6.897 Advanced Data Structures (Spring'05) Prof. Erik Demaine TA: Mihai Pǎtraşcu

Problem 7 Due: Wednesday, Mar. 30

Timing: This problem is due after spring break. In the spirit of not making you work during the break, we are making the problem due on a Wednesday, so you can decide to only look at it after school resumes.

Prove that on a word RAM with w-bit words, one can sort $n w$-bit integers in time $O\left(n \lg \frac{w}{\lg n}\right)$. The algorithm can be randomized (the time bound must hold in expectation).

Hints: Think of van Emde Boas, and find a way to reduce sorting n integers of w bits to the problem of sorting n integers on $\frac{w}{2}$ bits. Bottom out the recursion in a linear-time sorting algorithm (for $w=\lg n$). Note that you must reduce to a problem on exactly (or at most) n integers, not on $O(n)$ integers (if you don't see why, brush up on your recursions). The only randomness needed in the algorithm is through black-box use of hash tables.

In class, we saw that for $w=\Omega\left(\lg ^{2+\varepsilon} n\right)$, we can sort in linear time. In general, the sorting time drops quickly when w exceeds $\lg ^{2} n$. This problem shows that the sorting time also drops quickly when w approaches $\lg n$. Thus, the hardness of sorting is concentrated in a very narrow interval for w : between $\lg ^{1+\varepsilon} n$ and $\lg ^{2} n$. What happens in this interval remains an important open problem.

