ts = t0. Now let the thread containing

tk−1 be e. Since part of the thread cycle C is a thread path from t0 to e consisting of threads that
are all in parallel with the thread containing t, we know that e is processed at some point during
the breadth-first search starting from t. At this point, ei = e in the while loop at line 9. Within
this iteration of the while loop, at some point tj = t′0 in the for loop at line 12, because there is
an access edge from transaction tk−1 in e to transaction t′0, and t′0 is the latest transaction in its
thread for which this is true (note that the edge from tk−1 to t′0 cannot be a thread edge because
then e would not be in parallel with the thread containing t). It is at this time that the checks in
line 13 pass and line 14 returns (t0, t

′

0).

With the following theorem, we prove that the algorithm never reports any false negatives. (A
false negative occurs when the algorithm reports no-race-found, but in fact the target program
contains a data race.)

Theorem 15. If the target program contains a data race, then part C of the algorithm reports a
possible data race.

Proof. If the target program contains a data race, then it must have a race assignment A. Let
GA be the assignment graph of A, and let C = 〈(t0, t

′

1), . . . , (tk−1, t
′

0)〉 be a thread cycle in GA

with the fewest number of access edges. It must be true that for some i, transaction ti appears
before t′i in their common thread. The reason is that, otherwise, there would be a cycle in GA

of the form t0 → t′1 Ã t1 → · · · Ã tk−1 → t′0 Ã t0, where every path t′i Ã ti consists simply of
transaction edges within their common thread, and this cycle would contradict the fact that A is
a race assignment. Now, since the thread cycle C can be rotated to start at any thread, we can
assume without loss of generality that t0 appears before t′0 in their common thread e0.

At this point, we consider three cases. We shall prove that only the first case can occur.

Case 1: All the threads in C are in parallel with e0. In this case, the proof is completed by the
backward direction of Theorem 14.

t 0 t 0’

e0e

* *

(a)

t 0 t 0’

e0

* *

e

(b)

Figure 5.1: Diagrams of cases 2 and 3.
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Case 2: There exists a thread e in C that is a serial ancestor of e0. This situation is shown in
Figure 5.1(a), where the dotted-and-dashed lines represent thread paths that combine to make up
C, and an edge marked with an asterisk represents a path consisting of one or more edges of that
type. In this case, there is a thread path from t0 to e that is a portion of C, and a serial path from
e to e0 using only thread edges. These two paths together form a thread cycle C ′, which I claim
has fewer access edges than C, thus contradicting the fact that C is a thread cycle with the fewest
number of access edges.

The reason that C ′ has fewer access edges than C is as follows. Note that C ′ is obtained from
C by removing the portion of C going from e to t′0 and adding the serial path from e to e0. Adding
the serial path clearly does not add any access edges, so if we can prove that the path from e to t′0
contains at least one access edge, then we are done. Note that t′0 cannot be the first transaction in
e0 because there is at least one earlier transaction t0. Thus, there can be no thread edge that ends
at t′0. This proves that the last edge in the path from e to t′0, which is an edge ending at t′0, must
be an access edge.

Case 3: There exists a thread e in C that is a serial descendent of e0. This situation is shown in
Figure 5.1(b). The proof is similar to that of Case 2. We consider the thread cycle C ′ consisting of
the portion of C going from e to t′0 and the serial path from e0 to e. Note that C ′ is obtained from
C by removing the portion of C going from t0 to e and adding the serial path from e0 to e. Adding
the serial path does not add any access edges, while removing the thread path from t0 to e removes
at least one access edge, because the first edge in this thread path is outgoing from t0, and cannot
be a thread edge because t0 is not the last transaction in e0. Thus, C ′ contains fewer access edges
than C, contradicting the fact that C is a thread cycle with the fewest number of access edges.

Theorem 14 gives precise conditions for when a possible data race is reported and Theorem 15
tells us that there are no false negatives, but we still need an intuitive explanation of the algorithm,
and a clarification on how to use the output information to help eliminate possible data races.

The intuition for the algorithm is as follows. We know from Chapter 4 that we (most likely) can-
not efficiently detect for race assignments, which can be thought of as thread cycles in the interaction
graph of the target program that do not also generate a (transaction) cycle. Thus, we are instead
going to search for thread cycles that have a “reasonable chance” of not also generating a cycle.
We accomplish this by eliminating from consideration all thread cycles C = 〈(t0, t

′

1), . . . , (tk−1, t
′

0)〉
that can be immediately turned into a cycle of the form t0 → t′1 Ã t1 → · · · Ã tk−1 → t′0 Ã t0
simply by connecting together each t′i and ti (if they are not already the same transaction) using
transaction edges in their common thread. This is by far the most common reason for a thread
cycle to also generate a cycle.

In order for a thread cycle C not to directly cause a cycle as described in the previous paragraph,
some thread in C must break the potential underlying cycle by having ti precede t′i. Without loss
of generality, we can assume t0 precedes t′0 in their common thread e0. This reasoning provides
the motivation for condition 2 in the statement of Theorem 14. We can think of the possible data
race being exhibited as follows. If all the transactions in C are scheduled in the order that they
appear in C, starting with t0 and ending with t′0, then this schedule would not be equivalent to any
schedule of the atomic-threads version of the target program. The reason is that in any equivalent
schedule of the atomic-threads atomization, due to the sequence of constraints in C, e0 must appear
before all the other threads in C as well as appear after all the other threads in C, which is clearly
impossible.

This explanation of how a possible data race can be exhibited leads naturally to condition 1
in the statement of Theorem 14. We add the condition that all threads in C must be in parallel
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with e0 because otherwise, the possible data race would not be able to be exhibited in the manner
described above. Still, we cannot eliminate possible data races simply by intuition, so we need
the support given by cases 2 and 3 in the proof of Theorem 15. The proof demonstrates that in
the cases shown in Figure 5.1, the algorithm would find some other thread cycle C ′ that contains
only a subset of the access constraint edges in C. In these situations, C ′ is the “root cause” of the
problem demonstrated by C, and the algorithm keeps searching until it finds the thread cycle C ′

before reporting the problem.
Finally, we shall address how the reported information (t0, t

′

0) about C should be used to elimi-
nate the possible data race. The programmer should ask himself or herself whether the correctness
of the shared-memory accesses in t′0 depends on the assumption that there are no intervening
shared-memory accesses by other threads since t0. If the correctness does depend on this assump-
tion, then the programmer should use constructs in the program (which should be provided by the
compiler) to force t0 and t′0 to be placed in the same transaction. Intuitively, this change eliminates
the possibility that t0 and t′0 might be scheduled with intervening transactions that compromise
correctness, while mathematically, this change means that e0 no longer prevents C from directly
causing a cycle. If, however, the correctness of t′0 does not depend on shared-memory accesses made
in t0, then the programmer should use constructs in the program (which should be provided by the
data-race detection system) to indicate that this possible data race is not an error and should no
longer be reported.

Overall Running Time. We conclude by adding up the running times from the three parts of
the algorithm to obtain the overall running time. From Section 5.1, part A of the algorithm requires
Θ(τ) time, where τ is the running time of the uninstrumented target program. From Section 5.2,
part B of the algorithm requires O(nα+nm) time, where n is the number of transactions, m is the
number of threads, and α is the number of accesses to shared-memory locations. From Section 5.3,
part C of the algorithm requires O(nm + nµ) time, where µ is the number of pairs of threads that
have access interactions between some of their transactions. Thus, the overall running time of the
whole algorithm is Θ(τ) + O(nα + nm) + O(nm + nµ) = O(τ + nα + nm + nµ). Discounting the
time required for executing the uninstrumented target program, the running time of the algorithm
is worst-case quadratic in the size of the interaction graph.
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Chapter 6

Conclusion

This conclusion first summarizes what I have accomplished in this thesis, and then offers some
suggestions for future work.

First, I laid out a mathematical foundation for studying the constraints on transaction schedul-
ing. I began by defining thread and transaction constraints, which are the constraints on legal
schedules of an atomized program imposed by the serial control flow of the program. I then defined
a notion of equivalence for schedules of the same program, from which I derived access constraints,
which are the constraints that determine whether two schedules are equivalent. I extended the
concept of access constraints for schedules to access interactions for atomized programs. Finally,
I defined access assignments, which represent the link between access interactions and access con-
straints, and discussed when they are realizable. This foundation of terminology and basic facts
about the constraints on transaction scheduling can be reused in future studies of the transactions-
everywhere methodology, even on topics not directly related to data-race detection.

I formulated the definition of a data race in the transactions-everywhere setting. An atomized
program is defined to contain a data race if there exists a schedule of it that is not equivalent to any
schedule of the atomic-threads atomization. This definition is based on the weak assumption that
the program has correct parallelization, which is made in the same spirit as the assumption that
underlies the conventional definition of a data race. The weakness of the assumption causes the
definition of a data race to become more complicated than the conventional definition. The struc-
ture of a data race also becomes more complicated, as a data race in the transactions-everywhere
methodology can involve an arbitrary number of threads and transactions.

I defined race assignments and proved that the existence of a race assignment is a necessary and
sufficient condition for an atomized program to contain a data race. I then used race assignments
to prove, via a polynomial-time reduction from the problem of 3cnf-formula satisfiability, that data-
race detection is an NP-complete problem in general. This result suggests that data races most
likely cannot be detected efficiently, and that algorithms should be sought which approximately
detect data races.

Finally, I presented an algorithm that approximately detects data races. The algorithm has three
parts. Part A records the serial control flow and shared-memory accesses of the target program by
instrumenting it at key points; part B computes the least common ancestors structure of the threads
and finds the access interactions; and part C uses the data prepared in the first two parts to search
for a possible data race. I stated and proved exact conditions under which a possible data race is
reported, and showed that the algorithm never reports any false negatives. Intuitively, the algorithm
searches for a thread cycle in the target program’s interaction graph that does not immediately
lead to a cycle, and within that thread cycle, a thread that is a primary cause of the possible data
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race. When it finds a possible data race, the algorithm reports two transactions that may have
their correctness compromised by intervening transactions in the schedule. The programmer should
then examine whether or not the two transactions have a logical data dependency. If so, then he
or she would indicate to the compiler that the two transactions should be merged into the same
transaction, and if not, then he or she would indicate to the data-race detector that there is in fact
no error. The algorithm requires running time that is worst-case quadratic in the size of the target
program’s interaction graph.

At this point, I conclude by offering some suggestions for future work. The issue of how to
handle data-race detection in the transactions-everywhere methodology has by no means been fully
studied and solved. One basic question is whether there is a better definition of a data race that
would allow data races to be efficiently detected in general, while still accurately capturing real-life
data-race errors and not making extra assumptions about program correctness. Another question
is whether other common techniques for detecting data races, in particular static analysis and
dynamic online detection, can be fruitfully applied in the transactions-everywhere setting.

Implementation of the proposed algorithm is necessary to test its feasibility in practice. Two
important factors that need to be evaluated are the rate that data races appear in programs using
transactions everywhere and the rate that false positives appear. Experimentation with different
heuristic rules for determining cutpoints may lead to more accurate atomization strategies for
compilers that automatically generate transactions everywhere. Also, it may be possible to lower
the rate of false positives by designing a better algorithm.
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Related Work

Charles E. Leiserson and many graduate students in his research group designed and implemented
Cilk [3, 39, 13, 22], a parallel-programming language that is a faithful extension of the C language.
Mingdong Feng, Guang-Ien Cheng, Leiserson, and others developed the Nondeterminator [11, 5, 4,
38], a data-race detector for Cilk programs using conventional locks.

Other researchers have studied data-race detection in many contexts. Static data-race detectors
[30] analyze the target program without executing it. Dynamic race detectors study the behavior
of the target program through its execution. The latter can be categorized into those that perform
detection as the target program runs [8, 9, 11, 34, 27, 12], and those that study a completed
execution trace of the target program [29, 15, 10, 31].

Maurice Herlihy and J. Eliot B. Moss suggested hardware transactional memory [19], a hardware
mechanism for supporting shared-memory parallel programming. Thomas F. Knight and Morry
Katz presented similar ideas in the context of functional languages [24, 23]. Nir Shavit, Dan
Touitou, Herlihy, Victor Luchangco, Mark Moir and others have attempted software transactional
memory [36, 18], which provides transactional-memory support in software.

Leslie Lamport proposed lock-free data structures [25], and Herlihy and Moss suggested wait-
free programming [16, 17], both of which are ways to implement highly concurrent shared data
structures utilizing atomic instructions that are weaker than transactions.

Leiserson suggested transactions everywhere [26], a methodology for parallel programming on
systems with HTM support that further eases the programmer’s job beyond the benefits provided by
HTM. Clément Ménier applied the transactions-everywhere methodology to sample Cilk programs
and collected some statistics on the resulting transactions [28].
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