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Problem 7 – Solution

We can assume integers are distinct. Otherwise, we build a hash table, and see how many times
each integer appears. This can be done in linear time (n lookups, and at most n inserts). Then,
we sort the set without duplicates, and we can reconstruct the multiplicity at the end (by lookups
in the hash table again).

To sort n integers of w bits, we proceed as follows. First, we break each integer from the set,
x ∈ S, in two parts: hi(x) and lo(w). Let hi(S) = {hi(x) | x ∈ S}. We keep a hash table which
represents hi(S). Each entry h ∈ hi(S) has as associated data data(h) = min{x ∈ S | hi(x) = h}.
This is easily constructed: we scan all x’s; if hi(x) is not in the hash table, we insert it with x as
the minimum; otherwise, we see if the minimum for hi(x) needs to be updated.

Now, we build a set S′ of w
2 -bit integers. The set S′ = hi(S)∪ {lo(x) | x ∈ S, data(hi(x)) 6= x}.

We can eliminate duplicates in S′ through hashing. Observe that S′ has at most n values, and it
can be generated in linear time: for each element x, either data(hi(x)) 6= x, in which case we add
lo(x) to S′, or data(hi(x)) = x, in which case we add hi(x) to S′.

Now we sort S′ recursively. After we have S′ sorted, we reconstruct the sorted order for S in
linear time. First, for all h ∈ hi(S), we now want to store in the hash table an associated value
which is a linked list of elements {x ∈ S | hi(x) = h}, sorted by x (which is equivalent to sorted by
lo(x)). The first element is data(h). To generate the other values, we first create a hash table for
lo(S), in which each l stores a linked list (in arbitrary order) of {x ∈ S | lo(x) = l, x 6= data(hi(x))}.
Then, we traverse S′ in order, and for each t ∈ S′ scan the list associated with t in the hash table
for lo(S). For each x in the list, append it to the list for hi(x). For each list in hi(S), the elements
are being appended by lo(·), so each list ends up sorted. Then, we traverse the sorted S′ again and
we append the sorted lists corresponding to each high value, in order, which gives the sorted order
of S.

The recursive sorting stops when w = lg n (this is the original n, not the current size of S,
which may be smaller after removing duplicates). At that point, we can sort in linear time, by
marking in an array of size n, which is an additive O(n) in our running time. We do lg w

lg n steps of
the recursion, and we have O(n) cost at each level, so we get the desired running time.
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