6.897 Advanced Data Structures (Spring'05)

Prof. Erik Demaine TA: Mihai Pătrașcu

Problem 6 Due: Monday, Mar. 14

In this problem, we are considering a symmetric communication game involving Alice and Bob, in which players alternate sending *m*-bit messages (*m* is the same for both players; using the notation from class, m = a = b). Let *t* be the total number of messages sent. We will be interested in optimizing *m*, for given *t* and input size *n*.

Alice and Bob each receive an *n*-bit number (call these x and y), and they must compute the greater-than function: GT(x, y) = 1 if x > y, and 0 otherwise. At the end of the protocol, one player (it doesn't matter who) must announce GT(x, y). This is not considered a round; it's just the way the result of the computation is made public.

We are interested in "public-coin" protocols which compute $GT(\cdot, \cdot)$ with error probability at most $\frac{1}{3}$. At the beginning, before they see their inputs, Alice and Bob toss some random coins, and the outcomes are known to both players. Then, they receive x and y respectively, and they execute the communication protocol. It must be true that for any fixed x and y, the probability over the coin tosses that GT(x, y) is announced correctly is at least $\frac{2}{3}$.

Upper Bound. Prove that one can solve the problem with $m = O(n^{1/t} \lg n)$.

Hints: Think of the van Emde Boas recursion (but note that you need to divide integers into more than 2 chunks). Remember that if you pick a random function from a universal family mapping some arbitrary universe to $\lg n$ bits, the probability that two different inputs look identical through the hash function is $\frac{1}{n}$. Alice and Bob can pick a random hash function ahead of time (this is what "public coins" really means). The player who announces GT(x, y) depends on the parity of t.

Lower Bound. Prove that the problem does not have a solution unless $m = \Omega(n^{1/t}/t^2)$.

You will probably want to use the round elimination lemma. For convenience, we are restating it here. For any communication game deciding a function f, we define the k-fold of f, denoted $f^{(k)}$, as follows. Alice receives (x_1, \ldots, x_k) and Bob receives $(y, i, x_1, \ldots, x_{i-1})$. The players want to compute $f(x_i, y)$.

Lemma 1 (round elimination lemma). Assume $f^{(k)}$ has a protocol with error probability δ , in which Alice speaks first, players send m bits per message, and there are t messages in total. Then, f has a protocol with error probability $\delta + O(\sqrt{m/k})$, in which Bob speaks first, players send m bits per message, and there are t - 1 messages in total.