6.897 ADVANCED DATA STRUCTURES (SPRING'05) Prof. Erik Demaine TA: Mihai Pătrașcu Problem 7 Due: Wednesday, Mar. 30

Timing: This problem is due after spring break. In the spirit of not making you work during the break, we are making the problem due on a Wednesday, so you can decide to only look at it after school resumes.

Prove that on a word RAM with *w*-bit words, one can sort *n w*-bit integers in time $O(n \lg \frac{w}{\lg n})$. The algorithm can be randomized (the time bound must hold in expectation).

Hints: Think of van Emde Boas, and find a way to reduce sorting n integers of w bits to the problem of sorting n integers on $\frac{w}{2}$ bits. Bottom out the recursion in a linear-time sorting algorithm (for $w = \lg n$). Note that you must reduce to a problem on exactly (or at most) n integers, not on O(n) integers (if you don't see why, brush up on your recursions). The only randomness needed in the algorithm is through black-box use of hash tables.

In class, we saw that for $w = \Omega(\lg^{2+\varepsilon} n)$, we can sort in linear time. In general, the sorting time drops quickly when w exceeds $\lg^2 n$. This problem shows that the sorting time also drops quickly when w approaches $\lg n$. Thus, the hardness of sorting is concentrated in a very narrow interval for w: between $\lg^{1+\varepsilon} n$ and $\lg^2 n$. What happens in this interval remains an important open problem.